7-beers-matching

Kunal Marwaha

January 22, 2018

This work is licensed under a Creative Commons "Attribution 4.0 International" license.

Introduction

A few friends and I bought 7 types of bad beers (think Natty, Miller Lite, Yuengling...) and poured them into 7 uniquely labeled cups. We each tasted all 7 beers and guessed which was which. (Most of us did poorly; I think the high was $4 / 7$.)

How would we do if we guessed randomly? What if there were n beers?
For all parts, justify your answers where possible. Give a brief proof if you can.

Part 1

Let's simplify the problem. Suppose there are 3 beers (Awful, Bud, and Coors). I randomly pour them into three cups, and you guess which is which, randomly. I check your answers after you have guessed all three (so no re-using guesses!).
a) What's the chance that you guess all 3 correctly?
b) What's the chance that you guess exactly $2 / 3$ correctly?
c) What's the chance that you guess exactly $1 / 3$ correctly?
d) What's the chance that you guess exactly $0 / 3$ correctly?
e) What's the expected number of beers that you will guess correctly?

Hint: Think of this as an ordering problem.

Part 2

Let's define a random variable R_{n} (with $n \in \mathbb{N}$), which represents the distribution of guessing some number of n beers correctly. Precisely, $\operatorname{Pr}\left(R_{n}=k\right)$ represents the probability that you randomly guess exactly k out of n beers correctly.
a) Let's first make the problem even smaller. Suppose there are only two beers (Awful and Bud). What is the distribution of R_{2} ? What is its expected value?
b) What is the distribution and expected value of R_{1} ? What does R_{1} represent?
c) Reflect on the previous results. What can you gather about $\operatorname{Pr}\left(R_{n}=k\right)$, where $k>n$? What about when $k<0$? Why?
d) What is $\operatorname{Pr}\left(R_{n}=n\right)$? Why?
e) What is $\operatorname{Pr}\left(R_{n}=n-1\right)$? Why?
f) What is $E\left(R_{n}\right)$? How does it depend on n ? Why? (Hint: Use linearity of expectation.)

Part 3

Let's tease out a recurrence relation to better understand R_{n}.
a) Suppose we're guessing with 3 beers. We make a guess on the first one, and we're left with two beers and two cups. What are the possible outcomes? Are they all represented with R_{2} ?

Let's define a new variable, $R_{n, l}$ (with $l \in \mathbb{N}$ and $l \leq n$), which represents the distribution of guessing some number of n beers correctly, with l "bad" beer names that do not match any cups. In particular, $R_{n, 0}=R_{n}$, since all beer names match exactly 1 cup.
b) Define a recurrence relation for $R_{n}=R_{n, 0}$. (Hint: Use Part (3a) to define R_{3} in terms of $R_{2, l}$ for various l. Then, generalize.)
c) Suppose, in Part (3a), we missed the guess. How do you represent the two beers and two cups with $R_{n, l}$? What are the possibilities when we guess again? State the recurrence relation for this particular case. Does it match up with the recurrence for $R_{n, 0}$?

Part 4

In order to unlock the riddle, we need more information about $R_{n, l}$.
a) What does $R_{n, n}$ represent? What is its distribution and expected value?
b) What does $R_{n, n-1}$ represent? What is its distribution and expected value?
c) The recurrence relation for $R_{n, l}$ is very similar to the one for R_{n}, but it depends on l. How does it change? Check that Part (3c) matches this recurrence. (Hint: As long as $n>l$, there will be at least one cup that you have a nonzero chance of guessing correctly (why?). Assume that you guess that cup next. What are the outcomes?)
d) Use all of the above information to compute the recurrence for R_{4} and each of its subproblems. Do this by hand. What does R_{4} represent? What are the base cases in the recurrence?

Part 5

Let's write a small script, and look for asymptotic approximations.
a) Write a recursive program above to compute the distribution of $R_{n, k}$. Check R_{n} for $n=1,2,3,4$ to see that the distribution and expected value match up with our earlier calculations.
b) What is the distribution of R_{7} ? Expected value? What's the chance that the high-scorer got exactly $4 / 7$ if they guessed randomly? At least $4 / 7$? Is it statistically significant at the $p=0.05$ level? (This can be modeled as a 1 -sided statistical test to see if the high-scorer really 'knows their bad beers'.)
c) Compute the distribution of R_{20}, R_{100}, and R_{1000}. (Hint: You may want to introduce caching to your script.) How does $\operatorname{Pr}\left(R_{n}=0\right)$ change as n increases? What about $\operatorname{Pr}\left(R_{n}=1\right)$ or for other small numbers? What patterns do you notice? (Hint: Look at reciprocals and ratios.)
d) It turns out that the full distribution of R_{n} can be generated by the sequence $\operatorname{Pr}\left(R_{n}=0\right)$. How? Represent $\operatorname{Pr}\left(R_{n}=k\right)$ in terms of $\operatorname{Pr}\left(R_{m}=0\right)$ for various m. Check that Part (2e) and Part (2f) still hold.
e) What does this mean for $\operatorname{Pr}\left(R_{n}=k\right)$ as $n-k$ increases? (There is an asymptotic approximation.) How soon (i.e. what $x=n-k$) are you within $1 / 1000$ of the approximation?

Hope you learned a little math on the way to getting drunk :-)

