fun facts about 2×2 real matrices

Kunal Marwaha

inspired Summer 2018, updated April 2020

This work is licensed under a Creative Commons "Attribution 4.0 International" license.

1 Context

These questions arose from a late-night study session for Math 113, Cal's abstract algebra course for undergraduates.

2 Definitions

2.1 Invertible

This is often denoted as the general linear group, specifically $G L_{2}(\mathbb{R})$, which is a group over matrix multiplication.

2.2 Determinant-1

This is often denoted as the special linear group, specifically $S L_{2}(\mathbb{R})$. This is a subgroup of $G L_{2}(\mathbb{R})$, since it is closed under inverse $\left(\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=1\right)$ and group operation $(\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1)$. Inverses exist because the determinant is nonzero.

2.3 Rotations

Any rotation can be defined as R_{θ} for some $\theta \in \mathbb{R}(\theta>0$ rotates clockwise $)$:

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{1}\\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Notice that $R_{\theta}=R_{\theta+2 \pi}$, and all rotations have determinant 1. Let's call the set of all rotations F :

$$
\begin{equation*}
F=\left\{R_{\theta} \mid \theta \in \mathbb{R}\right\}=\left\{R_{\theta} \mid \theta \in \mathbb{R}, 0 \leq \theta<2 \pi\right\} \tag{2}
\end{equation*}
$$

2.4 Reflections

Any reflection S mirrors points across some line $y=k x$ (for $k \in \mathbb{R}$) or $x=0$. The reader can verify S_{k} by working out how a point $\binom{a}{b}$ mirrors to $S_{k}\binom{a}{b}$.

$$
\begin{gather*}
S_{k}=\frac{1}{k^{2}+1}\left(\begin{array}{cc}
1-k^{2} & 2 k \\
2 k & k^{2}-1
\end{array}\right) \tag{3}\\
S_{\star}=\lim _{k \rightarrow \pm \infty} S_{k}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \tag{4}
\end{gather*}
$$

Notice that all reflections have $\operatorname{det}(S)=-1$. Let's call the set of all reflections G :

$$
\begin{equation*}
G=\left\{S_{\star}\right\} \cup\left\{S_{k} \mid k \in \mathbb{R}\right\} \tag{5}
\end{equation*}
$$

2.5 Orthogonal (transpose is inverse)

This is often denoted as the orthogonal group, specifically $O_{2}(\mathbb{R})$. An orthogonal matrix $A \in O_{2}(\mathbb{R})$ satisfies $A^{T} A=A A^{T}=I$, i.e. its transpose is its inverse. This is a subgroup of $G L_{2}(\mathbb{R})$, since it is closed under inverse $\left(\left(A^{T}\right)^{-1}=A=\left(A^{T}\right)^{T}\right)$ and group operation $\left((A B)^{T}(A B)=B^{T} A^{T} A B=I\right.$ and $\left.(A B)(A B)^{T}=A B B^{T} A^{T}=I\right)$.

2.6 Defective

Not all matrices are diagonalizable, meaning for a matrix A, there is no matrix $P \in G L_{2}(S)$ where $P^{-1} A P$ is diagonal. These matrices are called defective in S, where S is some field. Define D_{S} as the set of these defective matrices in $G L_{2}(\mathbb{R})$. Notice that $D_{\mathbb{C}} \subseteq D_{\mathbb{R}}$, since in $D_{\mathbb{C}}, P$ is allowed to have complex-valued entries.

2.7 Unit-magnitude eigenvalues

Define J as the set of all matrices in $G L_{2}(\mathbb{R})$ with both eigenvalues having magnitude 1 . Matrices in this set may have complex eigenvalues, but always have a real determinant ± 1.

2.8 Partitions of J

Let's split up J into different sets:

$$
\begin{align*}
X & =\left\{A \mid A \in J \cap D_{\mathbb{C}}\right\} \tag{6}\\
Y & =\left\{A \mid A \in J, A \notin D_{\mathbb{C}}\right\} \tag{7}\\
K & =\left\{A \mid A \in Y, \lambda_{1}=\lambda_{2}=1\right\} \tag{8}\\
L & =\left\{A \mid A \in Y, \lambda_{1}=-\lambda_{2}=1\right\} \tag{9}\\
M & =\left\{A \mid A \in Y, \lambda_{1}=\lambda_{2}=-1\right\} \tag{10}\\
N & =\{A \mid A \in Y, A \notin K \cup L \cup M\} \tag{11}
\end{align*}
$$

Notice that X and Y partition J, and K, L, M, N partition Y.

3 General insights

3.1 Rotations form a group

The reader can verify that $R_{\theta_{1}} R_{\theta_{2}}=R_{\theta_{1}+\theta_{2}}$. So, F is closed under group operation and inverse (as $R_{\theta}^{-1}=R_{-\theta}$).

3.2 Reflections do not form a group

The reader can verify that reflections are self-inverses. However, the product of two reflections has determinant $(-1)(-1)=1$, so it is not a reflection. So, G is not closed under the group operation.

3.3 Orthogonal matrices have determinant ± 1

Consider an orthogonal matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ for $\{a, b, c, d\} \subset \mathbb{R}$. Its transpose is defined $A^{T}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$. Notice that $\operatorname{det}(A)=a d-b c=\operatorname{det}\left(A^{T}\right)$, so $1=\operatorname{det}(I)=\operatorname{det}\left(A A^{T}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)^{2}$. Since the determinant of a real matrix is real, $\operatorname{det}(A)= \pm 1$.

3.4 Non-real eigenvalues must be different

Suppose $\lambda_{1}=a+b i$ and $\lambda_{2}=c+d i$ with $a, b \in \mathbb{R}$ and $b \neq 0$. If the characteristic equation for a matrix is satisfied $(p(\lambda)=0)$, then $p^{*}\left(\lambda^{*}\right)=0^{*}=0$. Since p is a polynomial with real coefficients, $p=p^{*}$, so $p\left(\lambda^{*}\right)=0$. So, $\lambda_{2}=\lambda_{1}^{*}=a-b i$. The eigenvalues differ because b is nonzero (i.e. $\lambda_{1} \notin \mathbb{R}$).

3.5 Matrices in $D_{\mathbb{C}}$ have $\lambda_{1}=\lambda_{2} \in \mathbb{R}$

In order to be defective over \mathbb{C}, an eigenvalue's geometric multiplicity must be strictly less than its algebraic multiplicity. This means some eigenvalue has algebraic multiplicity at least 2 . For this to happen in a 2 x 2 matrix, there can be only one eigenvalue. By 3.4 , this eigenvalue must be real.

3.6 Matrices in X have determinant 1

Since any matrix $A \in X$ is defective over \mathbb{C}, it has one repeated real eigenvalue. Since $A \in J$, this eigenvalue must be -1 or 1 , so $\operatorname{det}(A)=(-1)^{2}=1^{2}=1$.

3.7 Matrices in N have determinant 1

Consider a matrix $A \in N$. It has at least one unit-magnitude eigenvalue λ_{1} not equal to 1 or -1 ; so, λ_{1} is non-real. By $3.4, \lambda_{2}=\lambda_{1}^{*}$, so $\operatorname{det}(A)=\lambda_{1} \lambda_{2}=\left|\lambda_{1}\right|^{2}=1$.

3.8 K is the trivial group

A diagonalizable matrix can be written as $P D P^{-1}$, where $D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$. A matrix in K can be written as $P I P^{-1}=I$, so K contains only the identity matrix, the "zero" element of the group.

3.9 $K \cup M$ is a two-element group

Similar to 3.8 , a matrix in M can be written as $P(-I) P^{-1}=-I$, so M contains only the additive inverse of the identity matrix. Notice that $\operatorname{det}(-I)=1$. Together, I and $-I$ form a two-element subgroup of $S L_{2}(\mathbb{R})$, since both elements are self-inverses and $(-I)(I)=-I=(I)(-I)$.

3.10 Most rotations are in $D_{\mathbb{R}}$ and $N \subseteq D_{\mathbb{R}}$

Consider a matrix R_{θ}. The characteristic equation $\operatorname{det}\left(R_{\theta}-\lambda I\right)=0$ implies the following:

$$
\begin{gather*}
\lambda^{2}-2 \lambda \cos \theta+1=0 \tag{13}\\
\lambda=\frac{2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-4}}{2}=\cos \theta \pm i \sin \theta=e^{ \pm i \theta} \tag{14}
\end{gather*}
$$

When $\theta \neq 0 \bmod \pi, R_{\theta}$ has non-real eigenvalues. These R_{θ} are defective over \mathbb{R}; there is no $P \in G L_{2}(\mathbb{R})$ to make $P^{-1} R_{\theta} P$ contain complex entries. Similarly, any matrix in N has non-real eigenvalues by 3.7 , so $N \subseteq D_{\mathbb{R}}$.

4 Matrix structure

4.1 Inverse of 2×2 complex matrix

Consider an invertible matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ for $\{a, b, c, d\} \subset \mathbb{C}$. Then, its inverse is $A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$:

$$
\begin{align*}
& A A^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\frac{1}{a d-b c}\left(\begin{array}{cc}
a d-b c & 0 \\
0 & -b c+a d
\end{array}\right)=I \tag{15}\\
& A^{-1} A=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\frac{1}{a d-b c}\left(\begin{array}{cc}
a d-b c & 0 \\
0 & -b c+a d
\end{array}\right)=I \tag{16}
\end{align*}
$$

This inverse is unique because $G L_{2}(\mathbb{C})$ is a group (therefore, associative):

$$
\begin{align*}
& B_{L} A=I \Longrightarrow B_{L}=B_{L}\left(A A^{-1}\right)=\left(B_{L} A\right) A^{-1}=A^{-1} \tag{17}\\
& A B_{R}=I \Longrightarrow B_{R}=\left(A^{-1} A\right) B_{R}=A^{-1}\left(A B_{R}\right)=A^{-1} \tag{18}
\end{align*}
$$

4.2 Structure of matrices in L

Consider a matrix $A \in L$ where $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ for $\{a, b, c, d\} \subset \mathbb{R}$. Since the determinant is the product of the eigenvalues, A has determinant -1 . I use the characteristic equation $\operatorname{det}(A-\lambda I)=0$ to constrain A :

$$
\begin{array}{rlrl}
(a-\lambda)(d-\lambda)-b c & =0 & \\
\lambda^{2}-(a+d) \lambda+\operatorname{det}(A) & =0 & \operatorname{det}(A) & =a d-b c \\
(a+d) \lambda & =0 & (-1)^{2} & =1^{2}=1=-\operatorname{det}(A) \\
a & =-d \Longrightarrow b c=1-a^{2} & \lambda & \neq 0, a d-b c=-1 \tag{22}
\end{array}
$$

So, I can represent A in one of two forms:

$$
L=\left\{\left.\left(\begin{array}{cc}
a & b \tag{23}\\
\frac{1-a^{2}}{b} & -a
\end{array}\right) \right\rvert\, a \in \mathbb{R}, b \in \mathbb{R}-\{0\}\right\} \cup\left\{\left.\left(\begin{array}{cc}
\pm 1 & 0 \\
c & \mp 1
\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\}
$$

The second form may seem defective, but the reader can verify that its eigenvectors are linearly independent. The reader can also verify that $A^{2}=I$ for each form; thus, all $A \in L$ are self-inverses.

4.3 Structure of matrices in $D_{\mathbb{C}}$

Any matrix in $D_{\mathbb{C}}$ has a matrix $P \in G L_{2}(\mathbb{C})$ such that $P^{-1} X P=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$, the 2-dimensional Jordan block. I find the form of $A \in D_{\mathbb{C}}$ explicitly:

$$
\begin{align*}
A & =\frac{1}{a d-b c}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) & \{a, b, c, d\} \subset \mathbb{C}, a d-b c \neq 0 \tag{24}\\
& =\lambda I+\frac{1}{a d-b c}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) & \{a, k, c\} \subset \mathbb{C},|a|+|c| \neq 0, k \neq 0 \tag{25}\\
& =\lambda I+k\left(\begin{array}{cc}
-a c & a^{2} \\
-c^{2} & a c
\end{array}\right) & l, m \in \mathbb{C},|l|+|m| \neq 0 \tag{26}
\end{align*}
$$

4.4 Structure of matrices in X

Since $X \subseteq D_{\mathbb{C}}$, any matrix has the form listed in 4.3. But matrices in X have real eigenvalues (precisely, $\lambda= \pm 1$ by 3.6), so the real Jordan form matches the complex Jordan form. In other words, $P \in G L_{2}(\mathbb{R})$:

$$
\begin{align*}
A & = \pm I+k\left(\begin{array}{cc}
-a c & a^{2} \\
-c^{2} & a c
\end{array}\right) & \{a, k, c\} \subset \mathbb{R},|a|+|c| \neq 0, k \neq 0 \tag{28}\\
& = \pm I \pm\left(\begin{array}{cc}
-l m & l^{2} \\
-m^{2} & l m
\end{array}\right) & l, m \in \mathbb{R},|l|+|m| \neq 0 \tag{29}
\end{align*}
$$

Since $A= \pm I+N_{l m}$, where $N_{l m}$ is nilpotent, $A^{-1}= \pm I-N_{l m}$, as $\left(\pm I-N_{l m}\right)\left(\pm I+N_{l m}\right)=I-N_{l m}^{2}=I$ and $\left(\pm I+N_{l m}\right)\left(\pm I-N_{l m}\right)=I-N_{l m}^{2}=I$.

4.5 Structure of matrices in $O_{2}(\mathbb{R})$

Consider a matrix $A \in O_{2}(\mathbb{R})$. By $3.3, \operatorname{det}(A)= \pm 1$. I use the equation $A^{T}=A^{-1}$ to constrain A :

$$
\left(\begin{array}{ll}
a & c \tag{30}\\
b & d
\end{array}\right)=A^{T}=A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \quad\{a, b, c, d\} \subset \mathbb{R}
$$

If $\operatorname{det}(A)=1$, then $a=d$ and $b=-c= \pm \sqrt{1-a^{2}}$. Otherwise, $\operatorname{det}(A)=-1$, so $a=-d$ and $b=c= \pm \sqrt{1-a^{2}}$. Thus, any orthogonal matrix A has the following form:

$$
O_{2}(\mathbb{R})=\left\{\left(\begin{array}{cc}
1 & 0 \tag{31}\\
0 & \pm 1
\end{array}\right)\left(\begin{array}{cc}
a & \pm \sqrt{1-a^{2}} \\
\mp \sqrt{1-a^{2}} & a
\end{array}\right)|a \in \mathbb{R},|a| \leq 1\}\right.
$$

Without loss of generality, I set $a=\cos \theta$ for $\theta \in \mathbb{R}$. Then, an orthogonal matrix looks more familiar:

$$
O_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{cc}
1 & 0 \tag{32}\\
0 & \pm 1
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \pm \sin \theta \\
\mp \sin \theta & \cos \theta
\end{array}\right) \right\rvert\, \theta \in \mathbb{R}\right\}=\left\{\left.\left(\begin{array}{cc}
1 & 0 \\
0 & \pm 1
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \right\rvert\, \theta \in \mathbb{R}\right\}
$$

Some plus-minus signs are redundant because $\cos -\theta=\cos \theta$ and $\sin -\theta=-\sin \theta$.

5 Finding all orthogonal matrices

5.1 Rotations are special orthogonal matrices

By 4.5, matrices in $O_{2}(\mathbb{R}) \cap S L_{2}(\mathbb{R})$ have a specific structure; namely, $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)=R_{\theta}$ for some $\theta \in \mathbb{R}$. The set of rotations F is exactly the set of determinant- 1 orthogonal matrices! F is also known as $S O_{2}(\mathbb{R})$, the special orthogonal group of real 2 x 2 matrices.

5.2 Reflections are orthogonal matrices

Any reflection matrix $A \in G$ is symmetric and its own inverse. So, $A^{T}=A=A^{-1}$, thus $A \in O_{2}(\mathbb{R})$.

5.3 Orthogonal matrices are either reflections or rotations

I first transform the reflection S_{k} into polar coordinates. If $k=y / x=\arctan \phi$:

$$
\begin{align*}
\cos 2 \phi=\cos ^{2} \phi-\sin ^{2} \phi & =\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\frac{1-k^{2}}{1+k^{2}} \tag{33}\\
\sin 2 \phi=2 \sin \phi \cos \phi & =\frac{2 x y}{x^{2}+y^{2}}=\frac{2 k}{1+k^{2}} \tag{34}
\end{align*}
$$

Then, S_{k} can be defined by the angle ϕ between the line $y=0$ and the reflection axis $y=k x$:

$$
S_{k}=\frac{1}{k^{2}+1}\left(\begin{array}{cc}
1-k^{2} & 2 k \tag{35}\\
2 k & k^{2}-1
\end{array}\right)=\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right) \quad \phi=\arctan k
$$

S_{\star} also has this form with $\phi=\pi / 2$. So, any matrix in G is described by ϕ (plus any integer multiple of π):

$$
G=\left\{\left.\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \tag{36}\\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right) \right\rvert\, \phi \in \mathbb{R},-\frac{\pi}{2}<\phi \leq \frac{\pi}{2}\right\}=\left\{\left.\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right) \right\rvert\, \phi \in \mathbb{R}\right\}
$$

By 4.5, this is exactly the form of any orthogonal matrix with determinant -1 (where $\theta=2 \phi$). Thus, $G=\{A \mid A \in$ $\left.O_{2}(\mathbb{R}), A \notin S L_{2}(\mathbb{R})\right\}$, and $F \cup G=O_{2}(\mathbb{R})$.

5.4 Two reflections make a rotation

Consider $A, B \in G$. By 3.2, $A B \notin G$. By 2.5 and $5.3, O_{2}(\mathbb{R})=F \cup G$ is a group, so $A, B \in F \cup G$ implies $A B \in F \cup G$. Thus, $A B \in F$. The interested reader can explicitly verify that the product of two reflections has the matrix structure of a rotation.

5.5 Any rotation is the product of two reflections

Via 4.5 and 5.3 , the reader can verify $R_{\theta}=S_{0} S_{\star}$ when $\theta=\pi \bmod 2 \pi$ and $R_{\theta}=S_{0} S_{\tan (\theta / 2)}$ otherwise. Any rotation clockwise by θ can be achieved by reflecting over the axis at angle $\theta / 2$ counterclockwise from $y=0$, then reflecting over $y=0$. Together with 5.4 , the set of rotations equals the set of two reflections, i.e. $F=\{A B \mid A, B \in G\}$.

6 Exploring J

6.1 Rotations are in $K \cup M \cup N$

By 3.10, a rotation R_{θ} has unit-magnitude eigenvalues $e^{ \pm i \theta}=\cos \theta \pm i \sin \theta$, so $F \subseteq J$. I diagonalize R_{θ} over \mathbb{C} :

$$
\begin{align*}
P & =\left(\begin{array}{ll}
1 / \sqrt{2} & i / \sqrt{2} \\
i / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \tag{37}\\
P^{-1} & =\left(\begin{array}{cc}
1 / \sqrt{2} & -i / \sqrt{2} \\
-i / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \tag{38}\\
P^{-1} R_{\theta} & =\left(\begin{array}{cc}
1 / \sqrt{2} & -i / \sqrt{2} \\
-i / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
e^{i \theta} / \sqrt{2} & -i e^{i \theta} / \sqrt{2} \\
-i e^{-i \theta} / \sqrt{2} & e^{-i \theta} / \sqrt{2}
\end{array}\right) \tag{39}\\
P^{-1} R_{\theta} P & =\left(\begin{array}{cc}
e^{i \theta} / \sqrt{2} & -i e^{i \theta} / \sqrt{2} \\
-i e^{-i \theta} / \sqrt{2} & e^{-i \theta} / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{2} & i / \sqrt{2} \\
i / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right) \tag{40}
\end{align*}
$$

Thus, no matrix R_{θ} is in $D_{\mathbb{C}}$, so $F \subseteq Y$. Since $\operatorname{det}\left(R_{\theta}\right)=1, R_{\theta} \notin L$ by 4.2 , so $F \subseteq K \cup M \cup N$.

6.2 Reflections are in L

Any matrix $A \in G$ has determinant -1 , so it cannot have non-real eigenvalues (otherwise its determinant would be 1 by 3.4 and 3.7). Since there is no $\lambda \in \mathbb{R}$ such that $\lambda^{2}=-1, A$ must have two distinct eigenvalues, and therefore two distinct eigenvectors \hat{x}_{1}, \hat{x}_{2}. Since A is its own inverse:

$$
\begin{align*}
& \hat{x}_{1}=I \hat{x}_{1}=A^{2} \hat{x}_{1}=\lambda_{1}^{2} \hat{x}_{1} \Longrightarrow \lambda_{1}^{2}=1 \Longrightarrow\left|\lambda_{1}\right|=1 \tag{41}\\
& \hat{x}_{2}=I \hat{x}_{2}=A^{2} \hat{x}_{2}=\lambda_{2}^{2} \hat{x}_{2} \Longrightarrow \lambda_{2}^{2}=1 \Longrightarrow\left|\lambda_{2}\right|=1 \tag{42}
\end{align*}
$$

Since both eigenvalues are unit-magnitude, $A \in J$. By 3.5, matrices in $D_{\mathbb{C}}$ have repeated eigenvalues, so $A \notin D_{\mathbb{C}}$, therefore $A \in Y$. Since $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $\lambda_{1} \neq \lambda_{2}, A \in L$. So, all reflections $G \subseteq L$.

6.3 Orthogonal matrices are in Y

Since $F \subseteq K \cup M \cup N \subseteq Y$ (by 6.1) and $G \subseteq L \subseteq Y$ (by 6.2), $O_{2}(\mathbb{R})=F \cup G \subseteq Y$. All 2 x 2 orthogonal matrices are diagonalizable over \mathbb{C} and have unit-magnitude eigenvalues.

6.4 X is not a group

Although X is closed over inverses, X is not closed over matrix multiplication:

$$
\begin{align*}
\left(I+N_{l m}\right)\left(I+N_{n o}\right) & =I+N_{l m}+N_{n o}+N_{l m} N_{n o} \tag{43}\\
& =I+\left(\begin{array}{cc}
-l m & l^{2} \\
-m^{2} & l m
\end{array}\right)+\left(\begin{array}{cc}
-n o & n^{2} \\
-o^{2} & n o
\end{array}\right)+\left(\begin{array}{cc}
-l m & l^{2} \\
-m^{2} & l m
\end{array}\right)\left(\begin{array}{cc}
-n o & n^{2} \\
-o^{2} & n o
\end{array}\right) \tag{44}\\
& =I+\left(\begin{array}{cc}
-l m-n o & l^{2}+n^{2} \\
-m^{2}-o^{2} & l m+n o
\end{array}\right)+\left(\begin{array}{cc}
l m n o-l^{2} o^{2} & -l m n^{2}+l^{2} n o \\
m^{2} n o-l m o^{2} & -m^{2} n^{2}+l m n o
\end{array}\right) \tag{45}\\
& =I+\left(\begin{array}{cc}
-l m-n o+l m n o-l^{2} o^{2} & l^{2}+n^{2}-l m n^{2}+l^{2} n o \\
-m^{2}-o^{2}+m^{2} n o-l m o^{2} & l m+n o-m^{2} n^{2}+l m n o
\end{array}\right) \tag{46}
\end{align*}
$$

Comparing the diagonal terms of the nilpotent matrix, $l^{2} o^{2}+m^{2} n^{2}-2 l m n o=(l o-m n)^{2} \notin\{0,4\}$ in general, so this matrix product is not always in X.

6.5 Every matrix in J has an inverse in J

For $A \in X, A= \pm I \pm N_{l m}$, and $A^{-1}= \pm I \mp N_{l m} \in X$. For $A \in K \cup L \cup M, A$ is its own inverse. For $A \in N$, $A=P\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right) P^{-1}$ for some $P \in G L_{2}(\mathbb{C})$ and $\theta \in \mathbb{R}, \theta \neq 0 \bmod \pi$, so $A^{-1}=P\left(\begin{array}{cc}e^{-i \theta} & 0 \\ 0 & e^{i \theta}\end{array}\right) P^{-1} \in N$. Since $J=K \cup L \cup M \cup N \cup X$, every $A \in J$ also has $A^{-1} \in J$.

Figure 1: This image relates partitions of J with other subsets of $G L_{2}(\mathbb{R})$: orthogonal matrices $O_{2}(\mathbb{R})$, rotations F and reflections G, determinant-1 matrices $S L_{2}(\mathbb{R})$, self-inverses, and defective matrices $D_{\mathbb{C}} \subset D_{\mathbb{R}}$.

6.6 $K \cup L \cup M$ is the set of all self-inverses

Consider a matrix in $G L_{2}(\mathbb{R})$ with $A=A^{-1}$. Then, since $1=\operatorname{det}(I)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}\left(A^{2}\right)=\operatorname{det}^{2}(A)$, the determinant of A is ± 1. I constrain A by inspecting its matrix structure:

$$
\begin{array}{cc}
\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=A^{-1}=A=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) & \{a, b, c, d\} \subset \mathbb{R} \\
\operatorname{det}(A)=1 \Longrightarrow a=d, b=-b, c=-c \Longrightarrow A=a I & a^{2}=1 \\
\operatorname{det}(A)=-1 \Longrightarrow a=-d \Longrightarrow A=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) & b c=1-a^{2} \tag{49}
\end{array}
$$

When $\operatorname{det}(A)=1, A= \pm I$, the two matrices in $K \cup M$. When $\operatorname{det}(A)=-1$, A has the same constraints as described in 4.2 for a matrix in L. The reader can verify $A \in L$ with an argument similar to 6.2 . So, $A \in K \cup L \cup M$. Every matrix in $K \cup L \cup M$ is self-inverse, so $K \cup L \cup M$ is exactly the set of self-inverse matrices in $G L_{2}(\mathbb{R})$.

$7 \quad$ Figure

Figure 1 summarizes many results in this document. It was created with an online diagram maker tool.

8 Questions to explore

8.1 What is the structure of a matrix in N ? Or generally in $D_{\mathbb{R}}-D_{\mathbb{C}}$?

Matrices $A \in N$ have non-real eigenvalues, but are not defective over \mathbb{C}. I think the best approach is to expand the real Jordan form for complex eigenvalues, and inspect the real and imaginary parts.

8.2 Is $K \cup M \cup N$ a group?

I think there are matrices in N that are not rotations (as there are matrices in G that are not reflections). I'm not sure $K \cup M \cup N$ is closed over matrix multiplication. If Y is a group, this is the subgroup of determinant-1 matrices in Y.

8.3 Is J a group?

Does the product of two matrices with unit-magnitude eigenvalues have unit-magnitude eigenvalues? I wonder if it's possible to bound the eigenvalues of a matrix product $A B$ given $A, B \in J$. The determinant of $A B$ is ± 1, but many matrices, such as $A=\left(\begin{array}{cc}2 & 0 \\ 0 & \pm 1 / 2\end{array}\right)$, satisfy $\operatorname{det}(A)= \pm 1$ without unit-magnitude eigenvalues.

9 Acknowledgements

Thanks to Rowan Cassius, Todd Chaney, Darien Parris, and Zachariah Rodriquez for wondering along with me.

