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1 Introduction

Consider a 1-dimensional shock in a y-law (adiabatic, v > 1) ideal gas. In the frame of the shock, the flow is

steady before and after the shock front. Over long distances, any terms that go % will be small, such as 7

(viscosity) and Fiong (conductive flux). So, the continuity, momentum, and energy equations are as follows:

Loy =0 @
a%;(pu2 +P)=0 (2)
%(pu(%zﬁ +e)+uP)=0 (3)

In the above, P is pressure, p is density, u is bulk velocity, and € is internal energy. These are functions of
space, but not of time, since the flow is steady in this frame.

2 Internal energy

In general, the following equation holds:

mde = —PdV + TdS (4)
For a given mass, we know 4V = d(%) = —%, and for an adiabatic gas, dS = 0. Thus,
P
For an adiabatic gas, P = Kp" for some K, so we can take the full integral:
Kp7 1 1 P
e:/dez/ 2 dp=——Kpt=——"= (6)
p y—1 y—1p

For equation [6] we ignore the integration constant, assuming e = 0 at p = 0.
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3 Combining equations

Given equation |§|, the energy equation (equation [3) becomes the following:

g(pu(%uz) + uP) =0 (7)

ox v—1
Equations and can be rewritten as invariants, where A, B, and C' are conserved quantities (constants)
based on initial conditions:

pu=A (8)
pu> + P =R (9)

1
pu(5u®) + leupzc (10)

We can substitute equation [§in the others to remove dependence on p:

Au+ P =B (11)
Au? v
— P=C 12
Removing dependence on P, we have an equation quadratic in wu:
Au? v A(y+1) By
C="— B — Au) = — 2 13
5 +771u( w) 2(V71)u +771u (13)

What’s surprising here is that there can be at most 2 (real) values for w, given initial conditions (which
include u before the shock!). Hopefully the other value of u exists, and matches with our physical intuitions.

4 Ratio of quadratic equation solutions

The solutions for a quadratic equation az? +bx + ¢ = 0 are of the form z = =bEvr’—dac Vzlf_‘mc. If we are interested
in the ratio of the two solutions (call them z; and 9, it doesn’t matter which is larger):
—b, 1
Tr_tatm g ZH L (14)
X1 X1 a I
So, given equation [I3] we can find:
2B 1 2 B
U2 2P 2 20 2y (15)
u  Aly+1)w v+ 1" Aug
This is a strange form, but we will exploit some nice properties of A%L.
B P P 1cg? 1
— =1 =1 — =1 — =1 16
Au + Au + pu? v u? + ~yM? (16)

In equation cs is the sound speed a%P (which is ,/7% for a v-law ideal gas), and M is the (dimen-

sionless) Mach number . Note that neither are conserved quantities, i.e. they vary across space.



We can also check how many solutions exist with the sign of b2 — 4ac. Remember that v > 1.
B?%4? 2AC(y+1)

(y—1)? -1

Substituting in B2 = A%u? + 2P Au + P2%, and 2AC = A%u? + ﬁ(QPAu) from equations |11 and

sgn(b* — 4ac) = sgn( ) = sgn(B?*~* —2AC(y* — 1)) (17)

2P Au

sgn(b* — 4ac) = sgn(v*(P? + )+ 2AC) = sgn(y?P? 4+ 2yPAu + 2AC) (18)

We typically consider P and p as positive quantities (so Au = pu? > 0), thus AC is positive. So, b>—4ac > 0:
there are always two real solutions.

5 Putting it all together

Plugging equation [16|into equation we arrive at the Rankine-Hugoniot jump conditions:

U 2 1 -1 2
2o Dy —g) 1=+ 5 (19)
up v+l yMy Y+1  (y+1)M
The other ratios % and % now fall out easily:
p2_Awm_m O+ DM (20)
pr ouz A w24 (y—1)M;?
P, B-A 1+ ) — 2 2 ~1
72: u9 _ 'YM112) 1 :’}/Mlz(l—%)—‘rl: Y M12_’Y (21)
P, B-—-Auy (1+VMIQ)—1 u1 v+1 y+1
We can check that the two solutions make physical sense, by considering Mo in terms of M;. Since M? =
uw? _ u’p,
cs2 T 4P

M® _upp P _wa Py 2+ (y—1)M* phut (22)
M? w’p Py ui Py (v+ 1M 29M* —(y—1)
Some terms cancel, and we can write M5 in terms of M;:
2 2+ (y-)M? -1 H+(y-1°  _y-1 v+l y+1 (23)
29My? —(y—1) 2y 42MP-29(v—1) 2y 2y 2yMy® —y+1

When My = M,? =1, My? = % = 11—3 =1 also. From there, increasing M; (which increases M?)
will decrease M3 (and the positive root Ms). So whenever M; is supersonic (as it should be before the

shock), My (describing flow after the shock) is subsonic. Nice! This matches physical intuition.

For hard shocks (as in supernovae), M; >> 1, so My? — "’2—_71 This surprises me: why would the post-shock

flow approach a particular proportion of the (post-shock) sound speed?

6 Conclusion

Given the fundamental equations of fluid dynamics and some simplifying assumptions, we can describe the
rough depiction of flow before and after a shock front. We solve by systematically removing variables and
simplifying the quotient Z—f just as a function of initial Mach number. We then guarantee the solutions of
P, p, and u exist for our purposes and make physical sense.

If something in this document is unclear, please let me know at marwahaha@berkeley.edu .
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