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Calculation of Molecular Electronic LDOS in the Presence of Strong Electron-Phonon 

Coupling Utilizing the Cumulant Expansion 

In order to understand the results of STM spectroscopy of molecular systems exhibiting 

strong electron-phonon coupling, we must be able to calculate the electronic local density of 

states (LDOS) or the spectral function under these conditions. Here we describe how we are able 

to calculate the LDOS for molecular adsorbates using density functional theory (DFT) together 

with the 1
st
 order cumulant approximation for the electron-phonon coupling.  

The electronic LDOS ),( Er


  is related to the measured STM tunneling conductance by  
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where G  is the electronic Green’s function for the combined electron and phonon system. G  is 

obtained by solving the Hamiltonian  
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where 


jc , jc  are electron creation and annihilation operators and 

a , a  are phonon creation 

and annihilation operators. We will neglect the dependence on electron wavevector k , as well as 

phonon wavevector q . This is based on the observation that the electron and phonon bandwidths 

are both relatively small. We have also checked that the electron-phonon matrix elements do not 

change appreciably with wavevector. 

 In the following sections, we first describe how the quantities jE ,  , jiM  in Eq. SI-2 

are calculated from DFT. With Eq. SI-2 fully parameterized, the cumulant approximation then 

provides a way to solve the strongly-coupled Hamiltonian in SI-2 to obtain the LDOS.  

Calculation of electronic levels and phonon modes within density functional theory: 

As a preliminary step for performing the cumulant approximation calculation for 

),,( ErrG

 , we calculate the electronic orbital energies ( jE ), phonon frequencies (  ) and 

electron-phonon matrix elements ( jiM ) using standard DFT-based tools. These quantities serve 

as inputs to the cumulant approximation calculation (see Eq. SI-6 below). 

Phonon frequencies and electron-phonon matrix elements are calculated within the 

density functional perturbation theory (DFPT) framework
1,2

. Electronic orbital energies are first 

calculated within DFT, using the PBE exchange-correlation functional, and then corrected with 

the GW self-energy
3–5

 which accounts for electron-electron correlations not included in DFT for 

the quasiparticle energies. All calculations are performed for the combined CVB 

molecule+graphene system, with the inter-molecular lattice constant fixed at the experimental 

value of 1.13 nm. 



Details of the cumulant approximation for G: 

In systems with strong electron-phonon coupling, low-order perturbation theory for G can 

be improved by using the cumulant expansion
6,7

. This expansion of the Green’s function can be 

conveniently performed in the time domain: 
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where the terms )(tGn  contain the n
th

 power of the electron-phonon coupling, and )(0 tG is the 

zeroth order Green’s function. The 1
st
 order cumulant approximation is as follows: 
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which is known to give an exact solution to Eq. SI-2 when there is only a single electronic 

orbital
7
. Within this approximation, at T=0, the density of states for unoccupied electronic orbital 

j  is written as 
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Here, ),( iI   represents a composite index labeling an electronic orbital i  and phonon mode  

 , and the sum over I  is understood to run over unoccupied electronic orbitals. In Eq. SI-5, the 

quantities 
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are calculated from the electronic orbital energies iE , the phonon frequencies  , and the 

electron-phonon matrix elements IjM , , which are all obtained from first-principles calculations. 

In this work we have computed Eq. SI-5 which corresponds to the experimental tunneling 

conductance,  
dV

dI
, for a 2-fold degenerate LUMO and a non-degenerate LUMO+1. Our results 

include Gaussian broadening of  -functions with a width of 0.07 eV, and are compared to the 

experiment in Fig. S1.  

 



 

Figure S1: Simulated spectral function for the LUMO and LUMO+1 of CVB/graphene within 

the cumulant expansion framework (blue), and experimentally acquired dI/dV spectrum of 

CVB/graphene/BN (black). The dI/dV spectra show resonances associated with the LUMO 

(“L”), its vibronic excitations (“L+ħω” and “L+2ħω”), and the LUMO+1 (“L+1”).  

  



Figure S2: DFT calculated LDOS for (a) LUMO for CVB/graphene, (b) LUMO+1 for 

CVB/graphene, (c) LUMO for a free-standing CVB layer, (d) LUMO+1 for a free-standing CVB 

layer, (e) LUMO for an isolated free-standing CVB molecule, and (f) LUMO+1 for an isolated 

free-standing CVB molecule. In order to calculate the LDOS of the isolated molecules, the size 

of the supercell was increased by a factor of 4. 
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