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1 Outline

Classical Field Theory
Quantum Scalar Theory
Quantum Dirac Field (spinor)
Interacting Fields
Perturbation Theory
A little on normalisation

2 Motivation

If we actually wanted to describe the universe, we would need a Quantum Gravity theory.
This would theoretically describe the universe perfectly; however in real life we don’t have
access to very high energies, or very small scales. So as an effective theory, we have relativistic
quantum field theory, to describe the universe. At even lower energies, and even larger time
scales, we have nonrelativistic QFT. To probe both these QFT theories, we don’t have direct
access, we only have access to decoherence, which clues us in to the nature of reality. At
even larger amounts of decoherence, we find ourselves with classical field theory, which is an
effective model for our theory. Physics is about going ’backwards’, we start with classical
field theory, trying to undo the approximations, go back to QFT, relativistiv QFT, and
maybe one day quantum gravity.

Let’s start depacking what we mean by this. Firstly, what does it mean for a quantum
theory to be relativistic? As a first answer, we can say that the theory is symmetric under
the Poincare group. Recall that if (x0, x1, x2, x3) are coordinates (where x0 is the temporal
coordinate) in an inertial frame, then in any other reference frame, we have:

ηµνdx
′µdx′ν = ηµνdx

µdxν

(under the einstein summation notation) or

ηµν
dx′µ

dxρ
dx′ν

dxσ
= ηρσ
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where η is a diagonal matrix such that η0,0 = 1, η1,1 = η2,2 = η3,3 = −1. We know from
our early days in special relativity that any coordinate transformation satisfying the above
constraints, is linear and is of the form:

x′µ = Λµ
νx

ν + aµ

where Λ is thought of as a rotation, and aµ is a constant 4-vector, where Λ obeys the
equation:

ηµνΛ
µ
ρΛν

σ = ηρσ

which can be thought of as:

ΛTηΛ = η

These transformations form a group, P4, when written in the form (Λ, a), then its easy
to find the product rule:

(Λ̄, ā) · (Λ, a) = (Λ̄Λ, Λ̄a+ ā)

So now we know what it means for something to be ’relativistic’. From our early under-
graduate quantum days, we know that symmetries are represented by either a unitary or an
antiunitary operator. So, to summarise, to build a relativistic QM theory, we need:

- A (separable) Hilbert space H
- To every (Λ, a) ∈ P4 we can find a unitary operator

U(Λ, a) : H → H

such that the identity poincare transformation is associated to the identity operator (multi-
plied by a phase), and the group structure of the Poincare transformations is preserved (i.e.
we are really looking for a homomorphism from P4 into the group of unitary operations on
the hilbert space (up to a phase factor). If we do happen to find a set of unitary operators
that obey these axioms, they are called ’Projective Unitary Representations’.

As a ’trivial’ example, we can choose all the U to be the identity operator, but this is not
really what we are looking for. As a more ’nontrivial’ example, we might set U = Λ, which
seems to preserve group structure, but sadly the Λ are not necessarily unitary. You might
go on to think more about finding examples, but as a warning:

There are no nontrivial finite-dimensional unitary representations of P4

This is in stark contrast with rotations, SO(3), where there are loads of unitary repre-
sentations of it (in simple spin systems, for example). The mathematical reason why SO(3)
is easy but P4 is hard, is that SO(3) is a compact group whereas P4 is not compact!

Now, for some even more bad news. We can consider the ’time translation subgroup’
of P4 given by the collection of poincare transformations (I, (t, 0, 0, 0)), i.e. just shifts in
time. Call this subgroup Vt, the time translation subgroup. Suppose we found a unitary
representation of P4, then V (t) = U(I, (t, 0, 0, 0)) is a one parameter family of unitary
operators, V (s+ t) = V (s)V (t), which solves the shrodinger equation:

dV (t)

dt
= iHV (t)

2



for some H self adjoint. That is to say, if we really did find the whole family U , we
would have found all the V (t), but this is essentially solving all of quantum mechanics!
Relativistic QFT is a strictly more difficult problem than ordinary quantum mechanics, and
we already know how hard that was! Note that our H here doesn’t have much requirements
placed on it; which may be bad news, imagine if H had eigenvalues that approached negative
infinity! Then our system could just emit energy, and approach lower and lower energy levels,
and become completely unstable! So we have an additional requirement on our unitary
representation (which makes life even harder), that our U are ”positive energy”, i.e. that
the spectrum of H is a subset of R+.

Now for some good news! All the representations of the poincare group have been clas-
sified! (all such single particle systems, that is). They were classified by Wigner, and are
labelled by two numbers, mass m and helicity/spin s.

The bad news is; the lecturer will not cover this; because even though it is beautiful,
nature chooses not to be a single of single particles. Nature chooses to be consisting of many
particles.
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