Nonlinear Spectroscopy and Bilinear Control Theory

Using light to estimate stuff

NE 155, Spring 2016 Kunal Marwaha

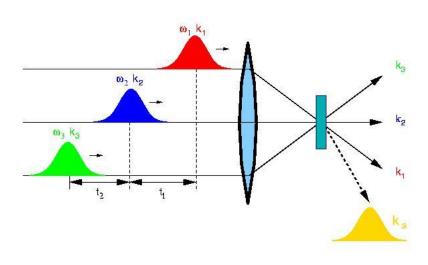
Huh?

Research project!

Prof. Birgitta Whaley (quantum information)

On-and-off since Spring 2015

Computational science: theory + simulations


Goal

Find physical parameters of molecular system

Using spectroscopy!

How?

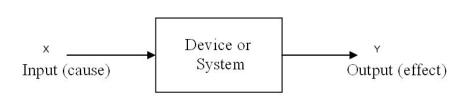
$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$$

Idea

Let's find a space where equations are linear.

Then, we invert!
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

$$A \qquad x \qquad b$$


http://i.stack.imgur.com/hx8PR.png

We can recursively expand perturbations:

$$\frac{\partial \hat{\rho}_n(t)}{\partial t} = \frac{-i}{\hbar} [\hat{H}(t), \hat{\rho}_{n-1}(t)]$$

Control Theory

Model systems from input-output measurements.

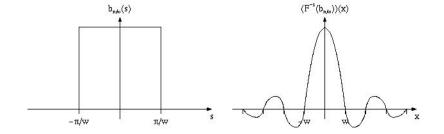
 $http://1.bp.blogspot.com/_U3umjVzCXTA/TJ2qDnhANMI/AAAAAAAAAAAPk/AHIC2YGuO1U/s1600/I-O-block+diagram.gifullowed to the control of the contro$

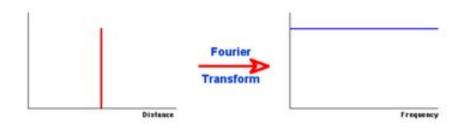
$$\dot{\vec{x}} = A\vec{x} + B\vec{u}$$

$$\dot{\vec{y}} = C\vec{x} + D\vec{u}$$

https://users.ece.cmu.edu/~koopman/des_s99/control_theory/stateq.gif

Hamiltonian is time-dependent!


$$H = H_0 + \mu \cdot \vec{E}(t)$$


Pulses

Experiments use "ultrafast pulses" (femto-sec)

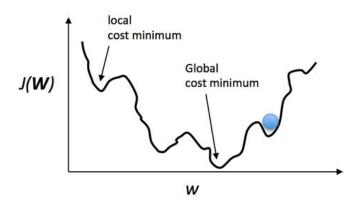
Approximated as rectangular pulse

Or as **Dirac delta**

Things simplify!

Now we're linear!

$$\dot{x} = Ax$$


$$x(t) = e^{At}x(0)$$

To simulate the forward direction, we input A and x(0) to get x(t).

Remember the goal...

Find physical parameters:

- transition dipole
- energy splitting
- energy coupling



http://sebastianraschka.com/images/fag/visual-backpropagation/nonconvex-cost.png

It's harder than expected, but some iterative methods **might** work.

Code

Part 1: Forward direction

http://thumbs.dreamstime.com/z/binary-code-abstract-background-animation-digits-falling-downwards-against-black-42622233.jpg

→ Does the simulated data match experiment?

Part 2: Inversion direction

→ Can we get physical parameters from data?