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Abstract

Quantum state discrimination is at the heart of quantum information - when measurement

inherently perturbs the system, decision and reconstruction problems about the state are crucial

to building useful quantum-informational systems. When a state or process is easily reproducible,

quantum tomography can be used, but it requires resources exponentially increasing with the

system size [1]. Instead, compressive techniques can be applied to reconstruct a state vector |ψ>,

especially in applications of quantum circuit and process verification, correction against randomized

error, and protection from localized, adversarial noise. In each of these realms, there exist useful

problems where one hopes to reconstruct a sparse state vector. Techniques from other fields,

including information theory and signal processing, can be ported to quantum information: In

particular, using a sparse-graph solution to the compressive phase retrieval problem [2], I develop

a guaranteed quantum measurement construction process so that a K-sparse state vector can be

asymptotically reconstructed in order-optimal decoding time O(K). This quantum measurement

construction process will work for any noise-robust, one-stage solution to the compressive phase

retrieval problem. Practical tradeoffs between sampling size and average error are simulated and

discussed.
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Quantum state discrimination is the process of reconstructing or estimating a system |ψ>

or ρ. If some prior state information is known, the main approach for state discrimination

uses quantum hypothesis testing, where a state is determined from a set of known possibilities

[3]. This procedure is useful when a state is difficult or expensive to reproduce - even non-

orthogonal states can be determined unambiguously [4]. However, when the state is easily

reproducible, quantum tomography, and more recently, compressive quantum tomography,

can reconstruct a state by clever, repeated measurement [1]. Compressive techniques are

particularly useful: unlike standard quantum tomography, they do not necessarily require

exponentially-growing physical resources with the number of sytem qubits, and instead take

advantage of the assumed sparsity of the system [5]. Thus, developments in compressive

approaches have inherent potential to improving current tomographical techniques.

Compressive sensing is an old field devoted to better understand limits of signal recovery,

with widespread applications in physics and electrical engineering. The focus is on sparsity

- can a complex signal known to be sparse in some domain be efficiently and/or fully recon-

structed? If the signal is known or assumed to be sparse, optimal reconstruction algorithms

should require fewer measurements. Developments within and nearby this field could have

stark consequence within quantum information, where the dimension of a state vector grows

exponentially with the number of system qubits.

A related, more useful problem has been studied under the term “phase retrieval” within

signal processing, and will be the focus of this paper. Specifically, given a vector x ∈ CN ,

how many (and which) observation vectors ai ∈ CN are required to determine x from

observations yi = |<ai, x>|, where <a, b> = a†b denotes the Euclidean inner product on CN .

This problem is challenging, due to magnitude-only measurements; non-linear approaches

are necessary. This problem has significantly more approachable when x is assumed to be K-

sparse, bearing the name “compressive phase retrieval”. At least 4K −O(1) measurements

are necessary [6] to reconstruct K values of x. Thus, for standard tomographical procedures

(which don’t exploit sparsity), at least 4N−O(1) = 4(2n)−O(1) measurements are necessary

- requiring exponentially more resources compared to system size.

One recent paper [2] has found an order-optimal solution to the compressive phase re-

trieval problem using sparse-graph codes, with O(K) measurements and O(K) decoding

time required to completely reconstruct x with high probability. Concretely, one can use

this algorithm and 14K measurements to determine a K-sparse vector x of any size, with
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probability 1− 10−7. Here, I use this algorithm in particular and unpack its possibilities.

Compressive phase retrieval has significant potential in three major quantum-informational

applications: quantum circuit verification and process tomography, random-error correction,

and protection against localized, adversarial noise. In quantum information, the “signal”

is the state vector |ψ>, with dimension N = 2n, where n is the number of qubits. In

many of these use cases, it can be useful to imagine |ψ> as sparse. In particular, state

corruption (both random and adversarial) can be considered to be localized to just a few

(unknown) qubits, and other quantum compressive techniques have been applied to nearly-

sparse systems [5], well-approximated by sparse states. Thus, sparse, systematic errors can

be determined by sending in a known separable state |0L> and efficiently reconstructing

final (sparse) state |ψ>.

It is also known that quantum circuitry is universal - so, any sort of quantum gate could

be imagined, including one that just adjusts a few qubits, or one that guarantees the state

of most qubits. For example, consider a deterministic circuit C that operates on a 1000-

qubit system, but alters at most 10 qubits. If this circuit is used on a trial state with

all qubits initialized to 0 in a computational basis, the final state would have at most 10

qubits on. The state vector |ψ> has dimension N = 21000 ≈ 10300, but the all possible

state collapses of |ψ> have at most 10 qubits collapsed as 1. Thus, the sparsity of |ψ>

is at most K =
∑10

i=0

(
1000
i

)
< 1024. Characterization and verification of this circuit is

orders-of-magnitude more efficient with techniques exploiting sparsity.

Compressive phase retrieval has the possibility to revolutionize a very similar technique:

Quantum Process Tomography. With a similar problem setup to quantum circuitry, an

unknown time-evolution can be characterized using tomography of a reproducible state. In

the same way, compressive techniques outperform standard quantum tomography as the

system size increases [5].

Of course, challenges exist when porting anything to a quantum-informational setting. In

particular, the No-Cloning Theorem dictates that states can only be transferred, not copied.

This limits the scope of quantum tomography and quantum compressive phase retrieval:

If a decoding process needed multiple measurements of a single state, one could not copy

numerous times before decoding. Instead, access to a reproducible state (or consistent

process resulting in a reproducible state) is mandatory. In usual physics, this can be a

simple light source - in quantum information, it must be a pipeline converting an initial

3



FIG. 1. Using example circuit C and initial state |0L>. When measured along the computational

basis, all collapse outcomes of the final state |ψ> have at most 10 qubits on, limiting the sparsity

K to be at most
∑10

i=0

(
n
i

)
. The sparsity of |ψ> grows polynomially with the number of qubits n

(asymptotically, K ∝ n10) but the dimension N = 2n of the state vector grows exponentially.

|0L> to |ψ>.

Additionally, quantum collapse limits the amount of useful information from each state.

On first pass, a state holding N = 2n values only returns n bits after direct measurement

along the computational basis. More clever approaches can re-use states (repeated weak

measurement), use Bayesian estimation strategies [3][7], or use a series of measurement

operators Pi not on the computational basis (enforcing that
∑

i P
†
i Pi = I). All approaches

to integrate compressive phase retrieval must overcome these challenges.

Below is a brief discsussion of the best known compressive phase retrieval solution, by

Pedarsani, Lee, Ramchandran. The reader is cautioned that due to magnitude-only mea-

surements, the equations are non-linear: usual tricks may not apply. A more complete

description and analysis is in their paper [2]. They model the classical problem with a bi-

partite graph matching values of xj, 1 ≤ j ≤ n to observations yi, 1 ≤ i ≤ M . Each left

edge of an observation yi determines the observation vector ai, measuring a certain subset

of vector elements. Reconstructing the state vector x involves solving a system of equations
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y = |Ax|, where each row of matrix A is the observation vector ai.

The reconstructing code (decoder) relies on a method of singleton-coloring - if an ob-

servation is connected to a single nonzero vector element (thus dubbed ”singleton”), then

its nonzero vector element can be eliminated (or “colored”) from the system of equations.

If other vector elements are connected to this observation, they are exactly zero, further

determining x and simplifying the equations. If singletons are common and “easy” to find,

the system can be solved more efficiently than with traditional methods [2].

Of course, this only works if the observations were complex numbers, i.e. if there was

no loss in system measurement. To compensate, each observation ai is physically conducted

by four (4) trigonometric observation vectors, triangulating up to a global phase. Thus,

m = 4M measurements are truly required to reconstruct x.

The main contribution by Pedarsani, Lee, Ramchandran was to invent a random construc-

tion process of ai’s where singletons can be efficiently determined and “colored”, interleave

a clever triangulation to compensate for magnitude-only observations, and conduct a pre-

liminary analysis of the success of their family of algorithms, dubbed “PhaseCode”. Their

first algorithm, using regular graphs, has high levels of success with O(K) measurements,

and solves the system of equations in O(K) time. Moreover, this algorithm has been shown

to be experimentally successful in at least one setting [8].

FIG. 2. From Pedarsani, Lee, Ramchandran [2]. The measured runtime of their compressive phase

retrieval algorithm is linear with K (sparsity), and seemingly independent of N (dimension).
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FIG. 3. From Pedarsani, Lee, Ramchandran [2]. Using m = 4M measurements, probability of

successful reconstruction nears unity as M nears 3.5K (m = 14K measurements). In particular,

using M = 3.32K and the third column of the table, they measure 3.2× 10−6 chance of error.

The task, now, is to use this algorithm in a quantum mechanical setting. The simplest

conversion is to convert each of the m observation vectors ai to some measurement operator

Pi. I do so by creating one quantum measurement P = {Pi}, where the first m measurement

operators are chosen to be Pi = αiaia
ᵀ
i . In order to enforce

∑
i P
†
i Pi =

∑
i Fi = I, I add one

measurement operator, Pm+1, such that P †m+1Pm+1 = Fm+1 = I −
∑m

i=1 Fi. The quantum

measurement P then has m + 1 possibilities, with each index i occuring with probability

‖Pix‖2. Thus, the observation |<ai, x>| = ‖Pix‖
αi‖ai‖ can be estimated by repeated sampling via

measurement P .

Such a scheme is always possible. Normalization constants αi ∈ R are chosen to enforce

positive-semidefiniteness of Fm+1. A constructive proof is below (done by the author):

If the eigenvalues σ(A) of matrix A are {λi}, then the eigenvalues of I −A are {1− λi}.

(This is straightforward, since A and I − A share eigenvectors: If (A − λI)v = 0, then

(−A− (−λ)I)v = 0, so ((I −A)− (1− λ)I)v = 0.) Additionally, for Hermitian matrices H,

the maximum eigenvalue λmax is the maximum value of <v,Hv> = v†Hv given a normalized

vector v; in other words, λmax(H) = sup‖v‖=1v
†Hv. Thus, a triangle inequality holds:

λmax(H1 + H2) ≤ λmax(H1) + λmax(H2), with equality only when eigenvectors are shared.

Since Fi = P †i Pi, matrices Fi(1 ≤ i ≤ m) are guaranteed to be positive semidefinite (and its

eigenvalues guaranteed to be real). Here, Pi = αiaia
ᵀ
i , so Fi = a?i a

†
iα

?
iαiaia

ᵀ
i = α2

i ‖ai‖2aia
†
i .
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By the above, λmin(Fm+1) = 1 − λmax(
∑m

i=1 Fi), which must be greater than 1 −∑m
i=1 λmax(Fi) by the triangle inequality. Choosing α2 < m−1‖ai‖−2λmax(aia†i )−1 enforces

that λmin(Fm+1) ≥ 1 −
∑m

i=1 λmax(Fi) > 1 −
∑m

i=1
1
m

= 0, guaranteeing all eigenvalues

of Fm+1 to be positive. Thus, it is possible to construct a positive definite Fm+1, which,

via Cholesky decomposition, guarantees an operator Pm+1 (and thereby a proper quantum

measurement P = {Pj}, 1 ≤ j ≤ m+ 1) from any set of observation vectors ai, 1 ≤ i ≤ m.

Simulations are conducted to estimate observations Oi = |<ai, x>|. In this setting, the

m measurements conducted by observation vectors ai are converted into one (1) quantum

measurement P . Here, repeated sampling is required to estimate the probability ‖Pix‖2 of

each index i occurring. Theoretically, infinite samples are required to noiselessly estimate

each observation Oi = |<ai, x>| = ‖Pix‖
αi‖ai‖ . By the CLT, l samples of an binary indicator

with probability p will approximate as p̂ ∼ N (p, p−p
2

l
). Thus, repeated sampling using P

will approximate each observation as Ô2
i ∼ N (O2

i ,
‖Pix‖2−‖Pix‖4

α4
i ‖ai‖4l

).

A standard simulation is conducted as follows: Using m observation vectors from the

PhaseCode algorithm, construct the m+ 1 quantum measurement operators in the scheme

described above. Then, measure l samples: For each sample, randomly select one of the

measurement operators in accordance with its probability ‖Pix‖2. For each index i, estimate

its occurrence probability ‖̂Pix‖2 as the number of selections of outcome i per sample size l.

Thus, observation i is estimated as Ôi =

√
̂‖Pix‖2

αi‖ai‖ . Relative error for outcome i is computed

as |Oi−Ôi|
Oi

, and average relative error of nonzero observations (ARE) is computed.

Because the simulated scheme guarantees a proper quantum measurement (by guaran-

teeing positive-definiteness of Fm+1 = P †m+1Pm+1), it may not be the most effective for

finite sampling. In particular, simulations consistently had outcome m + 1 occurring more

than 99% of the time - vastly increasing the number of required samples for precise mea-

surements. (Since many outcomes had occurrence probability less than .001, more samples

are required to achieve granularity in frequency counts across outcomes.) This leads to

higher-than-optimal ARE per sample.

This process reduces the importance of the number of observation vectors ai needed to

reconstruct x - this simply adjusts the number of possibilities of quantum measurement P .

Instead, the important metric is decoding time - as the system size (i.e. n, number of qubits)

grows, the number of equations needed to reconstruct an arbitrary x grows exponentially

with n, but algorithms that take advantage of sparsity in x can do much better. In particular,
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FIG. 4. Simulated average relative error of quantum measurement P as compared to classical

y = |Ax| of a K-sparse state vector. Approximately, ARE ∝ l−2, where ARE is the average

relative error over nonzero observations. In this image, the dimension N = 128 = 27.

PhaseCode algorithms have decoding time O(K) - independent of system size! Thus, for

arbitrarily large systems, sparse vectors can be reconstructed efficiently.

There is some caveat - noiseless PhaseCode algorithms have decoding time O(K), but it

is impossible to theoretically achieve noiseless observation without infinite sampling. Practi-

cally, however, there may be a happy tradeoff between l and runtime - in fact, there may be

an lower bound on l such that PhaseCode algorithms will still work with high probability.

Preliminary simulations suggest such a possibility for large K; future construction-process

adjustments and analysis may help discern this tradeoff.

Additionally, noisy PhaseCode algorithms exist, with preliminary algorithms using

O(K logN) measurements and decoding with efficient (non-exponential) runtime [2]. There

may be future robust PhaseCode algorithms able to handle this noise. In general, compres-

sive phase retrieval solutions, robust to some noise, can be applied to quantum information

in the above construction process from ai to P . Even multi-stage solutions, where future ai

depend on previous ai, can be constructed using multiple quantum measurements Pj. For

quantum information, there may be more practical or realizable compressive phase retrieval
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solutions than PhaseCode - even if so, this process is potentially useful. Future work should

be devoted to practical tradeoffs and process improvements - what is the best quantum

compressive technique that minimizes both sample size l and decoding time?

Thus, developments in compressive phase retrieval could be transformative for quantum

information; as systems scale, a replacement reconstruction tool for quantum tomography

is required. Even with limitations such as the No-Cloning Theorem, compressive techniques

have possibilities in verifying quantum circuits and processes, protecting from interference,

and estimating systematic and localized error. Solutions from other research fields may be

ripe for quantum information. Here, I have used an information-theoretic solution to the

compressive phase retrieval problem to develop an asymptotically efficient quantum compres-

sive reconstruction process. This decoding process is as fast as the phase-retrieval solution:

order-optimal time O(K). Preliminary simulations show that although some estimation

error exists, it decreases with sample size l - there may be some happy practical tradeoff

with noiseless algorithms given high l. Analysis of noise-robust algorithms may be required

in the future for this result be practically useful. The quantum measurement construction

process may also have other practical improvements to reduce estimation error under finite

l. Overall, quantum compressive state reconstruction techniques provide a friendly space to

pair computer science theory research with relevant applications.

The author would like to acknowledge Ramtin Pedarsani, Kangwook Lee, and Kannan

Ramchandran for willingness to discuss their algorithm and its quantum implications; Kevin
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FIG. 5. Simulation plots of frequency of each measurement outcome and relative error of each

observation Ôi−Oi
Oi

with K = 5, 10, 20. In this schema, Fm+1 was chosen to guarantee positive-

definiteness, which causes a high occurrence probability (typically > 99%), reducing granularity

of other outcomes and increases the error. (Outcome m+ 1 is not pictured in the graphs, as it is

not used to reconstruct x). More clever choices of Fm+1 could ameliorate this issue. If the relative

error of observation i is 1.0, then the quantum measurement Ôi incorrectly output 0 (also caused

by low granularity of outcomes 1 ≤ i ≤ m. In this image, l = 105 samples and the dimension

N = 128 = 27. 10



FIG. 6. Simulation code attached for reference.
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FIG. 7. Simulation code attached for reference.
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