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1 Overview

In our quantum physics lectures, both 137A and B, we were introduced to the Hamiltonian
operator, which takes the form:

H = − ~2

2m
∇2 + V

where V is our potential. In class, we have only dealt with the case where we are interested
in solutions to Schrodinger’s equation:

i~
d

dt
|ψ〉 = H|ψ〉

in flat space (usually one, two or three dimensional Euclidean space, and occassionally com-
pact spaces such as a closed interval (infinite square well) or a circle (question in homework
on calculating energy levels of a fidget spinner)). In flat space, we can always find a cartesian
set of coordinates to describe the space, at least locally, which leads to a laplacian of the
form:

∇2
flat = ∂i∂i

using the Einstein summation notation, and taking i to range over a cartesian basis. But
what if we wanted to solve Schrodinger’s equation on a more general manifold? If this
manifold has geometry described by a metric gij, then our laplacian is generalised to the
Laplace-Beltrami operator, and is given by:

∇2
curved =

1√
|g|
∂i(
√
|g|gij∂j)

(Note that in the case of Euclidean space, our metric gij is the delta function, and our
operator reduces to ∂i∂i as expected). Now, assuming that the deviation of our new ∇2

operator from the old ∇2 operator in flat space is small in some sense, then it might be
interesting to consider this as a time independent perturbation problem, namely:

H = − ~2

2m
∇2

curved + V =

(
− ~2

2m
∇2

flat + V

)
− ~2

2m
(∇2

curved −∇2
flat)

where our perturbation is given by:

H1 = − ~2

2m
(∇2

curved −∇2
flat)
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2 Hyperbolic Geometry

One of the most studied non-euclidean geometries is that of Hyperbolic Space, whose defining
feature is a constant negative sectional curvature. As a model for the hyperbolic plane,
consider a two dimensional space described by ”geodesic-polar” coordinates r, θ, which are
the analogue to polar coordinates in the Euclidean plane. The metric will be given by:

grr = 1, gθθ = S2
k(r), grθ = gθr = 0

where

Sk(r) =
1√
−k

sinh(
√
−kr)

and k is a negative real number. Notice firstly that in the limit as k → 0−, we have gθθ → r2,
which is the usual metric for polar coordinates of the Euclidean plane. Now, we can verify
that the curvature of this surface is constant everywhere by standard computations:

Γdab =
1

2
gcd(∂bgca + ∂agcb − ∂cgab)

To find the Christoffel symbols, which come out to be:

Γrθθ = −1

2
∂rS

2
k ; Γθrθ = Γθθr =

1

2S2
k

∂rS
2
k

with all other components as zero. Now, we can compute the curvature tensor:

Rl
ijk =

∂

∂xj
Γlik −

∂

∂xk
Γlij + ΓljsΓ

s
ik − ΓlksΓ

s
ij

which come out to be:

Rr
θrθ = −Rr

θθr = ∂rΓ
r
θθ − ΓrθθΓ

θ
rθ;R

θ
rrθ = −Rθ

rθr = ∂rΓ
θ
rθ + ΓθrθΓ

θ
rθ

And finally, we can find the sectional curvature (which coincides with the Gaussian curvature;
since it is a two-manifold):

K =
gabR

a
cdeu

evdvcub

ga′b′ua
′ub′gc′d′vc

′vd′ − (ge′f ′ue
′vf ′)2

where u, v are linearly independent vectors in the tangent space (note the curvature is
invariant under different choices of u and v, as it should be). Choosing u to be the unit
vector in the θ direction and v to be the unit vector in the r direction, we find:

K = k

everywhere, which is exactly what we expect. Now that we have verified that our model is
indeed the hyperbolic plane (with constant curvature k), we can find the laplacian:

∇2
curved =

1√
|g|
∂i(
√
|g|gij∂j)
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=

(
1

r
∂r + ∂2

r +
1

r2
∂2
θ

)
+

(
1

S2
k

− 1

r2

)
∂2
θ

where the first part in the above equation is simply the laplacian if our polar coordinates
described flat space. So our perturbation in the hyperbolic plane has form:

H1 = − ~2

2m

(
1

S2
k

− 1

r2

)
∂2
θ

3 Application to Quantum Harmonic Oscillator in Hy-

perbolic Plane

Now, we can consider the Quantum Harmonic Oscillator in the plane, which has well-known
solution in the case where the plane is flat. The wavefunctions of the one-dimensional
Harmonic Oscillator are given by:

ψn(x) = AnHn

(
x

σ0

)
e−x

2/2σ2
0 ; An :=

1√
2nn!

1

(πσ2
0)1/4

; σ0 := (~/mω)1/2

where Hn are the physicist’s Hermite polynomials, with corresponding energy levels:

En =

(
n+

1

2

)
~ω

Our solution to the two dimensional case, being separable, is given by:

ψnm(x, y) = ψn(x)ψm(y); Enm = (n+m+ 1)~ω

Now, suppose our curvature k is small in magnitude. Then, if we are only interested in
first order effects, we can do first order perturbation theory; whilst taylor expanding our
perturbation in k to find:

H1 ≈ −
~2

2m

k

3
∂2
θ

to first order in k. Applying first order perturbation theory, we find the change in energy
levels due to perturbation:

〈n,m|H1|n,m〉 = − ~3k

6m2ω
A2
nA

2
m

∫
du

∫
dve−(u2+v2)

(
Hn(u)Hm(v)

)
∂2
θ

(
Hn(u)Hm(v)

)
where we make the coordinate transformation u = x/σ0 and v = y/σ0 (Note that θ =
atan(v/u)). This may seem slightly problematic for two reasons. Conceptually; in class
we’ve always understood perturbations to be perturbations in the potential energy, which
only depend on spatial degrees (not their derivatives). The ’proof’ of the validity of time
independent perturbation theory (matching coefficients in orders of the perturbation) doesn’t
require that the perturbation be only in terms of spatial degrees however, so we are fine in
that regard. Computationally; this might look like an ugly integral, but actually it works
just fine:

∂2
θ

(
Hn(u)Hm(v)

)
= (∂2

θHn)Hm + 2(∂θHn)(∂θHm) +Hn(∂2
θHm)

3



= (y2∂2
u − x∂u)Hn(u)Hm(v)− 2uv(∂uHn(u))(∂vHm(v)) +Hn(u)(u2∂2

v − v∂v)Hm(v)

Notice that we have:
∂zHn(z) = 2zHn(z)−Hn+1(z)

Using this formula, the above reduces to:

∂2
θ

(
Hn(u)Hm(v)

)
= u2Hn(u)Hm+2(v)− 2uvHn+1(u)Hm+1(v) + v2Hn+2(u)Hm(v)

−vHn(u)Hm+1(v)− uHn+1(u)Hm(v)

Plugging this back into our original integral, the HnHm+2 and Hn+2Hm terms vanish by
orthogonality of the eigenstates of the one-dimensional harmonic oscillator (the magic of
mathematics!) so we end with:

〈n,m|H1|n,m〉 =
~3k

6m2ω
A2
nA

2
m

∫
du

∫
dve−(u2+v2)

[
2uvHn(u)Hm(v)Hn+1(u)Hm+1(v)

−vHn(u)2Hm(v)Hm+1(v)− uHn(u)Hn+1(u)Hm(v)2

]
Expressing this in other terms, we have:

〈n,m|H1|n,m〉 =
~2k

6m

[
2
An
An+1

Am
Am+1

〈n|
(
â+ â†√

2

)
|n+ 1〉〈m|

(
â+ â†√

2

)
|m+ 1〉

− An
An+1

〈n|
(
â+ â†√

2

)
|n+ 1〉 − Am

Am+1

〈m|
(
â+ â†√

2

)
|m+ 1〉

]
where â and â† are our annihilation and creation operators respectively. Our final formula
is:

〈n,m|H1|n,m〉 =
~2k

6m
(2nm+ n+m)

4 Behaviour of Solution

Recall that the curvature k is defined to be negative for the hyperbolic plane, so the per-
turbation due to negative curvature lowers the energies of all the eigenstates. Also, due
to the nm factor in the perturbation energy, the energy levels increase slower and slower
(as n + m increases) to a fixed maximum energy, before decreasing. All of these are fea-
tures of the exact solution of the quantum harmonic oscillator in the hyperbolic plane
(https://arxiv.org/pdf/0709.0399.pdf), and it turns out that there are only a finite num-
ber of eigenstates (only for the n+m that yield energies below the maximum energy). Our
perturbative method didn’t yield the exact energies derived in the paper, but the fact that
it gave the same characteristics as the exact solution might be seen as a positive.
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