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Here, I motivate control-theoretic system identification techniques for 3rd order spectroscopy. I begin by deriving
a recursive perturbative von Neumann equation, and constructing an extended Liouville space to define a bilinear
evolution equation. Since the bilinear terms are short spectral-interaction pulses, I build on control-theoretic work
by Juang and others [10, 11] to construct a linear equation for the third-order polarization signal. Thus, the classic
inversion problem of determining Hamiltonian parameters given polarization output data is soluble. I show how to
efficiently solve these equations in the forward direction and inversion direction for a dimer system.

1 Introduction

Many molecular experiments involve a Hamiltonian interaction term of the system with some light source, as in
constructing quantum bits [17] and in understanding photosynthesis [8]. Methods to determine these Hamiltonian
parameters are essential to characterizing each complex molecular system. Typically nicknamed the “inversion
problem”, the process of accurately estimating Hamiltonian parameters and transition dipole moments can be
deceptively difficult, with few successful multiparameter approaches [5] [17]. Some of these measurements are
conducted via nonlinear spectroscopy measurements [7]. In such measurements, one can directly measure the
higher-order perturbative terms.

The most common method to estimate light-matter interaction dynamics is with a third-order polarization exper-
iment [12]. In this four-wave mixing process, three successive pulses of light (at time t0, t1, t2) are shined on a
molecular system, causing some excitations. A final light-pulse (at time t3) relaxes the molecular system, produc-
ing a light-pulse of some amplitude, dependent on the quantum state at that time. Varying the delays between
successive light pulses (t1 − t0, t2 − t1, t3 − t2) changes the final quantum state (and thereby the amplitude of the
emission pulse).

Generally, a table of data is produced for each system, discretizing over each time variable. This information is
presented by conducting a Fourier transform on the first and last pulse delays (t1 − t0, t3 − t2) and constructing a
2D plot of the real part of the signal (with the axes as w1 and w3) [12]. Now, the polarization is a function of the
middle pulse delay (t2 − t1), generating a 2D frequency-space plot for each choice of t2 − t1. Each data point is
measured separately; that is, choosing (t1 − t0, t2 − t1, t3 − t2) will produce a complex-valued polarization scalar.
A precise frequency-space plot requires many of these measurements.

One can qualitatively interpret from peaks and patterns in the frequency plots. Instead, I derive a new approach that
borrows terminology from control theory, a formal method to characterize systems from input-output measurements
[10]. The goal is to derive and solve a simple set of equations that can be inverted efficiently and quantitatively.
This novel approach quickly generates a large amount of polarization data by simulating the forward evolution
of the quantum state. Parameter estimation amounts to inverting these equations. Although the problem is
non-convex, the inversion can be done with a variety of optimization techniques, including gradient descent and
Alternating Direction Method of Multipliers (ADMM) [3] [14]. In this work, I show that physical parameters can be
computationally determined, instead of visually estimated, through standard nonlinear spectroscopy experiments.
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2 Mathematics

2.1 Recursive Perturbative Equation of Motion

The von Neumann equation [4] describes time evolution of a density matrix ρ̂ =
∑
i pi |ψi〉 〈ψi|, where {|ψi〉} spans

the Hilbert space, as

∂ρ̂

∂t
= − i

~
[Ĥ(t), ρ̂(t)] . (1)

Integrating, one finds

ρ̂(t) = ρ̂(0) +
−i
~

∫ t

0

dt1[Ĥ(t1), ρ̂(t1)] . (2)

This can be solved by repeatedly inserting the above equation into itself, as

ρ̂(t) = ρ̂(0) +
−i
~

∫ t

0

dt1[Ĥ(t1), ρ̂(0)] +

(
−i
~

)2 ∫ t

0

dt1

∫ t1

0

dt2[Ĥ(t1), [Ĥ(t2), ρ̂(t2)]] . (3)

And so on:

ρ̂(t) = ρ̂(0) +

∞∑
n=1

(
−i
~

)n ∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

dtn[Ĥ(t1), [Ĥ(t2), ...[Ĥ(tn), ρ̂(tn)]...]] . (4)

This series is traditionally written as

ρ̂(t) =

∞∑
n=0

ρ̂n(t) = ρ̂(0) +

∞∑
n=1

ρ̂n(t) , (5)

where ρ̂0(t) = ρ̂(0) and ρ̂n(t) =
∫ t

0
dt1...

∫ tn−1

0
dtn[Ĥ(t1), ...[Ĥ(tn), ρ̂(tn)]...] .

Since the commutator is linear in each argument, the expression ρn(t) can be written recursively, as

ρ̂n(t) =
−i
~

∫ t

0

dτ [Ĥ(τ), ρ̂n−1(τ)] . (6)

Differentiating both sides, I derive an recursive equation of motion for the nth order perturbation:

∂ρ̂n(t)

∂t
=
−i
~

[Ĥ(t), ρ̂n−1(t)] . (7)

2.2 Third-Order Polarization in an Extended Liouville Space

2.2.1 Hilbert, Liouville, Extended Liouville Space

If there are n energy levels in a quantum system, the Hilbert space Hn is an n−dimensional vector space that can be
used to describe the quantum state and its evolution. In general, a density operator (or density matrix) describes
the quantum state, denoted by ρ̂. This is a linear operator in the Hilbert space, i.e. ρ̂ ∈ L(Hn). The Hamiltonian
Ĥ ∈ L(Hn) is an operator that evolves the quantum state as in equation 1. Often, when the Hamiltonian contains
a small interaction term, ρ̂ can be perturbatively expanded as in equation 5. So, ρ̂i ∈ L(Hn) for each perturbative
term i ≥ 0. Other Hilbert-space operators that appear later include Û (the propagator) and µ̂ (the transition
dipole matrix).

Any Hilbert space can be converted into Liouville space Ln2 . This n2−dimensional vector space “vectorizes” each
Hilbert space operator by stacking each entry of the n × n matrix representation into one n2 × 1 vector. So,
|ρ̂〉 , |ρ̂i〉 , |µ̂〉 are all vectors in Liouville space. One can create operators in this space, termed “superoperators”,
that evolve Liouville vectors. This can be a useful tool to linearize certain expressions. As shown in [1], the
expression Âρ̂B̂† in Hilbert space is (Â ⊗ B̂) |ρ̂〉 in Liouville space, where ⊗ denotes the tensor product. The
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commutator [Â, ρ̂] in Hilbert space is denoted
ˆ̂
A |ρ̂〉 in Liouville space, where

ˆ̂
A = Â⊗1n−1n⊗ Â. (When Â is the

Hamiltonian Ĥ, this is called the “Liouvillian”.) Any trace operation tr(Âρ̂) in Hilbert space is 〈Â|ρ̂〉 in Liouville
space [1].

It is useful to define a larger vector space S4n2 (let’s call it “extended Liouville space”) to encapsulate the evolution
of multiple perturbative components of ρ̂ at once. In particular, this 4n2−dimensional space is the concatenation
of four Liouville spaces; that is, S4n2 = Ln2 ⊕Ln2 ⊕Ln2 ⊕Ln2 where ⊕ is the direct sum. I will use the state vector
x̃ ∈ S4n2 , defined as

x̃(t) =


|ρ̂0(t)〉
|ρ̂1(t)〉
|ρ̂2(t)〉
|ρ̂3(t)〉

 . (8)

Vectors in the extended Liouville space S4n2 will be in bold-face, like x̃. There are operators of the extended
Liouville space (let’s call them “extended superoperators”); often I write them using the letters Ã, Ñ , Q̃.

2.2.2 Nonlinear Spectroscopy in Extended Liouville Space

In nonlinear spectroscopy, polarization is related to the perturbation of the density matrix as follows [12]:

P (t) =

∞∑
n=0

Pn(t) (9)

Pn(t) = 〈µ̂ρ̂n(t)〉 = tr(µ̂ρ̂n(t)) (10)

The goal is to find a space where there is a simple relationship between P3(t) and ρ̂n(t).

Consider the state vector x̃ ∈ S4n2 defined in equation 8. I encode the recursive perturbative evolution equations
(equation 5) as an extended superoperator. Explicitly, x̃(t) is governed by

∂x̃(t)

∂t
=


0 0 0 0

ˆ̂
M(t) 0 0 0

0
ˆ̂
M(t) 0 0

0 0
ˆ̂
M(t) 0

 x̃(t) , (11)

where x̃ =
(
|ρ̂(0)〉 0 0 0

)>
and

ˆ̂
M(t) ∈ L(Ln2) is equal to −i~

ˆ̂
H(t), where

ˆ̂
H(t) is the Liouvillian. Recall that

the Liouvillian
ˆ̂
H(t)· corresponds to the commutator [Ĥ(t), ·] in Hilbert space.

Similarly, the third-order polarization P3(t) is the inner product of x̃ with some vector C̃ ∈ S4n2 . Thus, C̃ is

C̃ =


0
0
0
|µ̂〉

 , (12)

where |µ̂〉 ∈ Ln2 is the transition dipole matrix from the Hilbert space, “vectorized” into Liouville space. In short,

P3(t) = C̃†x̃ = 〈µ̂|ρ̂3(t)〉 = tr(µ̂ρ̂3(t)) . (13)

Equation 11 is a first-order linear differential equation describing the evolution of x̃ (and thus ρ̂n(t)). Equation 13
is a measurement protocol to construct P3(t) from x̃.

There is a natural progression from operators to superoperators to extended superoperators, where operator in
Hilbert space vectorize in Liouville space (i.e. ρ̂ becomes |ρ̂〉, and four vectors in Liouville space concatenate into
one vector in extended Liouville space. I henceforth drop extraneous symbols from vectors and matrices. Vectors
in extended Liouville space will remain in bold-face.
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2.3 The Interaction Frame

2.3.1 Converting to the Interaction Frame

In nonlinear spectroscopy, our Hamiltonian looks like the following:

H(t) = H0 + ~E(t) · ~µ (14)

= HD +Hδ + ~E(t) · ~µ (15)

Here, H0 is the electric-field independent component, consisting of HD (a diagonal matrix) and Hδ (a general
matrix). I shift into the interaction frame (also referred to as interaction picture or Dirac picture) to simplify:

U = e
i
~HDt (16)

ρI(t) = Uρ(t)U† = U

( ∞∑
i=0

ρi(t)

)
U† (17)

ρIn(t) = Uρn(t)U† (∀n ≥ 0) (18)

Note that U is unitary, so its inverse U−1 is its conjugate transpose U†. This operator is responsible for converting
vectors and operators in Hilbert space into the interaction frame. The inverse process is straightforward:

ρ(t) = U†ρI(t)U . (19)

As mentioned in section 2.2, any expression UρU† in Hilbert space is (U ⊗ U) |ρ〉 in Liouville space [1]. The
superoperator (U ⊗ U) converts the density matrix to the interaction frame in Liouville space.

|ρI(t)〉 = (U ⊗ U) |ρ(t)〉 (20)

|ρIn(t)〉 = (U ⊗ U) |ρn(t)〉 (∀n ≥ 0) (21)

The state vector x from extended Liouville space transforms the same way as ρ(t). I define the extended superop-
erator QD(t) as

QD(t) = 14 ⊗ (U ⊗ U) =


U ⊗ U 0 0 0

0 U ⊗ U 0 0
0 0 U ⊗ U 0
0 0 0 U ⊗ U

 . (22)

Note that QD(t) converts x into the interaction frame:

xI(t) = QD(t)x(t) . (23)

Since U ⊗ U and QD(t) are also unitary, it’s easy to convert out of the interaction frame:

|ρ(t)〉 = (U ⊗ U)† |ρI(t)〉 = (U† ⊗ U†) |ρI(t)〉 (24)

x(t) = Q†D(t)xI(t) (25)

Each of U , U ⊗ U , and QD(t) are all diagonal, since they are constructed from a diagonal HD.

2.3.2 Evolution in the Interaction Frame

The density operator evolves slightly differently in this frame, since ∂
∂tρ

I(t) = U̇ρ(t)U† +U ˙ρ(t)U† +Uρ(t)U̇†. The
first and last terms are easy to solve, since U−1 = U† is unitary:

i~
∂

∂t
U = i~U̇ = i~

i

~
HDU = −UHD (26)

i~
(
U̇ρ(t)U† + Uρ(t)U̇†

)
= UHDρ(t)U† − Uρ(t)HDU

† = −UHDU
†Uρ(t)U† + Uρ(t)U†HDU

† (27)

= −[UHDU
†, Uρ(t)U†] = −[UHDU

†, ρI(t)] (28)
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The middle term is also simple, by the von Neumann equation (equation 1):

i~
(
U
∂ρ(t)

∂t
U†
)

= i~
(
U ˙ρ(t)U†

)
= i~

(
−i
~
U [H(t), ρ(t)]U†

)
= U (H(t)ρ(t)− ρ(t)H(t))U† (29)

= UH(t)U†Uρ(t)U† − Uρ(t)U†UH(t)U† = [UH(t)U†, Uρ(t)U†] = [UH(t)U†, ρI(t)] (30)

Thus, putting the terms together, I derive the interaction-frame evolution equation:

i~
∂ρI(t)

∂t
= −[UHDU

†, ρI(t)] + [UH(t)U†, ρI(t)] = [U
(
Hδ + ~E(t) · ~µ

)
U†, ρI(t)] (31)

∂ρI(t)

∂t
= − i

~
[HI(t), ρI(t)] (32)

Here, I have implicitly defined the interaction Hamiltonian HI(t) = U
(
Hδ + ~E(t) · ~µ

)
U†. Using the results from

section 2.1, I conclude

∂ρIn(t)

∂t
= − i

~
[HI(t), ρIn−1(t)] . (33)

I will now investigate the effect of the rotating wave approximation on a dimer system.

2.4 The Rotating Wave Approximation for a Dimer System

The rotating wave approximation neglects quickly-oscillating terms when a perturbation is small compared to the
free evolution of a quantum [16]. This can simplify expressions and will make our derivation easier. It consists
of switching into the interaction frame (also known as the rotating frame or Dirac picture) and neglecting any
counter-resonant terms.

A dimer system has two sites that can be excited, with energy levels Ea and Eb. I look at a four-dimensional
Hilbert space in this site basis. The associated basis vectors are [|gg〉 , |eg〉 , |ge〉 , |ee〉], where |g〉 is the ground state
and |e〉 is the excited state. Then,

H0 = HD +Hδ (34)

=


0 0 0 0
0 E0 0 0
0 0 E0 0
0 0 0 2E0

+


0 0 0 0
0 ∆E J 0
0 J −∆E 0
0 0 0 0

 , (35)

where E0 = ~w0 = Ea+Eb
2 is the average energy, ∆E = ‖Ea − E0‖ = ‖Eb − E0‖ is the energy splitting, and J is

the coupling between the sites.

In the dimer case, I simplify each term of the interaction-frame Hamiltonian. Inspecting the UHδU
† term:

U = e
i
~HDt =


1 0 0 0
0 eiw0t 0 0
0 0 eiw0t 0
0 0 0 e2iw0t

 (36)

UHδU
† =


1 0 0 0
0 eiw0t 0 0
0 0 eiw0t 0
0 0 0 e2iw0t




0 0 0 0
0 ∆E J 0
0 J −∆E 0
0 0 0 0




1 0 0 0
0 e−iw0t 0 0
0 0 e−iw0t 0
0 0 0 e−2iw0t

 (37)

=


0 0 0 0
0 eiw0t∆Ee−iw0t eiw0tJe−iw0t 0
0 eiw0tJe−iw0t −eiw0t∆Ee−iw0t 0
0 0 0 0

 =


0 0 0 0
0 ∆E J 0
0 J −∆E 0
0 0 0 0

 = Hδ . (38)
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The dipole operator ~µ, in any direction n̂, will have a contribution from each site. In particular, there will be a
contribution µa = 〈gg|µ |eg〉 = 〈ge|µ |ee〉 and µb = 〈gg|µ |ge〉 = 〈eg|µ |ee〉. Then, µn̂ takes the following form:

µn̂ = ~µ · n̂ =


0 µ∗a µ∗b 0
µa 0 0 µ∗b
µb 0 0 µ∗a
0 µb µa 0

 . (39)

If the associated direction is clear, I often drop the subscript of µn̂. For example, the ket |µ〉 corresponds to the
dipole operator in the direction of the last pulse (see section 2.7).

I then inspect an oscillating field ~E(t) = 2V cos(wt) = V (eiwt + e−iwt). The associated µn̂ has normal vector

n̂ =
~E(t)

‖~E(t)‖
). Consider its effects in the interaction frame:

U
(
~µ · ~E(t)

)
U† = Uµn̂2V cos(wt)U† = 2V cos(wt)Uµn̂U

† (40)

= 2V cos(wt)


1 0 0 0
0 eiw0t 0 0
0 0 eiw0t 0
0 0 0 e2iw0t




0 µ∗a µ∗b 0
µa 0 0 µ∗b
µb 0 0 µ∗a
0 µb µa 0




1 0 0 0
0 e−iw0t 0 0
0 0 e−iw0t 0
0 0 0 e−2iw0t


(41)

= V (eiwt + e−iwt)


0 µ∗ae

−iw0t µ∗be
−iw0t 0

µae
iw0t 0 0 µ∗be

−iw0t

µbe
iw0t 0 0 µ∗ae

−iw0t

0 µbe
iw0t µae

iw0t 0

 (42)

= V


0 µ∗a(e

−i(w+w0)t + ei(w−w0)t) µ∗b(e
−i(w+w0)t + ei(w−w0)t) 0

µa(e
i(w+w0)t + e−i(w−w0)t) 0 0 µ∗b(e

−i(w+w0)t + ei(w−w0)t)

µb(e
i(w+w0)t + e−i(w−w0)t) 0 0 µ∗a(e

−i(w+w0)t + ei(w−w0)t)

0 µb(e
i(w+w0)t + e−i(w−w0)t) µa(e

i(w+w0)t + e−i(w−w0)t) 0


(43)

When w = w0 (the resonance condition [16]), there are terms that oscillate at frequency 2w0. These “counter-
resonances” can be neglected in the rotating wave approximation, since they oscillate too quickly to affect the
quantum state. Near resonance (w − w0 << w + w0), our Hamiltonian term simplifies to

U
(
~µ · ~E(t)

)
U† ≈ V


0 µ∗ae

i(w−w0)t µ∗be
i(w−w0)t 0

µae
−i(w−w0)t 0 0 µ∗be

i(w−w0)t

µbe
−i(w−w0)t 0 0 µ∗ae

i(w−w0)t

0 µbe
−i(w−w0)t µae

−i(w−w0)t 0

 , (44)

which simplifies further when w = w0 (the resonance condition):

U
(
~µ · ~E(t)

)
U† ≈ V


0 µ∗a µ∗b 0
µa 0 0 µ∗b
µbe 0 0 µ∗a
0 µb µa 0

 = V µn̂ . (45)

Thus, by equations 38 and 45, our interaction-frame Hamiltonian for a dimer system is simply

HI(t) = UHδU
† + U

(
~E(t) · ~µ

)
U† ≈ Hδ + V µn̂ . (46)

2.5 The Dipole Operator and Pulse Shaping

2.5.1 Decomposition of the Dipole Operator for a Dimer System

As mentioned before, µ is a Hermitian operator in Hilbert space that characterizes the strengths of transitions
between various energy levels in a quantum system. Typically µ depends on the direction of the electric field. It is
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sometimes denoted µn̂, where n̂ corresponds to the direction of the electric field, i.e. ~E ∝ n̂. The symbol ~µ refers
to the vector that returns µn̂ when dotted with some real vector n̂ ∈ R3. Thus,

µ = µn̂ = ~µ · n̂ (47)

I write µ as a 4 × 4 matrix in a dimer system, where the basis elements are |gg〉 , |eg〉 , |ge〉 , |gg〉. Here, the first
letter (g or e) corresponds to the energy level at the first site, and the second letter (g or e) corresponds to the
energy level at the second site. Take µ to be real for this section. Then,

µ =


0 µa µb 0
µa 0 0 µb
µb 0 0 µa
0 µb µa 0

 . (48)

I assume that there is only coupling within a site, and only between adjacent energy-levels. Thus, µa connects
adjacent energy-levels in the first site, and µb connects adjacent energy-levels in the second site. This is characterized
by the following decomposition:

σx =

(
0 1
1 0

)
(49)

µ = µa(1⊗ σx) + µb(σx ⊗ 1) (50)

Notice how each term only projects on one subspace. In a general decomposition A ⊗ B, A is an operator on
the second site and B is an operator on the first site. This is due to the mathematical operation of the tensor
(or Kronecker) product, and our choice of basis ordering in the full Hilbert space. There is an easy mnemonic to
remember the operation: A is the “mask” and B is the “repeater”. If A is an m× n matrix, then [4]

A⊗B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

Am1B Am2B · · · AmnB

 . (51)

In this analogy, A “masks” the information in B. The full matrix B is “repeated” for each element of A.

Then, in the near-resonance condition (w − w0 << w + w0), equation 44 simplifies to

F =

(
ei(w−w0)t 0

0 e−i(w−w0)t

)
(52)

U
(
~µ · ~E(t)

)
U† = µa(1⊗ F )(1⊗ σx) + µb(F ⊗ 1)(σx ⊗ 1) = µa(1⊗ Fσx) + µb(Fσx ⊗ 1) . (53)

So, the term containing µa only affects the subspace corresponding to the first site, and the term containing µb
only affects the subspace corresponding to the second site.

2.5.2 Basic Pulse Shaping and the Fourier Transform

There is a broad field of designing and shaping ultrafast femtosecond pulses, and accurately producing them in
laboratory settings [7] [15] [18]. Different pulse shapes will elicit different responses to the quantum system. I
present a few important theorems and results.

Any function of time f(t) can be represented as function of frequency f̃(w) by the Fourier transform. In particular,

f̃(w) =

∫ ∞
−∞

e−iwtf(t)dt . (54)

To reverse, I apply the inverse Fourier transform:

f(t) =
1

2π

∫ ∞
−∞

eiwtf(w)dw . (55)
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Suppose f(t) = A(t)eiw0t, where A is some envelope function. Then, by the Fourier shift theorem [15],

f̃(w) = Ã(w − w0) . (56)

Typically, there is some envelope function A(t) of our electric-field pulse E(t) = 2A(t) cos(wt) = A(t)(eiwt+e−iwt).
In the simplest case, A(t) is a rectangular (box-shaped) pulse:

A(t) =

{
V −t0 ≤ t ≤ t0
0 otherwise

(57)

The Fourier tranform of a rectangular (or boxcar) signal is defined as a sinc function:

Ã(w) = 2V t0sinc(t0w) =

{
2V t0 sin(t0w)

t0w
w 6= 0

2V t0 w = 0
(58)

So, the electric field in frequency space is

Ẽ(w) = Ã(w − w0) + Ã(w + w0) = 2V t0 [sinc(t0(w − w0)) + sinc(t0(w + w0))] . (59)

More commonly, Gaussian envelope shapes are used [15]. In this case, the Fourier transform preserves shape:

G(t) =
1√

2πσ2
e−t

2/2σ2

(60)

G̃(w) = e−w
2σ2/2 . (61)

Thus, if the electric field has a Gaussian envelope (i.e. E(t) = 2G(t) cos(wt)), then

Ẽ(w) = G̃(w − w0) + G̃(w + w0) = e−(w−w0)2σ2/2 + e−(w+w0)2σ2/2 . (62)

In the “sudden pulse” or “semi-impulsive” approximation, the envelope is modeled as a Dirac delta “function” [12].
The Dirac delta δ(t) has two properties: (1) that δ(t) = 0 if t 6= 0 and (2) the integral

∫∞
−∞ δ(t) = 1. If the envelope

is proportional to the Dirac delta:

D(t) = Dδ(t) (63)

D̃(w) = D (64)

The Fourier transform of the Dirac delta is constant at all frequencies. Thus, if the electric field had a Dirac delta
envelope (i.e. E(t) = 2D(t) cos(wt)), then

Ẽ(w) = D̃(w − w0) + D̃(w + w0) = 2D . (65)

With this approximation, the electric field has constant amplitude at all frequencies.

2.6 Linear and Bilinear Control Theory

In control theory, standard state-space representation of a bilinear system has the following form [10]:

ẋ(t) = A(t)x(t) +B(t)~u(t) +

r∑
i=1

Ni(t)x(t)ui(t) (66)

y(t) = C(t)x(t) +D(t)~u(t) (67)

Here, x(t) is the “state” or “state vector”, ~u(t) is the “input” (with r entries), and y(t) is the “output”. The matrices
A,B,Ni evolve the initial state into a future state, while C,D are used for the “measurement”. In particular, linear
system has Ni = 0 for all i, and a time-invariant system has no time-dependence in the matrices. These special
types of bilinear systems are much simpler to solve than the general case [10].

Consider our state vector as x(t) ∈ S4n2 . The natural choice for output y(t) is a measurable function of time —
the scalar polarization measurement P3(t) ∈ C. Then, C(t) = C† = (0 0 0 〈µ|), and D(t) = 0. It would be
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simple to use a time-dependent A(t) matrix for the evolution of x(t) (equation 66), but the problem is significantly
easier if the system is time-invariant. (This requires all matrices A,B,C,D,Ni to be time-independent.)

In general, the Hamiltonian’s time dependence comes from electric-field interactions: H(t) = H0 + ~E(t) · ~µ =

HD +Hδ + ~E(t) · ~µ. This electric field ~E(t) is most easily identified as the input ~u(t). Let us define superoperators
(i.e. in Liouville space) MD,Mδ,Mn̂ ∈ L(Ln2) in the following way:

ˆ̂
MD· =

−i
~

ˆ̂
HD· ⇐⇒

−i
~

[ĤD, ·] (68)

ˆ̂
Mδ· =

−i
~

ˆ̂
Hδ· ⇐⇒

−i
~

[Ĥδ, ·] (69)

(∀n̂ ∈ R3) ,
ˆ̂
Mn̂· =

−i
~

ˆ̂µn̂· ⇐⇒
−i
~

[Ĥn̂, ·] (70)

Recall that one can represent the commutator operation in Hilbert space with a superoperator in Liouville space.

From here, I construct superoperators M(t),M0 ∈ L(Ln2):

M(t) = MD +Mδ +
∑

i∈[~x,~y,~z]

Ei(t)Mi(t) (71)

M0 = MD +Mδ (72)

By linearity of the commutator, M(t)· and M0· represent −i~ [H(t), ·] and −i~ [H0, ·] in Hilbert space, respectively.

There remains coupling between x(t) and E(t). In particular, x evolves as

ẋ(t) = ADx(t) +Aδx(t) +
∑
i

Nix(t)ui(t) (73)

=


0 0 0 0
MD 0 0 0

0 MD 0 0
0 0 MD 0

x(t) +


0 0 0 0
Mδ 0 0 0
0 Mδ 0 0
0 0 Mδ 0

x(t) +

∑
i∈[~x,~y,~z]


0 0 0 0
Mi 0 0 0
0 Mi 0 0
0 0 Mi 0

x(t)Ei(t) .

(74)

I define extended superoperators AD, Aδ, Nn̂ ∈ L(S4n2) implicitly in the equation above. (Recall that extrane-

ous symbols were dropped from vectors and matrices.) The vector ~E(t) has three entries ([~x, ~y, ~z]), paired with
[N~x, N~y, N~z], respectively. I compare the above with equations 13, 66, and 67 to define the rest of the terms in a
bilinear control problem. Summarizing:

y(t) = P3(t) (75)

~u(t) = ~E(t) (76)

A = AD +Aδ (77)

B = D = 0 (78)

C = C† . (79)

The problem is now in the form of a bilinear, time-invariant system.

2.7 Solving the Free Evolution System for Third-Order Polarization (in Lab Frame)

In general, third-order spectroscopy experiments employ four-wave mixing: at time t = t0, an electric pulse excites
a molecule in its ground state. Two more pulses fire at the molecule (at time t1 and t2), adjusting the molecular
state. A last pulse (at time t3) is designed such that the molecule is forced back into its ground state, emitting
some measurable electric field. This last pulse is the “measurement”.

In a classical controls context, the input ~u(t) models the electric field ~E(t). So, ~u(t) is pulse-like at t = t0, t1, t2,
and 0 everywhere else. (Since the last pulse manifests as the measurement operator C, there are effectively no
inputs after time t = t2).
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Without electric-field impulses, the system evolves linearly:

ẋ(t) = Ax(t) =


0 0 0 0
M0 0 0 0
0 M0 0 0
0 0 M0 0

x(t) (80)

y(t) = Cx(t) = (0 0 0 〈µ|)x(t) (81)

(Recall that M0 = MD +Mδ.) Let’s investigate the closed-form solution to this linear system, which is

x(t+ t0) = eAtx(t0) . (82)

Here, eA is shorthand for its series expansion

eA = (I +A+A2/2 +A3/6 + ...) . (83)

Since the extended superoperator A is nilpotent, eA has a finite number of terms. In particular, A4 = 0, so

eAt =


1 0 0 0
M0t 1 0 0

1
2M

2
0 t

2 M0t 1 0
1
6M

3
0 t

3 1
2M

2
0 t

2 M0t 1

 . (84)

Since y(t) = (0 0 0 〈µ|)x(t), the closed-form solution for y(t+ t0) = P3(t+ t0) is

P3(t+ t0) = y(t+ t0) = 〈µ| (M3
0 t

3/6 M2
0 t

2/2 M0t 1)x(t0) . (85)

Expanding x(t0) in terms of its perturbation components, the above equation simplifies to

P3(t+ t0) = y(t+ t0) = 〈µ|
(
M3

0 t
3/6 |ρ0(t0)〉+M2

0 t
2/2 |ρ1(t0)〉+M0t |ρ2(t0)〉+ |ρ3(t0)〉

)
. (86)

At small t (where the perturbative expansion is valid), the output polarization is a cubic function of time. This is

an effective model of quantum state evolution between the pulses (when ~E(t) = ~0).

2.8 Solving the General (Bilinear) System for Third-Order Polarization

2.8.1 Box-shaped Pulses

I solve the system more generally with an important approximation [10, 11]: ~E(t) is a series of box-shaped pulses,
at fixed amplitude 2V , for a short duration ∆t << t1, t2, t3. With this approximation (and the rotating wave
approximation), the system is approximately linear. In particular, the evolution equation in the interaction frame
(equation 33) is

∂ρIn(t)

∂t
= − i

~
[Hδ + V µn̂, ρ

I
n−1(t)] . (87)

In a similar manner to equation 74, the state evolution behaves as

ẋI(t) = (Aδ + V Nn̂)xI(t) =


0 0 0 0

Mδ + VMn̂ 0 0 0
0 Mδ + VMn̂ 0 0
0 0 Mδ + VMn̂ 0

x(t) . (88)

Between pulses, there is no electric-field component, and the interaction-frame evolution equation simplifies to

ẋI(t) = Aδx
I(t) . (89)
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So, the state evolves between pulses as

xI(t+ t0) = eAδtxI(t0) (90)

eAδt =


1 0 0 0
Mδt 1 0 0

1
2M

2
δ t

2 Mδt 1 0
1
6M

3
δ t

3 1
2M

2
δ t

2 Mδt 1

 . (91)

During the pulse is a bit more complicated. I assume n̂ is in the direction of the electric field pulse ~E.

By the box-shaped pulse approximation, V is time-independent for the duration (∆t) of the pulse. I apply the
same analysis as before:

xI(t0 + ∆t) = e(Aδ+V Nn̂)∆txI(t0) (92)

e(Aδ+V Nn̂)∆t =


1 0 0 0

(Mδ + VMn̂)∆t 1 0 0
1
2 (Mδ + VMn̂)2∆t2 (Mδ + VMn̂)∆t 1 0
1
6 (Mδ + VMn̂)3∆t3 1

2 (Mδ + VMn̂)2∆t2 (Mδ + VMn̂)∆t 1

 . (93)

I now have a linear equation describing the final state xI(t) from the initial state:

xI(t3) = eAδ(t3−t2)e(Aδ+V Nn̂)∆txI(t2) (94)

= eAδ(t3−t2)e(Aδ+V Nn̂)∆teAδ(t2−t1)e(Aδ+V Nn̂)∆txI(t1) (95)

= eAδ(t3−t2)e(Aδ+V Nn̂)∆teAδ(t2−t1)e(Aδ+V Nn̂)∆teAδ(t1−t0)e(Aδ+V Nn̂)∆txI(t0) . (96)

Converting to and from the interaction frame is easy, as shown by equations 23 and 25. I do that here, as

x(t3) = Q†D(t3)eAδ(t3−t2)e(Aδ+V Nn̂)∆teAδ(t2−t1)e(Aδ+V Nn̂)∆teAδ(t1−t0)e(Aδ+V Nn̂)∆tQD(t0)x(t0) . (97)

The polarization output y(t) = P3(t) is described by

y(t3) = Cx(t3) = (0 0 0 〈µ|)


|ρ0(t3)〉
|ρ1(t3)〉
|ρ2(t3)〉
|ρ3(t3)〉

 = 〈µ|ρ3(t3)〉 = tr(µρ3(t3)) . (98)

2.8.2 Dirac Delta Pulses

In he semi-impulsive limit (by modeling each pulses with a Dirac delta), the equation is slightly simpler. This can
be done in two ways: Re-integrate the recursive equation of motion (equation 33) or shrink the box-pulse so in the
limit it approaches a Dirac delta pulse.

The first method approximates the impulse V (t) as a Dirac delta Dδ(t− t0). When integrated,

ρIn(t0+)− ρIn(t0−) =

∫ t0+

t0−

dt
∂ρIn(t)

∂t
=

∫ t0+

t0−

dt− i

~
[Hδ + V (t)µn̂, ρ

I
n−1(t)] ≈ −i

~
[Dµn̂, ρ

I
n−1(t0)] . (99)

At time t0, the value of the Dirac delta is much greater than Hδ, so the term drops out. This method is akin to
applying the dipole operator directly onto the state. Bringing this up to extended Liouville space,

xI(t0+) = xI(t0−) +DNn̂x
I(t0−) = (1 +DNn̂)xI(t0−) . (100)

In this limit, the Dirac delta pulse corresponds to the extended Liouville operator (1 +DNn̂).

The second method keeps D = V∆t constant but takes V →∞ and ∆t→ 0. This turns equation 92 into

lim
V→∞,∆t→0

xI(t0 + ∆t) = lim
V→∞,∆t→0

e(Aδ+V Nn̂)∆txI(t0) = eV Nn̂∆txI(t0) . (101)
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During the pulse, the equation is no longer dependent on Aδ. The expansion for the exponential also simplifies to

eV Nn̂∆t =


1 0 0 0

VMn̂∆t 1 0 0
1
2 (VMn̂)2∆t2 VMn̂∆t 1 0
1
6 (VMn̂)3∆t3 1

2 (VMn̂)2∆t2 VMn̂∆t 1

 . (102)

It is easy to rewrite the full equations of motion (equations 97 and 98). Substitute each occurrence of the box-shaped
pulse term e(Aδ+V Nn̂)∆t out with our Dirac delta pulse term ((1 +DNn̂) or eV Nn̂∆t) from this section.

3 Algorithms

I implemented algorithms using the Python programming language and Jupyter notebook [13] to implement and
solve the linear equations 97 and 98. The source code is available upon request.

I first simulated the “forward motion” of the quantum state, evolving an initial ground state through the pulses
and conducting the measurement (as in equation 98). I chose relevant physical parameters for a dimer system [18]
and varied the times between pulses. I then plotted my polarization data in time-space (as a function of t1, t3) and
in frequency-space (as a function of w1, w3). In particular, this required exponentiation of matrices with a special
form (as in equation 84). Additionally, U and QD were easy to construct, since they are diagonal.

I also wrote inversion software to find physical parameters (some of µ, J,∆E) from the output polarization state
P3(t) = Y (t), given pulse separation times t1, t2, t3, and all other physical parameters. Because the problem is non-
convex, I used gradient descent methods to find these values. Gradient descent is an iterative method that tries
to find the values for variables ~x that minimize some cost function C(~x). In particular, it computes the gradient
of the cost function and updates the guesses repeatedly until satisfying a convergence condition. Typically, the
update scheme is defined as

~x(n+1) = ~x(n) − ε∂C
∂~x

∣∣∣
~x=~x(n)

, (103)

where ε is the “learning rate” of the algorithm [2]. A larger ε will elicit larger changes in the guesses for ~x. This
value can be tuned for a particular problem.

In the space of learning and optimization methods, gradient descent is a simple algorithm. More sophisticated
methods may have better success, like the Alternating Direction Method of Multipliers (ADMM) [3].

4 Code Use

All code from this project is available upon request.

The first portion tests this theory against the open-source Python package Qspectra [6]. This simulation package is
meant for for nonlinear spectroscopy signals on molecular aggregates, and is designed to solve approximate models
of open quantum systems. The code I use from this package is the third-order-response function, which produces
response output data based on physical parameters. (Qspectra assumes delta-function pulses, so the response plot
and the polarization plots are proportional.)

In my code, I implement the above evolution equations (equations 97 and 98). One inputs the same physical

parameters ( ~E,H0, µ, t1, t2, t3) and the output is the polarization y(t), discretized over each time variable t1, t2, t3.
This has the same form as Qspectra, so I comare the 2D plots in frequency-space and the associated diagonal
absorption spectrum.

The second portion contains an iterative solver to solve for components of µ (in particular, the values of µa and µb).

The input here is all other physical parameters of the system ( ~E,H0, t1, t2, t3) and the polarization data y(t). This
is close to the classic inversion problem Ax = b, except the goal is to solve for parts of A instead of x. I use gradient
descent to find the best choice of µ that minimizes the difference between P3(µ) and the correct polarization data
P3(µ∗). This is an iterative process that converges when the difference is below a specified threshold.
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Figure 1: Qspectra-simulated 2D frequency plot for a dimer system.

5 Test Problems and Results

5.1 A Test Application: The Dimer system

I test the success of my process on a simple dimer system (i.e. n = 2 energy levels). I use the system parameters
from Yuen-Zhou et. al. [18] as input for my code:

µa = (1 0 0)> (104)

µb = (2 cos(0.3) 2 sin(0.3) 0)> (105)

Ea = 12719 (106)

Eb = 12881 (107)

J = 120 (108)

0 ≤t1, t2, t3 ≤ 1000 . (109)

Here, the dipole moments (µa and µb) are in units of Debye, the time variables (t1, t2, t3) are in units of femtoseconds,
and the energies and couplings (Ea, Eb, J) are in units of wavenumbers.

I first generate polarization output to compare with the data generated from Qspectra. I created 2D frequency
plots, as done in the standard literature [12], which should match plots generated by Qspectra. Qspectra’s plots
are shown in Figure 1. Notice that there are usually four peaks: two along the diagonal and two on the off-diagonal.
Each x-value and y-value is the oscillating frequency of one of the excited states.

My plots in frequency space are shown in Figure 2. I assume short (55 femtosecond) box-shaped pulses. There
is an unusually large spike at the center frequency. Notice that there are peaks that mimic Qspectra’s peaks but
also other spurious peaks in the plots. These could correspond to absorption at frequencies near the excited-state
energies. It is possible that this phenomenon is from numerical errors in the Fourier transform.

Overall, the plots behave some similarities, which is promising for the approach.

A perhaps more useful plot is the diagonal absorption spectrum, which should peak at the energies of the excited
states. The eigenvalues of this system correspond to frequencies of 12644 and 12956 cm−1. Qspectra’s spectrum
in Figure 3 shows sharp peaks at these frequencies, likely due to the delta-pulse approximations in simulation. We
do expect some broadening to occur.
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Figure 2: My own simulated 2D frequency plot for a dimer system.

Figure 3: Qspectra-simulated absorption
spectrum for a dimer system.

Figure 4: My own simulated absorption spec-
trum for a dimer system.

In contrast, my plots in Figure 4 show the large peak at the average
frequency , as well as other peaks throughout the plot. There are
small spikes at the expected frequencies (12644, 12956 cm−1), but
it is unlikely that light at 12500 cm−1 was absorbed by the system.
There must be some extra spiking due to one of my approximations
— likely, the box-pulse approximation. With pulses modeled as
Dirac delta, I should get better agreement between the figures.

The second portion to iteratively solve for parameters is so far
unsuccessful. I initially attempted to find µa and µb from output
data. In Figure 5(a), I vary µa and µb, showing that P3(µa, µb) is
clearly non-convex. So, there is no guarantee of convergence, which
makes it more difficult to solve.

Next, I tried gradient descent, approximating the gradient with the
built-in algorithm from Python package scipy [9]. Unfortunately,
there were convergence issues — I kept getting stuck in local min-
ima. This was because the cost rapidly oscillated with adjustments
in µ. As shown in Figure 5(b), it is unlikely that gradient descent
will converge to the correct answer.

The parameter estimation hinges on a successful inversion of the
linear system. Other non-convex iterative learning method may
work here [14]. If the guess is initialized close to the actual value,
the solution is more likely to find the correct answer.

5.2 Possibilities for Future Work

Overall, this is a novel approach to studying nonlinear spectroscopy
problems, and analyzing the evolution of perturbative expansions.
In particular, equations 7, 11, 33, and 84, and 97 are novel and
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(a) Contour plot of P3 varying µa, µb. (b) Error ‖P3(µb)−P3(µ∗b )‖ versus µb. (µ∗b ≈ 1.9106 Debye)

Figure 5: My inversion attempt to retrieve µ from P3(t) (t1 = t2 = t3 = 100fs).

worth exploring. Control theory is a rich body of knowledge to support future theoretical and computational
attempts at solving similar problems.

Future theoretical work can relax assumptions made during this derivation, particularly the single-frequency electric
field pulse (resonance condition) in equation 45. While a box-shaped filter removes time-dependence from the term,
a Gaussian filter is more often used in experiment [15] [18]. This control-theoretic approach can also solve for
higher-order polarization terms by expanding the extended Liouville space. The recursive formulation of the von-
Neumann equation (equation 7) could have implications in any experiment where a quantum system experiences a
perturbation.

Fundamentally, I have created a vector space where explicit linear equations transform the initial quantum state
to its final state and from final state to output polarization. This is done by going beyond the Liouville space into
an extended Liouville space and by writing the von-Neumann equation in a recursive form. This space and set of
equations can be used for other systems besides the dimer, like the 7-level FMO system [8]. More investigation
into the discrepancies between plots generated by these equations and Qspectra’s plot is warranted.

Parameter estimation of µ, J , and/or ∆E hinges solely on inversion of a linear equation, comparable to the pump-
probe inversion done in [7]. More sophisticated iterative inversion processes may produce better results and/or
quicker convergence of these terms [14]. This method may be the most direct way to extract physical Hamiltonian
parameters — a novel approach at the classic “inversion problem”.
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