
Grape Codes

Kunal Marwaha

March 2020

This work is licensed under a Creative Commons “Attribution 4.0 International” license.

1 Why?

My friend Madison and I were looking through a booklet from Julia Robinson Mathematics Festival, a wonderful

math education project. The booklet describes Grape Codes, a version of binary where you can have any number at

each digit. Madison asked me: ”How many grape codes are there?” This made me very curious. Part of this analysis

was completed with another friend, Nick Sherman.

2 Problem

In Grape Code, a number n can be represented by a sequence {a0, a1, ...} written in reverse (like ...a2a1a0), where

ai ∈ N and n =
∑

i ai2
i. How many unique sequences exist for a number n?

2.1 The first few cases

Let’s define H(n) as the number of unique Grape Codes for a given natural number n. I list a few examples below.

n Grape Codes H(n)

0 0 1

1 1 1

2 2;10 2

3 3;11 2

4 4;12,20;100 4

5 5;13,21;101 4

6 6;14,22,30;102,110 6

7 7;15,23,31;103,111 6

8 8;16,24,32,40;104,112,120;200;1000 10

9 9;17,25,33,41;105,113,121;201;1001 10

10 (10);18,26,34,42,50;106,114,122,130;202,210;1002,1010 14

11 (11);19,27,35,43,51;107,115,123,131;203,211;1003,1011 14

2.2 How to find Grape Codes

One way to find Grape Codes is to start with the initial number n = a0, with 0 for the rest of the sequence. Then,

if you have at least 2 in any digit ak, subtract 2 from that digit and add 1 to ak+1. Repeat this process until you

cannot. At this time, there are only 0s and 1s for all ai, so it is the unique binary representation of n. All Grape

Codes can be found using this procedure (although I am not sure how to rigorously prove this). See 4.1 for a software

implementation.

1

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://globalmathproject.org/wp-content/uploads/2019/09/JRMF-Puzzle-Book-7_GRAPE-CODES.pdf
https://www.jrmf.org/
https://physics.berkeley.edu/news-events/news/20180927/physics-congratulates-leroy-apker-awardee

3 Describing H(n)

3.1 Monotonicity

Take a number n. Any of its Grape Codes can represent n + 1 by adding 1 to a0. So, H(n) is monotonic:

H(k + 1) ≥ H(k) ∀k ∈ N

3.2 Even and odd patterns

For any odd number n, a0 ≥ 1 for any Grape Code (see the procedure in 2.2). So, any Grape Codes can represent

n − 1 by subtracting 1 from a0. Together with 3.1, any odd number has the same number of Grape Codes as the

number before it:

H(2k + 1) = H(2k) ∀k ∈ N

3.3 Recursive solution

Define Hd(n) as the number of d-digit Grape Codes, i.e. with ak = 0 for all k > (d− 1). Then:

H(n) = lim
d→∞

Hd(n) = Hn(n) = Hd>log2(n)
(n)

For even n, consider the number of two-digit Grape Codes. There are n
2 + 1 of these Grape Codes, each with a

unique value of a0 ∈ {0, 2, 4, ..., n}. Together with 3.2, we can find the number of two-digit Grape Codes:

(two-digit) H(n) = H2(n) =

bn/2c∑
u=0

1 = bn/2c+ 1

Now consider the number of Grape Codes with a2 = v and all ai = 0 for i ≥ 3. Given that n ≥ 4v, we can count the

number of two-digit Grape Codes H2(n− 4v). We can then find all three-digit Grape Codes:

(three-digit) H(n) = H3(n) =

bn/4c∑
v=0

H2(n− 4v) =

bn/4c∑
v=0

bn/2c − 2v + 1 = (bn/4c+ 1)(bn/2c − bn/4c+ 1)

In general, we have a recursive formula for Hd(n) (see 4.2 for a software implementation):

(d-digit) H(n) = Hd(n) =

bn/2d−1c∑
w=0

Hd−1(n− 2d−1w)

3.4 Growth rate

For powers of 2 (i.e. n = 2r for r ∈ N), we can simplify the recursive formula for Hd(n):

Hd(n) =

n/2d−1∑
x=0

Hd−1(2d−1x)

This can be approximated as an integral:

Hd(n) ≈ 1

2d−1

∫ n

x=0

dxHd−1(x)

Using H1(n) = 1, we can approximate H(n):

H(n) = Hr+1(n) ≈ 1

2r(r+1)/2

nr

r!
≈ nr/2

r!
=

nlog2(n)/2

log2(n)!

To get the form H(n) ∝ nk, we can use Stirling’s formula on log2(H(n)) (where e is Euler’s constant):

log2(H(n)) = log2(n)2/2− log2(log2(n)!) ≈ log2(n)2/2− log2(n)
(

log2(log2(n))− log2(e)
)

H(n) ≈ nlog2(n)/2−log2(log2(n))+log2(e)

Figure 1 shows that the approximations made here align well with H(n).

2

https://en.wikipedia.org/wiki/Stirling's_approximation

Figure 1: Visualizing H(n) for n < 213 along with approximations of H(n). On a log-log plot, y = xlog(x) looks

like a quadratic function. The 2r growth rate is jagged from implementing log2(n)! as blog2(n)c!, which could be

removed by using the gamma function. The Stirling approximation smooths this out. On qualitative inspection, the

approximations match H(n) quite closely.

3.5 Intuition for the growth rate

Suppose you can choose any number for each digit ai, as long as ai2
i ≤ n (i.e. ai ≤ n

2i). The number of total choices

is approximately (n
1)(n

2)(n
4)(n

8)...(8)(4)(2)(1). There are about log2(n) terms in this expression. Notice that terms

from each side of the expression can be multiplied together to form n, simplifying the expression:

(
n

1
)(
n

2
)(
n

4
)(
n

8
)...(8)(4)(2)(1) ≈ nlog2(n)/2 = (

√
n)log2(n)

This overcounts H(n), as most choices of {ai} will not sum to n. In fact, each choice of digit d (i.e. ad−1) only permits

certain collections of {ai}i<(d−1). These choices evenly sample the possibilities of Hd−1 from 0 to n. Choosing a1
evenly samples choices of a0 from 0 to n, so H2(k) ∝ k. By induction, Hd(n) ∝ 1

(d−1)! , so H(n) ∝ 1
log2(n)!

.

4 Simulation

4.1 Procedure to find Grape Codes

Here is Python code that executes the procedure in 2.2 to calculate H(n).

def procedure(lst, hashes):

hashes.add(str(lst))

for i in range(len(lst)):

3

https://en.wikipedaia.org/wiki/Gamma_function
https://www.python.org/

if lst[i] > 1:

cp = lst[:]

cp[i] -= 2

if i == len(lst) - 1:

cp.append(0)

cp[i+1] += 1

if str(cp) not in hashes:

hashes |= procedure(cp, hashes)

return hashes

def H(n):

return len(procedure([n], set()))

4.2 Recursive solution

This Python code calculates Hd(n) recursively. Even without the cache, this runs much more quickly than 4.1.

from math import floor

from functools import lru_cache

@lru_cache(maxsize=2**24)

def Hd(d, n):

if d == 1:

return 1

offset = 2**(d-1)

if n < offset:

return Hd(d-1, n)

return sum([Hd(d-1, n - i*offset) for i in range(floor(n/offset) + 1)])

4.3 Growth rate approximation

This Python code implements the approximations to H(n) made in 3.4.

from math import floor, log, e, factorial

def growth(n):

return n**(log(n, 2)/2)/factorial(floor(log(n, 2)))

def stirling(n):

return n**(log(n, 2)/2 + log(e, 2) - log(log(n, 2), 2))

Figure 1 compares the approximations with direct calculation of H(n). This code creates that figure:

import matplotlib.pyplot as plt

ins = range(2, 2**13)

plt.style.use('ggplot')

plt.scatter(ins, [Hd(13, i) for i in ins], s=3, label="$H(n)$")

plt.plot(ins, list(map(growth, ins)), color='orange', label="$n=2^r$ growth rate")

plt.plot(ins, list(map(stirling, ins)), color='gray', label="Stirling approximation")

plt.yscale('log')

plt.xscale('log')

plt.legend()

5 Onwards

Mathematics can be so fun and so beautiful. Reach me at marwahaha@berkeley.edu if you have other curious ideas.

4

mailto:marwahaha@berkeley.edu

	Why?
	Problem
	The first few cases
	How to find Grape Codes

	Describing H(n)
	Monotonicity
	Even and odd patterns
	Recursive solution
	Growth rate
	Intuition for the growth rate

	Simulation
	Procedure to find Grape Codes
	Recursive solution
	Growth rate approximation

	Onwards

