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ABSTRACT: The packing and connectivity of tetrahedral units are
central themes in the structural and electronic properties of a host
of solids. Here, we report one-dimensional (1D) chains of GeX2 (X
= S or Se) with modification of the tetrahedral connectivity at the
single-chain limit. Precise tuning of the edge- and corner-sharing
modes between GeX2 blocks is achieved by diameter-dependent 1D
confinement inside a carbon nanotube. Atomic-resolution scanning
transmission electron microscopy directly confirms the existence of
two distinct types of GeX2 chains. Density functional theory
calculations corroborate the diameter-dependent stability of the
system and reveal an intriguing electronic structure that sensitively
depends on tetrahedral connectivity and composition. GeS2(1−x)Se2x
compound chains are also realized, which demonstrate the
tunability of the system’s semiconducting properties through
composition engineering.
KEYWORDS: One-dimensional materials, Germanium dichalcogenide, Atomic chain, Nanotubes, Transmission electron microscopy

INTRODUCTION
The packing and connectivity of tetrahedra in solids play
essential roles in various fields of research and industrial
applications.1−3 In particular, tetrahedral systems with the AX2
stoichiometry (A = Si, Ge; X = O, S, Se) are interesting
systems with tunable connectivity between tetrahedra and have
played an important role in materials science, especially in
semiconductor technologies.4,5 In these systems, the short-
range atomic ordering is often described by structural units of
A(X1/2)4 tetrahedra, and the edge/corner sharing between
these building blocks determines the long-range ordering with
various structural phases and complexities.6−13 For example,
SiO2 displays oxygen-corner-sharing modes between SiO4
tetrahedra, and a slight modification of its connectivity results
in several distinct crystalline phases of quartz or silica glass
networks.14 In addition, the tetrahedral connectivity can also
be substantially altered by changing the atomic constituents or
adjusting the temperature and pressure.15−18 Therefore, the
connectivity between tetrahedral building blocks serves as a
key parameter to understand the structural complexity.

One way to tune the connectivity between tetrahedra and
the packing is through the dimension-reduction effect induced

by geometrical confinement. For example, previous studies
have indicated that silica can be stabilized in the two-
dimensional (2D) limit.19,20 Similarly, one-dimensional (1D)
confinement inside carbon nanotubes (CNTs) or boron
nitride nanotubes (BNNTs) may be utilized to pack
tetrahedral building blocks and realize crystalline phases with
modified connectivity. Previous studies have indeed demon-
strated the synthesis and stabilization of various materials
inside nanotubes, including carbon nanomaterials, pnictogens
(P, As, and Sb), halides, and transition-metal chalcoge-
nides.21−32 Although these studies have shown interesting
quasi-1D nanostructures and physical properties,24,27,29,31,33−35

packing of tetrahedral building blocks has yet to be reported.
Transition-metal chalcogenides with octahedral building blocks
have been encapsulated in nanotubes,30,36 but the tuning of the

Received: March 1, 2023
Accepted: April 17, 2023
Published: April 26, 2023

A
rtic

le

www.acsnano.org

© 2023 The Authors. Published by
American Chemical Society

8734
https://doi.org/10.1021/acsnano.3c01968

ACS Nano 2023, 17, 8734−8742

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

A
L

IF
O

R
N

IA
 B

E
R

K
E

L
E

Y
 o

n 
O

ct
ob

er
 2

7,
 2

02
3 

at
 1

7:
42

:1
4 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yangjin+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Young+Woo+Choi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kihyun+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chengyu+Song"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+Ercius"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marvin+L.+Cohen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kwanpyo+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kwanpyo+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alex+Zettl"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsnano.3c01968&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c01968?ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c01968?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c01968?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c01968?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c01968?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/ancac3/17/9?ref=pdf
https://pubs.acs.org/toc/ancac3/17/9?ref=pdf
https://pubs.acs.org/toc/ancac3/17/9?ref=pdf
https://pubs.acs.org/toc/ancac3/17/9?ref=pdf
www.acsnano.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsnano.3c01968?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.acsnano.org?ref=pdf
https://www.acsnano.org?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


octahedral connectivity is limited due to the isotropic bonding
nature.

Here, we report the discovery of crystalline phases of 1D
tetrahedral chains of GeX2 (X = S, Se) with modified
tetrahedral connectivity in the single-chain limit. GeX2, as an
archetype member of the tetrahedral AX2 family, was chosen to
explore the tunable connectivity between tetrahedra in the
confined space of a CNT. Atomic-resolution scanning
transmission electron microscopy (STEM) imaging and
simulation clearly identify different chain structures. The
identified type-1 GeX2 chain structure is a tetrahedral chain
structure composed solely of edge-sharing modes, and the
type-2 chain shows both edge and corner-sharing modes.
Precise tuning of the edge- and corner-sharing modes of GeX2
is achieved by the diameter-dependent 1D confinement effect.
Density functional theory (DFT) calculations support the
stability of the system and predict that electronic structures of
GeX2 chains are also strongly affected by tetrahedral

connectivity and composition. Additionally, we demonstrate
synthesis of 1D GeS2(1−x)Se2x ternary chains with a controllable
alloy composition without compromising the modified
tetrahedral connectivity. First-principles calculations support
the stability of the system and the widely tunable electrical
properties of the 1D tetrahedral GeX2 chains via the control of
the tetrahedral connectivity and substitution.

RESULTS AND DISCUSSION
Bulk crystalline GeSe2 and GeS2 are known to form a 2D
layered structure with a relatively complex structure due to the
local connectivity between tetrahedra (the crystal structures
are shown in Supporting Figure S1).13,14 Each layer is
composed of repeated corner- and edge-sharing GeX4
tetrahedra. In each layer, the ratio of edge-shared and only
corner-shared tetrahedra is 1:1. The ratio of corner- and edge-
sharing tetrahedra plays a critical role in the GeX2 structure,
such as the formation of an amorphous network structure.12

Figure 1. Type-1 1D tetrahedral GeX2 single chain inside a nanotube. (a) Aberration-corrected ADF-STEM image of a type-1 tetrahedral
GeSe2 single chain encapsulated within a single-walled CNT. Scale bar: 1 nm. (b) Atomic model of the type-1 tetrahedral GeX2 single chain
inside a nanotube. (c) Edge-sharing GeX2 tetrahedral building block unit. (d) Simulated and (e) experimental ADF-STEM image of the
edge-sharing GeSe2 tetrahedral building block. (f) Atomic model of a 45° rotated type-1 tetrahedral GeX2 single chain. (g, h) Experimentally
observed atomic-resolution STEM images of 45° rotated type-1 1D tetrahedral (g) GeSe2 and (h) GeS2 single chains encapsulated inside
nanotubes. Scale bar: 0.5 nm.
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For our experiments, GeX2 chains are synthesized by vacuum
annealing GeX2 precursors in the presence of open-ended
nanotubes at temperatures close to the melting point of the
precursors (see Methods for more details). The samples are
examined using transmission electron microscopy (TEM) to
confirm that the target material was successfully filled inside
the nanotubes. Upon examination, approximately 90% of the

nanotubes are filled, with the total length of the chains ranging
from 100 nm to over 1 μm (Supporting Figure S2). Chemical
analysis of the encapsulated GeSe2 chains using energy-
dispersive spectroscopy (EDS) confirms a composition of
34.4 ± 1.2 atomic percent (atom %) Ge and 65.6 ± 1.8 atom
% Se. The atomic structure of the filled material is further

Figure 2. Type-2 1D tetrahedral GeX2 single chain inside a nanotube. (a) Atomic model of a type-2 tetrahedral GeX2 single chain inside a
nanotube. (b) Atomic-resolution STEM image of a type-2 GeSe2 single chain inside a nanotube. (c) Composite STEM image generated by
averaging experimentally collected orientationally similar single segments (average cell). (d) Simulated STEM image produced using the
proposed type-2 GeSe2 atomic structure. (e) Atomic model of a 40° rotated type-2 1D GeX2 single chain. (f, g) Experimentally observed and
simulated STEM images of 40° rotated type-2 1D (f) GeSe2 and (g) GeS2 single chains. (h) Atomic model of a 90° rotated type-2 1D GeX2
single chain. (i, j) Experimentally observed and simulated STEM images of 90° rotated type-2 (i) GeSe2 and (j) GeS2 single chains. (Scale
bar: 0.5 nm.)
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investigated using aberration-corrected STEM with an annular
dark field (ADF) detector.

Figure 1a shows an atomic-resolution ADF-STEM image of
a GeSe2 chain encapsulated within a nanotube with an inner
diameter of 1.0 nm. In the ADF-STEM image, the contrast is
proportional to the atomic number (Z-contrast); thus, Se (Z =
34) exhibits a slightly higher signal than Ge (Z = 32). The
same atomic ratio and structure are also observed for GeS2
encapsulated within a nanotube (Supporting Figure S3), in
which Ge appears brighter than S because S (Z = 16) has a
lower atomic number than Ge (Z = 32).

Based on the observed STEM images (Figure 1b,c), GeX2
tetrahedral building blocks share edges to form a chain within a
nanotube, which we refer to as the type-1 structure. Figure 1b
illustrates the overall structure of the 1D GeX2 chain within the
nanotube, while Figure 1c shows a detailed view of the edge-
sharing GeX2 tetrahedral unit cell. The lattice constant of the
GeX2 tetrahedral block (motif) varies depending on the
chalcogen element (S or Se) due to differences in the bond
length between Ge and the chalcogen. The measured lattice
constants are 6.3 Å (x-axis) and 3.6 Å (y-axis) for GeSe2 and
6.0 Å (x-axis) and 3.4 Å (y-axis) for GeS2, which are in good
agreement with the relaxed structure obtained through density
functional theory (DFT) calculations. The optimized lattice
parameters are 6.01 and 3.52 Å for GeS2 and 6.32 and 3.71 Å
for GeSe2. The bond length is 2.28 Å for Ge−S and 2.42 Å for
Ge−Se. The STEM simulated images based on our DFT
calculations are in good agreement with the experimental
STEM images, as seen in Figure 1d,e.

During TEM/STEM imaging, electron-beam stimulation
can cause the chains inside the tube to rotate or move axially
along the core of the tube.32 This motion can be used to great
advantage. The rotated chains facilitate three-dimensional
(3D) structural analysis by providing various projection images
without the need to tilt the entire sample. We simulate STEM
images with different rotation angles of the type-1 1D chain
structure inside the nanotube, as shown in Supporting Figure
S4. Sequential STEM images are captured, showing the type-1
1D GeSe2 chains freely rotating inside the nanotubes
(Supporting Figure S5), in which the tetrahedral GeSe2
chain structure initially at 0° is rotated by 45° during the
imaging. Despite the rotation caused by the electron beam, the
chain structure itself is observed to remain constant, with the
end of the chain still terminating in Se. Figure 1f−h show
representative examples of the 45° rotated type-1 GeSe2 and
GeS2 chain structures within nanotubes, which well match the
simulated STEM images.

The confinement effect of the nanotube diameter can
modify the tetrahedral connectivity, yielding a different chain
structure. Inside a CNT with a slightly larger diameter (1.0−
1.2 nm), another form of the chain structure, which we name
type-2, is formed. In type-2, the building blocks are connected
along the perpendicular direction compared to type-1,
resulting in a chain structure with edge and corner sharing.
Figure 2a,b show the atomic model and an STEM image of the
type-2 GeX2 single chain, respectively. The type-2 GeX2 chain
is made up of a 1D chain composed of edge-sharing GeX4
tetrahedral units (motifs) connected through corner sharing
(y-direction in Figure 1c). A comparison of Figure 2c,d shows
good agreement between the experimental and simulation
results. The type-2 chain can also easily rotate inside the
nanotube during STEM imaging, and the projected atomic-
resolution STEM images show significant differences as a

function of the rotation angle (Figure 2e−j, and Supporting
Figure S6). Experimental STEM images and simulated images
along different projection directions show excellent agreement,
confirming the three-dimensional structure of type-2 GeSe2
and GeS2 single chains inside the nanotubes. We find that the
type-2 GeX2 chains can be stabilized within nanotubes 1.0−1.2
nm in diameter, highlighting the significant impact of
geometrical confinement on the tetrahedral connectivity.

To the best of our knowledge, the observed type-1 and type-
2 1D GeX2 single-chain structures have not been previously
reported. Our calculations reveal that both the type-1 and type-
2 chain structures exhibit similar structural stability compared
to that of the bulk structure (Supporting Figure S7). We also
note that the edge-sharing type-1 tetrahedral chain structure
has been reported in SiX2 compounds; however, the isolation
of a 1D SiX2 in the single-chain limit has yet to be reported.
Considering the poor air stability of SiX2,

37 encapsulation in a
CNT may be a good way to synthesize 1D structures protected
from environmental instability.

As the diameter of the nanotube plays a crucial role in
determining the structure within it induced by geometrical
confinement, we evaluated the frequency of experimental
observation of the various phases of GeS2 and GeSe2 as a
function of the nanotube diameter (Supporting Figure S8). We
also calculate the binding energy of single-chain GeX2 with the
encapsulating nanotube as

= + +E E E Eb GeX CNT GeX CNT2 2 (1)

where EGeXd2
, ECNT, and EGeXd2+CNT are the total energies of the

isolated GeX2 chain, isolated CNT, and combined system,
respectively. Supporting Figure S9 shows the calculated
binding energy as a function of the nanotube diameter. We
find that type-1 chains are most stable within approximately
0.9 nm nanotubes, while type-2 chains are most stable within
1.2 nm nanotubes. In our calculations, there is no charge
transfer between the GeX2 chain and nanotube, indicating that
the interaction between the chain and nanotube is mostly of
van der Waals character. Our calculations are in line with
experimental evidence that shows the appearance of different
chains depending on the diameter of the nanotube. This is
consistent with previous studies,24−26,31,33,34,38−40 which
indicate that the nanotube diameter is the primary factor in
determining the confined structure, rather than the number of
walls. Supporting Figure S10 illustrates that identical type-1
GeSe2 chains can be found inside double-walled and
multiwalled nanotubes with an inner diameter of approx-
imately 1.0 nm.

Furthermore, we observe various structural variations that
correlate with the nanotube diameter, which agrees with prior
research.24−26,31,33,34,38−40 For ultranarrow nanotubes with an
inner diameter less than 0.9 nm, we observe the presence of 1D
single atomic chains, as reported in several previous
studies.24−26,31,33−35,38−40 The stacking structure of multiple
type-1 or type-2 chains can be stabilized within larger diameter
nanotubes, as shown in Supporting Figures S11 and S12.
Inside relatively wide nanotubes (typically larger than 1.2 nm),
amorphous-type structures are found, as shown in Supporting
Figure S13. The formation of amorphous structures in large-
diameter nanotubes can be attributed to the variation in the
ratio of corner-sharing and edge-sharing GeX4 tetrahedra.12 As
the number of corner-sharing tetrahedra increases, the network
becomes more flexible and forms an amorphous structure.16

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.3c01968
ACS Nano 2023, 17, 8734−8742

8737

https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c01968/suppl_file/nn3c01968_si_001.pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c01968?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


GeX2 encapsulated within a nanotube is therefore considered
an ideal system for studying Ge-chalcogenide amorphous
structures. Further microscopic studies, such as directly
observing the change in the ratio of corner-sharing and edge-
sharing tetrahedra under external stimuli (e.g., in situ heating),
are needed.

We investigate the electrical properties of isolated GeX2
chains and those encapsulated within CNTs by first-principles
calculations. Supporting Figure S14 shows the electronic
structures of isolated single-chain GeX2. All the chains are
semiconducting, and type-1 (type-2) chains have an indirect
(direct) band gap. DFT band gaps are 2.64 (1.35), 1.92 (0.79),
and 1.03 (0.13) eV for type-1 (type-2) GeS2, GeSe2, and
GeTe2 chains, respectively. For both types of chains, the size of
the band gap is the largest for GeS2 and decreases when
changing to Se and then Te. The projected density of states
(PDOS) shows that the valence bands mostly consist of
chalcogen atomic orbitals, whereas the conduction bands have
contributions from both Ge and chalcogen atoms.

For single-chain GeX2 encapsulated within the CNT system,
we construct appropriate supercells to match the periodicity of
the GeX2 chain and CNT along the chain direction with less
than 3% strain applied to the CNT. We use an (8,8) CNT for
type-1 and a (9,9) CNT for type-2. Then, the atomic positions
of GeX2 are relaxed while those of the CNT are fixed. Figure 3
shows the band structure, PDOS, and conduction/valence
band wave functions of single-chain GeX2 encapsulated within
CNTs. We find that encapsulation does not significantly alter

the atomic and electronic structures, with no charge transfer
between the GeX2 chain and CNT. All of the GeX2 states
remain semiconducting. When we compare GeS2 and GeSe2,
the conduction band energies relative to the Dirac point of the
CNT are nearly the same, but the valence bands are higher in
energy for GeSe2 than for GeS2 for both chain types.

Type-1 chains are indirect-band-gap semiconductors with
large effective masses (Table 1). The valence band wave
function of the type-1 chain has no contribution from Ge
atoms and consists of only Se 4p orbitals pointing in the
transverse direction relative to the chain axis (Figure 3d). In
the conduction band state of the type-1 chain, the two Ge 4s
orbitals within a primitive unit cell of GeX2 have opposite
phases, and the Se 4p orbitals are directed toward the chain

Figure 3. Calculated electronic structures of single-chain GeX2 (X = S and Se) encapsulated in CNTs. Band structure and PDOS for (a) type-
1 GeS2 and (b) type-1 GeSe2 in (8,8) CNTs. (c) Conduction and (d) valence band wave functions at the Γ point for type-1 GeSe2. Band
structure and PDOS of (e) type-2 GeS2 (f) and type-2 GeSe2 in (9,9) CNTs. (g) Conduction and (h) valence band wave functions at the Γ
point for type-2 GeSe2. In the band structures, the zero energy is set to the Fermi level. Red and gray lines represent projected and unfolded
electronic states for the GeX2 chain and CNT, respectively. ZGeXd2

(ZCNT) denotes the primitive Brillouin zone boundary for the GeX2 chain
(CNT). The PDOSs for Ge, X (X = S and Se), and C atoms are represented by red, blue, and gray lines, respectively. In the wave function
plots, carbon atoms are not displayed for clarity.

Table 1. Effective Masses and Band Gaps of Single-Chain
GeX2

a

type-1 type-2

GeS2 GeSe2 GeS2 GeSe2
me* 1.30 1.34 0.17 0.15
mh* 1.43 1.25 0.42 0.35
Eg

PBE (eV) 2.64 1.91 1.35 0.79

aThe electron and hole effective masses are calculated from parabolic
fitting near the conduction and valence band edges, respectively.
Type-1 chains have an indirect band gap, while type-2 chains have a
direct band gap at Γ.
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axis (Figure 3c). In this case, the direct hopping between Ge 4s
orbitals and the indirect hopping mediated by Se 4p orbitals
destructively interfere, resulting in a very narrow conduction
bandwidth. In contrast, Figure 3e,f shows that type-2 GeX2
chains have direct band gaps and highly dispersive band-edge
states with small effective masses (Table 1). The valence band
states are composed of p orbitals of the inner Se atoms, and the
conduction band states are from Ge and the outer Se atoms
(Figure 3g,h).

Manipulating the alloy composition of semiconductor
materials is crucial for tuning their optical and electronic
properties. We also synthesize GeS2(1−x)Se2x ternary single
chains inside nanotubes with a controllable alloy composition,
as shown in Figure 4. We successfully tune the atomic ratio of
S and Se by varying the precursor ratio during synthesis. For
example, a 1.4:0.6 ratio for the S-rich sample (x = 0.3) and a
0.8:1.2 ratio for the Se-rich sample (x = 0.6) are confirmed by
EDS quantitative analysis (Supporting Figures S15 and S16).
Figure 4a,b show atomic-resolution STEM images and atomic
models of type-1 GeS2(1−x)Se2x single chains with different S/
Se ratios in nanotubes. The contrast between Se and S atoms is
clearly visible in the ADF-STEM images, with the brighter Se
atoms being distinguishable from the darker S atoms. The
STEM image simulation of the type-1 GeS2(1−x)Se2x single
chain also clearly displays a distinguishable image contrast, as
shown in Supporting Figure S17. As expected from our
synthesis method where S and Se are simultaneously present in
the reaction vessel, the distribution of S and Se along the
chains is random.

Finally, we calculate the composition-dependent electronic
structures of GeS2(1−x)Se2x based on the virtual crystal
approximation (VCA). To account for the structural changes
as a function of the composition, we linearly interpolate the
lattice parameters and atomic positions between those of
isolated GeS2 and GeSe2 chain structures at a given mixing
ratio. Then, the VCA potential is generated by mixing the
pseudopotentials of S and Se. Figure 4c shows the calculated
band gap with respect to the composition. For both type-1 and
type-2 chains, the band gap linearly decreases as the Se
concentration increases, and it reaches the band gap of GeSe2.
This result demonstrates that the band gap of the 1D
germanium chalcogenide ternary single chain can be tuned
by controlling the alloy composition.

CONCLUSIONS
In conclusion, we report the discovery of 1D tetrahedral GeX2
single-chain structures with a sharing mode modified by
encapsulation within nanotubes. Our findings reveal that the
inner diameter of the encapsulating nanotube is the
determining factor for forcing a connectivity between GeX2
tetrahedral building blocks. We also demonstrate the
possibility of synthesizing and controlling the composition of
the GeS2(1−x)Se2x ternary chain, leading to the potential for
wide tunability of the semiconducting properties through
structural and composition engineering. Our study provides
further groundwork for the study of low-dimensional
tetrahedral systems and confinement-stabilized materials in
nanotubes, offering opportunities for future research and
applications in various fields.

METHODS
Material Synthesis. CNTs were purchased from Sigma−Aldrich

(single-walled, 704113; multiwalled, 698849) and CheapTubes (90%
SW-DW CNTs). The nanotubes were annealed in air at 510 °C for
10−30 min to open the end-caps before the filling step.27 GeS2 and
GeSe2 powders were purchased from Ossila. The as-prepared CNTs
(∼3 mg) together with precursor materials (∼30 mg) were sealed
under high vacuum (∼10−6 Torr) in a 6 mm diameter and 15 cm long
quartz ampule. The sealed ampule was kept at 600−700 °C in a single
zone box furnace for 2 days and then cooled to room temperature
over 1 day. The as-synthesized materials were dispersed in
isopropanol by a bath sonicator for 15 min and then drop-cast onto
lacey carbon TEM grids for TEM/STEM characterization.
TEM/STEM Imaging and Simulations. Preliminary sample

screening was performed using a JEOL 2010 microscope operated
at 80 kV. Atomic-resolution ADF-STEM images were acquired by the
double-spherical (Cs) aberration-corrected JEOL ARM-200F and
TEAM 0.5 instruments at the National Center for Electron
Microscopy (NCEM). The JEOL ARM-200F instrument was
operated at 80 kV with a 23 mrad convergence angle and collection
semiangles from 40 to 160 mrad. The TEAM 0.5 instrument was
operated at 80 kV with a semiconvergence angle of 30 mrad and
collection semiangles from 37 to 187 mrad.

STEM image simulations were performed using MacTempas
software, which implements multislice calculations for high-resolution
(HR) STEM imaging. STEM simulation parameters similar to the
parameters in the experiments (i.e., a probe semiangle of 23 or 30
mrad, 0.05 Å/pixel sampling, and 10 frozen phonon calculations)
were used for each simulation. Image analysis and processing were
performed using ImageJ software. The average-cell calculation was
performed with the template matching technique to increase the
signal-to-noise ratio and quality of the STEM image.41

Figure 4. 1D GeS2(1−x)Se2x ternary single chain inside a nanotube with a controllable alloy composition. (a, b) Atomic-resolution STEM
images of GeS2(1−x)Se2x single chains with different S/Se ratios, (a) x = 0.3 and (b) x = 0.6, respectively. Atomic models are overlaid on the
images (Ge, purple; S, yellow; Se, green). Scale bar: 0.5 nm. (c) Composition-dependent band gap of single-chain GeS2(1−x)Se2x. At 0 < x < 1,
atomic positions and lattice parameters are linearly interpolated between those of the GeS2 (x = 0) and GeSe2 (x = 1) structures. For a given
composition, the band gap is obtained by mixing S and Se pseudopotentials under the VCA.
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Calculations. We performed first-principles DFT calculations as
implemented in SIESTA.42 We used the Perdew−Burke−Ernzerhof
(PBE) functional,43 norm-conserving pseudopotentials,44 and a
localized pseudoatomic orbital basis. van der Waals interactions
were included within the Grimme-D2 scheme.45 A real-space mesh
cutoff of 500 Ry was used. We used a 25 Å thick cell along the
transverse vacuum direction. The primitive Brillouin zone of isolated
GeX2 chains was sampled by 8 k points, and the number of k points
was proportionally reduced in supercell calculations. The atomic
positions of GeX2 chains were optimized with a force threshold of
0.01 eV/Å, while carbon atoms in encapsulating CNTs were fixed.

To calculate the unfolded band structure, we calculated the
unfolding weight = | + | |k Gw G knk n

unfold
PUC

2
PUC

, where ψnk is a
Bloch state obtained from a supercell calculation, which contains both
GeX2 and CNT, and GPUC is a reciprocal lattice vector for the
primitive unit cell of either GeX2 or CNT. Then, to distinguish GeX2
and CNT states, we multiply the unfolding weight by the orbital
projection weight = *kw S c c( )nk

X
i X j ij nk i nk j, , , where Sij(k) is the

overlap matrix, cnk, i is the wave function coefficient for the ith orbital,
and X refers to a subsystem that is either GeX2 or CNT.

We use the virtual crystal approximation (VCA) to calculate the
electronic structure of GeS2(1−x)Se2x chains. For a given mixing ratio x,
we linearly mix both local and nonlocal parts of the pseudopotentials
of S and Se: VSd1−xSedx

= (1 − x)VS + xVSe, where VS and VSe are the
pseudopotentials of S and Se, respectively.
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