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Supplementary Figures 

	

Supplementary Figure 1. Spectroscopy of anchored (to PCDA) and unanchored F4TCNQ 
molecules on graphene/BN is qualitatively similar. However, for unanchored molecules the 
initial tunneling current is chosen to be lower to avoid moving the molecule during 
measurement, resulting in lower signal-to-noise ratio and shifted charging peak. Initial tunneling 
parameters: VS = 1 V, It = 15 pA, VAC = 12 mV (anchored), VS = 1 V, It = 3 pA, VAC = 12 mV 
(unanchored). 
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Supplementary Figure 2. The on-molecule dI/dV spectrum can vary depending on tip position 
(a known effect).5 At the center of the molecule the p-like orbital (see theoretical orbital inset) 
occurs at a higher energy (blue dots) than at the more s-like orbital at the corner of the molecule 
(red dots). This is due to inelastic phonon-assisted tunneling5 from the s-like orbitals of the tip to 
the p-like orbital at the molecule’s center, leading to a peak energy higher than the true LUMO 
energy measured at the molecule’s edge. We therefore measured spectra at the s-like corner of 
the molecule to extract the reproducible, precise LUMO energy (initial tunneling parameters: It = 
15 pA , VS = 1 V, VAC = 12 mV). 
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Supplementary Figure 3. Experimental dI/dV from Fig. 2 of main text, with a fit of 
evenly spaced Gaussians. The Gaussians of vibronic fit 1 are centered at energies 
𝐸! + 𝑛 𝜔!, where n=1,2,3,4,5, while the Gaussians of vibronic fit 2 are centered at 
energies 𝐸! + 𝜔! + 𝑛 𝜔!, where with n=1,2,3. The best-fit values of the phonon energies 
are 𝜔! ≈ 37±  7 meV, 𝜔! ≈ 227±  24 meV. The total fit is the sum of all Gaussian fits (with a 
small constant offset). 

 

 
Supplementary Figure 4. Comparison of ab initio spectral function of F4TCNQ LUMO state 
and experimental dI/dV for various fill states. (a) dI/dV for various gate voltages when the 
LUMO is completely filled, partially filled and empty (initial tunneling parameters: It = 30 pA , 
VS = 0.4 V, VAC = 8 mV (for VG = 3 V, 6.8 V) and It = -40 pA , VS = -0.7 V, VAC = 8 mV (for VG 
= 10 V)). The dI/dV for red and blue traces are featureless above and below EF, respectively (not 
shown). (b) The theoretical spectral function when LUMO is completely filled, partially filled 
and empty. In both cases the vibronic satellites, including their relative energies above and below 
the LUMO are in qualitative agreement with experiment.  
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Supplementary Figure 5. Dirac point energy fit. For each gate voltage we measured the 
energy of the local minimum in a dI/dV spectrum on graphene as in Fig. 3b of the main text. We 
then subtracted 63 meV from the absolute values of those energies to account for the inelastic 
tunneling gap in the graphene spectrum.4 The resulting energies are plotted as black dots. We 

then fit the parameter 𝛼 in the function 𝐸! = 𝛼 sign(𝑉! − 𝑉!!) 𝑉! − 𝑉!!  to those data points 

(where we choose 𝑉!! to be the gate voltage where the LUMO energy (red dots) has the steepest 
slope) because the local minimum at the Dirac point is difficult to determine close to charge 
neutrality due to the inelastic tunneling channel.4  

 
Supplementary Figure 6. Ab initio spectral function of F4TCNQ LUMO state on ungated 
graphene. The LUMO is occupied by 0.7 electrons. Arrows indicate the positions of the phonon 
satellites. These phonon satellites are both above and below the Fermi energy because the 
LUMO is partially filled. 
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Supplementary Figure 7. Atomic displacement of the two phonons with the highest 
electron-phonon coupling. Both phonons exhibit Ag symmetry. 

 
 
 

 

Supplementary Figure 8. The graphene image charge as function of the Fermi level for 
different substrates induced by a negative point charge located 3 Angstrom above the graphene 
plane. The blue curve shows the image charge for graphene in isolation (𝜖!" = 1) and the red 
curve shows the result for graphene on BN. For comparison, we also show the image charge of a 
metallic substrate (black line). 

)
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Supplementary Figure 9. The graphene image charge induced by a negative point charge 
above the graphene plane. The image charge increases for larger values of the Fermi energy, and 
also with the height of the charge above the graphene. 

 

Supplementary Figure 10. Change in the F4TCNQ LUMO energy due to intra-molecular 
electron-electron interactions. The calculated renormalization of the LUMO is significantly 
smaller than the effect of image charge interactions between the molecule and graphene. 
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Supplementary Figure 11. Graphene spectroscopy near a single molecule reveals the 
molecule charge state. (a) dI/dV on graphene near an F4TCNQ molecule at VG = -50 V shows no 
distance dependence, indicating that the molecule is uncharged.10 (b) For VG = +30 V, dI/dV 
spectra on graphene show an asymmetry developing as the tip moves close to the molecule with 
dI/dV intensity decreasing above ED and increasing below ED. This is an indication of charge 
located at the molecule, which we determine to be 𝑞 ≈ −𝑒 by comparison to previous results10 
(initial tunneling parameters: It = 50 pA, VS = 0.5 V, VAC = 12 mV at 10 nm away from 
F4TCNQ). 
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Supplementary Notes 
Supplementary Note 1. Electron-phonon coupling 

We investigate the effects of electron-phonon interactions on tunneling spectra for STS 
measurements of F4TCNQ molecules on graphene. The coupling of electrons to phonons 
renormalizes the electronic energies and gives rise to additional satellite features in the 
electron spectral function. 

We carried out density-functional theory (DFT) calculations of the F4TCNQ molecule on 
graphene using the QUANTUM ESPRESSO program package1. We employed the local density 
approximation, norm-conserving pseudopotentials, a plane-wave cutoff of 50 Ry and a 6×6 
graphene supercell. The separation of periodic graphene sheets in the z-direction is 30 bohr. The 
Brillouin zone of the supercell was sampled with a 6×6×1 kpoint grid. 

After determining the ground state geometry, we calculated the phonon modes and 
determined the electron-phonon coupling strengths using EPW computer code2. Electron 
energies 𝜖!, phonon frequencies 𝜔! and electron-phonon couplings 𝑔!"# were used to evaluate 
the self-energy of an electron in state 𝑛 due to electron-phonon interactions: 

Σ!
!" 𝜔 = 𝑔!"#

!
!"

!!
!!!!!!!!!"

+ !!!!
!!!!!!!!!"

 ,  
where 𝑓! denotes the occupancy of state 𝑚 (given by the Fermi distribution) and we have 
assumed 𝑇 =  0 K and set the phonon occupancies to zero. We have also found that to a good 
approximation the sum over 𝑚 can be reduced to keeping only the 𝑚 =  𝑛 contributions. 

Then, the electron spectral function 𝐴! 𝜔 = !
!

 × Im 𝐺!(𝜔)  (where 𝐺! 𝜔 =
𝑑𝑡 exp 𝑖𝜔𝑡 𝐺!(𝑡) denotes the electron Green’s function) is computed using the 

generalized cumulant expansion approach of Story, Kas, Vila, Rehr and Verstraete3. 
𝐺! 𝑡 = −𝑖𝑒!!!!! 𝑒!! !  Θ 𝑡  

𝐶! 𝑡 = 𝑑𝜔 𝛽! 𝜔  
𝑒!"# − 𝑖𝜔𝑡 − 1

𝜔!

!

!!
 

𝛽! 𝜔 =
1
𝜋 Im Σ!

!"(𝜖! − 𝜔)  , 
where 𝐶! denotes the cumulant function. 

For the molecule, the imaginary part of the self-energy is a sum of delta-functions 
Im 𝛴!

!"(𝜔) = 𝜋 𝑔!!" ! 1− 𝑓!  𝛿 𝜔 − 𝜖! − 𝜔! + 𝑓! 𝛿(𝜔 − 𝜖! + 𝜔!)
!

 

𝛽! 𝜔 = 𝑔!!" ! 1− 𝑓!  𝛿 𝜔 + 𝜔! + 𝑓!𝛿(𝜔 − 𝜔!)
!

 

𝐶!!"! 𝑡 =
𝑔!!" !

𝜔!!
1− 𝑓!  𝑒!!!!! + 𝑓!𝑒!!!!

!

 

𝐶!
!" 𝑡 = −

𝑔!!" !

𝜔!!
− 𝑖𝑡

𝑔!!" !

𝜔!
2𝑓! − 1 ≡ −𝑎! − 𝑖Δ𝐸!𝑡 ,

!!

 

where we separated the cumulant function into a quasiparticle contribution 𝐶!
!" and a 

satellite contribution 𝐶!!"#. 
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Plugging everything into the expression for the spectral function and Taylor 
expanding in 𝐶!!"# yields 

𝐴! 𝜔 =  𝑍 𝛿 𝜔 − 𝐸! +
𝑔!!" !

𝜔!!
1 − 𝑓!  𝛿 𝜔 − 𝐸! − 𝜔! + 𝑓! 𝛿(𝜔 − 𝐸! + 𝜔!) +⋯

!

 . 

 
Supplementary Figure 6 shows the corresponding spectral function of the LUMO state. When 
the molecule is placed on graphene, approximately 0.7 electrons are transferred into the LUMO. 
As a consequence of this partial occupancy, phonon satellites occur on both sides of the LUMO 
quasiparticle peak. On each side, we observe two prominent satellite features: one at ~30 meV 
from the quasiparticle peak, originating from a uniaxial stretching mode with 𝐴! symmetry, and 
another feature at ~180 meV, originating from a breathing mode of the inner carbon ring with 𝐴!  

symmetry (Supplementary Figure 7). 
 We measured the experimental phonon energies 𝜔! and 𝜔! by fitting the dI/dV spectrum 
of the molecule at 𝑉! = 0 V with multiple Gaussians (Supplementary Figure 3). In our fitting 
procedure we fit the first main peak separately from the second main peak. Fitting the first main 
peak with six evenly spaced Gaussians yielded 𝜔!. Fitting the second main peak with four 
evenly spaced Gaussians (separated by 𝜔!) yielded 𝜔! = 𝐸! − 𝐸!. 

Supplementary Note 2. Image Charge Effect.  

In this section we explain the renormalization of the F4TCNQ LUMO energy due to the presence 
of the graphene substrate. In contrast to typical bulk substrates graphene can be doped via gating, 
leading to a gate-dependent image charge effect. 

The renormalization of molecular levels due to image charge corrections caused by the 
presence of a (semi-infinite) substrate has been investigated by Neaton, Hybertsen and Louie6. 
These authors find that the correction of the quasiparticle levels of a molecule is given by 

                                         Δ𝐸!" = − !
!
𝛿𝑈 , for a completely filled level 

                                         Δ𝐸!" = + !
!
𝛿𝑈 , for an empty level, 

with 𝛿𝑈 = 𝜓!! Δ𝑊 𝜓!!    (Δ𝑊 denotes the change in the screened Coulomb interaction due to 
the presence of the substrate and 𝜓!  denotes the wave function of the molecular orbital). 
Typically, the presence of a substrate increases the screening and thus 𝛿𝑈 is negative. 

Before we apply this theory to F4TCNQ on graphene, we discuss the image charge 
correction for a molecular level that is occupied by a single electron. The theory of Neaton, 
Hybertsen and Louie can be generalized to this case by noting that the energy needed to 
remove an electron from this system, i.e. the ionization potential (IP), equals the energy 
required to add an electron to the molecule with an empty level, i.e. its electron affinity 
(EA), because 

𝐸!"!" 𝑁 = 1 = 𝐸! − 𝐸!!! = 𝐸Ñ!! − 𝐸Ñ = 𝐸!"!"(Ñ = 0). 

The energy renormalization of the empty level 𝐸!"!", however, is given by the theory of Neaton, 
Hybertsen and Louie [note that 𝐸!"!" (𝑁 − 1) = 𝐸!"!"(Ñ = 0) also without the substrate and 
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therefore the substrate-induced renormalization must be the same for 𝐸!"!" (𝑁 = 1) and 
𝐸!"!"(Ñ = 0)]. 

We illustrate the result of the previous paragraph for the case of F4TCNQ on doped 
graphene. In the neutral F4TCNQ molecule the LUMO is completely empty. We assume that the 
presence of an extra electron in the LUMO of the molecule (assumed to be located a distance 𝑧∗ 
above the graphene plane) gives rise to an extra contribution to the total energy of −|𝑒|𝑄(𝜖!)/
(2𝑧∗), where |𝑒| denotes the absolute magnitude of the electron charge and 𝑄 𝜖! > 0 denotes 
the doping-dependent image charge induced in the graphene.  

For negative gate voltages, the LUMO is empty. The cost of transferring an electron from 
the tip into the empty LUMO is given by  

𝐸 𝑎𝑑𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = 𝐸!"! 1 𝑒𝑙, 𝜖! − 𝐸!"! 0 𝑒𝑙, 𝜖! −  𝜖! , 
where 𝐸!"!(1 𝑒𝑙, 𝜖!) and 𝐸!"!(0 𝑒𝑙, 𝜖!) denote the total energy of the molecule plus 

graphene system with a singly occupied or an empty LUMO, respectively. We can approximate 
these total energies as  

𝐸!"! 0 𝑒𝑙, 𝜖! = 𝐸!"# 𝜖! +  𝐸!"#(0 𝑒𝑙, 𝜖!) 
and 

𝐸!"! 1 𝑒𝑙, 𝜖! =  𝐸!"# 𝜖! +  𝐸!"# 1 𝑒𝑙, 𝜖! −
𝑒 𝑄 𝜖!
2𝑧∗ , 

where 𝐸!"# denotes the energy of graphene without the molecule and 𝐸!"# denotes the 
energy of the molecule without the graphene. Inserting this into the equation for 
𝐸(𝑎𝑑𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛) yields 

𝐸 𝑎𝑑𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = 𝐸!"#(1 𝑒𝑙, 𝜖!)− 𝐸!"# 0 𝑒𝑙, 𝜖! −
𝑒 𝑄 𝜖!
2𝑧∗ − 𝜖! . 

This demonstrates that the image charge interaction reduces the energy of transferring an 
electron from the tip to the molecule.  

For positive gate voltages, the LUMO is occupied by one electron and the energy for 
transferring this electron from the LUMO to the tip is given by 

𝐸 𝑟𝑒𝑚𝑜𝑣𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = 𝐸!"! 0 𝑒𝑙, 𝜖! − 𝐸!"! 1 𝑒𝑙, 𝜖! + 𝜖!

=  𝐸!"# 0 𝑒𝑙, 𝜖! − 𝐸!"# 1 𝑒𝑙, 𝜖! +
𝑒 𝑄 𝜖!
2𝑧∗ + 𝜖! , 

indicating that the image charge interaction increases the energy needed to remove the electron 
from the LUMO. 

To calculate the size of the induced image charge in doped graphene, we model the extra 
electron in the LUMO level as a point charge located a distance 𝑧∗ above the graphene 
plane (which is assumed to be perfectly two-dimensional) and find for the Fermi-level 
dependent quasiparticle energy 

𝐸!" 𝜖! − 𝐸!" 𝜖! = 0 = −
1
2 𝛿𝑈 𝜖! − 𝛿𝑈 0  

=  −
1
2 𝑑𝑞 𝜖!!! 𝜖! − 𝜖!!! 0 𝑒!!!!∗

!

!
 , 

where 𝜖! denotes the graphene dielectric function, which depends only on the absolute 
magnitude of the Fermi energy. As a consequence, the LUMO level renormalization is 
symmetric around the Dirac point 𝜖! = 0. Using the long wavelength limit of the dielectric 
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function of graphene (see below), a simple scaling argument shows that Δ𝐸!" 𝜖! =
𝜖!  𝐹(𝑘!𝑧∗) with 𝑘! denoting the Fermi momentum. For small doping 𝑘!𝑧∗ ≪ 1 and 
Δ𝐸!" 𝜖! ≈ 𝜖!  𝐹(0). Details of the calculation are found in the next section. 

Supplementary Note 3. A simple model for the graphene image charge 
correction 
In this section, we compute the renormalization of the molecule level due to the presence of the 
graphene below the molecule. In particular, we consider adding an extra electron to the molecule 
(located at position [0 0 𝑧∗] above the graphene) and compute its interaction energy with the 
field that is induced in the graphene substrate. 

The extra electron creates a field 𝜙!"#(𝒓) that induces a charge density 𝛿𝑛 𝒓 =
𝛿𝑛 𝑥,𝑦  𝛿(𝑧) in the graphene plane. 

The resulting potential due to 𝛿𝑛 is given by 

𝜙!"# 𝒓 =  𝑑!𝑟! 𝑣 𝒓− 𝒓!  𝛿𝑛(𝒓!) 

Within linear response theory we can compute 𝛿𝑛 via 

𝛿𝑛 𝑥,𝑦 = 𝑑𝑥!𝑑𝑦! 𝜒 𝑥 − 𝑥!,𝑦 − 𝑦!  𝜙!"#(𝑥!,𝑦!) , 

where 𝜙!"# 𝑥,𝑦 = !
!!!!!!!∗!

 and 𝜒(𝑞) denotes the interacting charge susceptibility of  

graphene, which is related to the dielectric constant via 𝑣 𝑞  𝜒 𝑞 = 𝜖!! 𝑞 − 1.  
Next, we transform the above expression to Fourier space. For this we need 

𝑑𝑥 𝑑𝑦
1

𝑥! + 𝑦! + 𝑧∗!
 𝑒! !!!!!!! =

2𝜋
𝑞 𝑒! ! !∗ ,   

with 𝑞 = 𝑞!! + 𝑞!!. 
We can now calculate 𝛿𝑛 𝑥,𝑦 = 𝛿𝑛 𝑟  according to 

𝛿𝑛 𝑟 = ∫
𝑑!𝑞
2𝜋 ! 𝜒 𝑞

2𝜋
𝑞 𝑒!!!∗𝑒!!𝒒𝒓 = 𝑑𝑞

!

!

 𝜒 𝑞 𝐽!(𝑞𝑟)𝑒!!!
∗  , 

where we introduced the Bessel function of the first kind 𝐽!. 

 Finally, we can evaluate the induced potential at the position of the extra electron on the 
molecule 

𝛿𝑈 = 𝜙!"# 𝒓 = 0,0, 𝑧∗ =
𝑑𝑥 𝑑𝑦
2𝜋 !  

1
𝑥! + 𝑦! + 𝑧∗!

 𝛿𝑛(𝑥,𝑦) 

= 𝑑𝑞 𝜖!! 𝑞 − 1  𝑒!!!!∗
!

!
. 

To evaluate this expression, an approximation for the static dielectric function of graphene is 
needed. Here we use the result of Stauber et al.7 

𝜖 𝑞 = 𝜖!" − 𝑣 𝑞  𝜒!(𝑞) 

𝜒! 𝑞 = −
2𝑘!
𝜋𝑣!

+ Θ 𝑞 − 2𝑘!
𝑞

2𝜋𝑣!
 𝐺

2𝑘!
𝑞   

𝐺 𝑥 = 𝑥 1− 𝑥! − acos 𝑥 , 
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where 𝜖!"denotes a background dielectric constant, 𝑘! is the Fermi wave vector and 𝑣! the 
Fermi velocity. 
 Two limiting cases can be studied analytically: i) intrinsic graphene, i.e. 𝑘! = 0, and ii) 
heavily doped graphene. For intrinsic graphene, we find 𝜒! 𝑞 = −𝑞/(4𝑣!) and the induced 
potential is 

𝛿𝑈 =
𝑞!""
2𝑧∗ , 

with 𝑞!"" =
!!!

!!!!!!!"
− 1. Note that the induced potential looks exactly like the image charge 

potential for a point charge over the surface of an insulator with bulk dielectric constant 
𝜖 = (1− 𝑞!"")/(1+ 𝑞!""). We thus find that the image charge induced by graphene in isolation 
(i.e. 𝜖!" = 1) is the same as that for an insulator with bulk dielectric constant 𝜖 = 7.9. The 
second case we study is heavily doped graphene. In this case, 𝜒! 𝑞 = − !!!

!!!
 and 𝛿𝑈 = − !

!!∗
, 

which is the same image charge response as for a bulk metal surface. 

Supplementary Note 4. Intra-molecular electron-electron interactions 

In addition to electron-electron interactions between the molecule and the graphene 
substrate, we also investigated the effect of electron-electron interactions within the 
molecule and show that for the case of F4TCNQ on doped graphene the effect of these 
interactions is much smaller than the effect of the image charge interactions between the 
molecule and graphene. 
 We use the Anderson model to describe intra-molecular electron-electron 
interactions. Specifically, the Hamiltonian is given by 

𝐻 = 𝐻!"# + 𝐻!"# + 𝐻!!" , 

where 𝐻!"# denotes the graphene-tight-binding Hamiltonian and 𝐻!"# = 𝐸!𝑛! + 𝑈𝑛!↑𝑛!↓ 
denotes the Hamiltonian of the isolated molecule (with the LUMO electron number 
operator 𝑛! = 𝑛!↑ + 𝑛!↓ and 𝐸! and 𝑈 denote the LUMO energy level and the onsite 
Coulomb energy, respectively). Finally, the hybridization term 𝐻!!" describes the hopping 
of electrons from the graphene onto the molecule and is proportional to the hybridization 
energy V.8  
 We now describe how we determine 𝑈, 𝑉, and 𝐸! for F4TCNQ on graphene. We first 
carried out a DFT calculation of F4TCNQ on graphene and determine 𝑉 = 1.0 𝑒𝑉 from the 
width of the LUMO resonance in the density of states. For the isolated F4TCNQ molecule, 
we obtain 𝑈 = 3.1 𝑒𝑉 from the spin splitting of the singly occupied LUMO level, which we 
calculate using the GW method. Determining 𝐸! (with respect to the Dirac point energy) 
requires, in principle, a GW calculation of F4TCNQ on graphene, which is computationally 
very challenging. Experimentally, 𝐸! is found to be slightly below the Dirac point energy 
and we therefore carry out calculations for 𝐸! = −0.3 𝑒𝑉, −0.2 𝑒𝑉 and −0.1 𝑒𝑉. 
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 In the presence of large on-site interactions, 𝑈, the Anderson model is known to exhibit 
Kondo physics. For the parameters at hand, however, a simple estimate shows that the 
corresponding energy scale - the Kondo temperature - is at least one order of magnitude smaller 
than the temperature at which the experiment is carried out. Hence, our physical configuration is 
not governed by Kondo physics but by charging effects, which are much simpler to describe 
theoretically. Since 𝑈 = 3.1 𝑒𝑉 is much larger than the hydridization energy 𝑉 = 1.0 𝑒𝑉, we 
employ the Non-Crossing Approximation to determine properties of the Anderson model9. 
This approach is non-perturbative in 𝑈, but treats the hybridization 𝑉 as a small parameter. 
In practice, we first evaluate the corrections due to the finite value of 𝑉 for the energies of 
the states with zero and one electron in the LUMO (for 𝑉 = 0, these are given by 𝐸! = 0 
and 𝐸! = 𝐸! − 𝜖!). In a second step, we determine the peak in the tunneling spectrum by 
computing the energy difference 𝐸! − 𝐸!. 

Supplementary Figure 10 shows the results of our calculations for the change in the LUMO 
energy due to intra-molecular electron-electron interactions as a function of the graphene 
doping. We find that the LUMO renormalization for the experimentally relevant range of 
doping levels is at most 10 meV and thus significantly smaller than the renormalization due 
to image charge effects. 
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