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Event Display taken from CMS Fireworks/cmsShow. 
This particular event shown is for demonstration 

purposes only.
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MADGRAPH5_aMC@NLO 2.6.2 -> PYTHIA 8.226

Signal : pp > Hj [QCD], Hjj[QCD]     Background : pp > jj,jjj,jjjj 
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Figure 1 : Signal Improvement Characteristic (SIC)
  • With       > 450 GeV, calculated with a binned     
likelihood fit, with bins of 7 GeV in mass spectrum
  • Note that CNN's perform better than classical 
variables such as 
  • The CNN without neutral layer also performs well, 
suggesting CNN is resistant to pileup

Figure 2 : Significance of H -> bb decay as a function 
of Integrated Luminosity (amount of data)
  •  With ML (red curve), we reach a 3 sigma 
(observation) much faster than without ML. To give 
scale, Run 2 has given us ~ 100 fb-1 so far, and we 
expect 300 fb-1 by the end of run 3

To the Right : Schematic of Neural Network
  • We use a two-stream neural network to attempt to 
gain information about both the full event and the jet 
image. 
  • We introduce 'padding layers' to account for phi 
invariance, and we discuss their usefulness below.  

Keras (backend Tensorflow) on Nvidia 1080 Ti GPUs
AdaDelta, Early Stopping regularization, 2.6 million parameters
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Single Image example

Full- event CNN With Padding
Full- event CNN Without Padding
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Baseline, Signal Improvement =2.20
20 - 30 particles, Signal Improvement =1.994
30 - 50 particles, Signal Improvement =1.950
50 - 80 particles, Signal Improvement =1.838
80 - 120 particles, Signal Improvement =1.804

Neural Network output for Signal Images distribution,
when a number of infrared particles (1 to 2 GeV) have
been added within R=0.6 of the Higgs J et

In this plot, we demonstrate that the padding layers on 
our Convolutional Neural Network have the desired 
effect of reducing the variance in the neural network 
output as the images are rotated in the phi direction. 

    The reason that the padded CNN is not completely 
rotationally invariant is that after all the convolutional/
pooling layers there is a dense layer that breaks the 
symmetry.   

In this study, we tried adding different amounts of 
infrared noise to each of the pp collisions, by 
generating some amount of 1 - 2 GeV pT particles 
and place them uniformly randomly in an 0.6 x 0.6 
square around the Higgs Jet. We then feed these 
noisy images into the Neural Network that we had 
previously trained, and see how it affects the neural 
network performance. This plot shows that even at 
relatively high amounts of noise, we retain good 
signal improvement ( > 1.8 factor) 

Investigating Our Neural Network Classical Jet Substructure Variables

First, particles are usually clustered into jets, based on 
a specific choice of metric between particles. The 
algorithm proceeds by clustering the pair of particles 
closest to each other, until you remain with your jets. 
The most popular metric is shown right, with p = -1 
(anti-kT). 

After clustering into jets, various physically motivated 
variables can be defined with input as a jet's 
constituent particles 4-vectors. These are mainly built 
with the intention of separating 'interesting 
jets' (Usually Higgs, vector bosons,..) from 'uninteresting 
jets' (QCD background)  

(arxiv 1011.2268)

The N-subjettiness variables are designed to measure 
how much the jet looks like it is made out of N distinct 
components. They are useful in a wide variety of 
applications, specifically in this study as our signal 
involves a splitting of H to two b-quarks; we expect    
to be high.

(arxiv 1001.5027)

The Jet Pull vector is a variable that attempts 
to capture the color flow information available 
in a jet. Specifically, it shows how much a jet 
(or subjet) is 'pulled off-center' by radiation; 
which is different for Higgs compared to QCD.

Built  off  the  N-Subjettiness  variables,  the    
(modern)  variable was built specifically to classify 
Higgs to bb jets apart from gluon to bb jets (which 
are the main source of QCD background in our 
study). The parameters are all optimized by means 
of a neural network to give optimal improvement in 
significance.  

50 > β3 >  40 40 > β3 >  30 30 > β3 >  20 20 > β3 >  10 10 > β3 >  0

(arxiv 1609.07483)

The N2 variable is a (modern) discriminant built off of the 
energy correlation functions, which are designed to behave 
similarly to the N-subjettiness variables but with the 
benefit that they are defined without respect to a choice 
of subjet axes. 

(arxiv 1710.01305)

(arxiv 0802.1189)

Left : To investigate what other information is available 
apart from    , we can weight the signal images to have 
the same     distribution as the background. After 
taking the difference, we find that there is still colour 
pull information to be learnt, shown by the radiation 
patterns remaining.
Bottom: Images to show what different values of  
correspond to.  
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Probing physics Beyond the Standard Model

Shown left are our bounds on the Wilson Coefficients 
that control the coupling of the Higgs Boson to tops and 
gluons. Changing these coefficients introduces two 
effects, one of which is an overall difference in the 
inclusive cross-section (which gives us the degeneracy 
band going from bottom-left to top right), and the other 
is an overall hardening of the    spectrum at high    , 
which allows us to 'break the degeneracy' and constrain 
the coefficients to a small region. We see that with ML, 
we achieve a much better constraint than without ML. 


