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Backstory

Quantum information is interdisciplinary
EECS algorithm, Physics student, Chemistry professor

“We're onto something,
but we don’t know enough” Qg
q, &



Compressive Sensing

Efficiently
reconstruct
complex signal

Key condition:
Sparsity

2 Fill in the dots

1 Undersample

A camera or other  An algorithm
device captures called /4

only a small, minimization starts
randomly chosen by arbitrarily
fraction of the picking one of the
pixels that effectively infinite
normally compriseé  number of ways to
a particular image. fill in all the

This saves time missing pixels.

and space.

3 Add shapes

The algorithm then
begins to modify
the picture in
stages by laying
colored shapes
over the randomly
selected image.
The goal is to seek
what's called
sparsity, a
measure of image
simplicity.

4 Add smaller
shapes

The algorithm
inserts the
smallest number
of shapes, of the
simplest kind, that
match the original
pixels. If it sees
four adjacent
green pixels, it
may add a green
rectangle there.

Photos: Obama: Corbis; Image Simulation: Jarvis Haupt/Robert Nowak

5 Achieve clarity

Iteration after
iteration, the
algorithm adds
smaller and
smaller shapes,
always seeking
sparsity.
Eventually it
creates an image
that will almost
certainly be a
near-perfect
facsimile of a hi-
res one.



Sparsity

In some domain, signal is k-sparse
/ 1
L)
e.g. a k-sparse vector
has k non-zero elements

T O O OO



What makes this tricky

Need phase to reconstruct signal...

But can only get
magnitudes!

vi = |(ai, T)



Compressive Sensing Procedure

1. Carefully design measurement vectors(,
2. For each (1;, measure signal; send to decoder

_ 1 measurement
k-sparse, I nd measurement
unknown pe a se — decoder
— result
vectora; y /

output g_g’



Motivation for Approach: PhaseCode

UC Berkeley EECS: Prof Ramchandran
compressive sensing made for light detection

Time Comple: Unicolor PhaseCode
§ 40, T T
m e as u re m e n s § & Measured Runtime of Unicolor PhaseCode
---Linear Fit
8 30 -

O(K) decoding time

820
b=

Pedarsani, Lee, Ramchandran 2014 arXiv 1408.0034




Porting to QM: Requirements

-reconstruct some sparse vector

-can measure vector numerous times, with
arbitrary @; (as decided by the compressive
sensing algorithm)

-retrieve only real results1j; € R



Compressive Sensing = QM?

signal = state vector

sparsity = most collapsed states impossible
7]000)+7|001)+7|010) + 0|011) + ?|100) + 0|101) + 0[110) + 0|111)

Use cases:

Circuit Verification: Only entangling k qubits

Error/Interference: Finding localized noise

more?



State reconstruction in QM

Determine |1)> from discrete set of possibilities

Quantum Hypothesis Testing
Unambiguous state discrimination

Repeated measurement to estimate |¢)>

Quantum Tomography

Quantum Process Tomography
Chefles 2000 arXiv quant-ph/0010114



Applications of state reconstruction

Quantum Circuit Design

T |ﬂY\ 1)
circuit verification i Do
Error Correction
random noise (i.e. stray B-fields)
Interference ) —p—g— —a
. . |0> N Ebit GLJ ¥
adversarial noise 0) s &

bit-flip codes, parity checks



1000-qubit operation
— 21000 10300

Goal: Determine systematic noise
(alters at most 10 qubits)

| k< 10
State vector is sparse!
Good candidate for compressive sensing



QM Challenges

Quantum Collapse

measuring the state disturbs the state!
No Cloning Theorem

can’t copy state, have to recreate

Operators Z At M, =1
must sum to identity n k



New setting: qubits

Modified PhaseCode pipeline

e Converted classical measurement vectorsd;
into quantum measurement operators A ;
e 1 QM measurement, repeated sampling to
. > —| 2
obtain 9y, : each operator occurs w.p}Ax|

Maintains order-optimal decoding time O(K)



Modified Pipeline

1. Prepare many state vectors X' : measure each with M
2. From probability distribution, estimate |AZ|*, then ¥;

Repeated 7

calculated
prepare many _w sampling with %om
k-sparse, quantum —> orobability 7 measurement
"ep:"ducﬂe measurement distribution ~ 9°cCder
vectors _ .

output f



Analysis

Operators: sum to identity SoAla =1
Normalized appropriately A; = aiaiag ¢
Proven: This is always possible!

Prepared samples: used to estimate y;
more samples = better estimation

Extendable

any robust compressive sensing algorithms can be used
**could trade runtime for ease of implementation™*



Challenges & Further Discussion

Practical considerations

how do we build measurement operatorsAZ' ?

which qubit construction processes could use this?

optimizing algorithm for low-entanglement operators &
estimation error

New domains

other useful settings for QM + compressive sensing?
mixed-state algorithms
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Thanks to Pedarsani, Lee, Ramchandran for the Campanile image!
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