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Introduction

Late 19th century studies of the brain provided
evidence that part of the cerebral cortex was made up
of primary sensory receiving areas and primary motor
areas. These comprised a relatively small portion of
the total surface area of the cortex and with the excep-
tion of some specialized regions (such as Broca's area),
the functional relevance of the other parts of the cortex
remained a mystery. Vision was relegated to a small
portion of the human cortex, occupying about 15 per
cent of the total surface. Surrounding this primary
area were secondary and tertiary zones, often referred
to as ‘association cortex’.

Very recent advances in neuroanatomy and
neurophysiology, however, have changed this picture
dramatically. Thanks to the pioneering work of All-
man & Kaas (1974}, Zeki (1978), and Van Essen (1985),
we now know that monkey visual cortex contains at
least 19 separate maps of the visual field and according
to a recent review by Maunsell & Newsome (1987)
visual processing occupies about 60 per cent of the
cortical surface!

This overwhelming dominance of vision in rela-
tion to other functions should serve as a reminder that,
as generally practiced, the current subdisciplines of
visual perception and psychophysics may be too nar-
row to capture the wealth of processing involved.
Threshold psychophysics, especially, has been pre-
occupied with just the earliest aspects of vision. It has
neglected the seemingly intractable questions such as
the nature of visual experience, pattern recognition,
visual memory, attention, etc.

Meanwhile the neurophysiologists have been
making recordings from diverse regions of the visual
cortex which could be closely related to these higher
functions. For example, in V2, just one synapse

beyond the primary receiving area, it appears that the
firing of some neurons is related to the formation of
‘illusory” contours (von der Heydt et al., 1984). In area
V4 the receptive field organization of cells is very
specificaily and profoundly altered by the attentional
state of the monkey (Moran & Desimone, 1985).
Finally, in infero-temporal cortex, many laboratories
find that some cells only fire when the complex image
of a face appears in the visual field (Gross, 1973; Perrett
et al., 1982, 1987). So now it is the physioclogists who
seem to be leading the way, at least as far as higher
visual functions. are concerned; their observations
show that many complex functions are being per-
formed in these newly identified regions of visual
cortex.

To begin to redress this imbalance between
psychology and neurophysiology we offer a frankly
speculative theory as to the overall functional
organization of the visual system. It postulates an
associate memory for image fragments (icons) adapted
from cognitive psychology (Lindsay & Norman, 1977;
Rumelhart & McClelland, 1986) and couples this with
the emerging notion of a multi-resolution pyramid
representation for early vision as suggested by work-
ers in psychophysics, physiology and artificial intelli-
gence. Because it is so very general and covers such a
large range of phenomenon and possible mechan-
isms, the theory will probably resist verification or
falsification. We present it nonetheless, mainly
because of the paucity of plausible ideas in this area.
Hopefully such a skeletal framework will open the
door for more precisely formulated ideas, and ones
that can be more easily tested.

In essence, our theory divides the visual system
in two: early vision consisting of a feature pyramid
followed by visual memory., We describe each in
turn.
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The feature pyramid — an overview

Closest to the input is a massively parallel feature
pyramid which comprises striate cortex and those
portions of extrastriate cortex which are organized
more or less retinotopically. This system is organized
as a multi-resolution multi-feature pyramid. For
example, such a system contains neurons sensitive to
a variety of features, including disparity, motion,
color, line orientation, line termination etc., each of
which can be represented at a variety of scales.

The usefulness of a generic and multi-purpose
pyramid has been suggested by Rosenfeld (this
volume) and the specific notion of a multi-resolution
pyramid for early cortical representation has been
proposed on empirical and theoretical grounds (Burt
& Adelson, 1983; Sakitt & Barlow, 1982). Moreover,
the general idea is consistent with the physiological
findings (DeValois et al., 1982). The essence of the idea
is a retinotopic representation of the image at varying
degrees of scale or coarseness. So with each ascending
level of the pyramid (as shown in Fig. 36.1), the image
is represented with less and less spatial precision and
resolution. It should be obvious that the different
levels differ in information content with the coarsest
representation of the image requiring fewer bits of

- information than the finest level.

For iltustrative purposes we will make this more
concrete by estimating the relative information con-
tent at the various levels, recognizing that such
numerical estimates are subject to error and acknow-
ledging that they gloss over the actual details of the
encoding process. The empirical basis of such
estimates does not match the specificity suggested by
the numbers themselves, and we do not mean to
imply by assigning numbers that the entities denoted
are physically discrete or quantized. Yet despite these
limitations, it is possible that the use of such estimates
can help us focus on otherwise difficult issues. For
purposes of illustration we adopt the fiction that the
system encodes the image in terms of pixels of varying
size with a roughly constant number of bits per pixel.
So the number of pixels becomes an intuitively reason-
able index of information content. Again, we are
aware that a very different type of coding than single
_ pixel representation occurs. Thus in terms of contrast,
it is likely that the system encodes the image in terms
of oriented receptive fields of various sizes (DeValois
et al., 1982; Wilson & Bergen, 1979; Watson, this
volume).

As an example, we provide an estimate as to the
number of pixels required for the coding of contrast.
First we need to remove the complication introduced

by the cortical magnification factor. We take a func-
tional approach by noting how ordinary visual acuity
varies with retinal eccentricity. Consistent with the
complex logarithm description of the retino-cortical
projection (Schwartz, 1977), the typical function relat-
ing letter acuity to eccentricity increases linearly with
eccentricity (Weymouth, 1958). Using this data to
calculate (by numerical integration) the number of
such recognizable letters that could be squeezed into
the visual field, we come up with a figure of about
1000. Assuming that each letter comprises a 5x5 pixel
array, roughly consistent with data indicating that 2
sinusoidal cycles/letter is adequate for letter recog-
nition (Ginsburg, 1981), we arrive at a total of about
25 000 pixels in the whole visual field. This is roughly
the equivalent of a 160X 160 pixel grid.

This describes the image as it is represented at
the highest level of detail that can be encoded. But
because it is a pyramid, the image is also represented
at progressively coarser degrees of visual resolution.
Thus, if at each level, we get coarser by a scale factor of
two, we can see that a system of just five levels will
have at its most coarse representation, a pixel grid of
about 1010 pixels. To get a pictorial understanding of
the hypothesized number of pixels, at least for the
coding of achromatic contrast, five such repre-
sentations are schematized in Fig. 36.1 where each
definable square represents 100 pixels (a 10X 10 pixel
grid).

So far, we have depicted the pyramid as if it
operated at different scales analogous to banks of
spatial frequency filters (Burt & Adelson, 1983; Sakitt
& Barlow, 1982). This is misleading, however, since
we would not want to exclude dots, edges and lines
which only contain high spatial frequency information
from being represented at the coarsest level of
representation. Thus Craik—Cornsweet edges and dif-
ference of Gaussian dots (Carlson et al., 1984) are
represented similarly as ordinary edges and dots. So
the early vision pyramid is far more abstract than
simple spatial frequency scaling insofar as it
represents edges, lines, etc. at different scales. Thus
some form of appropriate communication between
high spatial frequency mechanisms and the coarse
level of representation in the pyramid is required.
Interactions of this sort have been suggested by
Rosenfeld (this volume) and Grossberg & Mingolla
(1985) among others.

Visual memory — an overview

At the other extreme, farthest removed from the eye,
is visual memory. Such a system contains tiny pattern
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Fig. 36.1. Schematic representation of the multi-leve! pyramid. Coarsest representational level is shown at left. Finest
representation shown on extreme right. Three intermediate representations are also shown. Note the existence of one
shaded square at each level of the pyramid. This represents the size of the visual field that can be utilized for a
hypothetical elementary pattern recognition operation at that level of representation in the pyramid.

recognition templates or icons' which are associatively
linked. Thus they can be activated or potentiated by
two different routes. First, by the process of pattern
matching with incoming visual signals from the
feature pyramid. Second, by the activation of other
icons through associative learning. This memory
system is situated in regions of visual cortex which
shows the least evidence of retinotopic order and
is most likely to be localized in the temporal lobes
(Mishkin & Appenzeller, 1987). A small schematized
subsection of this memory is shown in Fig. 36.2,
illustrating at least two types of connections to these
icons: afferent {from the pyramid) and associative
(from within the memory itself).
The experience of seeing is dependent on the
activation of these nodes or icons in visual memory.
- Without such activation, visual perception cannot exist.
Essential to the theory as itis proposed is the assertion
that these icons or templates contain surprisingly
small amounts of information and that they capture
the essential properties of an image fragment with
very few bits. To keep our argument as numerically
concrete as possible and to emphasize their small size,
we assert that such icons contain only 100 pixels. Thus
if such a template were to be roughly square it would
comprise about 10X 10 pixels.

! Note that our use of the term “icon’ is very different from
that used in the past in cognitive psychology. Neisser
(1967) coined the term to refer to short term visual storage
(as originally described by Sperling, 1960) and it is
synonymous with what could be called early cortical after
discharge, specifically residual activation in the early
vision pyramid after a brief flash. Qur use of the term
establishes the icon as a very small learned visual template,
a constituent of visual memory.

——————— Afferent connections
Associative connections

Fig. 36.2. Schematic description of a very small
subsection of visual memory. Each icon or node has
two types of possible connections, one set from
within visual memory itself (solid lines) and one set
to the output of the early vision pyramid (dashed
lines).

Evidence that icons are low
resolution

Perhaps the most seemingly arbitrary single aspect of
the theory is this assertion that the templates or icons
have very low information content. Less controversial
is the assertion that visual memory is made up of an
associative network of such elements. To provide
some plausibility to this idea of the very small icon
size, we note data obtained from reading perform-
ance. If the visual system could pattern process only a
small amount of pixels per unit time, then one should
be able to drastically reduce the effective information
available in certain visual tasks, and one should see no
decrement in performance. This is a difficult experi-
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ment to design in most free viewing tasks because one
does not know where in the array the person is
attending nor at what level of resolution. Reading,
however, provides a stereotyped visual procedure
which requires systematic attentional fixations along a
line of print. Rayner (1978) has developed a com-
puterized technique to limit the amount of intelligible
text that is on a page by monitoring eye movements
and replacing all but a small number of letters arcund
the fixation point with meaningless symbols. They
find that if one makes more than about 5 letters visible,
then reading is not substantially improved. This tallies
reasonably well with our 100 pixel limit since 5 letters
comprise approximately 125 pixels. A separate study
on reading by Legge et al. (1985) reaches a similar
conclusion, finding that reading did not improve
beyond. the point where more than 3.5 letters were
visible. So the visual system cannot process more than
a small number of letters at a time and this number is
not inconsistent with an icon size of 100 pixels.

Focal attention: limited readout from
the early vision pyramid

Here we consider the implications of tiny icon size. In
a previous section we suggested that at the highest
level of resolution, the image representation com-
prised a large, say 160x160 pixel, grid and this is far
too much information to be effectively compared with
pattern recognition templates having a small 10x10
pixel extent. The amount of information that can be
sampled from the pyramid in the process of pattern
recognition cannot exceed the size of the templates or
icons themselves.

From this it follows that pattern recognition
from the whole pyramid is not feasible in one single
step. Many such steps which we call attentional fixa-
tions or elemental patiern matching operations will be
required. In quantitative terms and if our estimates
and ideas are reasonable, the sampling of the whole
field will require about 250 of these elemental pattern
matching operations because the 10x10 pixel arrange-
ment can only cover 1/256th of the high-resolution
map (see Fig. 36.1). If one were to sample the
representation of the visual field at the coarsest 10x10
level of resolution, however, only a single elemental
pattern matching operation will be required.

Because of these quantitative considerations, it
would seem that for the purposes of elementary pat-
tern recognition, the visual system is faced with a
trade-off. It can sample from the pyramid at lower
levels of spatial resolution to obtain an overview of the
visual scene whilst sacrificing detail. Alternatively, it

can sample at a very high level of resolution to get
detail but sacrificing the overview. The shading of
squares in Fig. 36.1 illustrates the very different
amounts of coverage of the visual field that can be
obtained as one conducts an elemental pattern match-
ing operation at different levels of the pyramid. The
existence of selective attention to particular portions of
the visual field has been well documented (Posner,
1980, 1987). See also Nakayama & Mackeben, 1989.
Selective attention fo one spatial scale vs. another is

~ less well documented but preliminary evidence to

support such mechanism has been obtained by Sperl-
ing & Melcher (1978).

Figure 36.3 schematizes the visual system as a
whole. Closest to the input end is the massively
parallel pyramid, comprising the machinery of early
vision and receiving parallel input from the retina.
Farthest from the input is visual memory, also a
massively parallel system, associatively linked and
composed of tiny icons having very low informational
capacity. Although the connections and consequent
quantity of information shared within each of these
massively parallel systems is great, the connection
between these systems is not. This link is extremely
band-limited and constitutes a critical bottleneck in the
visual system.

So how does vision occur in ordinary circum-
stances? We argue that for normal scenes, vision
involves a serial sequencing of elementary pattern
matches (attentional fixations) from different loct in
the pyramid. The net result of such matches is residual
activity in those icons which have been recently
activated by feature pyramid output and also those
which have been associatively linked or potentiated by
such icons. Thus we argue that the conscious act of
perception is directly related to aggregate activation of
these icons in visual memory.

As an illustrative example, consider the visual
system confronted with a mountain landscape scene
which is very briefly presented in a tachistoscope but
with sufficient time to allow for three attentional
fixations. First the system does a pattern match to the
whole scene at lowest resolution and gets a memory
activation capturing the gross outline of the mountain.
Then it makes a second more detailed attentional
fixation at a lower level of the pyramid centered at the
mountain peak. Finally, one other fixation is directed
downward towards the house near the base. We
argue, however, that other icons may also be partially
activated, not through visual input but by associative
linkage of those icons which have received visual
input. So from the perspective of capturing specific
input from the retina, only three very low resolution
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Visual memory

Pyramid

Fig. 36.3. Overview of the visual system. On the left
is visual memory, containing tiny icons linked
associatively. On the right is the multi-resolution
pyramid which receives afferent visual input. The
linkage between these two massively parallel systems
is a narrow bandwidth channel having a capacity of
the order of a single icon.

Shaded squares in visual memory provide a
schematic representation of a number of icons which
have residual activation from previous pattern
matches from the early visual pyramid and which
constitute the ‘contents’ of conscious visual
experience.

‘snapshots’ at three different scales have been taken,
yet it is sufficient for the observer to capture the
essentials of the scene. The total set of activated icons
is enough to convey the ‘meaning’ of the scene, and
the observer is unaware of the essentially serial nature
of the construction process nor of its tenuous relation
to visual input. As far as the observer is concerned he
was presented with a scene and he has grasped it all at
once.

What we are saying is that our own introspective
understanding of vision is somewhat of an illusion.
We regard our visual world as ‘just there’, not as
something which is only acquired after sequential
sampling and reconstruction. It appears that vision
occurs in parallel yet our actual contact with the world
is essentally serial,” constructed by a sequence of low
bandwidth pattern recognition matches. Thus the
actual amount of visual information that is explicitly

2 At the same time that we have the phenomenologically
naive belief that visual perception is conducted in parallel,
it can also be argued that the phenomenology associated
with eye fixations supports something much closer to the
present theory. As we make a set of eye fixations we know
that very fine detail can only be made in central vision. Yet
the scene remains remarkably ‘seamless’ and ‘there’. Thus
we are forced to conclude that the pick-up is serial yet
something endures (the activation of visual memory), to
preserve the scene.
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used as part of the pattern recognition process is but a
tiny fraction of the'information available at any instant
in the feature pyramid.

Need for a controller?

The most distinguishing feature of the theory is the
notion of a limited attentional bandv-dth (limited
pattern recognition capacity) coupled with the comp-
lementary notion of a multi-scale pyramidal represen-
tation of early vision. The organization of the pyramid
as a data structure is well suited for the tasks we
suggest because it enables the system to scan the
image for its essential properties in an efficient
manner, appropriately switching levels of resolution
to get both the overview and the necessary details.

As described, however, the process might seem
to require an ‘agent’ or ‘genie’, to direct these atten-
tional fixations so as to optimize the pickup of informa-
tion. This is likely to be the case for a certain fraction of
the time, but at others, the control of attention could
be determined at a very low level. This has been
suggested by Julesz (1984) who concluded that texton
or feature gradients draw attention. Koch & Ullman
(1985) say much the same in their description of the
saliency map which directs the spotlight of attention.
In particular, Koch & Ullman suggest a winner-take-all
network based on some plausibly hypothetical
properties of early feature maps which is adequate to
direct some aspects of attention. Beyond this selec-
tion, Koch & Ullman suggest that the system may shift
to the next most salient feature, based on its proximity
or similarity to the previous feature.

Such low level schemes will not be sufficient for
many aspects of attentional control and other mechan-
isms will be required. Again this may not require as
much centralized control as one might think. It is
conceivable that attentional fixation instructions could
be distributed and linked to the visual memory itself.
One possibility is to attach the fixational routines to
particular icon sets in visual memory. A low resolution
icon representing the gross features of an object might
contain ‘pointers’ to other appropriate fixations. Thus
the outline of a face might activate attentional ‘fixa-
tions” at finer levels of detail to recognize eyes, nose
and mouth, thus providing information to recognize a
specific face (see Noton & Stark, 1971). Such an
approach might be analogous to object oriented
algorithms more familiar to specialists in computer
science.

In addition to the controller function we specu-
late that there also needs to be an ‘addresser’. Such a
mechanism will register the address or locus of sam-
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pling from the pyramid and create a corresponding
address and size for an activated icon in a more
generalized body-centered coordinate system. Such
organization is necessary to preserve the spatial rela-
tions of the sampled image fragments in the scene and
also to provide a coordinate reference for motor
behavior.

Finally a comment about neural implemen-
tation. The model as proposed implies that the con-
nections between visual memory and the outputs
from early vision are constantly changing. At one
moment, visual memory is connected to, and thus
samples from, say, the lowest level of the pyramid.
Then later it may sample from a restricted region of the
visual field from a high-resolution section. As yet
there is no obvious circuitry to mediate these proces-
ses which would seem to require the formation of
temporary yet orderly sets of connections. But it is
perhaps interesting to note that the existence of
temporary synapses has been proposed (Crick, 1984)
and that more recently ’shifter-circuits’ have been
suggested (Anderson & Van Essen, 1987) which could
temporally connect one two-dimensional represen-
tation to another, preserving local retinotopic order.

Extensive preprocessing in the
pyramid

Our discussion so far has purposely oversimplified the
nature of the multi-feature pyramid so as to stress the
main features of the theory. Now, however, we must
mention several properties of the pyramid which are
of critical importance to guide the pattern recognition
process. Thanks to the work of many, most notably
Barlow (1960, 1961) and Marr (1982) it has t~come
increasingly clear that the processing in early vision is
highly sophisticated and captures visual information
in a seemingly ‘intelligent’ manner without recourse
to cognitive top-down processing. Two properties of
the pyramid seem particularly important in this
regard: feature differencing and feature grouping.
With respect to featural differencing, we envi-
sion that for each feature map, there exist inhibitory
networks to enhance differences in that particular
feature. Thus for the representation of motion, neural
" networks are organized so that velocity differences
rather than absolute velocities are registered (Allman
et al., 1985a; Frost & Nakayama, 1983). Likewise,
orientation (Blakemore & Tobin, 1972; Nelson & Frost,
1978), as well as other features, is organized so that
spatial differences in that feature are emphasized
rather than the features themselves. These mechan-
isms, consisting of connections outside of the classi-

cally defined receptive fields (Allman et al., 1985b) are
particularly evident in cortical area V4 (Desimone &
Schein, 1987). They accentuate featural differences
and are relatively insensitive to a whole field contain-
ing textures having the same features.

These neurophysiological properties support
the general points raised by Julesz's texton theory
which has outlined the importance of primitive
features in early vision and has given particular
emphasis to the notion of featural or texton density
gradients (see also Beck et al., 1983). Featural dif-
ference maps are useful to provide both the outlines of
a two-dimensional image to be compared with tem-
plates in visual memory (such outlines may be analo-
gous to Marr’s place tokens) as well as providing
potential loci for the direction of visual attention (as
suggested by Julesz, 1984).

In addition to feature differencing, the pyramid
must also support grouping algorithms. These have at
least two major functions: (1) to appropriately link and
enhance different portions of the image for the
purposes of pattern recognition; (2) to suppress all
other parts of the image so that pattern matching is
only applied to the appropriate portion of the image.
Grouping is a process which pre-organizes informa-
tion in the feature pyramid to make it amenable for
pattern recognition. This is the familiar figure-ground
process and one that is essential if pattern recognition
is to occur.

Many grouping laws are well known as they are
embodied in various Gestalt laws of perception. Fur-
thermore, they have also received some attention in
recent times. The work of Julesz, Grossberg and
others, for example, are partially devoted to charac-
terizing the cooperative and competitive networks
underlying this grouping process. One of the most
important process is similarity of grouping, i.e. those
elements which have the same color, orientation,
disparity, motion, etc. are linked (see Barlow, 1981). It
is suggested that grouping requires an excitatory
linkage between the representation of like features
and inhibiting coupling between unlike features and
that the network parameters of excitation and inhibi-
tion can increase or decrease as a function of experi-
ence (plasticity) or the demands of the moment
(modulation).

The existence of feature differencing and
similarity grouping is particularly helpful in interpret-
ing the results of visual search experiments, where it is
the task of the observer to identify a target from
amongst a set of distractors. Treisman (1985) found
that the search for a target differing by a single feature
was easy and conducted in parallel (search time
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Fig. 36.4. Two types of visual search task. In (A) the observer has to find the target defined by a single feature
difference, namely he needs to find the target having the horizontal orientation. We argue that feature differencing
mechanisms (in the domain of orientation for this particular case) automatically mark the spot at which an elementary
pattern matching operation will occur. Consequently, the search for such a single target will be rapid and will not be
slowed by increasing the number of distractors (vertical bars). In (B) the observer must find the target defined by the
conjunction of orientation and color. The observer must find either a white horizontal bar or a dark vertical bar amongst
the distractors. We argue that, for this situation, feature differencing operations (either for color or orientation) will fail
to select a unique site for pattern matching. As a consequence, pattern matching will be made at a number of wrong
sites before the correct target is found. As such, search time will increase for greater number of distractors.

independent of number of distractors) whereas the
search differing in a conjunction of two features was
serial (search time increased for larger number of
distractors). See Fig. 36.4 for an illustration of these
two types of visual search displays.

We have confirmed this for a number of con-
junctions (in particular, the conjunction of orientation

and color), but for many other conjunctions including .

any dimension linked to disparity (Nakayama &
Silverman, 1986a,b), the search can be conducted in
parallel. Furthermore, with extended practice, it has
been claimed that the conjunction of virtually any pair
of dimensions can be made to occur in parallel (see
Steinman, 1987; also Wolfe ef al., 1989 and personal
communication).

The ideas proposed here provide an interpret-
ative framework to understand these rather puzzling
results. In such multi-element search arrays the
system is faced with two problems. First is the capacity
limitations of learned pattern recognition templates.
We have postulated that such icons have only very
limited information content. Thus it is not feasible to
sample the whole target display with a single template
match at the lowest level of resolution because the
targets are too small and are thus indistinguishable at
the lowest level of resolution. The pattern matching
operation needs to be directed to a higher resolution
level in the pyramid and to a particular locus. This

leads to the second problem. How is this site to be
selected? In the case of a simple search for a single
deviant feature, the problem is relatively easy. Feature
differencing mechanisms can designate the single site
for pattern recognition. For the case of feature con-
junctions, however, the problem is more complex
since feature differences on any given dimension are
present in many sectors of the array and no singie
obvious site emerges for the more specialized pattern
matching process. The system is forced to pattern
match at a variety of wrong sites before finding the
target. This could account for the increased search
time for some conjunctions.

As mentioned earlier, however, the search for
many feature conjunctions can be conducted in paral-
lel (Nakayama & Silverman, 1986a,b). To explain this
ease by which many conjunctions are searched, we
invoke similarity grouping. This process takes like
features, say those sharing a common disparity and
links them, suppressing all others,? see Fig. 36.5. Then
feature differencing operations on the remaining
targets (those not suppressed) enable a single site to be
marked for pattern recognition and the search task

3 Although designed to solve the lower level problem of
stereo-matching, the postulation of such a cooperative
process has been suggested earlier (Nelson, 1975; Marr &
Poggio, 1976).
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Fig. 36.5. Hypothetical feature grouping processes in the search for the conjunction of stereoscopic depth and size. If
this pair of images are fused stereoscopically, all the distractors in one stereo-plane will be of one size and the
distractors in the other plane will be of the other size. Task of the observer is to'find the odd size in a given depth
plane. For the usual case of crossing one’s eyes (so that the right image is viewed by the left eye) the odd targetis a
large square in the front plane. We argue that feature grouping algorithms link targets of the same disparity and
suppress targets of other disparities. Then feature differencing algorithms can pick out the odd size target from
within a given stereoscopic plane. As such, search times are not influenced by the number of distracting targets (see

text, also Nakayama & Silverman, 1986a).

appears as essentially effortless. To deal with the often
marked improvement in performance with extended
practice (Steinman, 1987), we suggest that the coup-
ling parameters of the underlying neural networks can
become modified to enhance grouping along particu-
lar feature dimensions.

Object representation

The theory concentrates on the pick-up of information
from the pyramid, emphasizing the very small size of
the visual icon and the consequent bottleneck in visual
information transmission. Thus vision proceeds by a
set of sequential pattern matches from different levels
of the pyramid, grabbing information from the
pyramid at varying scale and position and activating
icons corresponding to various sizes and position in
the visual field. In this section we suggest how this
process of sampling from a multi-resolution pyramid
could dictate the basis of object representation in
visual memory.

Most important to consider is the very small
amount of information contained in an icon in com-
parison to the detailed visual knowledge that we have
of most real objects. Thus the icon itself cannot be the
fundamental unit of object representation but is only a

component. So we suggest that visual objects are
assemblies of icons, associatively linked through
visual experience. These correspond to the set of
samplings or attentional fixations taken from the
multi-level pyramid. For each object, therefore, there
are various iconic shapshot répresentations taken at
varying degrees of size (relative to the object). Thus,
object representation consists of the aggregate of icons
activated by a given object. For example the represen-
tation of an elephant might consist of some whole
body icons showing typical side, rear, front and three-
quarter views. Associatively linked to each of these
views might be more detailed representation of head,
trunk, tusks, mouth, eyes, feet, tail, etc. We suggest
that these views at different scales (corresponding to
attentional fixations) represent canonical represen-
tations of object parts and they are linked associ-
atively. Hoffman & Richards (1985) suggest, for
example, that distinct ‘parts’ of an object are almost
invariably delineated by regions of negative intrinsic
curvature in the object and are correlated with con-
cavities in the image. It is possibie that such ‘parts’
plus whole views of an object comprise the canonical
views or canonical representations of an object. The
plausibility of such canonical views and of their
dominant role can be appreciated by introspection.



For example, it is far more difficult to visualize in one’s
imagination anything other than such canonical
views. This point becomes more convincing as one
tries to conjure up in one’s imagery, sections of an
object which are just partial views of several canonical
icons. For example, imagine a whole frontal view of a
very familiar friend, or just the face, each of which
corresponds to a hypothetical canonical fixation or
attentional snapshot. This is relatively easy in most
cases. Compare this with the greater difficulty in
imagining the combined partial samplings of two
canonical views. For example, it is far more difficult to
imagine an arbitrary ‘section’ of one’s friend, and not
coincident with such canonical views, say a view
which extends from his nose to his waist.

So we suggest a rather frankly viewer-centered
approach and stress that the representation of an
object consists of an aggregate of canonical viewer-
centered icons. As a consequence, the present theory
is somewhat different from the notion of an object-
cenitered coordinate representation as suggested by
others (Marr & Nishihara, 1978; Biederman, 1985;
Shephard, 1975). As such, the theory proposed shares
some similarities with ideas proposed by Kosslyn
(1980) who has argued that visual imagery is a compu-
tationally legitimate form of knowledge represen-
tation. The present theory differs, however, in its
explicit representation of objects as associatively
linked image fragments (or icons) of differing scales,
corresponding to specific attentional fixations from
the early vision pyramid.

Subjective experience

Here we make a number of interpretations of subjec-
tive experience in the context of the theory. First we
divide visual experience for most normal observers
into three categories: (1) dreams, hallucinations and
hypnogogic imagery; (2) waking visualization and
imagining;.(3) ordinary seeing.

Dreams, hallucinations and hypnogogic imag-
ery are very vivid and one is rather hard pressed to
say. that they are entirely different from ordinary
vision in terms of their perceptual quality. Hallucinat-
ory visions are also seen during long episodes of
sensory deprivation (Bexton et al., 1954), under drugs
and in certain forms of psychoses. We argue that the
similarity of these states and ordinary vision is not
accidental (see also Neisser, 1967; Hebb, 1968). All are
based on related states of activation in visual memory.
With these endogenously generated perceptions, it is
likely that the original excitation of the icons arises
independent of the feature pyramid and must be a
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consequence of interconnections between the icons
themselves or from other brain centers. Since we do
not have such vivid non-visually driven impressions
during our ordinary waking state it suggests that these
associative connections within visual memory are
probably facilitated when dreaming or hallucinating.
Conversely, we speculate that these associative con-
nections are relatively dampened in the ordinary wak-
ing state so as not to compete excessively with the
visual inputs.

The act of visualization or visual imagination is
rather different. Here it is the experience of most
observers? that one’s powers of visualization are less
acute in the ordinary waking state, certainly they pale
in intensity and clarity when compared with visual
perception or dreams. Suppose that only one icon is
activated at a time during the course of ‘imagining’
and this one icon can represent only the simplest
visual ‘object’ with any clarity. More complicated
objects therefore must be represented as the activation
of many such elementary icons. To provide some
plausibility for this speculative assertion, close your
eyes and imagine the capital letter E as it appears
typographically, say as in a Snellen eye chart. For most
observers, this process of imagination yields a rather
clear image of the letter E with relatively sharp edges
and some can even visualize the little serifs at the same
time. On the other hand, now imagine a more compli-
cated typographic image, say the word ‘England’.
Most people can image such a word as it appears on
the printed page but cannot see both the whole word
and the details of the individual letters at the same
time.

A similar ‘vision experiment’ can be done with
non-typographic images as well. Imagine an elephant
seen from the side. If one imagines the whole elephant
its hard to visualize the trunk with maximum clarity.
To do this requires one to ‘zoom up’ and to visualize a
much clearer image of the trunk, yet now one cannot
image the whole elephant at the same time. This is
rather different from ordinary visual perception where
if we were viewing a real elephant, we would see his
trunk sharply and also see the whole body as well - all
with apparent simultaneity.

So ordinary vision has the appearance of being

* Although most people experience ordinary waking
imagery with much less detail and vividness than ordinary
perception, many exceptions have been reported. Some
children have been reported to have much more vivid and
detailed imagery (see Haber & Haber, 1964) and anecdotes
and case histories indicate that in rare instances, adults can
have astonishing powers of visual imagination (see Luria,
1968).
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very rich and one thinks one is seeing both the ‘forest
and the trees’ simultaneously. Waking visualization,
on the other hand, is highly impoverished, providing
only a vague impressionistic representation and one
must alternate ‘views’ to see both the forest and the
trees. Again, we explain this difference by speculating
that for the case of ordinary seeing, many icons in
visual memory can be simultaneously activated, but
that only one or very few of such icons can be activated
in the case of waking visualization.

Computational advantages

We argue that the proposed theoretical framework has
at least two significant biological and computational
advantages. First by restricting the scope of the
elementary pattern recognition (template matching) to
a very small portion of the early image representation,
it removes much of the criticism that has generally
been directed to pattern recognizers which are for-
mally equivalent to perceptrons (Rosenblatt, 1962;
Minsky & Papert, 1969). Perceptrons are units which
had the ambitious job of detecting learned patterns
anywhere in the visual field by using parallel proces-
sing. One major problem with such schemes was
combinatoric, they required too many intermediate
‘hidden units’. Thus recognition units or demons had
to be replicated for many positions in the visual field.
A second problem associated with such schemes is
that once such a target was recognized, there was no
way to determine its location. Since the present
scheme abandons the possibility of complex pattern
recognition occurring in parallel over the whole of
the visual field, these combinatoric problems are
eliminated.

A second advantage of the theory is that by
suggesting scale invariant icons in visual memory
linked through associative learning, the stored visual
representation of objects is more compact and thus
allows the needed opportunity for ‘top-down’ proces-
sing. It is well known that prior knowledge, context,
and expectancy can assist in the pattern recognition
process. Yet such a system of associations would be
combinatorically implausible if such icons were repli-
cated and distributed for each region in the visual
field. By having them organized as scale invariant
entities relatively independent of retinotopic order,
however, previously activated icons can potentiate
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