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1 Context

These questions arose from a late-night study session for Math 113, Cal’s abstract algebra course for undergraduates.

2 Definitions

2.1 Invertible

This is often denoted as the general linear group, specifically GL2(R), which is a group over matrix multiplication.

2.2 Determinant-1

This is often denoted as the special linear group, specifically SL2(R). This is a subgroup of GL2(R), since it is

closed under inverse (det(A−1) = 1
det(A) = 1) and group operation (det(AB) = det(A)det(B) = 1). Inverses exist

because the determinant is nonzero.

2.3 Rotations

Any rotation can be defined as Rθ for some θ ∈ R (θ > 0 rotates clockwise):

Rθ =

(
cos θ sin θ

− sin θ cos θ

)
(1)

Notice that Rθ = Rθ+2π, and all rotations have determinant 1. Let’s call the set of all rotations F :

F = {Rθ | θ ∈ R} = {Rθ | θ ∈ R, 0 ≤ θ < 2π} (2)

2.4 Reflections

Any reflection S mirrors points across some line y = kx (for k ∈ R) or x = 0. The reader can verify Sk by working

out how a point

(
a

b

)
mirrors to Sk

(
a

b

)
.

Sk =
1

k2 + 1

(
1− k2 2k

2k k2 − 1

)
(3)

S? = lim
k→±∞

Sk =

(
−1 0

0 1

)
(4)

Notice that all reflections have det(S) = −1. Let’s call the set of all reflections G:

G = {S?} ∪ {Sk | k ∈ R} (5)
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2.5 Orthogonal (transpose is inverse)

This is often denoted as the orthogonal group, specifically O2(R). An orthogonal matrix A ∈ O2(R) satisfies

ATA = AAT = I, i.e. its transpose is its inverse. This is a subgroup of GL2(R), since it is closed under inverse

((AT )−1 = A = (AT )T ) and group operation ((AB)T (AB) = BTATAB = I and (AB)(AB)T = ABBTAT = I).

2.6 Defective

Not all matrices are diagonalizable, meaning for a matrix A, there is no matrix P ∈ GL2(S) where P−1AP is

diagonal. These matrices are called defective in S, where S is some field. Define DS as the set of these defective

matrices in GL2(R). Notice that DC ⊆ DR, since in DC, P is allowed to have complex-valued entries.

2.7 Unit-magnitude eigenvalues

Define J as the set of all matrices in GL2(R) with both eigenvalues having magnitude 1. Matrices in this set may

have complex eigenvalues, but always have a real determinant ±1.

2.8 Partitions of J

Let’s split up J into different sets:

X = {A | A ∈ J ∩DC} (6)

Y = {A | A ∈ J,A /∈ DC} (7)

K = {A | A ∈ Y, λ1 = λ2 = 1} (8)

L = {A | A ∈ Y, λ1 = −λ2 = 1} (9)

M = {A | A ∈ Y, λ1 = λ2 = −1} (10)

N = {A | A ∈ Y,A /∈ K ∪ L ∪M} (11)

(12)

Notice that X and Y partition J , and K,L,M,N partition Y .

3 General insights

3.1 Rotations form a group

The reader can verify that Rθ1Rθ2 = Rθ1+θ2 . So, F is closed under group operation and inverse (as R−1θ = R−θ).

3.2 Reflections do not form a group

The reader can verify that reflections are self-inverses. However, the product of two reflections has determinant

(−1)(−1) = 1, so it is not a reflection. So, G is not closed under the group operation.

3.3 Orthogonal matrices have determinant ±1

Consider an orthogonal matrix A =

(
a b

c d

)
for {a, b, c, d} ⊂ R. Its transpose is defined AT =

(
a c

b d

)
. Notice

that det(A) = ad− bc = det(AT ), so 1 = det(I) = det(AAT ) = det(A)det(AT ) = det(A)2. Since the determinant of

a real matrix is real, det(A) = ±1.

3.4 Non-real eigenvalues must be different

Suppose λ1 = a + bi and λ2 = c + di with a, b ∈ R and b 6= 0. If the characteristic equation for a matrix is

satisfied (p(λ) = 0), then p∗(λ∗) = 0∗ = 0. Since p is a polynomial with real coefficients, p = p∗, so p(λ∗) = 0. So,

λ2 = λ∗1 = a− bi. The eigenvalues differ because b is nonzero (i.e. λ1 /∈ R).
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3.5 Matrices in DC have λ1 = λ2 ∈ R
In order to be defective over C, an eigenvalue’s geometric multiplicity must be strictly less than its algebraic

multiplicity. This means some eigenvalue has algebraic multiplicity at least 2. For this to happen in a 2x2 matrix,

there can be only one eigenvalue. By 3.4, this eigenvalue must be real.

3.6 Matrices in X have determinant 1

Since any matrix A ∈ X is defective over C, it has one repeated real eigenvalue. Since A ∈ J , this eigenvalue must

be −1 or 1, so det(A) = (−1)2 = 12 = 1.

3.7 Matrices in N have determinant 1

Consider a matrix A ∈ N . It has at least one unit-magnitude eigenvalue λ1 not equal to 1 or -1; so, λ1 is non-real.

By 3.4, λ2 = λ∗1, so det(A) = λ1λ2 = |λ1|2 = 1.

3.8 K is the trivial group

A diagonalizable matrix can be written as PDP−1, where D =

(
λ1 0

0 λ2

)
. A matrix in K can be written as

PIP−1 = I, so K contains only the identity matrix, the ”zero” element of the group.

3.9 K ∪M is a two-element group

Similar to 3.8, a matrix in M can be written as P (−I)P−1 = −I, so M contains only the additive inverse of the

identity matrix. Notice that det(−I) = 1. Together, I and −I form a two-element subgroup of SL2(R), since both

elements are self-inverses and (−I)(I) = −I = (I)(−I).

3.10 Most rotations are in DR and N ⊆ DR

Consider a matrix Rθ. The characteristic equation det(Rθ − λI) = 0 implies the following:

λ2 − 2λ cos θ + 1 = 0 (13)

λ =
2 cos θ ±

√
4 cos2 θ − 4

2
= cos θ ± i sin θ = e±iθ (14)

When θ 6= 0 mod π, Rθ has non-real eigenvalues. These Rθ are defective over R; there is no P ∈ GL2(R) to make

P−1RθP contain complex entries. Similarly, any matrix in N has non-real eigenvalues by 3.7, so N ⊆ DR.

4 Matrix structure

4.1 Inverse of 2x2 complex matrix

Consider an invertible matrix A =

(
a b

c d

)
for {a, b, c, d} ⊂ C. Then, its inverse is A−1 =

1

ad− bc

(
d −b
−c a

)
:

AA−1 =

(
a b

c d

)
1

ad− bc

(
d −b
−c a

)
=

1

ad− bc

(
ad− bc 0

0 −bc+ ad

)
= I (15)

A−1A =
1

ad− bc

(
d −b
−c a

)(
a b

c d

)
=

1

ad− bc

(
ad− bc 0

0 −bc+ ad

)
= I (16)

This inverse is unique because GL2(C) is a group (therefore, associative):

BLA = I =⇒ BL = BL(AA−1) = (BLA)A−1 = A−1 (17)

ABR = I =⇒ BR = (A−1A)BR = A−1(ABR) = A−1 (18)

3



4.2 Structure of matrices in L

Consider a matrix A ∈ L where A =

(
a b

c d

)
for {a, b, c, d} ⊂ R. Since the determinant is the product of the

eigenvalues, A has determinant -1. I use the characteristic equation det(A− λI) = 0 to constrain A:

(a− λ)(d− λ)− bc = 0 (19)

λ2 − (a+ d)λ+ det(A) = 0 det(A) = ad− bc (20)

(a+ d)λ = 0 (−1)2 = 12 = 1 = −det(A) (21)

a = −d =⇒ bc = 1− a2 λ 6= 0, ad− bc = −1 (22)

So, I can represent A in one of two forms:

L =

{(
a b

1−a2
b −a

)
| a ∈ R, b ∈ R− {0}

}
∪
{(
±1 0

c ∓1

)
| c ∈ R

}
(23)

The second form may seem defective, but the reader can verify that its eigenvectors are linearly independent. The

reader can also verify that A2 = I for each form; thus, all A ∈ L are self-inverses.

4.3 Structure of matrices in DC

Any matrix in DC has a matrix P ∈ GL2(C) such that P−1XP =

(
λ 1

0 λ

)
, the 2-dimensional Jordan block. I find

the form of A ∈ DC explicitly:

A =
1

ad− bc

(
a b

c d

)(
λ 1

0 λ

)(
d −b
−c a

)
{a, b, c, d} ⊂ C, ad− bc 6= 0 (24)

= λI +
1

ad− bc

(
a b

c d

)(
0 1

0 0

)(
d −b
−c a

)
(25)

= λI + k

(
−ac a2

−c2 ac

)
{a, k, c} ⊂ C, |a|+ |c| 6= 0, k 6= 0 (26)

= λI +

(
−lm l2

−m2 lm

)
l,m ∈ C, |l|+ |m| 6= 0 (27)

4.4 Structure of matrices in X

Since X ⊆ DC, any matrix has the form listed in 4.3. But matrices in X have real eigenvalues (precisely, λ = ±1

by 3.6), so the real Jordan form matches the complex Jordan form. In other words, P ∈ GL2(R):

A = ±I + k

(
−ac a2

−c2 ac

)
{a, k, c} ⊂ R, |a|+ |c| 6= 0, k 6= 0 (28)

= ±I ±
(
−lm l2

−m2 lm

)
l,m ∈ R, |l|+ |m| 6= 0 (29)

Since A = ±I + Nlm, where Nlm is nilpotent, A−1 = ±I − Nlm, as (±I − Nlm)(±I + Nlm) = I − N2
lm = I and

(±I +Nlm)(±I −Nlm) = I −N2
lm = I.

4.5 Structure of matrices in O2(R)
Consider a matrix A ∈ O2(R). By 3.3, det(A) = ±1. I use the equation AT = A−1 to constrain A:(

a c

b d

)
= AT = A−1 =

1

det(A)

(
d −b
−c a

)
{a, b, c, d} ⊂ R (30)
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If det(A) = 1, then a = d and b = −c = ±
√

1− a2. Otherwise, det(A) = −1, so a = −d and b = c = ±
√

1− a2.

Thus, any orthogonal matrix A has the following form:

O2(R) =

{(
1 0

0 ±1

)(
a ±

√
1− a2

∓
√

1− a2 a

)
| a ∈ R, |a| ≤ 1

}
(31)

Without loss of generality, I set a = cos θ for θ ∈ R. Then, an orthogonal matrix looks more familiar:

O2(R) =

{(
1 0

0 ±1

)(
cos θ ± sin θ

∓ sin θ cos θ

)
| θ ∈ R

}
=

{(
1 0

0 ±1

)(
cos θ sin θ

− sin θ cos θ

)
| θ ∈ R

}
(32)

Some plus-minus signs are redundant because cos−θ = cos θ and sin−θ = − sin θ.

5 Finding all orthogonal matrices

5.1 Rotations are special orthogonal matrices

By 4.5, matrices in O2(R)∩ SL2(R) have a specific structure; namely,

(
cos θ sin θ

− sin θ cos θ

)
= Rθ for some θ ∈ R. The

set of rotations F is exactly the set of determinant-1 orthogonal matrices! F is also known as SO2(R), the special

orthogonal group of real 2x2 matrices.

5.2 Reflections are orthogonal matrices

Any reflection matrix A ∈ G is symmetric and its own inverse. So, AT = A = A−1, thus A ∈ O2(R).

5.3 Orthogonal matrices are either reflections or rotations

I first transform the reflection Sk into polar coordinates. If k = y/x = arctanφ:

cos 2φ = cos2 φ− sin2 φ =
x2 − y2

x2 + y2
=

1− k2

1 + k2
(33)

sin 2φ = 2 sinφ cosφ =
2xy

x2 + y2
=

2k

1 + k2
(34)

Then, Sk can be defined by the angle φ between the line y = 0 and the reflection axis y = kx:

Sk =
1

k2 + 1

(
1− k2 2k

2k k2 − 1

)
=

(
cos 2φ sin 2φ

sin 2φ − cos 2φ

)
φ = arctan k (35)

S? also has this form with φ = π/2. So, any matrix in G is described by φ (plus any integer multiple of π):

G =

{(
cos 2φ sin 2φ

sin 2φ − cos 2φ

)
| φ ∈ R,−π

2
< φ ≤ π

2

}
=

{(
cos 2φ sin 2φ

sin 2φ − cos 2φ

)
| φ ∈ R

}
(36)

By 4.5, this is exactly the form of any orthogonal matrix with determinant -1 (where θ = 2φ). Thus, G = {A|A ∈
O2(R), A /∈ SL2(R)}, and F ∪G = O2(R).

5.4 Two reflections make a rotation

Consider A,B ∈ G. By 3.2, AB /∈ G. By 2.5 and 5.3, O2(R) = F ∪ G is a group, so A,B ∈ F ∪ G implies

AB ∈ F ∪ G. Thus, AB ∈ F . The interested reader can explicitly verify that the product of two reflections has

the matrix structure of a rotation.

5.5 Any rotation is the product of two reflections

Via 4.5 and 5.3, the reader can verify Rθ = S0S? when θ = π mod 2π and Rθ = S0Stan (θ/2) otherwise. Any rotation

clockwise by θ can be achieved by reflecting over the axis at angle θ/2 counterclockwise from y = 0, then reflecting

over y = 0. Together with 5.4, the set of rotations equals the set of two reflections, i.e. F = {AB | A,B ∈ G}.

5

https://en.wikipedia.org/wiki/Special_orthogonal_group
https://en.wikipedia.org/wiki/Special_orthogonal_group


6 Exploring J

6.1 Rotations are in K ∪M ∪N
By 3.10, a rotation Rθ has unit-magnitude eigenvalues e±iθ = cos θ ± i sin θ, so F ⊆ J . I diagonalize Rθ over C:

P =

(
1/
√

2 i/
√

2

i/
√

2 1/
√

2

)
(37)

P−1 =

(
1/
√

2 −i/
√

2

−i/
√

2 1/
√

2

)
(38)

P−1Rθ =

(
1/
√

2 −i/
√

2

−i/
√

2 1/
√

2

)(
cos θ sin θ

− sin θ cos θ

)
=

(
eiθ/
√

2 −ieiθ/
√

2

−ie−iθ/
√

2 e−iθ/
√

2

)
(39)

P−1RθP =

(
eiθ/
√

2 −ieiθ/
√

2

−ie−iθ/
√

2 e−iθ/
√

2

)(
1/
√

2 i/
√

2

i/
√

2 1/
√

2

)
=

(
eiθ 0

0 e−iθ

)
(40)

Thus, no matrix Rθ is in DC, so F ⊆ Y . Since det(Rθ) = 1, Rθ /∈ L by 4.2, so F ⊆ K ∪M ∪N .

6.2 Reflections are in L

Any matrix A ∈ G has determinant −1, so it cannot have non-real eigenvalues (otherwise its determinant would be

1 by 3.4 and 3.7). Since there is no λ ∈ R such that λ2 = −1, A must have two distinct eigenvalues, and therefore

two distinct eigenvectors x̂1, x̂2. Since A is its own inverse:

x̂1 = Ix̂1 = A2x̂1 = λ21x̂1 =⇒ λ21 = 1 =⇒ |λ1| = 1 (41)

x̂2 = Ix̂2 = A2x̂2 = λ22x̂2 =⇒ λ22 = 1 =⇒ |λ2| = 1 (42)

Since both eigenvalues are unit-magnitude, A ∈ J . By 3.5, matrices in DC have repeated eigenvalues, so A /∈ DC,

therefore A ∈ Y . Since λ1, λ2 ∈ R and λ1 6= λ2, A ∈ L. So, all reflections G ⊆ L.

6.3 Orthogonal matrices are in Y

Since F ⊆ K ∪M ∪N ⊆ Y (by 6.1) and G ⊆ L ⊆ Y (by 6.2), O2(R) = F ∪G ⊆ Y . All 2x2 orthogonal matrices

are diagonalizable over C and have unit-magnitude eigenvalues.

6.4 X is not a group

Although X is closed over inverses, X is not closed over matrix multiplication:

(I +Nlm)(I +Nno) = I +Nlm +Nno +NlmNno (43)

= I +

(
−lm l2

−m2 lm

)
+

(
−no n2

−o2 no

)
+

(
−lm l2

−m2 lm

)(
−no n2

−o2 no

)
(44)

= I +

(
−lm− no l2 + n2

−m2 − o2 lm+ no

)
+

(
lmno− l2o2 −lmn2 + l2no

m2no− lmo2 −m2n2 + lmno

)
(45)

= I +

(
−lm− no+ lmno− l2o2 l2 + n2 − lmn2 + l2no

−m2 − o2 +m2no− lmo2 lm+ no−m2n2 + lmno

)
(46)

Comparing the diagonal terms of the nilpotent matrix, l2o2 + m2n2 − 2lmno = (lo−mn)2 /∈ {0, 4} in general, so

this matrix product is not always in X.

6.5 Every matrix in J has an inverse in J

For A ∈ X, A = ±I ± Nlm, and A−1 = ±I ∓ Nlm ∈ X. For A ∈ K ∪ L ∪M , A is its own inverse. For A ∈ N ,

A = P

(
eiθ 0

0 e−iθ

)
P−1 for some P ∈ GL2(C) and θ ∈ R, θ 6= 0 mod π, so A−1 = P

(
e−iθ 0

0 eiθ

)
P−1 ∈ N . Since

J = K ∪ L ∪M ∪N ∪X, every A ∈ J also has A−1 ∈ J .
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Figure 1: This image relates partitions of J with other subsets of GL2(R): orthogonal matrices O2(R), rotations

F and reflections G, determinant-1 matrices SL2(R), self-inverses, and defective matrices DC ⊂ DR.

6.6 K ∪ L ∪M is the set of all self-inverses

Consider a matrix in GL2(R) with A = A−1. Then, since 1 = det(I) = det(AA−1) = det(A2) = det2(A), the

determinant of A is ±1. I constrain A by inspecting its matrix structure:

1

ad− bc

(
d −b
−c a

)
= A−1 = A =

(
a b

c d

)
{a, b, c, d} ⊂ R (47)

det(A) = 1 =⇒ a = d, b = −b, c = −c =⇒ A = aI a2 = 1 (48)

det(A) = −1 =⇒ a = −d =⇒ A =

(
a b

c −a

)
bc = 1− a2 (49)

When det(A) = 1, A = ±I, the two matrices in K∪M . When det(A) = −1, A has the same constraints as described

in 4.2 for a matrix in L. The reader can verify A ∈ L with an argument similar to 6.2. So, A ∈ K ∪L ∪M . Every

matrix in K ∪ L ∪M is self-inverse, so K ∪ L ∪M is exactly the set of self-inverse matrices in GL2(R).

7 Figure

Figure 1 summarizes many results in this document. It was created with an online diagram maker tool.

8 Questions to explore

8.1 What is the structure of a matrix in N? Or generally in DR −DC?

Matrices A ∈ N have non-real eigenvalues, but are not defective over C. I think the best approach is to expand

the real Jordan form for complex eigenvalues, and inspect the real and imaginary parts.
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8.2 Is K ∪M ∪N a group?

I think there are matrices in N that are not rotations (as there are matrices in G that are not reflections). I’m

not sure K ∪M ∪ N is closed over matrix multiplication. If Y is a group, this is the subgroup of determinant-1

matrices in Y .

8.3 Is J a group?

Does the product of two matrices with unit-magnitude eigenvalues have unit-magnitude eigenvalues? I wonder if

it’s possible to bound the eigenvalues of a matrix product AB given A,B ∈ J . The determinant of AB is ±1, but

many matrices, such as A =

(
2 0

0 ±1/2

)
, satisfy det(A) = ±1 without unit-magnitude eigenvalues.
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