Grape Codes

Kunal Marwaha

March 2020

This work is licensed under a Creative Commons "Attribution 4.0 International" license.

1 Why?

My friend Madison and I were looking through a booklet from Julia Robinson Mathematics Festival, a wonderful math education project. The booklet describes Grape Codes, a version of binary where you can have any number at each digit. Madison asked me: "How many grape codes are there?" This made me very curious. Part of this analysis was completed with another friend, Nick Sherman.

2 Problem

In Grape Code, a number n can be represented by a sequence $\{a_0, a_1, ...\}$ written in reverse (like $...a_2a_1a_0$), where $a_i \in \mathbb{N}$ and $n = \sum_i a_i 2^i$. How many unique sequences exist for a number n?

2.1 The first few cases

Let's define H(n) as the number of unique Grape Codes for a given natural number n. I list a few examples below.

n	Grape Codes	H(n)
0	0	1
1	1	1
2	2;10	2
3	3;11	2
4	4;12,20;100	4
5	5;13,21;101	4
6	6;14,22,30;102,110	6
7	7;15,23,31;103,111	6
8	8;16,24,32,40;104,112,120;200;1000	10
9	9;17,25,33,41;105,113,121;201;1001	10
10	(10); 18, 26, 34, 42, 50; 106, 114, 122, 130; 202, 210; 1002, 1010	14
11	(11);19,27,35,43,51;107,115,123,131;203,211;1003,1011	14

2.2 How to find Grape Codes

One way to find Grape Codes is to start with the initial number $n = a_0$, with 0 for the rest of the sequence. Then, if you have at least 2 in any digit a_k , subtract 2 from that digit and add 1 to a_{k+1} . Repeat this process until you cannot. At this time, there are only 0s and 1s for all a_i , so it is the unique binary representation of n. All Grape Codes can be found using this procedure (although I am not sure how to rigorously prove this). See 4.1 for a software implementation.

3 Describing H(n)

3.1 Monotonicity

Take a number n. Any of its Grape Codes can represent n+1 by adding 1 to a_0 . So, H(n) is monotonic:

$$H(k+1) \ge H(k) \quad \forall k \in \mathbb{N}$$

3.2 Even and odd patterns

For any odd number n, $a_0 \ge 1$ for any Grape Code (see the procedure in 2.2). So, any Grape Codes can represent n-1 by subtracting 1 from a_0 . Together with 3.1, any odd number has the same number of Grape Codes as the number before it:

$$H(2k+1) = H(2k) \quad \forall k \in \mathbb{N}$$

3.3 Recursive solution

Define $H_d(n)$ as the number of d-digit Grape Codes, i.e. with $a_k = 0$ for all k > (d-1). Then:

$$H(n) = \lim_{d \to \infty} H_d(n) = H_n(n) = H_{d > \log_2(n)}(n)$$

For even n, consider the number of two-digit Grape Codes. There are $\frac{n}{2} + 1$ of these Grape Codes, each with a unique value of $a_0 \in \{0, 2, 4, ..., n\}$. Together with 3.2, we can find the number of two-digit Grape Codes:

(two-digit)
$$H(n) = H_2(n) = \sum_{n=0}^{\lfloor n/2 \rfloor} 1 = \lfloor n/2 \rfloor + 1$$

Now consider the number of Grape Codes with $a_2 = v$ and all $a_i = 0$ for $i \ge 3$. Given that $n \ge 4v$, we can count the number of two-digit Grape Codes $H_2(n - 4v)$. We can then find all three-digit Grape Codes:

(three-digit)
$$H(n) = H_3(n) = \sum_{v=0}^{\lfloor n/4 \rfloor} H_2(n-4v) = \sum_{v=0}^{\lfloor n/4 \rfloor} \lfloor n/2 \rfloor - 2v + 1 = (\lfloor n/4 \rfloor + 1)(\lfloor n/2 \rfloor - \lfloor n/4 \rfloor + 1)$$

In general, we have a recursive formula for $H_d(n)$ (see 4.2 for a software implementation):

(d-digit)
$$H(n) = H_d(n) = \sum_{w=0}^{\lfloor n/2^{d-1} \rfloor} H_{d-1}(n-2^{d-1}w)$$

3.4 Growth rate

For powers of 2 (i.e. $n=2^r$ for $r\in\mathbb{N}$), we can simplify the recursive formula for $H_d(n)$:

$$H_d(n) = \sum_{x=0}^{n/2^{d-1}} H_{d-1}(2^{d-1}x)$$

This can be approximated as an integral:

$$H_d(n) \approx \frac{1}{2^{d-1}} \int_{x=0}^n dx H_{d-1}(x)$$

Using $H_1(n) = 1$, we can approximate H(n):

$$H(n) = H_{r+1}(n) \approx \frac{1}{2^{r(r+1)/2}} \frac{n^r}{r!} \approx \frac{n^{r/2}}{r!} = \frac{n^{\log_2(n)/2}}{\log_2(n)!}$$

To get the form $H(n) \propto n^k$, we can use Stirling's formula on $\log_2(H(n))$ (where e is Euler's constant):

$$\log_2(H(n)) = \log_2(n)^2/2 - \log_2(\log_2(n)!) \approx \log_2(n)^2/2 - \log_2(n) \left(\log_2(\log_2(n)) - \log_2(e)\right)$$

$$H(n) \approx n^{\log_2(n)/2 - \log_2(\log_2(n)) + \log_2(e)}$$

Figure 1 shows that the approximations made here align well with H(n).

Figure 1: Visualizing H(n) for $n < 2^{13}$ along with approximations of H(n). On a log-log plot, $y = x^{\log(x)}$ looks like a quadratic function. The 2^r growth rate is jagged from implementing $\log_2(n)!$ as $\lfloor \log_2(n) \rfloor!$, which could be removed by using the gamma function. The Stirling approximation smooths this out. On qualitative inspection, the approximations match H(n) quite closely.

3.5 Intuition for the growth rate

Suppose you can choose any number for each digit a_i , as long as $a_i 2^i \le n$ (i.e. $a_i \le \frac{n}{2^i}$). The number of total choices is approximately $(\frac{n}{1})(\frac{n}{2})(\frac{n}{4})(\frac{n}{8})...(8)(4)(2)(1)$. There are about $\log_2(n)$ terms in this expression. Notice that terms from each side of the expression can be multiplied together to form n, simplifying the expression:

$$(\frac{n}{1})(\frac{n}{2})(\frac{n}{4})(\frac{n}{8})...(8)(4)(2)(1) \approx n^{\log_2(n)/2} = (\sqrt{n})^{\log_2(n)}$$

This overcounts H(n), as most choices of $\{a_i\}$ will not sum to n. In fact, each choice of digit d (i.e. a_{d-1}) only permits certain collections of $\{a_i\}_{i<(d-1)}$. These choices evenly sample the possibilities of H_{d-1} from 0 to n. Choosing a_1 evenly samples choices of a_0 from 0 to n, so $H_2(k) \propto k$. By induction, $H_d(n) \propto \frac{1}{(d-1)!}$, so $H(n) \propto \frac{1}{\log_2(n)!}$.

4 Simulation

4.1 Procedure to find Grape Codes

Here is Python code that executes the procedure in 2.2 to calculate H(n).

```
def procedure(lst, hashes):
    hashes.add(str(lst))
    for i in range(len(lst)):
```

```
if lst[i] > 1:
            cp = lst[:]
            cp[i] -= 2
            if i == len(lst) - 1:
                cp.append(0)
            cp[i+1] += 1
            if str(cp) not in hashes:
                hashes |= procedure(cp, hashes)
    return hashes
def H(n):
    return len(procedure([n], set()))
4.2
     Recursive solution
This Python code calculates H_d(n) recursively. Even without the cache, this runs much more quickly than 4.1.
from math import floor
from functools import lru_cache
@lru_cache(maxsize=2**24)
def Hd(d, n):
    if d == 1:
        return 1
    offset = 2**(d-1)
    if n < offset:
        return Hd(d-1, n)
    return sum([Hd(d-1, n - i*offset) for i in range(floor(n/offset) + 1)])
      Growth rate approximation
4.3
This Python code implements the approximations to H(n) made in 3.4.
from math import floor, log, e, factorial
def growth(n):
    return n**(log(n, 2)/2)/factorial(floor(log(n, 2)))
def stirling(n):
    return n**(log(n, 2)/2 + log(e, 2) - log(log(n, 2), 2))
Figure 1 compares the approximations with direct calculation of H(n). This code creates that figure:
import matplotlib.pyplot as plt
ins = range(2, 2**13)
plt.style.use('ggplot')
plt.scatter(ins, [Hd(13, i) for i in ins], s=3, label="$H(n)$")
plt.plot(ins, list(map(growth, ins)), color='orange', label="$n=2^r$ growth rate")
plt.plot(ins, list(map(stirling, ins)), color='gray', label="Stirling approximation")
plt.yscale('log')
plt.xscale('log')
plt.legend()
```

5 Onwards

Mathematics can be so fun and so beautiful. Reach me at marwahaha@berkeley.edu if you have other curious ideas.