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1 Introduction

Consider a 1-dimensional shock in a γ-law (adiabatic, γ > 1) ideal gas. In the frame of the shock, the flow is

steady before and after the shock front. Over long distances, any terms that go ∂
∂x will be small, such as τ

(viscosity) and Fcond (conductive flux). So, the continuity, momentum, and energy equations are as follows:

∂

∂x
(ρu) = 0 (1)

∂

∂x
(ρu2 + P ) = 0 (2)

∂

∂x
(ρu(

1

2
u2 + ε) + uP ) = 0 (3)

In the above, P is pressure, ρ is density, u is bulk velocity, and ε is internal energy. These are functions of

space, but not of time, since the flow is steady in this frame.

2 Internal energy

In general, the following equation holds:

mdε = −PdV + TdS (4)

For a given mass, we know dV
m = d( 1

ρ ) = −dρ
ρ2 , and for an adiabatic gas, dS = 0. Thus,

dε =
P

ρ2
dρ (5)

For an adiabatic gas, P = Kργ for some K, so we can take the full integral:

ε =

∫
dε =

∫
Kργ

ρ2
dρ =

1

γ − 1
Kργ−1 =

1

γ − 1

P

ρ
(6)

For equation 6, we ignore the integration constant, assuming ε = 0 at ρ = 0.
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3 Combining equations

Given equation 6, the energy equation (equation 3) becomes the following:

∂

∂x
(ρu(

1

2
u2) +

γ

γ − 1
uP ) = 0 (7)

Equations 1, 2, and 7 can be rewritten as invariants, where A, B, and C are conserved quantities (constants)

based on initial conditions:

ρu = A (8)

ρu2 + P = B (9)

ρu(
1

2
u2) +

γ

γ − 1
uP = C (10)

We can substitute equation 8 in the others to remove dependence on ρ:

Au+ P = B (11)

Au2

2
+

γ

γ − 1
uP = C (12)

Removing dependence on P , we have an equation quadratic in u:

C =
Au2

2
+

γ

γ − 1
u(B −Au) = −A(γ + 1)

2(γ − 1)
u2 +

Bγ

γ − 1
u (13)

What’s surprising here is that there can be at most 2 (real) values for u, given initial conditions (which

include u before the shock!). Hopefully the other value of u exists, and matches with our physical intuitions.

4 Ratio of quadratic equation solutions

The solutions for a quadratic equation ax2 + bx+ c = 0 are of the form x = −b±
√
b2−4ac
2a . If we are interested

in the ratio of the two solutions (call them x1 and x2, it doesn’t matter which is larger):

x2
x1

=
x2 + x1
x1

− 1 = (
−b
a

)
1

x1
− 1 (14)

So, given equation 13, we can find:

u2
u1

=
2Bγ

A(γ + 1)

1

u1
− 1 =

2γ

γ + 1
(
B

Au1
)− 1 (15)

This is a strange form, but we will exploit some nice properties of B
Au .

B

Au
= 1 +

P

Au
= 1 +

P

ρu2
= 1 +

1

γ

cs
2

u2
= 1 +

1

γM2
(16)

In equation 16, cs is the sound speed
√

∂
∂ρP (which is

√
γ Pρ for a γ-law ideal gas), and M is the (dimen-

sionless) Mach number u
cs

. Note that neither are conserved quantities, i.e. they vary across space.
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We can also check how many solutions exist with the sign of b2 − 4ac. Remember that γ > 1.

sgn(b2 − 4ac) = sgn(
B2γ2

(γ − 1)2
− 2AC(γ + 1)

γ − 1
) = sgn(B2γ2 − 2AC(γ2 − 1)) (17)

Substituting in B2 = A2u2 + 2PAu+ P 2, and 2AC = A2u2 + γ
γ−1 (2PAu) from equations 11 and 12:

sgn(b2 − 4ac) = sgn(γ2(P 2 +
2PAu

γ
) + 2AC) = sgn(γ2P 2 + 2γPAu+ 2AC) (18)

We typically consider P and ρ as positive quantities (so Au = ρu2 > 0), thus AC is positive. So, b2−4ac > 0:

there are always two real solutions.

5 Putting it all together

Plugging equation 16 into equation 15, we arrive at the Rankine-Hugoniot jump conditions:

u2
u1

=
2γ

γ + 1
(1 +

1

γM1
2 )− 1 =

γ − 1

γ + 1
+

2

(γ + 1)M1
2 (19)

The other ratios ρ2
ρ1

and P2

P1
now fall out easily:

ρ2
ρ1

=
A

u2

u1
A

=
u1
u2

=
(γ + 1)M1

2

2 + (γ − 1)M1
2 (20)

P2

P1
=
B −Au2
B −Au1

=
(1 + 1

γM1
2 )− u2

u1

(1 + 1
γM1

2 )− 1
= γM1

2(1− u2
u1

) + 1 =
2γ

γ + 1
M1

2 − γ − 1

γ + 1
(21)

We can check that the two solutions make physical sense, by considering M2 in terms of M1. Since M2 =
u2

cs2 = u2ρ
γP :

M2
2

M1
2 =

u2
2ρ2

u12ρ1

P1

P2
=
u2
u1

P1

P2
=

2 + (γ − 1)M1
2

(γ + 1)M1
2 · γ + 1

2γM1
2 − (γ − 1)

(22)

Some terms cancel, and we can write M2 in terms of M1:

M2
2 =

2 + (γ − 1)M1
2

2γM1
2 − (γ − 1)

=
γ − 1

2γ
+

4γ + (γ − 1)2

4γ2M1
2 − 2γ(γ − 1)

=
γ − 1

2γ
+
γ + 1

2γ
· γ + 1

2γM1
2 − γ + 1

(23)

When M1 = M1
2 = 1, M2

2 = 2+(γ−1)
2γ−(γ−1) = 1+γ

1+γ = 1 also. From there, increasing M1 (which increases M2
1 )

will decrease M2
2 (and the positive root M2). So whenever M1 is supersonic (as it should be before the

shock), M2 (describing flow after the shock) is subsonic. Nice! This matches physical intuition.

For hard shocks (as in supernovae), M1 >> 1, so M2
2 → γ−1

2γ . This surprises me: why would the post-shock

flow approach a particular proportion of the (post-shock) sound speed?

6 Conclusion

Given the fundamental equations of fluid dynamics and some simplifying assumptions, we can describe the

rough depiction of flow before and after a shock front. We solve by systematically removing variables and

simplifying the quotient u2

u1
just as a function of initial Mach number. We then guarantee the solutions of

P , ρ, and u exist for our purposes and make physical sense.

If something in this document is unclear, please let me know at marwahaha@berkeley.edu .
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