Supplemental Material:

Optical images of CVD grown MoS₂ on SiO₂/Si with different magnifications as shown in (a) (b), and Raman spectra showing both photoluminescence peaks and Raman peaks of single-layer and double-layer MoS₂ grown on SiO₂/Si in (c) (d).

2. Raw large-area ADF images of single-layer MoS₂ (a), boundary between single-layer and bilayer MoS₂ (b), and boundary between bi-layer and tri-layer MoS₂ (c).

3. ADF image (raw) of one type of bi-layer MoS₂ with a certain relative rotation angle. The relative rotation angle between layers is measured to be around 6° from FFT shown in the inset of the figure.

4. Simulated images of tri-layer MoS₂ with the first two layers stacked as AA' ((a) to (d)), plus 3R phase (e) which has the stacking sequence (AB)B. Simulation of these ADF images is based on multi-slice theory. For the simulation, we use 50keV as the energy for the electron source, 32 mrad as the convergence semi-angle (probe size approximately 1.7 Å), and 77-385 mrad as the collection semi-angles, which all match the experimental conditions. Spherical aberration Cs is set to be 0 (to simulate the aberration-corrected probe) and the simulation sampling is 0.05 Å/pixel. The probe defocus is kept at 0, with a probe spacing of 0.11 Å. We divide the unit cell into 4 slices for single-layer case, 8 slices for bi-layer and 12 slices for tri-layer. We use 16 frozen phonon configurations for all simulations to account for thermal vibration.

5. ADF images of tri-layer MoS₂ with the stacking sequence AA'B from different patches of growth. Low-pass filter was applied to both images.

6. DFT simulation of the total energies of all possible stacking sequences in bi-layer (table 1) and tri-layer MoS₂ (table 2).

Table 1:	
Bi-layer MoS₂	
Stacking Sequence	Total energy(eV)/unit cell
AA'	-44.7419
AB	-44.7416
AB'	-44.7290
A'B	-44.6889
AA	-44.6859

Table 2:

Tri-layer MoS ₂			
	Stacking Sequence	Equivalent stacking	Total energy (eV)/unit cell
	(AA')A'	(AA')A'	-67.1968
	(AA')B	(AB)A'	-67.1963
	(AB)B	(AB)B	-67.1960
	(AA')B'	(AB')A'	-67.1840
	(AB)B'	(AB')B	-67.1839
	(AB')B'	(AB')B'	-67.1712
	(AA')'B	(A'B)A'	-67.1428
	(AB)'A	(A'B)B	-67.1423
	(AA)B	(AB)A	-67.1397
	(AA)A'	(AA')A	-67.1396
	(AB')'B	(A'B)B'	-67.1301
	(AA)B'	(AB')A	-67.1276
	(A'B)'B	(A'B)'B	-67.0887
	(AA)'B	(A'B)A	-67.0863
	(AA)A	(AA)A	-67.0838