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Abstract. The sensitivity of the visual system to motion of differentially moving random dots was
measured. Two kinds of one-dimensional motion were compared: standing-wave patterns where dot
movement amplitude varied as a sinusoidal function of position along the axis of dot movement
(longitudinal or compressional waves) and patterns of motion where dot movement amplitude varied
as a sinusoidal function orthogonal to the axis of motion (transverse or shearing waves). Spatial
frequency, temporal frequency, and orientation of the motion were varied. The major finding was a
much larger threshold rise for shear than for compression when motion spatial frequency increased
beyond 1 cycle deg™'. Control experiments ruled out the extraneous cues of local luminance or local
dot density. No conspicuous low spatial-frequency rise in thresholds for any type of differential motion
was seen at the lowest spatial frequencies tested, and no difference was seen between horizontal and
vertical motion. The results suggest that at the motion threshold spatial integration is greatest in-a
direction orthogonal to the direction of motion, a view consistent with elongated receptive fields most
sensitive 1o motion orthogonal to their major axis.

1 Introduction g

Moving random dots have been widely used in the study of human motion sensitivity
(Julesz 1971; Braddick 1974; Lappin and Bell 1976; Nakayama and Tyler 1981). Such
stimuli have two advantages.

First, a dense array of random dots is practically devoid of codable position cues and
thus provides a psychophysical technique for examining early motion processing in
isolation. This point was made by Nakayama and Tyler (1981) who argued that, because
random patterns look indistinguishably random after substantial relative displacement of
their elements (see Attneave 1954; Barlow 1961), psychophysical measures of motion
sensitivity employing these patterns could only be mediated by a motion-sensitive system.
Using such patterns, Nakayama and Tyler (1981) established that the minimum motion
thresholds are not mediated by the same system as that responsible for fine positional
acuity adjustements, ie those mechanisms required for vernier and other static hyperacu-
ity tasks. Sensitivity to very small relative motions has a very different spatial character-
istic than does the sensitivity to small differences in relative position. As such, the use of
random-dot patterns isolates motion sensitivity from the contaminating influences of fine
position sensitivity.

A second advantage of random dots is that they are two-dimensional and essentially
isotropic. This enables one to explore two-dimensional spatial characteristics of motion
processing, an option precluded with the more commonly used one-dimensional stimuli
such as drifting sine-wave gratings. In this paper, we exploit both advantages, providing
information as to how motion information is integrated in two dimensions.

Our general approach is to measure the ability of the observers to sense motion when
different regions of the random-dot pattern are moving at different velocities. Two
general types of differential motion are considered: shearing (or transverse) and compres-
Ston (or longitudinal) waves.
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With shearing waves velocity varies as a sinusoidal function of position in a direction
orthogonal to the local direction of motion. Thus, for vertical shearing waves, the vertical
movement of each point varies as a sinusoidal function of horizontal position and of time:

Ay = Acos(2xf x)cos(2nf 1), (1)
whereas for horizontal shearing motion the velocity of each point varies as a sinusoidal
function of vertical position and of time:

Ax = Acos(2xf, y)cos(2xf 1); (2)

Ax and Ay represent here the change in horizontal and vertical positions of a given
visual point, f, and f, represent the spatial and temporal frequencies of the shearing wave,
and A is the baseline-to-peak displacement.

Compression waves have a complementary characteristic: the velocity of each point
varies in the direction of the local motion vector. Again, two orientations of such waves
were employed, one using horizontal motion:

Ax = Acos(2xf, x)cos(2xf 1), . (3)
the other using vertical motion:
Ay = Acos(2xf,y)cos(2xf1). (4)

Examples of each type of differential motion having different orientations and spatial
frequencies are depicted in figure 1. It should be noted that all moving patterns whose
horizontal and vertical velocity components have Fourier transforms can be represented
as a superposition of shearing and compression waves at different orientations, phases,
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Figure 1. Schematic summary of some of the stimuli used in this study: (a) random-dot pattern
generated in the frame of a CRT; (b) horizontal shearing (or transverse) motion (spatial frequency
1 cycle screen™'); (c) vertical shearing motion (spatial frequency 2 cycles screen” 1); (d) horizontal
compression motion (spatial frequency 1 cycle screen™ "),

Note that for shearing motion (b and ¢) the velocities (lengths of arrows) vary only in a direc-
tion orthogonal to the direction of motion, whereas for compression/rarefaction (d) they vary in the
same direction as the motion. Arrows represent velocities for just one point in time in the sinusoidal
temporal cycle. Thus the direction of each arrow is reversed one half period earlier or later.
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and spatial frequencies (see Appendix 1). Therefore by measuring the sensitivity of the
visual system to shearing and compressional waves we might expect to form a fairly-
complete picture of its threshold sensitivity to moving patterns, at least to the extent that
the motion sensing system can be regarded as approximately linear in its operation.

The major aim of this work was to measure the sensitivity of the visual system to these
two types of differential motion, each at two different orientations. In each case we
concentrated on the influence of spatial frequency (f) in order to reveal the two-
dimensional spatial characteristics of motion processing.

2 Method

The procedure used to create random dots on a cathode ray oscilloscope has been
described elsewhere (Nakayama and Tyler 1981; Nakayama 1981). In brief, a repeating
binary noise sequence modulated the z axis, while synchronized to an x-y raster scan.
Unless otherwise specified, the square screen was viewed at a distance of 2.28 m and
subtended 2.5 deg by 2.5 deg visual angle. Pixel size was 1.9 min visual angle and dark
and light pixels were equiprobable. In any given experimental run, transverse or compres-
sion waves of motion were generated in either vertical or horizontal direction of motion.
The observer's task was to adjust a log potentiometer so that the amplitude of motion was
at threshold.

Shearing motion was imposed by electronically summing an AM-modulated sinusoidal
signal with the fast raster sawtooth waveform, synchronized so that this sine-wave burst
always began at the beginning of the slow raster sawtooth waveform. Compression wave-
forms were imposed by summing the same AM-modulated sinusoidal signal with the slow
raster sawtooth.

Unless otherwise stated, all spatial-frequency tuning functions were obtained at the
temporal frequency (f;) of 2 Hz. This represents the frequency where motion sensitivity
requires the minimum amplitude displacement (Tyler and Torres 1972; Nakayama and
Tyler 1981). Space average luminance of the CRT display was about 15 c¢d m~?;
contrast was approximately 60%. Viewing was binocular.

3 Results
3.1 Perceptual reciprocity between dot luminance and density
With shear (transverse) waves, there is no expansion or contraction of dots per unit area
(no divergence) and dot density remains constant. With compression waves, however, a
special problem exists. Fluctuations in dot density are unavoidable as the dots locally
converge or diverge. This raises the question as to whether compressional motion
sensitivity can be isolated from the visual system's capacity to see local changes in dot
density or changes in local luminance accompanying such changes in density. In other
words, if one obtains a threshold for seeing differential motion in compression waves, it is
essential to rule out the cue of dot density and/or luminance. To deal with this potential
problem, we used a number of independent strategies. Our primary approach was to
determine the capacity of the visual system to detect spatial nonuniformity in a random-
dot pattern as we increased the static compression/rarefaction waveform amplitude. Thus
we varied A in equation (3) and presented the resulting stimulus as a static pattern
(f, = 0). The observer’s task was to detect the variation in density. We wanted to make
sure that this threshold was much higher than the threshold for motion perception and
thus would not contaminate the measurement of motion sensitivity. The relation between
the peak-to-peak compressional amplitude thresholds for seeing this inhomogeneity and
spaual frequency is plotted as the open circles in figure 2.

For very low frequencies, very large amounts of compressional displacement are
nNecessary to see spatial inhomogeneity, whereas this decreases considerably as spatial
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frequency increases. This decrease follows partly from the fact that, for a given compres-
sional amplitude, dot-density variation (p) is proportional to spatial frequency (see
Appendix 2):

p = 2af, Acos(2xf t)sin(2xf,y). (5)

Another way to view these data is to compare them with a line of constant-densiry
modulation or contrast modulation (see diagonal line in figure 2). We found that the
thresholds for seeing spatial inhomogeneity were about an order of magnitude higher
than the ordinary contrast modulation transfer function (MTF) obtained with sinusoidal
luminance gratings. These are comparable to MTFs obtained by others with density
variations in random dots (van Meeteren and Barlow 1981).

Comparison of these thresholds with the compressional motion thresholds (look ahead
to figure 4) shows that for very low spatial frequencies there is a large safety zone,
consisting of an extended range of compressional displacements, which would remain
invisible if viewed statically, although this becomes smaller for higher spatial frequencies.
To have an even greater margin of security for measuring motion sensitivity in isolation.
compensation for dot density by modulation of dot luminance was ittempted.

We reasoned as follows. Suppose we controlled the luminance of each individual dot
so that it was inversely proportional to local dot density. Would this compensation
further reduce our ability to sense density inhomogeneities in random dots?

To answer this question, we used a second sinusoidal signal of the same frequency as
the compressional waveform to modulate the luminance of the bright dots so that the
luminance peak corresponded fo where density was most reduced (see figure 3). Modu-
lation of dot luminance was accomplished by a second AM signal generator phase-locked
to the first AM generator with a phase lead of 90°. Only the bright pixels were luminance
modulated; the ‘floor’ or equiprobable dark pixels remained at the same luminance.
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Figure 2. Control experiment to measure sensitivity to luminance or density variations in random
dots. Open circles: threshold for seeing inhomogeneities in a static compressional/rarefacted
displacement of random dots. Threshold peak-to-peak amplitude of the static compression is
plotted as a function of spatial frequency. Each dot in the visual display is displaced vertically as
a sinusoidal function of vertical position. Filled circles show the threshold for the same task with
luminance compensation [see text and equations (5) and (6)]. Note that this curve is higher than
the uncompensated one, and also note the degree to which one can effectively counteract changes
in dot density with a compensatory modulation of dot luminance. Open triangles represent the
threshold for seeing static differences in dot luminance modulation shown in terms of displace-
ments which would lead to equivalent amounts of brightness modulation. The diagonal line
represents a local space average luminance modulation of 5% for the experiment where either
density alone is modulated or when luminance alone is modulated. Subject DIAM.
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Having obtained the proper spatial-phase relationship between luminance and dot-
density modulation for an arbitrary standard frequency of 1 cycle deg™!, we then
blurred the pattern with a diffusing screen and adjusted the amplitude of the brightess
sinusoid relative to the displacement sinusoid so that it balanced the luminance modula-
tion associated with the density change in random dots. From this we determined a
coefficient of dot luminance (k) which provided the best cancellation of dot density at this
standard spatial frequency. Because of the proportional relation between dot-density
modulation and spatial frequency [as seen by equation (5)], we adjusted the compensatory
luminance sinusoid amplitude (L) for all other spatial frequencies as follows:

L = KA. 6

We then repeated the initial experiment, measuring the ability to see perceptual inhomo-
geneity in random dots with luminance compensation. To our surprise and satisfaction,
such compensation raised density-modulation thresholds over almost the entire range of
spatial frequencies examined (see filled circles of figure 2). So, despite the fact ‘nat
individual dots are visible, variations in dot density can be effectively counteracted by
variations in dot luminance, making patterns with reciprocal modulations of density and
luminance perceptually uniform.

As a final observation in this series of experiments, we also measured the observer's
ability to detect the brightness modulation of the dots when this was varied alone. As
expected, luminance modulation thresholds, when plotted on the same metric, were the
same as for density modulation, as can be seen from the open triangles in figure 2.

Aside from providing an important control for compressional movement, essentially
eliminating variations in locally perceived brightness, the feasibility of substituting
luminance for dot density despite the visibility of the dots suggests that total flux is
integrated linearly, over a local retinal area, which is much larger than the area of a single
pixel. Furthermore, the degree to which luminance can successfully compensate for dot
density at a given spatial frequency (see difference between the upper curve in figure 2
and either of the two bottom curves) is an indication of the size of such linear summation
units. The existence and nature of such linear summation units can be considered as a
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Figure 3. Pictorial description of the scheme to produce luminance compensation. A shows the
profile of horizontal velocity, a function of horizontal position. B shows a corresponding profile
of dot density, and C shows the compensatory luminance signal required to remove local varia-
tions in Juminance. D and E represent the perceived uniformity of the field in terms of brightness
and density, respectively. The figure does not show that velocity and dot density are in temporal
as well as spatial quadrature.
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separate subject distinct from moton sensitivity, however, and is being separately
pursued (Mulligan and MacLeod 1984).

3.2 Spatial frequency functions for compression and shear waves

Having found an effective technique to minimize the cue of dot density by luminance
compensation, we were in a favorable position to make our primary set of observations,
the ability to see motion in shear and compression waves of different spatial frequencies.
The basic results can be seen in figure 4. The open symbols show the change in differen-
tial shearing sensitivity as spatial frequency is varied. Note that for both horizontal and
vertical shearing motion the curve is essentially the same, remaining flat between 0.1 and
1.0 cycle deg™' and then rising rapidly as spatial frequency is increased. As such, the
data confirm and extend the work of Nakayama and Tyler (1981).

The relation between compressional thresholds and spatial frequency is shown by the
filled symbols. Although compressional motion thresholds also rise above 1 cycle deg™',
they do so much more slowly. At 3 cycles deg™', for example, the threshold for com-
pressional motion is one-half that for shear and this difference increases for even greater
spatial frequencies. Also important to note is the lack of any systematic difference
between vertical and horizontal compression waves.

The results for two other observers (KN and JS) were the same in all essential respects,
showing the same quantitative difference between shear and compression waves at high
frequencies, no difference at low spatial frequencies, and the lack of any differences
between horizontal and vertical motion.

At this point it is important to describe the subjective characteristics of near-threshold
motion above 2.5 cycles deg™'.:Instead of seeing the moving panels at the veridical-
spatial frequency, observers often saw larger widths of coherently moving panels. This
tendency was slightly more pronounced for compressional than for transverse motion.

A final point concerns the issue of dot density or local luminance, already mentioned
as potential sources of contamination with regard to compressional thresholds. The
dashed line on the top of figure 4 shows that the compensated static dot-density
thresholds (taken from figure 2) are well above the thresholds obtained for compres-
sional motion, exceeding them by a factor of 4. Thus, it is unlikely that the lower
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Figure 4. Spatial-frequency tuning characteristics of compression/rarefaction and shearing motion,
each for horizontal and vertical motion. Lowest curve (solid symbols) shows the compressional
thresholds, middle curve (open symbols) shows the shearing thresholds. Dashed upper curve
shows the threshold for static dot ‘inhomogeneity’ with luminance compensation (taken from
figure 2). Subject DIAM.
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thresholds seen for compressional motion are determined by the sensitivity to static
inhomogeneities.

3.3 Temporal frequency

Having obtained a clear-cut difference between compressional motion and shearing
motion at higher spatial frequencies, we thought it instructive to compare the two in their
dependence on temporal frequency. This provides a technique for determining whether a
given set of displacements is mediated by a minimum velocity or position (Tyler and
Torres 1972; Nakayama and Tyler 1978, 1981).

Should the system be sensitive to position or local density at the compressional motion
threshold, one might expect that thresholds over a range of low temporal frequencies
would be constant. Figure 5 shows that this is not the case. Threshold amplitude varies
inversely with temporal frequency below 1 Hz (having a low-frequency slope of — 1 in
log-log coordinates), a relation established for shearing motion (Nakayama and Tyler
1981). This finding is in agreement with the view that compressional motion thresholds
also require a minimum velocity rather than a minimum displacement. In this regard,
both compressional and shearing motion appear to have the same temporal frequency
characteristics, a result consistent with the view that they are mediated by the same
velocity-sensitive mechanism.
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Figure 5. Temporal-frequency tuning function for compressional motion. Spatial frequency is
2.5 cycles deg™'. Subject KN. Solid line represents a slope of =1, data parallel to this line
indicate a sensitivity to a minimum velocity, not a minimum position.

3.4 Trellis experiment

Here we provide independent evidence for differences in sensitivity to compressional and
shearing motion, using a stimulus which undergoes no change in dot density. In this
experiment separate panels of random dots were demarcated by a 2 min visual angle
thick-‘trellis’ of opaque bars placed in front of the screen. Each panel subtended a height
of 10 min. In contrast to the previous experiment, motion within each panel was uniform,
and thus represented a patch moving rigidly with no change in dot density. For the trans-
verse case each panel moved as a rigid unit alternately to the right and then to the left.
For compressional motion each alternate panel moved as a rigid unit but in the opposite
vertical directions (see figure 6a). Without the trellis, compressional motion as defined
above would have regions of perceptible dot overlap and dot separation. It is these other-
wise visible changes in dot density that are effectively hidden behind the trellis. Figure 6b
shows a twofold difference in threshold for the two different types of motion for two
subjects, approximately the same difference as seen in figure 2 for the equivalent spatial

frequency of 2.5 cycles deg™'.
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Figure 6. Trellis experiment. (a) Alternating panels with dots moving left and right (shearing) or
down and up (compression). (b} The threshold for seeing shear and compression for two subjects.

3.5 Counter-rolling cylinder experiment

The technique of luminance-density compensation and the trellis experiment were
introduced to deal with the problem of the spatial variation in dot luminance and dot
density that arises during compressional motion. Separate and rather implausible objec-
tions could be raised against each of these control experiments because it could be
argued neither completely eliminates artefactual cues that might disclose the presence of
compressional motion. It could also be argued that in the trellis experiment partial
occlusion of individual pixels at the boundaries of the occluding trellis might conceivably
provide a cue, although this is very unlikely since each pixel will move about 2.5to 3 s
visual angle with respect to the trellis, a figure half the overall motion threshold and
generally well below the vernier threshold. It could be also be argued that the luminance
compensation experiment does not eliminate changes in pixel density but only minimizes
their detectability. Changes in density are indeed inevitable when motion that is non-
uniform (in the direction of the motion) is applied to an initially uniformly dense dot
field. They can, however, be avoided by making the dot density initially nonuniform, with
a spacing everywhere proportional to the velocity of the applied motion. When the
motion stimulus is a spatial sinusoid, this means making the dot spacing (and pixel size) a
sinusoidal function of position, with the same frequency and orientation and phase going
to zero at the places where there is no applied motion. The resulting stimulus can most
easily be imagined by picturing an array of contiguous rollers in a distant, frontoparallel
plane, with a uniform random-dot texture on their surfaces (figure 7). Each roller
represents half a cycle of our spatial sine wave. Dot spacing from the observer’s stand-
point follows the same sine wave (or more accurately, the full-wave rectified version of it
shown in figure 7). When the rollers are set in motion, adjacent rollers rotate in opposite
directions and the velocity is a sinusoidal function of position. The dot density at any
fixed point in the observer’s image of the rollers, however, is unaffected by the motion. It
should also be mentioned that such a stimulus also removes the occlusion cue accom-
panying motion in the trellis experiment.

To produce a roller-like stimulus on a video display, we simply replaced the usual
linear raster sawtooth with a waveform obtained by integrating the rectified sine wave of
figure 7. The trace accelerates and decelerates sinusoidally, executing a stop of infini-
tesimal duration at each zero crossing of the sine wave; trace velocity, and hence pixel
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size and spacing, are given by the rectified sine wave appropriate to the orthographic
projection of a set of rollers. Motion is introduced in the usual way by adding the
amplitude-modulated motion sinusoid to this modified raster waveform.

Despite the dissociation of density change and motion made possible by this stimulus,
our results with it show detection thresholds similar both in their magnitude and in their
spatial-frequency dependence to those of compressional motion seen in figure 4. This
supports our assumption that the threshold differences between sinusoidal shear and
compression are indeed motion thresholds and are unrelated to density or occlusion
changes per se.

“Roller” stimulus

Figure 7. Counter-rolling 'rolling-pin’ experiment: an electronic simulation of a set of rolling pins in
which alternate pins rotate clockwise and anticlockwise, respectively, with a constant angular veloc-
ity, viewed from optical infinity. Note that the density of pixels and velocity vary accordingly.

4 Discussion

4.1 Shear versus compression

Our major finding is that there is a fundamental difference between the sensitivity to
shear and that to compression waves. Because this difference is equally apparent for
horizontal and vertical motion, it indicates that it is a spatial phenomenon defined with
respect to the direction of motion and not due to any intrinsic difference between
horizontal and vertical motion. The most prominent finding, of course, is the large
difference between the two types of differential motion at high spatial frequencies. For
shearing motion, sensitivity falls off rapidly as spatial frequency is increased, extending
and confirming Nakayama and Tyler's (1981) results. For compression waves, however,
sensitivity falls off much more slowly as spatial frequency is increased.

The fall-off function of shearing waves indicates the extent of spatial integration of
movement information in the direction orthogonal to the motion, whereas the fall-off
function for compression waves is indicative of spatial integration along the axis of
motion. Looked at in this manner, it appears that spatial integration of movement
information is highly anisotropic. Such results are consistent with the view that motion
detecting units have elongated summation regions with a major axis orthogonal to the
most sensitive or preferred direction of motion.

An elongated unit that is sensitive to motion immediately suggests the concept of the
cortical receptive field as originally described by Hubel and Wiesel (1968). At this point,
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however, it is possible to be more precise as to the meaning of an elongated receptive
field. Consider the case where we have an elongated unit which sums luminance lineariy
over the receptive field. This is a formal restatement of Hubel and Wiesel's original idey
of a simple cell where the response to a line was conceived as the sum of responses 10
individual spots, weighted by the sensitivity associated with each spot. Such a summation
of luminance could provide the ‘input’ to a detector of motion. Cortical ‘simple’ cells are
anisotropic in terms of luminance summation and could be best activated by patterns of
light or dark aligned with the receptive field axis.

Would such a system explain our difference in results between high-frequency shear
and compression waves? We think not. With random dots all configurations of dots
within a local region are equally probable. This being the case, there are an equal number
of situations where transverse motion can increase the linear alignment of bright dots
with an ‘on’ receptive field as it would with a compressional motion of the same
amplitude, and this is independent of spatial frequency. This being the case, we argue that
the observed differences seen between shearing and compressional motion are not the
result of an elongated luminance-summation mechanism but must be the result of spatial
interaction at a higher level where directional selectivity is operative.

A more plausible model is similar to that of Barlow and Levick (1965) based on rabbit
intraretinal recordings. In this instance, small subunits, capable of sensing motion only
over a small distance, were hypothesized to pool their outputs to form a much larger.
roughly circular, receptive field. Our results suggest first that the summation region is
elongated rather than circular, and second that within the summation region the signals
associated with areas moving inopposite directions can cancel or mutually inhibit one
another. These assumptions are essential in order to account for the pronounced loss of
sensitivity to high-frequency shearing motion.

4.2 Limits of anisotropic spatial integration
Although we have seen anisotropic spatial integration under all conditions described so
far, it should be mentioned that it does not generalize to two additional experiments.

In the first of these we made measurements of the apparent velocity of suprathreshold
moving shear patterns, matching the velocity to a field of uniformly moving random dots.
In no cases did we see a decrease in apparent velocity for high-spatial-frequency shear
patterns, indicating that the high-frequency fall-off in threshold seen for shear patterns
applies only at the motion threshold and not at suprathreshold velocities. Such a
difference berween threshold and suprathreshold behavior could arise in several ways.
For instance, it is conceivable that the very-small-amplitude motions at threshold are
registered by a motion-sensitive system completely independent of the one that monitors
the velocity of obviously moving objects. Or, alternatively, one could imagine that the
insensitivity to high-frequency shear at threshold is the result of mutually inhibitory inter-
actions between cells of opposite direction selectivity within an elongated region of the
visual field, and that the inhibitory signals are relatively ineffective when the motion
amplitude is high.

In the second experiment we examined differences in differentially moving thresholds
for just two dots, either oscillating along the axis joining them (similar to compression) or
oscillating at right angle to this axis (similar to shear). Distances between the dots were
varied. No differences between these two curves were observed. It would seem that
extended fields of either compression and shear waves are necessary for seeing differ-
ences between compression and shear. This is reasonable, since the spatially restricted
two-dot motion field has a Fourier transform such that the greatest amplitudes occur at
the lowest spatial frequencies, whatever the dot separation, making this stimulus unsuit-
able for demonstrating the differing spatial-frequency dependence of compression and
shear sensitivity (Appendix 1). In the space domain the problem can be visualized by
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considering two units with receptive fields offset so that only one of the pair of dots is a
strong stimulus to them. Such a unit will be able to report the motion of that dot with
little destructive effect of contrary motion by the other dot.

4.3 Relation to previous work

The present results confirm and extend the findings of Nakayama and Tyler (1981) who
obtained a spatial-frequency function for horizontal transverse motion, one of the four
functions reported here. Of interest is to compare our results with those of Rogers and
Graham (1979, 1982a, 1982b, 1983) who employed similar random dot patterns and
used them to study depth from motion rather than motion itself. Their threshold values
were higher than ours, and they measured only two out of four functions. A major
difference berween their results and ours is a difference in sensitivity between shear and
compression for stimuli of very low spatial frequency. An important difference between
all of Rogers and Graham's experiments and our own may be the psychophysical
criterion required. Our results are based on an observer's perception of motion and not
depth. In one informal experiment we also used the criterion of depth when observing
transverse motion at various spatial frequencies. Our results were in qualitative agree-
ment with Rogers and Graham's. showing an upturn in sensitivity at very low spatial
frequencies. As such, we attribute the major difference between their results and ours to
the psychophysical criterion required.

Another point of comparison is the work of van Doorn and Koenderink (1982) whose
results seem to be the reverse of our own. They measured signal-to-noise ratios for
coherently moving random dots embedded in random noise, observing that transverse
motion had lower threshold than compressional motion. Their experimental paradigm
was sufficiently different from ours, however, to allow for the discrepancy. First, they
worked at velocities far above the velocity threshold. Second, and as a consequence of
the use of suprathreshold velocities, the experimental paradigm led to large differences in
the ‘lifetime’ of the dot as it either moved a short distance across a differentially moving
panel (as in the case of compressional motion) or a long distance along the same panel (as
in the case of transverse motion). Because the lifetime has been shown to have consider-
able importance in motion processing (Lappin and Fuqua 1982; McKee 1982; Nakayama
and Silverman 1984), stimuli affording longer lifetimes or dot existence would be more
perceptible in terms of movement.

Regardless of the exact mechanism underlying anisotropic spatial integration, the
results may have functional implications as to the coding of motion in general. Most
important is the possible increase in signal-to-noise ratio if this process could extract the
maximum amount of information from the visual scene by reducing redundant infor-
mation (Barlow 1961). In any sufficiently small region of the visual field local motion is
always orthogonal to moving contours. Signal strength (and signal-to-noise ratio) can be
improved by integrating along the contour (orthogonal to the motion), but to integrate in
the direction of the motion (so as to include regions where the moving contour is not
present) is of no benefit.

Acknowledgements. This work was supported in part by grants 5P 30-EY 01186, EY 05408,
2507 RR 05566-16 from the National Institutes of Health, AFOSR 82-0345 from USAF, and
The Smith-Kettlewell Eye Research Foundation. We wish to thank Graeme Mitchison for mathe-
matical help with Appendix I and to Beatrice Golomb for comments on an earlier version of the
manuscript.

References

Attneave F, 1954 “Some informational aspects of visual perception” Psychological Review 61
183-193

Barlow H B, 1961 “Possible principles underlying the transformations of sensory messages” in
Sensory Communicationed W A Rosenblith pp 217 -234 (New York: John Wiley)



Sensitivity to motion of random dots 235

considering two units with receptive fields offset so that only one of the pair of dots is a
strong stimulus to them. Such a unit will be able to report the motion of that dot with
little destructive effect of contrary motion by the other dot.

4.3 Relation to previous work

The present results confirm and extend the findings of Nakayama and Tyler (1981) who
obtained a spatial-frequency function for horizontal transverse motion, one of the four
functions reported here. Of interest is to compare our results with those of Rogers and
Graham (1979, 1982a, 1982b, 1983) who employed. similar random dot patterns and
used them to study depth from motion rather than motion itself. Their threshold values
were higher than ours, and they measured only two out of four functions. A major
difference between their results and ours is a difference in sensitivity between shear and
compression for stimuli of very low spatial frequency. An important difference between
all of Rogers and Graham's experiments and our own may be the psychophysical
criterion required. Our results are based on an observer's perception of motion and not
depth. In one informal experiment we also used the criterion of depth when observing
transverse motion at various spatial frequencies. Our results, were in qualitative agree-
ment with Rogers and Graham's, showing an upturn in sensitivity at very low spatial
frequencies. As such, we attribute the major difference between their results and ours to
the psychophysical criterion required.

Another point of comparison is the work of van Doorn and Koenderink (1982) whose
results seem to be the reverse of our own. They measured signal-to-noise ratios for
coherently moving random dots embedded in random noise, observing that transverse
motion had lower threshold than compressional motion. Their experimental paradigm
was sufficiently different from ours, however, to allow for the discrepancy. First, they
worked at velocities far above the velocity threshold. Second, and as a consequence of
the use of suprathreshold velocities, the experimental paradigm led to large differences in
the “lifetime’ of the dot as it either moved a short distance across a differentially moving
panel (as in the case of compressional motion) or a long distance along the same panel (as
in the case of transverse motion). Because the lifetime has been shown to have consider-
able importance in motion processing (Lappin and Fuqua 1982; McKee 1982; Nakayama
and Silverman 1984), stimuli affording longer lifetimes or dot existence would be more
perceptible in terms of movement.

Regardless of the exact mechanism underlying anisotropic spatial integration, the
results may have functional implications as to the coding of motion in general. Most
important is the possible increase in signal-to-noise ratio if this process could extract the
maximum amount of information from the visual scene by reducing redundant infor-
mation (Barlow 1961). In any sufficiently small region of the visual field local motion is
always orthogonal to moving contours. Signal strength (and signal-to-noise ratio) can be
improved by integrating along the contour (orthogonal to the motion), but to integrate in
the direction of the motion (so as to include regions where the moving contour is not
present) is of no benefit.
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Appendix 1. Under general conditions, a velocity field can be expressed as a superposition
of sinusoidal waves of compression and shear.

In a velocity field, the velocity at each point (x, y) can be regarded as the vector sum of
horizontal and vertical components. We shall use V(x, y) and V/(x y), respectively, to
denote the signed magnitudes of these components. These magnitudes are each scalar
functions of x and y. We assume they have Fourier transforms, that is that V,(x, y) and
V,(x, y) are each expressible as a superposition of sine and cosine components varying in
angular frequency, , and orientation, 6 (defined here as the angle between the direction
of modulation and the x axis). Thus:

x/2 =
V(x,y) = J_ J_ A (o, 8)sin(wdg)+ A (w, 8)cos(wdy)dwd, (AL1)

where A, (w, 8) is the Fourier sine transform of V,(x, y) and A, (w, ) is its Fourier
cosine transform. [The argument d, which is equal to (xcosé+ ysin@) represents the
component of the vector from the origin to the point (x,y) in the @ direction,
figure A1.] The functions A,.(w, 6) and A, (w, 8) are defined by direct analogy for the
vertical velocity components.

To show that the original field may be decomposed into compression and shear
components, it will now suffice to show that this may be done for any two-dimensional
sinusoid of horizontal or vertical velocity, corresponding to an individual Fourier
component as in equation (Al.1). The way that a sinusoidal wave of horizontal (vertical)
motion can be decomposed into compression and shear waves of the same phase,
orientation, and spatial frequency is shown for a wave of horizontal velocity in figure A2.

To show this algebraically, we note that we may decompose any vector into a compo-
nent in the 6 direction (the ascending rightward vectors in figure A2), and a component
in the orthogonal direction (the descending rightward vectors in figure A2). The com-
ponents in the @ direction constitute a pure compression wave, and the orthogonal
components constitute a pure shear wave. If the original vector is a horizontal vector of
unit magnitude, denoted as ¥ (with y for the vertical unit vector), then the component in
the @ direction will have magnitude cosé, and the perpendicular component will have
magnitude sind. Let x (o, ) and o,(w, 6) represent a cosine phase compression and
shear waves, respectively, of orientation 6 and frequency w:

x.(w, 8) = (fcosf +ysin@)cos (wdy),

o.(w, 8) = (£sinf — ycosB)cos (wdy) .

Figure Al. When a field is modulated one-dimensionally in the direction 6, the effect at a point
‘% y) depends only on d, which we define as (xcosé + ysin@). This is the component in the
dfreclion @ of the vector from the origin to the point (x, y) and is constant along lines perpen-
dicular to the direction 6.
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We may decompose the horizontal vector field in figure A2, which corresponds to one of
the Fourier components in equation (A1.1), as follows:

%cos (w(xcos@ + ysinf) = X (w, 0)cosb + g (w, 6)sinb,
y cos(w(xcos@ +ysin@)) = x(w, 6)siné — g (w, 6)cosh.

The Fourier components for vertical motion may be decomposed into shear and com-
pression in like fashion.

We have derived the amount of shear and compression present in a single Fourier
component of horizontal or vertical motion; we now conclude by expressing the total
amounts of compression and shear in the original field in terms of the Fourier transforms
of the magnitudes of the horizontal and vertical components. The amplitude of the cosine
phase compression wave with parameters w, 6, denoted by A, («, ), is the sum of two
terms, one due to the horizontal velocity component, the other to the vertical:

A (w 6) = Ao, B)cosf + A, (w, 6)sinb .
Similarly for shear:
A, (w, 8) = A (w, 8)siné — A, (w, 6)cosf .

Similar expressions may be written to describe the sine phase components.

The preceding discussion may have left the impression that these shear and compres-
sion waves are adequate to describe any velocity field. This is not strictly true. Two
simple examples of vector fields, for which the x and y component magnitudes do not
have Fourier transforms are rigid rotation of the whole visual field, and uniform dilation
of the field about a point or a line. In both cases, difficulty arises because the velocites
become unbounded.

One more complex vector field exists which partakes neither of shear nor of compres-
sion. These fields are sometimes called ‘deformation fields’ (Koenderink and van Doorn
1976). The general form of these fields is one with a stationary point with radiating
spokes alternating between inflow and outflow, with velocities going to infinity so that
there is no Fourier transform.

Figure A2. Heavy lines show a sine wave of horizontal velocity, modulated in the direction 6.
Hatched lines show how it can be decomposed into a compression component (hatched vectors
ascending rightward) and a shear component (hatched vectors descending rightward). The two sine-
wave components are similar in phase, spatial frequency, and direction of modulation 6, but their
velocity vectors are at right angles everywhere.






