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The dynamics of switching charge-density waves (CDW’s) are dramatically different from those
of nonswitching CDW’s. These differences have not been explained by standard models of CDW
transport. Phase slippage and strong pinning have recently been proposed as the mechanisms
behind switching. In this paper, we present a systematic study of phase slippage, strong pinning,
and switching. We begin by constructing a classical Hamiltonian to describe the dynamics of
strongly pinned CDW’s. From this phenomenological Hamiltonian, overdamped equations of
motion are derived to model phase slippage and amplitude collapse in the CDW order parameter.
The effects of applied electric fields are numerically investigated and it is found that the equations
qualitatively reproduce the experimental characteristics of switching CDW’s. Therefore phase slip-
page provides a self-consistent explanation for the unique transport properties of switching CDW'’s.

I. INTRODUCTION

The dynamics of sliding charge-density waves (CDW)
have been studied extensively since 1973.! A seminal pa-
per by Lee, Rice, and Anderson shows that the normal
modes of CDW motion approximately correspond to the
phase and amplitude coordinates of the CDW order pa-
rameter.> The dispersion relation for the amplitude mode
is gapped so a finite amount of energy is required to
create amplitude excitations. In contrast, the dispersion
relation for the phase mode of incommensurate CDW’s is
linear. A vanishingly small amount of energy is required
to generate phase excitations in ideal crystals. However,
defects such as impurities and dislocations break the
translational invariance of the phase mode in real crys-
tals. Consequently, CDW’s have an energetically pre-
ferred phase with respect to the defect frame.

Defect pinning introduces a gap into the phase-
excitation spectrum, but for weak pinning, phase excita-
tions remain easier to excite than amplitude excita-
tions.>% Accordingly, most models of CDW transport
have focused on the dynamics of the CDW phase
mode.®® In some situations, however, the CDW ampli-
tude mode is excited even in weakly pinned CDW’s. Ong
and Maki,’ and independently, Gor’kov,!° have pointed
out that the CDW amplitude must periodically collapse
at contacts where current is injected into a sliding CDW.
Recent experiments have shown that CDW amplitude
fluctuations can occur even in the bulk of a crystal, away
from any current contacts.'!"!?

The most dramatic evidence for bulk-amplitude fluc-
tuations has come from experiments on so-called switch-
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ing crystals.'”> In switching crystals, CDW’s depin
abruptly and hysterically as the threshold electric field
for CDW motion is exceeded. Local measurements of
conductivity on single switching crystals show that
CDW?’s break up into regions of uniform phase velocity.!!
Between these regions, excess CDW current is converted
into normal electronic current via CDW amplitude fluc-
tuations at phase-slip centers. Indirect experimental evi-
dence has shown that both switching and phase-slip
centers are precipitated by localized strong-pinning
centers.'* The dynamics of switching CDW’s are
dramatically different from the usual dynamics of
smoothly depinning CDW’s. Besides abrupt depinning
and threshold hysteresis, switching CDW’s display period
doubling, chaos, and an inductive ac conductivity in the
sliding regime.'>'® Phase-dynamical models have been
unable to provide satisfactory explanations of these phe-
nomena.

In this paper, we develop and analyze a phenomenolog-
ical model of CDW dynamics that includes both phase
and amplitude degrees of freedom. Specifically, we intro-
duce a Hamiltonian in which the CDW amplitude is re-
duced by large amounts of phase polarization and in
which the CDW phase elasticity is in turn diminished by
any reduction in CDW amplitude. At strong-pinning
centers, these two processes reinforce one another and
lead to transient collapse of the CDW order parameter.
From our Hamiltonian, we derive a set of coupled equa-
tions for the CDW amplitude and phase, and numerically
study a subset of these equations under combined dc and
ac electric fields. This subset of equations not only pre-
dicts switching and hysteresis,!” but also period doubling,
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chaos, and an inductive sliding ac conductivity. Thus,
this paper has two main results. First, we derive a set of
equations that model the dynamics of strongly pinned
CDW’s; and second, we provide a self-consistent explana-
tion of the unusual dynamics associated with switching
CDW’s.

The remainder of the paper is organized into three sec-
tions. In Sec. II we derive our so-called phase-slip equa-
tions from a generalization of the Fukuyama-Lee Hamil-
tonian.’~> The phase-slip equations are themselves gen-
eralizations of the Sneddon-Cross-Fisher hydrodynamical
equations.” In Sec. III we analyze the response of the
phase-slip equations to external electric fields by numeri-
cally integrating a special subset of the equations. In Sec.
IV we conclude by comparing our results to experiments
on switching CDW’s.

II. PHASE-SLIP MODEL

A. Hamiltonian and equations of motion

The order parameter of a CDW may be written as ue ‘¢
where u specifies the amplitude and ¢ the phase of the
lattice distortion associated with a CDW. For small dis-
tortions of a CDW from equilibrium, Lee, Rice, and An-
derson have shown? that the CDW amplitude and phase
define approximate normal modes whose respective fre-
quencies 2, and ) _ are given by

0% =A0h +1ck?
02 =c%?.

Here k is the distortion wave vector, measured from the
Fermi wave vector kp, A is the dimensionless electron-
phonon coupling constant, and Q is the 2k wave vector
with @y the 2k phonon frequency. The phase-excitation
velocity of ¢ is given by (#2k%/m*)!/? where m*, the
effective CDW mass, depends on the CDW amplitude as
well as the normal electronic mass. In the amplitude
dispersion relation, the first term dominates the second,
except at large wave vectors. Therefore the wave-vector
dependence of 1, can be neglected for the rest of this
discussion.

Fukuyama has shown® that, in order to treat phase-
excitation dynamics, the phase mode may be regarded as
an elastic continuum. For strongly pinned CDW’s, the
Fukuyama Hamiltonian must be generalized to account
for the dynamics of the amplitude mode. An appropriate
Hamiltonian is

[ dx[pud(d¢/de)+p(du /dt)?
+ Yiud(dd/dx)*+purod(u —uy)*],

where u is the ionic mass density and u is the equilibri-
um value of the CDW amplitude. Young’s modulus for
the phase mode is given by Y =puc? and Y, denotes its
equilibrium value. (Henceforth we will drop the sub-
script on Y,.) In the Hamiltonian, the (small) electronic
contribution to m * has been neglected.

The CDW phase and amplitude coordinates are mixed
by large distortions of the CDW order parameter, be-
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cause they are not exact normal modes of CDW motion.
A coupling term must be introduced in order to produce
mixing of the amplitude and phase modes; a particularly
simple coupling is obtained by requiring that the phase-
mode elasticity depend upon the CDW amplitude:

Yud(d¢/dx)*— Yul(dp/dx)* .

Besides being simple, this coupling possesses a feature
which is critical to later results: as the CDW amplitude
goes to zero, the elasticity of the phase mode vanishes.
We will show below that this feature, which must be
found in any amplitude-phase coupling term, leads to the
phenomena characteristic of switching CDW conduction.
Our generalized Fukuyama Hamiltonian is thus given by’

2 2
d d
H0=fdx[u2y —jté +Y—Jf—
P 2
+u —d% +y,7kw2Q(u—u0)2}. (2.1)

We will use standard Fukuyama-Lee-Rice terms to de-
scribe the interaction of CDW’s with applied electric
fields and with lattice defects:> >

Hel—_——fdx(pe"neE(b/Q) )

(2.2)
Hdefz_fdx [Z Vipd(x —R;)cos(QOx +4¢) | ,
J

where n is the electronic density, E is the applied electric
field, p is the electronic amplitude of the CDW, p° is an
effective, normalized CDW density, and the summation is
over all pinning sites R;, whose respective pinning
strengths are denoted by V;. Both p and p" depend on
the CDW amplitude u, so both act as dynamical variables
in Egs. (2.2).

CDW phase dynamics are well known to be over-
damped.!® We will assume that CDW amplitude dynam-
ics are also overdamped so that both the CDW phase and
amplitude obey relaxational equations of motion:

do __p 8%
d ¢ 54
‘ ¢ (2.3)
dt |u, 5|
Ug

Here 'y, and ', are damping parameters for the phase
and amplitude modes, and # is the combined Hamiltoni-
an density of Eqgs. (2.1) and (2.2).

Several approximations simplify Egs. (2.3) to a more
tractable form. First, the equations may be converted
into a discretized form by neglecting variations of the
CDW order parameter on length scales shorter than the
average defect spacing. We will take our discretized
Hamiltonians to be
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+§,uka)2Q(u —uy)?

- 2 ’pjﬁ-neE(ﬁj/Q ’
J

Hy;=— 3 p;V,cos(QR; +¢;),

j

where time derivatives have been dropped from H, be-
cause of the assumption of relaxational dynamics. Here
[;=R; =R, ;=3,;+1;_,), § is the CDW amplitude
coherence length, and ¢; j» Ujs pj, and pj’-“ denote respec-
tive values of ¢, u, p, and p‘ftf at the jth pinning site. The
concentration nj of defect sites is related to the average
defect spacing by np'! =7j. Typically, the amplitude
coherence length is much shorter than the average defect
spacing: §<<I;.

Equations (2.3) are further simplified if the CDW cou-
pling to defects and applied electric fields is independent
of the CDW amplitude. Amplitude independence is valid
when pinning centers are either very weak (p;V;
<<npugY) or very strong (V;>>E&ulwpuj). At weak
centers, the CDW amplitude remains very close to its
equilibrium value because the CDW phase depins before
sufficient polarization accumulates to suppress the CDW
amplitude. At very strong centers, the opposite limit ap-
plies: the CDW phase never depins, at least not until the
CDW amplitude has collapsed or has nearly collapsed.
Except for these transient, singular moments when u; =0,
the large value of V; at a strong- pmmng center complete-
ly dominates any varlatxons in p; or pf i". (The transient
moments when u;=0 will be dealt with in the next sec-
tion.) Thus at both very weak and very strong impurity
sites, the amplitude dependencies of H, and Hgy are
unimportant. Equations (2.3) may be rewritten as

dé _ _ 8H
dt 484

2.3)
dA _ 8H

dr —L Y

where A is the normalized amplitude (u /u,). The result-
ing equations of motion are

¢, =T p*"nQE —T ,pV; sin(QR; +4;)

—20,YulA; (A4 iz l¢’“
J
+Aj——] [¢j1_¢j—1 H ’
ji—1
. . 2.5)
A;=—2T fproguy(A;—1)
_quuo 1A1+1 ¢J+l ¢J ]
l./
¢~
+lj_1Aj‘1‘ ’l ! ,
=1
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where pT and p are now regarded as constants.

B. Phase slippage

Equations (2.5) are valid only for A; >0. The equilibri-
um value of A; is given by

pe—q—1_Y (¢+1—4,)°

2 §H7\wQ s l;
(¢, =0,V
1

I,

+4,_

At a strong-pinning center, the phase distortions
IqS]H ¢,l can become so large that Al¢d’<0. Vanishing
or negative values of A'®¥ drive the CDW order parame-
ter Y=ue'® toward collapse. Depending on various re-
laxation rates, ¥ may or may not collapse completely, but
the effect on the strongly pinned phase is identical. In
the case of near collapse, H 4 becomes so reduced that
the accumulated phase polarization forces the phase to
move in the direction of E. Because V; is large at a
strong-pinning site, the accumulated phase polarization is
also quite large and the phase velocity tends to be high
when A;=~0. The phase therefore abruptly advances by
about 27, whereupon the phase polarization is relieved,
the amplitude A; regenerates, and the phase again be-
comes stuck at the strong impurity site.

In the case of complete collapse, the CDW phase be-
comes indeterminate at the strong-pinning site. It may
therefore “slip” so that phase polarization is again re-
lieved and the CDW amplitude regenerates. This process
is known as phase slippage in superconductors and
superfluids.'®?® Because of phase pinning, the details of
phase slippage are slightly different in CDW’s. If the
CDW order parameter is viewed as a variable in the com-
plex plane, then the first-order differential equations of
(2.3) and (2.5) require that ¢ change by exactly tm
(modulo 27) when 9 crosses zero; the sign and modulus
of the phase change are chosen so that A®Y becomes
equal to its smallest possible positive value. Following a
+1 phase change at a strong-pinning center, the potential
energy of the CDW is at its maximum value. Because V;
is very large at strong-pinning centers, a =7 phase flip is
followed by a quick advance of the CDW phase through
an additional factor of .

Thus for either complete or near-complete collapse of
the CDW order parameter, the CDW phase abruptly ad-
vances by 27 (modulo 27) at a strong-pinning site. Since
we will be interested in CDW dynamics on much longer
time scales, we will call both processes phase slips and
will approximate both by instantaneous 27 (modulo 27)
hops of the CDW phase. Our complete equations of
motion are therefore Egs. (2.5) augmented by the condi-
tion that ¢ changes by 27 (modulo 27) whenever A col-
lapses.

C. Reduced phase-slip equations

We now show how Egs. (2.5) can produce switching
and hysteresis. It is convenient to consider a (one-
dimensional) crystal of N weak-pinning centers and im-
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pose periodic boundary conditions, so that the crystal
may be thought of as a closed loop. Each weak impurity
is assumed to be of strength V,, <<np Yu} /p. Fukuyama
and Lee* have shown that when N is large enough, the
crystal breaks into a series of phase domains whose aver-
age length is given by
Lo=(nme) np!t,
where 77 is a constant of order unity, n; is the (weak- )

pinning center concentration, and € is the Fukuyama-Lee
pinning parameter:

_ Jur
ul¥np,

Since the CDW phase within a domain is nearly rigid, the
number of dynamical variables is reduced from N (one for
the phase at each pinning site) to N/npL, (one for the
phase within each domain).

_ If the average phase within a weakly pinned domain is
¢, then the effective pinning within the domain is approx-
imately ¥ cos(¢—@), where ¥ ~V, p(npL,)"/2. If a sin-
gle, very-strong-pinning center is added to the domain,
then we assume that the pinning center has three main
effects. First, the entire domain will become strongly
pinned, because the average phase within the domain
cannot depin until the CDW amplitude at the strong-
pinning center has collapsed. Second, the average phase
within the strongly pinned domain will shift to the phase
¢, that is preferred at the strong-pinning center. Finally,
since the amplitude relaxation rate I', is generally much
faster than the phase relaxation rate I'y, the strongly
pinned domain may respond faster than a weakly pinned
domain to applied forces.

We now suppose that a single strong-pinning center is
added to our model crystal, say at site j =M, and that the
total number N of weak-pinning centers is small enough
so that just two domains are present in the crystal: a
strongly pinned domain centered at j =M and a weakly
pinned domain in the rest of the crystal. The phase of the
strongly pinned domain will be denoted by ¢, and the
phase of the weakly pinned domain by ¢. The only other
dynamical variable in the problem is the CDW amplitude
A at the strong-pinning center. The phase-slip equations
of Egs. (2.5) are greatly simplified:

_L¢‘=e —sing—alA(d—d¢,) , (2.62)
‘QO
2
LS U P PR ¢—do
0,0 Tk {A ! 7 ] ] , (2.6b)
¢ if A>0
$0=> |got2m if A<O. (2.6¢)

The phase change in ¢, is chosen to minimize |¢—¢,|.
Here e represents the external electric field applied to the
crystal. The electric field is normalized to the charac-
teristic field of the weakly pinned domain:
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e=E/E,,
where
E, =QV /neL, .

CDW current in these equations is proportional to é, so
dc current is proportional to {¢) where ( ) indicates
time averaging.

The reduced phase-slip equations are a generalization
of the Griiner-Zawadowski-Chaikin model.® The equa-
tions were previously written down by Hall et al.'’
without derivation. From the present derivation, the
phase-slip parameters (), a, «, and 8 can be related to
microscopic quantities:

a=2Yu}/VL, ,
K=F¢7/2Fu§,ukw2Quo ,
6=(4&prwpuoLly/Yu)'’* .

The first two parameters, ), and a, are common to clas-
sical models of CDW phase dynamics. The frequency
is the so-called ‘“‘crossover frequency” observed in ac-
conductivity experiments on CDW’s.2! This frequency is
the characteristic relaxation rate of a weakly pinned
domain. For the lower CDW state of NbSe;, () is about
100 MHz. The parameter a represents the phase elastici-
ty of a CDW, normalized to the weak impurity pinning
potential. The value of a depends on the length scale
over which one considers CDW dynamics. On the
Fukuyama-Lee-Rice coherence length scale, weak impur-
ity pinning just dominates CDW phase elasticity, so a
conventional value of a is 0.2. The remaining two pa-
rameters, k and 6, are new to this model of strongly
pinned CDW dynamics. The parameter « represents the
relaxation time of the strongly pinned domain. The pa-
rameter 6 represents the amount of phase polarization
necessary to cause amplitude collapse. No conventional
choices exist for «k and 6, and we will treat these parame-
ters as adjustable in order to fit experimental data. We
discuss appropriate values of 6 and « in Sec. III.

To show that Egs. (2.6) can exhibit hysteresis and
switching, consider the limit that a6>>1 and Q,/k>>1.
This limit corresponds to an extremely polarizable phase
and an extremely fast amplitude relaxation rate. In Egs.
(2.6), the weak-pinning term becomes negligible and the
CDW amplitude follows the CDW phase polarization
without any lag. The CDW equation of motion simplifies
to

d=e—ald—d){1-[(d—¢y)/61*] ,
by if [d—dol <6

$o— doT27 otherwise .

(2.8)

The elasticity term a(¢—¢y){ 1 —[(d—dy)/6]*} is shown
in Fig. 1. As e increases from zero, the CDW does not
begin to slide until e exceeds the maximum value of the
potential. This maximum sets an upper threshold field
given by
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anl(p-¢,)

!
0 8//3 6
(4’ - ¢o )

FIG. 1. The phase elasticity aA(¢—¢,) as a function of
phase polarization (¢ —¢,). The figure applies to the limit that
Qo/k >>1, in which the CDW amplitude becomes a simple func-
tion of phase polarization.

2
=——=af . 29
€ 3 af 2.9
After the CDW begins to slide, phase slippage keeps
¢— ¢, in the range [60—2m,0]. In this range, the max-
imum value of the elasticity potential sets a lower thresh-
old field given by

e, if 0<(3+V3)m
(2.10)

e= 2

otherwise .

Once e exceeds e,,, the CDW continues to slide as long as
e continues to exceed e,;. Therefore when e, <e,,, the
CDW stops sliding at an electric field which is lower than
the field at which it began sliding, i.e., the motion of the
CDW becomes hysteretic. We define a critical polariza-
bility 8 =(3+V'3)7 which determines the onset of hys-
teresis: if 6> 0y, then e, <e, and CDW current is a
bistable function of the applied electric field.

In Egs. (2.8), hysteresis is caused by an abrupt collapse
in the elasticity potential once the CDW begins sliding.
This collapse also causes switching. Just above the upper
threshold field, the minimum instantaneous CDW veloci-
ty is e,;—e,, so the time-averaged dc CDW current is
larger than this:

()]

e=e,, >en e -
When 6> 6y, dc CDW current jumps from zero to a
finite value as e exceeds e,,.

Even away from the limit a0>>1 and Qy/k>>1,
switching and hysteresis occur in Egs. (2.6) when 6 be-
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comes sufficiently large. As a0 becomes comparable to 1,
the upper and lower threshold fields are given by

= max (sin+a(8—4)(1— (4= /6F]) .

: (sing+aldp—do){1—[(d—ay) /01*}) .

As Q,/k becomes comparable to 1, e, shifts to lower
values_and the critical polarizability decreases from
(3+V'3)7. In the limit that k— o0, both e,; and 8 go to
zero.

e,;= max
6€[6-27,6

D. Inertial effects

In order to gain insight into the dynamics of the
phase-slip equations, it is useful to compare the equations
to a phase-only model of switching. Switching behavior
has been analyzed in terms of the rigid-phase model of
Griiner, Zawadowski, and Chaikin.!* !¢ The rigid-phase
model ignores the existence of phase domains and treats
the CDW phase as uniform throughout a crystal.® The
dimensionless equation of motion is

Bé+d=e—F (o),
where the periodic function F(¢) represents a pinning
force, BB is a so-called inertial parameter, and time is mea-
sured in units of (QO)'I. When f is small, the phase ve-
locity is a deterministic function of the electric field e and
the pinning force F. In this case, the dynamics of Eq.
(2.12) are overdamped and the equation does not lead to
switching. When 82 1, however, the dynamics of (2.12)
is underdamped and the equation leads to both switching
and hysteresis. !¢ .

Except for the inertial term (3¢, the rigid-phase equa-
tion is very similar to Eq. (2.6a) of the reduced phase-slip
equations. In fact, the equations become identical when
k=0 and 6=2m, because then the elasticity term
al(p—¢,) in Eq. (2.6a) is a deterministic, periodic func-
tion of the phase ¢. But even when x>0 and 6542w, the
phase-slip and rigid-phase equations are still dynamically
equivalent, at least in the following sense: for small ac
signals, the ac response of the phase-slip equations maps
onto the response of the rigid-phase equation, as long as
the inertial parameter 3 is assumed to be motion depen-
dent.

The response of either the phase-slip or rigid-phase
equations is conveniently measured in terms of ac con-
ductivity. For an electric field of the form e =eg
+e,. exp(iQdt), ac conductivity may be defined as

(2.12)

o(Q)=¢(Qe,, ,

where ¢(Q) is the Fourier component of phase velocity at
the applied ac frequency. When the CDW in the reduced
phase-slip equations is pinned, the CDW phase has an
equilibrium value ¢, that is determined by the dc bias:

O0=ey — sind)eq—aAeq(tbeq—qSO) .

Here the equilibrium value of the CDW amplitude is
given by Aeq=1—(¢eq—¢0/0)2. To first order in «,
linearization of the phase-slip equations gives
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1 iQ'/Q,)
1+2ak(1—4,) 1+i(Q'/Q,)

where Q'=Q[1+2ak(1—A4,)] and Q =cosd.,+al(34
—2). Except for a change in the unit of time (of order ax
<< 1), the rigid-phase model yields an identical expres-
sion for o(Q) if =0 and F(¢)=sinp+ald—¢y)[1—(¢
—¢0/0)*] in Eq. (2.12). Therefore the phase-slip equa-
tions have a pinned response that is overdamped.

When the CDW in the phase-slip equations is sliding,
the elasticity term aA(¢—d¢,) is essentially periodic in
phase as long as the ac field is not large. In the limit that
6>>47 and a>>(4m)" !, the pinning term sing may be
dropped from the phase-slip equations, which then
reduce to

o(Q')=

(2.13)

b=e, +e, eV —aAld—d,) , (2.6a’)
A=[1—(¢p—y/0)*1—KA , (2.6b')

oo if d— <0
bo— bo+27 otherwise . (2.6¢')
Phase polarization in (2.6") is bounded by

60—27m=¢—¢,=0, and therefore the elasticity term may
be approximated by afA if terms of order 27/6 are
neglected. Phase acceleration is then given by
d=iQe, e —aBA, and substitution of this expression
into Eq. (2.6a’) yields

kp+d=e, +ele' M —Fy(d), (2.14)

where Fy(¢)=al¢—¢)[1—(d—d,/60)*] and e’ . =e,.(1
+iQ). Thus the sliding response of the phase-slip equa-
tions is determined by an effective inertial parameter
equal to k.

The constraints on a and 8 that lead to Eq. (2.14) are
not unreasonable, since values of a=0.2 and =107 are
consistent with experiments (see below). Because ap-
propriate values of « fall in the range 0.5-1.0, the phase-
slip equations are dynamically overdamped when pinned,
but underdamped when sliding. Therefore, the equations
should exhibit a strong nonlinear response above thresh-
old. For example, if the constraint on e, is ignored, then
Eq. (2.14) predicts that the sliding phase-slip equations
should exhibit period-doubling bifurcations, chaos, and
broad inductive features in ac conductivity.'>!® In the
next section, we will show explicitly that these phenome-
na do indeed occur.

III. NUMERICAL ANALYSIS

A. Method

Analytical solutions to Egs. (2.6) are difficult to obtain
except in a few limiting cases. Therefore, we present the
results of a numerical study of these equations. Usually
we will be interested in the CDW response to combined
ac and dc fields. When both ac and dc fields are present,
it is convenient to rescale the unit of time in Egs. (2.6).
Writing the external field as e =ey +e, cos(Qt), we
define a new time variable by r=Q¢. The reduced phase-
slip equations become
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Do =e4. T e, cosT—sing —al(¢—¢,) ,

2
] ’ , (3.1

where w,,,=Q/Q,. Primes indicate differentiation with
respect to 7. If no ac field is present, w,,, may be set to 1.

Equations (3.1) were solved using a straightforward
scheme. As long as a phase-slip did not occur, the equa-
tions were numerically integrated to find ¢(7) and A(7).
To account for phase slips, we halted integration whenev-
er A became nonpositive. We then calculated the time
that A crossed zero, allowed ¢, to slip by +27, and then
restarted integration from the zero-crossing time.

As Fourier transforms and Poincaré sections of Egs.
(3.1) were very sensitive to systematic errors generated by
the computer code, we were careful to eliminate this
effect from our solutions. In intervals where A >0, Egs.
(3.1) were integrated using a double-precision (about 14
significant digits), fifth-order Runge-Kutta method. Vari-
able step sizes were used in the integration, but absolute
local errors were kept smaller than 4X10~%. The zero-
crossing time of A was estimated by fitting a seventh-
order polynomial to A(7) and then using Newton’s
method to find the polymonial’s zero. The corresponding
phase ¢ was evaluated at the zero-crossing time by a simi-
lar fitting procedure. To avoid systematic errors and
singularity problems, it was necessary to use 30
significant digits in evaluating the polynomial coefficients.
After the pinned phase was slipped, integration was res-
tarted with a small initial step size of 27X 107" in order
to minimize the effect of the code interruption.

To check the stability of our integration scheme, we
added a small amount of Gaussian noise (standard devia-
tion =27 X107 ) to displacements in A and ¢. The only
observable effect was an increase in the background-noise
level of our Fourier transforms; the general nature of the
solutions (e.g., period 1, period 2, etc.) did not change.
To check the accuracy of our solutions, we employed an
alternate integration scheme: a variable-order (one
through twelve) Adams method, with absolute local er-
rors less than 8 X107 '°, and twelfth-degree polynomials
fits. We found no significant difference in results between
the integration methods. These checks showed that our
integration method was stable and that our systematic er-
rors were negligible.

Apart from the issue of numerical accuracy, solutions
to Egs. (3.1) depend on the choice of initial conditions.
In this study, we always used “‘sliding” conditions: the
CDW was started from the state A=0 and ¢ —¢,=06 at
7=0. We then allowed the system to relax over many
periods of the CDW motion. Before computing any
quantities of interest, we checked the stability of our solu-
tions to a further increase in the number of relaxation
periods. Experimentally, our initialization procedure
corresponds to biasing a CDW far above threshold, and
then reducing the bias to the desired electric field.
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B. Parameter values

The phase-slip equations of (3.1) contain seven free pa-
rameters: four CDW parameters (a, k, 0, and ¢,) and
three external field parameters (ey., e,., and w.,). A
complete study of CDW dynamics in this seven-
dimensional parameter space would be tedious and prohi-
bitively time consuming. In this paper, we will fix a, 6,
¢o, and o, and vary only k, ey, and e,.. As discussed
previously, an appropriate choice for « is 0.2. The value
of the strongly pinned phase ¢, is expected to have a
trivial effect on CDW dynamics, so we will arbitrarily set
¢,=0 (modulo 27). The polarizability 6 will be chosen
so that hysteresis in our theoretical I-V curves is close to
the amount of hysteresis observed experimentally. The
relative magnitude of hysteresis is about equal to
33 2

2

27

1——

0

_ 27

1
0

(e, —e,)/e=1— 1—

We will use 6=5X27 since this value of 6 gives
(e,;—e,1)/e,;;~0.25, which is typical of experiment.'® Fi-
nally, we will choose w,,, =1, which corresponds to an ex-
perimental frequency of about 100 MHz.

To estimate appropriate ranges for «, ey, and e,, it is
convenient to consider typical I-V curves obtained from
Eqgs. (3.1). Figure 2 shows traces of {¢') versus e, when
e,. =0 and « varies from 0.5 to 1.0. As expected, the I-V
curves exhibit both switching and hysteresis. Where the
I-V curves are bistable, dashed and solid lines indicate,
respectively, CDW current under monotonically increas-
ing and decreasing bias. Lower and upper threshold
fields are indicated in the top figure, as well as the magni-
tudes 8, and §, of the lower and upper current switches.

As mentioned above, the parameter « represents the re-

laxation time of a strongly pinned domain. Since a
e e S
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2r ¥ =
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FIG. 2. I-V curves (') vs ey obtained from the reduced
phase-slip equations (3.1). The applied ac field is zero and the
amplitude relaxation rate assumes three representative values:
(a) k=0.5, (b) k=0.7, and (c) k=1.0. (In this figure and the
figures which follow, the other phase-slip parameters are fixed
at a=0.2, 6= 10w, ¢o=0, and w.,,=1.0.)
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strongly pinned domain should respond at least as quick-
ly as a weakly pinned domain, we expect k $1. Figure 2
shows that switching and hysteresis do not depend
strongly on « for k2 0.5. The main difference between
the traces in Fig. 2 is the size §,; of the lower current
switch and the position e,; of the lower current threshold.
As k decreases, 8, decreases and e, slightly increases. In
the limit that k—0, §, vanishes completely and there is
only an (e —e,;)!/? cusp at the lower threshold. In exper-
imental I-V curves, there is always a finite current jump
at the lower threshold, so we will consider only nonvan-
ishing values of « in the range 0.2-1.0.

Under the application of an ac electric field, the I-V
curves of Fig. 2 display a series of plateaus or ‘“‘Shapiro
steps.”?? On the nth Shapiro step, CDW velocity is mode
locked to the nth harmonic of the external frequency:
(¢)=nw,,. We will arbitrarily limit ey, to the range
that corresponds to the fourth Shapiro step. Since the
width of a Shapiro step depends on the amplitude of the
applied ac field, we choose (again arbitrarily) e,. to be in
the range e,, Se,. S2e,,. With this choice, e, lies in the
range 4.0-5.5. Figure 3 summarizes the parameter
ranges used in this study.

C. Chaos and period doubling

The response of the phase-slip equations to combined
ac and dc fields is qualitatively different depending on
whether the ac field is large (e,. 1) or small (e, <<1).
With small ac fields, the CDW phase velocity is not en-
trained by the external frequency. Two independent fre-
quencies characterize the phase velocity, which may be

written as a double Fourier series:

b=y 3 A4, cosloyt +x;)
1=0

+ 3 B, costmwet +X,,) . (3.2)
m =0

Here wy is the so-called washboard frequency and is
equal to the time-averaged phase velocity (¢’). When
e, is small, wy is essentially determined only by the dc
electric field. Except at special values of e, the external
ac frequency is incommensurable with the washboard fre-
quency, so the CDW phase velocity is a quasiperiodic
function of time.

With large ac fields, the CDW phase velocity mode
locks to the external frequency over wide ranges of dc
bias.”> When the CDW is mode locked, the CDW wash-
board frequency is a rational fraction of the external fre-
quency,

oy=(¢")=(p/qwy ,

and the CDW phase velocity may be written as
dt)=wy 3, C,cos(noyt/P+x,) .
n=0

Here, P is an integer index characterizing the fundamen-
tal periodicity of CDW motion with respect to the exter-
nal frequency. When P =1, CDW motion is described as
period 1; when P =2, as period 2; and so on.
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In this section, we examine the effect of large ac fields
on the phase-slip equations of (3.1). We begin by fixing
the amplitude relaxation time to a moderate value:
k=0.5. (We investigate the effect of « later in this sec-
tion.) We then vary the applied ac and dc bias over the
vertical parameter plane shown in Fig. 3. We character-
ize solutions to (3.1) by their mode-locking index
p/q=({¢") /w,, and their periodicity index P. Figure 4
summarizes the type of solutions found in the ey -e,.
plane. Typically, solutions are periodic and mode locked
to harmonic (p /q =integer) Shapiro steps. We use the
symbol (n,P) to represent these solutions, where the in-
teger n is (¢’') /w,,. Other solutions in this region are
chaotic but still harmonically mode locked, and we
represent these solutions by (n,C). The remaining solu-
tions in the parameter plane correspond to quasiperiodic
motion or subharmonic (p/g=~integer) Shapiro steps.
For simplicity, we denote these solutions by (Q /S) and
represent them by blank areas in Fig. 4.

In a typical experiment on CDW’s, the amplitude of
the ac field is fixed and the dc bias is swept through a
range of values. To facilitate comparison with experi-
ment, we will discuss Fig. 4 in terms of dc sweeps. For
instance, the horizontal line in Fig. 4 corresponds to a dc
sweep in which the ac amplitude is fixed at 4.5. (This line
also corresponds to the intersection of the horizontal and
vertical parameter planes in Fig. 3.) As e,  increases
along this line, solutions move from the third Shapiro
step, through the fourth Shapiro step and an unlocked re-
gion, and finally onto the fifth Shapiro step:

(3,1)>(4,P21)—(Q/S)—(5,1) .

Figure 5 shows the details of this dc sweep. The
dashed line in the figure represents the entrainment ratio
(') /@ey- Over most of the figure, solutions are mode
locked to a harmonic step. For example, the third
Shapiro step extends from ey =4.0 to 4.3, the fourth
Shapiro step from 4.3 to 5.3, and the fifth step from 5.4 to
5.5. Harmonic mode locking breaks down only between
eg.=5.3and 5.4.

The solid line in Fig. 5 represents the periodicity index
P. (We adopt a convention of assigning P =0 to solutions
where periodic behavior is not observed, including both
chaotic and quasiperiodic solutions.) Even though solu-

6.5
55— ] .
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FIG. 3. The parameter planes that are studied in this paper.
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FIG. 4. A schematic picture of the solutions that are found
in the ey.-e,. plane of Fig. 3. Harmonically mode-locked solu-
tions are characterized by an index pair (n, P) which represents
their entrainment n and periodicity P. (Boundaries between
different regions are only approximate.) The horizontal line
represents the intersection of parameter planes in Fig. 3.

tions are usually mode locked in Fig. 5, the periodicities
of the solutions are often not 1. In fact, the most impor-
tant feature of Fig. 5 is the region of locked but aperiodic
solutions that occurs on the fourth Shapiro step. Be-
tween ey =4.3 and 4.53, solutions follow a period-
doubling cascade to chaos:

(4,1)—(4,2)—>(4,4)— - —>(4,C) .

Between ey =4.6 and 5.3, solutions return to simple
periodicity via a period-halving cascade:

(4,C)— -+ —>(4,4)—>(4,2)—(4,1) .

Although the figure only resolves periodicities of up to
P =38, solutions with periodicities of up to P =32 were
confirmed by Fourier transforms. Figures 6(a)-6(c) show
a few of these transforms, for P=1, 2, and 32 at
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FIG. 5. A dc sweep along the intersection of parameter
planes in Fig. 3. The dashed and solid lines indicate, respective-
ly, the entrainment and periodicity of solutions found in this
range of dc bias.
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FIG. 6. Fourier transforms for selected solutions from Fig. 5. The vertical scale represents the amplitude of the transformed phase

velocity r(w)= Iq;\. Although all of the selected solutions are mode locked to the fourth Shapiro step, the solutions are part of a
period-doubling cascade to chaos: (a) period 1 (ey =4.45), (b) period 2 (e4. =4.5), (c) period 32 (ey. =4.5258), and (d) chaos
(e4. =4.53). The horizontal scale has been expanded in the lower figures in order to show the details of these transforms.

eq. —4.45, 4.5, and 4.5258, respectively. Note that the
noise level in these transforms is smaller than ~1078. In
contrast, solutions are chaotic for ey, between 4.53 and
4.6. Figure 6(d) shows the Fourier transform of a typical
chaotic solution, at ey, =4.53. The noise level is roughly
1072, 6 orders of magnitude larger than the noise level of
periodic solutions. Because of this large increase in noise,
chaotic solutions are clearly distinguished from periodic
or quasiperiodic solutions.

Having considered a particular dc sweep in detail, we
now return to Fig. 4 to discuss the general behavior of
solutions at other values of e,.. As the ac amplitude de-
creases below 4.5, Fig. 4 shows that the chaotic region
shrinks on the fourth Shapiro step. Below e, . =4.2, only
period-1 and period-2 solutions exist on the fourth-step.
Also, as e, decreases, the unlocked regions between steps
become larger. Below e, ~4.0, for example, an unlocked
region develops between the third and fourth Shapiro
steps. As would be expected, Fig. 4 suggests that only
period-1 and quasiperiodic solutions exist for small ( <3)
values of e,..

As e,. increases above 4.5, chaotic solutions remain
present until e,. exceeds about 6. However, period dou-
bling and chaotic solutions begin to be unstable against
mode dephasing above e,.=4.6. Thus in the range
4.6 3 e, $6.0, the fourth Shapiro step is split by a region
of quasiperiodic and subharmonic solutions. For in-

stance, a typical dc sweep at e,.,=5.0 produces a se-
quence like

(3,1)—>(4,1)>(Q/S)—>(4,C)— - - - —(4,1)—>(5,1) .

Due to the system’s strong tendency to mode lock,
subharmonic Shapiro steps occupy much of the region
marked (Q/S) in the sequence. In fact, for e, R 5.6, the
system begins to relock to the n =3 Shapiro step when it
is not locked to the n =4 step.

Two new types of solutions appear at large values of
ac- The first type of solution corresponds to P > 1 solu-
tions on the n =35 Shapiro step. For example, when
e,.=5.6, a sweep of dc bias encounters two regimes of
chaotic solutions:

(3,1)—>(4,1)—>(Q/S)—(4,C)— - - - —(4,1)
—(5,1)—(5,2)—> - -~

e

—(5,C) .

The second type of solution corresponds to periodicities
of the form P =p X2", where p is a prime number. Al-
though p can be as large as 19, the dominant periodicity
of this form is P =3. The disappearance of chaotic solu-
tions at e, =6 coincides with the proliferation of P =3
solutions beyond this point.

On a heuristic level, the disappearance of chaotic solu-
tions at either large or small values of e,. is reasonable.
In Egs. (3.1), three ingredients are apparently required
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for chaos. The most basic ingredient is a nonzero value
of k, as will be discussed shortly. The next ingredient is
that the system is close to the center of a Shapiro step.
The last ingredient is that e,. and ey, are of comparable
magnitude. This last ingredient is required because
chaotic motion in some sense represents a frustrated
response of the system, when neither e,. nor e ;. dom-
inates the CDW equation of motion. When the system is
near the center of a Shapiro step, this frustration is not
easily relieved by changing the system’s degree of mode
locking. Thus chaotic solutions appear in Fig. 4 when e,
and ey, are roughly comparable and near the center of a
Shapiro step, at e, . =ey.=4.5 and 5.5.

We next discuss the sensitivity of chaotic and P > 1
solutions to changes in «. In the limit that x—0, the
CDW amplitude becomes a deterministic function of the
CDW phase polarization:

¢_¢0 ’

A—1— )

In this limit, the phase space of Egs. (3.1) becomes two
dimensional. Therefore, the equations are unable to sup-
port chaotic solutions. This conclusion agrees with the
observed absence of chaotic solutions in the overdamped
rigid-phase model.

The presence or absence of P > 1 solutions is not obvi-
ous when « is small but nonzero. We have therefore in-
vestigated the nature of solutions found in the e4 .-k plane
shown in Fig. 3, where 0.2=<x=<1.0, 4.0=e,. =5.5, and
e,.=4.5. Figure 7 summarizes the solutions found in
this plane.

The structure of solutions in Fig. 7 is much simpler
than the structure in Fig. 3. A series of entrainment
“tongues” is clearly evident. The n =3, 4, and 5 Shapiro
steps form three tapered, vertical strips. As k decreases,
these “‘tongues” become narrow and the quasiperiodic re-
gions between them become wider. Conversely, as « in-
creases, the tongues become wider and subtongues devel-
op within them. The first subtongue to form is the
period-2 strip within the four Shapiro step; the next sub-
tongue is a period-4 strip within the period-2 tongue; and
so on. When k=0.5, the dc sweep of Fig. 5 shows that a
chaotic subtongue is fully developed within the fourth
Shapiro step. Because the tongue structure is stable
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FIG. 7. Solutions in the ey -« plane of Fig. 3. The horizontal
line marks the intersection with the e4.-e,. plane of Fig. 4.
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above k=0.4, Fig. 5 suggests that the phase-slip equa-
tions of (3.1) are relatively insensitive to x for k % 0.4.

D. ac conductivity

In this section, we examine the response of the phase-
slip equations to small ac fields. The effect of small ac
fields is best measured by ac conductivity, which we now
define as

O (W) = D Wexe) /€5 - (3.3)

When the CDW is sliding, a complication to comput-
ing o (w,,,) is that a dc field causes the CDW phase veloc-
ity to oscillate at the washboard frequency, even in the
absence of an ac field. This phenomenon is known as
“narrow-band noise.”®?* In Eq. (3.2), for example, the
CDW phase velocity has a Fourier component wy 4, at
the washboard frequency wy. The amplitude of this
component is about 1. Hence, if a small ac field is ap-
plied with a frequency that matches the CDW washboard
frequency, our definition of o(w,,,) diverges in the limit
that e, —0:

1
[0 (Wegy =@y )| ~——
ac
Our definition of o(w,,,) similarly diverges at the second,
third, and higher harmonics of wy. Although we could
redefine o(w,,,) to eliminate these divergences, the
definition in (3.3) corresponds to how ac conductivity is
actually measured in experiment. Therefore we will con-
tinue to use (3.3) to define o(w,,,), even in the sliding re-
gime of the phase-slip equations.

The sliding ac conductivity of the phase-slip equations
is displayed in Fig. 8 for two values of the ac test signal.
For the calculations in this figure, the amplitude relaxa-
tion rate was fixed at k=0.5 and the other phase-slip pa-
rameters remained a=0.2 and 0=107. The dc bias was
e4.=2.6, which is about 104% of the lower threshold
field e, ;.

Figure 8(a) shows o(w,,,) when the ac test signal is 1%
of the lower threshold field. Sharp resonance are present
in Reo and Imo at the washboard frequency and its har-
monics. Near the washboard frequency, wy=1.13, the
main effect of the test signal is to fix the phase of the
narrow-band noise relative to the test frequency. Thus
the magnitude of o(w,,,) is constant near wy and roughly
equal to 1/e4.. At frequencies below wy, the in-phase
component of o (w,,,) is equal to the slope d{¢) /de,, of
the I-V curve, while the out-of-phase component of
o(w,,) 1s zero. At high frequencies, Imo goes to zero
when o, is not close to a harmonic of the washboard
frequency. Although not apparent in Fig. 8(a), Reo goes
to 1 at high frequencies.

Figure 8(b) shows o(w,,,) when the ac test signal has
increased to 5% of e,;. New subharmonic resonances are
present at 2w, and 3wy, and the harmonic resonances at
20y, 3wy, and 4w, are now much larger. More impor-
tantly, the fundamental resonance at w.,=wy is no
longer sharp. The real and imaginary components of
o(w,,,) display broad regions in which conductivity de-
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FIG. 8. Sliding ac conductivity of the reduced phase-slip
equations. The conductivity is sensitive to mode locking, as
shown by the effect of an increasing ac test signal: (a)
e4. =0.0le,; and (b) ey =0.05¢,,.

creases with increasing frequency. Furthermore, Imo is
negative over a wide frequency range, from w.,,=0.6 to
@, =1.2. An inductive response (i.e., Imo <0) over
such a wide frequency range is unusual in an overdamped
model of CDW dynamics. Inductive behavior is observed
in overdamped classical models,®” as well as the quantum
tunneling model,® but only over narrow frequency ranges.
The widths of inductive dips in these modes are typically
10% or less of wy, regardless of the test signal magni-
tude. In Fig. 8(b), the width of the inductive region is
over 50% of wy.

IV. COMPARISON OF THEORY
AND EXPERIMENT

In this section, we will examine the agreement between
predictions of the phase-slip equations and experimental
results on switching crystals. We will limit our compar-
ison to experiments on NbSe;, since switching has been
extensively characterized in this material.

The best quantitative agreement between theory and
experiment is obtained for singly applied ac or dc fields.
For example, the I-V characteristic of Fig. 2(a) matches
the NbSe; I-V curve in Fig. 1 of Ref. 16 quite closely. In
both I-V curves, the differential conductance dI /dV is
constant past the upper threshold field, the hysteresis
loop extends over a bias range which is about 25% as
large as the threshold field, and the ratio of upper to
lower current switches is about 4:1. This agreement is
trivial, of course, since it is built into the phase-slip equa-
tions. In both the phase-slip model and real crystals,
switching is (arguably) caused by an effective collapse of
the CDW pinning potential. This effective collapse pro-
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duces a constant dI /dV past threshold. And the phase-
slip parameters «a, 0, and « allow the I-¥ characteristic of
the phase-slip equations to be adjusted arbitrarily. Since
the phase-slip equations can therefore fit any single-
switch I-V characteristic of NbSe;, the shape of dc I-V
curves is not a critical test of the phase-slip model. (Some
I-V characteristics of NbSe; display more than one
switch,'* a point to which we will return shortly.)

A nontrivial point of agreement, however, is the rela-
tive size of switching versus nonswitching threshold
fields. A comparison of threshold fields is difficult to
make experimentally because of large sample-to-sample
variations, even among nonswitching crystals. In NbSe;,
comparison can be made indirectly by studying the tem-
perature dependences of threshold fields.'* In the lower
CDW state of nominally pure crystals, switching is never
observed at 48 K, but is usually observed (if it is observed
at all) when the crystal temperature is lowered to 30 K.
In nonswitching crystals, threshold fields typically in-
crease by a factor of 3 as the temperature is lowered from
48 to 30 K. In contrast, threshold fields in switching
crystals typically increase by a factor of 10 over this tem-
perature range. The onset of switching is therefore ex-
perimentally associated with a threefold increase in
threshold field. (Some experiments on cleaved crystals
also point to a ratio of 3:1 between switching and
nonswitching thresholds.'*)

In the phase-slip model, switching is caused by the
coupling of a weakly pinned domain to a strongly pinned
domain. When this coupling is absent, the nonswitching
threshold field is 1. But if this coupling is present, and if
the phase-slip parameters are chosen to reproduce experi-
mental I-V characteristics, then the switching threshold
field is about 3. Thus threshold fields in the phase-slip
model are 3 times larger for switching than for
nonswitching CDW’s. This agreement with experiment
is significant, because other models require threshold
fields that are up to 1000 times larger for switching than
for nonswitching CDW’s.'*

The pinned ac conductivity of the phase-slip model
also agrees quite closely with experiment. In NbSe;, the
pinned ac conductivity of either switching or nonswitch-
ing crystals is described reasonably well by the frequency
dependence of Eq. (2.13). Furthermore, the crossover
frequencies in switching and nonswitching crystals are
equal to within the uncertainty of sample-to-sample fluc-
tuations. In the phase-slip model, Eq. (2.13) applies to
both switching and nonswitching CDW?’s, and crossover
frequencies are shifted by only ~20% because of switch-
ing.

For jointly applied ac and dc fields, nonlinear instabili-
ties are a distinguishing feature of switching in both
theory and experiment. In NbSe; crystals, period dou-
bling and chaos are observed only in switching crystals.'®
In the phase-slip model, period doubling and chaos occur
only when 8> 6y and k>0, i.e., only when the phase-slip
equations predict switching. Theory and experiment also
agree on other qualitative aspects of chaotic dynamics.
For instance, nonlinear instabilities are associated with
period-doubling routes to chaos, rather than quasiperiod-
ic routes, chaotic states remain mode locked to Shapiro
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steps, and period-doubling routes to chaos occur on each
Shapiro step when the dc bias is comparable to the ac
field. In addition, the external field parameters required
for chaotic motion are comparable in theory and experi-
ment. In NbSe;, period-doubling bifurcations or chaos
have been observed at ac frequencies between 0.5 and 50
MHz, and for ac fields between 50 and 100 % of the
threshold field.!® In this paper, chaos occurs at an ac fre-
quency comparable to 100 MHz and for ac fields between
100 and 200 % of the threshold field.

Both switching NbSe; crystals and the phase-slip equa-
tions exhibit a strong tendency to mode lock to external
ac signals. At temperatures where switching is prom-
inently developed in NbSe;, Shapiro steps are much
broader (as a function of dc bias) than they are at higher
temperatures.'® In the switching regime, the regions of
dc bias between harmonic Shapiro steps are so narrow
that quasiperiodic or subharmonically locked CDW
motion cannot be resolved. Furthermore, strong mode
locking in NbSe; is closely correlated with chaotic dy-
namics. As the temperature of a NbSe; crystal is raised
above the switching regime, Shapiro steps become nar-
rower and nonlinear instabilities gradually disappear.
Similar mode-locking characteristics are displayed by the
phase-slip equations. In the parameter regime where
switching occurs (6> 6y), Shapiro steps are much
broader than in the overdamped Griner-Zawadowski-
Chaikin model, which is the nonswitching (6—0) limit of
the phase-slip equations. In the switching regime of the
phase-slip equations, no unlocked regions are observed
between some Shapiro steps; for example, between the
third and fourth steps in Fig. 5. And finally, strong mode
locking appears to be a prerequisite for nonlinear instabil-
ities in the phase-slip equations, as was discussed in Sec.
III.

The last point of agreement between theory and experi-
ment is the inductive behavior observed in sliding ac con-
ductivity measurements. Two characteristics distinguish
the sliding ac conductivity of switching crystals from that
of nonswitching crystals.!> For frequencies below the
washboard frequency, Imo(w) is negative, and both
Imo(w) and Reo(w) decrease with increasing frequency.
The same behavior is displayed by the phase-slip equa-
tions in Fig. 8(b). In addition, the qualitative difference
in o(w) between Figs. 8(a) and 8(b) suggests that induc-
tive behavior is due to a nonlinear interaction of the
phase-slip equations with the applied ac test signal.
Indeed, additional calculations have shown that broad in-
ductive clips in o(w) are caused by mode locking between
the external frequency and the CDW washboard frequen-
cy.? Preliminary experiments on NbSe; suggest that in-
ductive behavior in switching crystals is also dependent
on the ac test signal.¢

In some important aspects, however, the behavior of
the reduced phase-slip equations differs significantly from
that of NbSe; switching crystals. There are several
discrepancies in sliding ac conductivity, for example. In
experiment,15 unlike the reduced equations, the in-phase
component of o(w) is never negative, the low-frequency
limit of Reo(w) is less than the high-frequency limit, the
out-of-phase component of o(w) does not go to zero at
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high frequencies, and the inductive dip in Imo(w) occurs
over a frequency range much wider than 0.5wy. There is
also qualitative disagreement over the features of non-
linear instabilities. Deterministic noise in the phase-slip
model is much larger than the chaos observed experimen-
tally.'® Complete period-doubling cascades have not been
observed in NbSe;, and period-halving cascades, whether
complete or incomplete, are totally absent.'® Small re-
gions of period-3 or period-5 response may be present in
some crystals, but these regions occupy a much smaller
amount of parameter space than shown in Fig. 4.'® Even
in dc response, the reduced phase-slip equations differ
from experiment, because some NbSe; crystals display
multiple, rather than just single, switches in their I-V
characteristics.!*

Many of these discrepancies, however, can be traced to
the neglect of internal CDW degrees of freedom. The re-
duced phase-slip equations treat the weakly pinned re-
gions of a CDW as rigid. Experiments on nonswitching
CDW’s show that this is a crude approximation. A
better approximation is to treat weakly pinned regions as
internally deformable. Inclusion of internal CDW modes
has several important effects on CDW dynamics.27 First,
narrow-band noise is suppressed. The relative amplitude
of narrow-band noise decreases as 1/V'N where N is the
number of internal CDW modes. Second, the dc conduc-
tivity near threshold changes from an (E —E;)'/? to an
(E —E;)” behavior, where v>1. As a result, the
differential conductivity dI/dV remains finite and less
than the high-field, high-frequency limit. Third, the
high-frequency ac conductivity becomes dominated by
internal CDW modes. Consequently, the sliding ac con-
ductivity approaches the pinned ac conductivity at fre-
quencies larger than the washboard frequency.

The complete phase-slip equations, Egs. (2.5), should
give much closer agreement with experiment than the re-
duced equations. In the complete equations, the weakly
pinned regions of a CDW are deformable. The sliding ac
conductivity of the complete equations will be improved,
therefore, over that of the reduced equations. The out-
of-phase component of o(w) will be nonzero at high fre-
quencies, since it will approach its pinned value. The in-
phase component of o(w) will be smaller at low frequen-
cies than high frequencies, since dI /dV is reduced by
internal CDW modes. Finally, Reo(w) will remain posi-
tive at all frequencies, at least for reasonable values of the
ac test signal. Negative values of Reo(w) occur because
the narrow-band noise signal is larger than the in-phase
CDW response. In real experiments, narrow-band noise
is typically 100 or 1000 times smaller than V,.(dI/dV),
where V. is the amplitude of the applied ac field. [The
current V, (dI /dV) represents a lower bound on the in-
phase CDW response.] If narrow-band noise is compar-
ably small in the complete phase-slip equations, Reo(w)
will not be negative.

The complete phase-slip equations should also yield
more realistic levels of deterministic noise. Bifurcations
and chaos in the phase-slip model are due to the dynami-
cal instability of phase elasticity. In the complete phase-
slip equations, however, the majority of phase-phase cou-
pling terms will not be driven into the regime of unstable
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elasticity. By a simple counting argument, the relative
amplitude of deterministic noise should decrease as the
fraction of unstable coupling terms decreases.

An interesting question is whether, in the complete
phase-slip equations, period-doubling cascades will be
truncated, period-halving cascades will be eliminated,
and period-3 responses will be suppressed. The introduc-
tion of random noise into deterministic dynamical sys-
tems is known to produce these effects. And real CDW
systems are known to exhibit broadband noise that is in-
duced by CDW transport.?® If the introduction of inter-
nal CDW modes were known to cause broadband noise,
then one might speculate that this broadband noise could
indeed truncate bifurcation cascades. Unfortunately,
internal CDW modes alone do not lead to broadband
noise.”’ However, deformable CDW models are only
marginally stable against the development of broadband
noise.”’ The presence of some highly nonlinear phase-
phase coupling terms could include broadband noise,
which would in turn truncate bifurcation cascades. If
this scenario is correct, then the complete phase-slip
equations would not only provide more realistic levels of
chaos, but they would also provide an explanation of the
origin of broadband noise.

As a final observation, the complete phase-slip equa-
tions provide an obvious mechanism for multiple switch-
ing by a CDW.!* Instability of the phase-mode elasticity
can occur independently at each strong-pinning site
within a crystal, and hence each strong-pinning site can
produce a switch. In real crystals, apparently single
switches in an I-V characteristic are often the result of an
avalanche of switches at multiple strong-pinning sites. A
distribution of strong-pinning centers, along with an asso-
ciated distribution of phase-slip parameters, could also
explain the wide frequency range of the inductive dip in
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Imo(w).
wide frequency range of the inductive dip in Imo(w).

In summary, we have shown that the reduced phase-
slip equations of (3.1) display switching, hysteresis, period
doubling, chaos, and an inductive ac conductivity. These
phenomena are observed experimentally in switching
NbSe; crystals, and in this section we have discussed the
qualitative agreement between experiment and the
phase-slip hypothesis. By way of conclusion, the overall
consistency of the phase-slip model should be em-
phasized. Switching crystals are the only class of CDW
conductor in which dc electric fields have been demon-
strated to produce CDW current discontinuties. Current
discontinuities, in turn, require fluctuations of the CDW
amplitude. Significantly, the dynamics of switching
CDW'’s have not been self-consistently explained on the
basis of CDW phase dynamics alone. On the other hand,
amplitude fluctuations are a starting point of the phase-
slip equations, and lead directly to the phenomena which
characterize transport in real switching crystals. Thus,
the phase-slip equations provide a self-consistent model
of switching which is also in good qualitative agreement
with experiment.
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FIG. 4. A schematic picture of the solutions that are found
in the ey.-e,. plane of Fig. 3. Harmonically mode-locked solu-
tions are characterized by an index pair (n,P) which represents
their entrainment n and periodicity P. (Boundaries between
different regions are only approximate.) The horizontal line
represents the intersection of parameter planes in Fig. 3.
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