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a b s t r a c t

Visual search attracted great interest because its ease under certain circumstances seemed to provide a
way to understand how properties of early visual cortical areas could explain complex perception with-
out resorting to higher order psychological or neurophysiological mechanisms. Furthermore, there was
the hope that properties of visual search itself might even reveal new cortical features or dimensions.
The shortcomings of this perspective suggest that we abandon fixed canonical elementary particles of
vision as well as a corresponding simple to complex cognitive architecture for vision. Instead recent
research has suggested a different organization of the visual brain with putative high level processing
occurring very rapidly and often unconsciously. Given this outlook, we reconsider visual search under
the broad category of recognition tasks, each having different trade-offs for computational resources,
between detail and scope. We conclude noting recent trends showing how visual search is relevant to
a wider range of issues in cognitive science, in particular to memory, decision making, and reward.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

During WWII the US Navy recognized a pressing need to devel-
op systematic ways of locating enemy ships or it’s own lost or
missing personnel at sea. So it was that a group of mathematicians
were tasked to develop, in secret, a Theory of Search. Those efforts
were eventually declassified and published in a series of three arti-
cles, and eventually a book, by Bernard Koopman in the 1950s
(Koopman, 1956a, 1956b, 1957, 1980). Koopman’s articles and
book are singular in one particular aspect: they contain no refer-
ences, since, as their Author concluded, none existed then. Having
no empirical evidence, Koopman theoretically derived and dis-
cussed from first principles many aspects of search behavior that
would be investigated in the ensuing decades: the visual lobe,
the form of the detection function, the optimal distribution of
search effort, criteria for termination, etc. The direct heirs of such
tradition can be found in the contemporary scientific domains of
Operations Research, Ergonomics and Decision Theory.

As is often the case in the history of science, exact origins can be
difficult to trace. Fifty years prior to Koopman, and well over 100
years ago, the famous British zoologist Edward Poulton, and early
advocate of Darwinian theory, had his own theoretical speculations
about visual search, this time in the context of animals more effec-
tively eluding predators. Aside from considering the issue of cam-
ll rights reserved.
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ouflage where some animals are well concealed by taking on the
color and texture of their environments, he also considered the
issue of polymorphisms. In his book ‘‘The colors of animals” he
noted that within a species, a variety of colors can exist. For
example, the larvae of emerald moths came in green and brown.
Why is this so? He wrote:

‘‘ . . . Both forms are common, and therefore it is certain that
both must be advantageous to the species, or one of them would
quickly disappear. I believe that it is a benefit to the species that
some of its larvae should resemble brown and others green
catkins, instead of all of hem resembling either brown or green.
In the former case the foes have a wider range of objects for
which they may mistake the larvae, and the search must occupy
more time, for equivalent results, than in the case of other
species which are not dimorphic” (Poulton, 1890, p. 46).

To this day, both operations researchers and biologists remain
interested in visual search. Added to this have been the increas-
ingly large number of studies of visual search by psychologists,
vision researchers and neuroscientists. Visual search paradigms
are one of the most represented in journals and textbooks. The
interest is so great that even a cursory look at the literature can
be overwhelming. In the ISI database, there are over 2200 articles
with the specific phrase ‘‘visual search” in the title.

Why has this become such a popular subject and what does it
portend for those of us who have devoted their lives in and around
the visual system and are trying to understand it? In contrast to
many other vision laboratory paradigms, it has some clear advan-
tages. First, it deals with supra-threshold vision such that the
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targets searched for are plainly visible. This links the phenomenon
to something we do in our daily lives. And of course, visual search
displays with its multiple items can be varied in simple ways,
numbers, density, contrast, homogeneity, extent. Additionally,
the items can be more or less anything – letters, Gabor patches,
faces, abstract shapes, tools, such that it would seem that any level
of vision can be probed. And finally, the trials are simple and can be
repeated so as to get reliable measures. Finally, it can be used on
young and old, infirm and in experimental animals.

But all of these reasons alone would not elicit great interest.
What was needed was some thing more. We can make lots of sys-
tematic measurements but eventually we need to think we know
why. Several scientific developments (in addition to practical ones)
were at work to keep interest high.

Advances in single unit neurophysiology started around mid-
century, just before the inception of this journal and they provided
a dominant perspective for vision research for many decades. Early
results on the frog retina by Barlow (1953) were followed quickly
by ‘‘What the frog’s eye tells the frog’s brain” by Lettvin, Maturana,
McCulloch, and Pitts (1959). These were complemented by the
seminal work of Hubel and Wiesel (1959), and Hubel and Wiesel
(1968) who systematically studied the receptive field characteris-
tics of neurons in the cat and monkey visual system, discovering
neurons specifically responsive to oriented edges and bars, later
showing responses to specific colors and motion directions.
Following these revolutionary discoveries, it became apparent to
most everybody, that there exist retinotopic maps, each containing
neurons which could code basic elementary features of the visual
image. Reinforcing and finally canonizing these views, was the
recognition of Hubel and Wiesel’s work with the Nobel Prize in
1981.

Feeling the need for a more quantitative approach, a different
breed of researchers were able to formalize cortical neurons as
coding spatial frequency and orientation, stating that the earliest
stages of cortex consisted of Gabor filters which had restricted sen-
sitivity both to position and spatial frequency (Campbell, Cooper, &
Enroth-Cugell, 1969; De Valois, Albrecht & Thorell, 1982). The re-
sults were both startling and significant for several reasons. First,
they indicated that the spatial receptive fields described by Hubel
and Wiesel were too coarsely characterized, that the tuning char-
acteristics of cortical neurons required that the receptive field’s
of striate cortex neurons have more regions (excitatory and inhib-
itory) to account for the relatively narrow spatial frequency tuning.
This Fourier approach was clearly at odds with the studies men-
tioned above, since the former approach described ‘‘features” (bars,
edges) that for the most part could be ‘‘seen” in most natural and
laboratory created images. In contrast, people could not ‘‘see” Ga-
bor patches embedded within natural or most laboratory images.
David Marr in his historic synthesis of vision, attempted to recon-
cile these different views by setting up detectors that could recover
edges from these Gabor-like outputs (Marr, 1982; Marr & Hildreth,
1980).

Despite the doubts raised by spatial frequency advocates, by the
1970s many would at least tacitly assume that the early visual sys-
tem analyzed the visual world in terms of features or visual dimen-
sions, color, orientation, motion, depth, and scale although
devotees of spatial frequency would stick to their own formulation.
While Hubel and Wiesel were initially reluctant to suggest specific
ways in which the receptive field properties of cells might be
related to visual perception, other researchers saw the properties
of these cells as a very powerful way to understand vision. As such,
there was a great flourishing of human psychophysical studies con-
firming the existence of multiple spatial frequency channels
(Blakemore & Campbell, 1969) as well as exploring many different
topics through after-effects, such as the McCullough effect, the tilt
after-effect, the motion after-effect and other related phenomena.
All of these studies were consistent with the idea that at some
locus in the visual system, probably in V1 and closely beyond,
there were detectors of various sorts, tiling the visual field.
2. Visual search and brain architecture 1.0

With these important trends as background, two charismatic
researchers supplied the kind of framework to put studies of visual
search into the limelight: Bela Julesz and Anne Treisman. Bela
Julesz was born in Hungary, a refugee who escaped in the wake
of the 1956 Hungarian uprising and who in 1960 dazzled the
psychological community with his random dot stereograms, the
first truly exciting application of computers to psychology (Julesz,
1964). Anne Treisman, undergraduate student of modern lan-
guages at the University of Cambridge, switched to psychology
and made an early name for herself in auditory attention, when
visual attention was not yet a proper field.

While starting from very different premises and with different
goals, each wanted to study and isolate putative elementary
aspects of vision. Julesz’s ambition was to find elementary particles
of vision much as the physical sciences had found atoms, mole-
cules. Because these putative ‘‘textons” were somehow fundamen-
tal visual elements, they would be apprehended very quickly
without scrutiny and their registration in the nervous system
would be governed by very simple rules, by changes in density of
elements, terminators, oriented lines, closure. Julesz, however,
did not explicitly think about these units in terms of the task of
visual search but in terms of something closely related, ‘‘effortless”
perception, using texture segregation as a way to determine
whether a given texture element was a texton, an elementary unit
(Julesz, 1981).

It was Treisman’s Feature Integration Theory (FIT) that had the
greatest influence in elevating the status of visual search because
this paradigm was the main source of data for her theory and it
was to be the proving ground for it to be tested more fully. At
the core of the theory was the idea of distinct feature maps, two-
dimensional arrays of detectors any one of which could be acti-
vated in parallel. There were feature maps say for color (red, green,
blue, etc.), basic shapes (letters, geometric figures), and other prop-
erties (Treisman & Gelade, 1980). Visual search could occur in two
modes, pre-attentive (not requiring attention) and attentive. In the
pre-attentive mode, the activity of a singleton in a feature map, say
a green square amongst a field of red squares would effortlessly
‘‘popout” by virtue of being a sole locus of activity in the green
primitive feature map.

The operational definition of popout was boldly stated. Popout
in a given search array occurs when performance (in terms of reac-
tion time) remains constant, no matter how many distractors.
According to the theory, this occurs because popout is mediated
by the unique occurrence of a feature in a retinotopic map, all of
this occurring in parallel. Thus there would be no cost in adding
more distractors. Many singletons placed amongst distractors
showed this characteristic function, thus the green item amongst
red ones, X’s among Os, high spatial frequency Gabor’s amongst
low frequency ones (Fig. 1a, b, and c respectively). Treisman
claimed that these flat ‘‘popout” functions were a diagnostic char-
acteristic of parallel search and hence could point to the existence
of retinotopic maps of a given feature or dimension.

Contrasted with this, were searches for conjunctions of features,
where no such parallel scheme of single feature maps existed and
so conjunctive search could not be handled by the parallel opera-
tion of single feature maps by themselves. (see Fig. 1d). Under
these circumstances, pre-attentive vision cannot occur. FIT postu-
lated that attention was needed to bind features at some other
more central locus, a master map of locations where attention
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Fig. 1. Search for a single target varying in only one dimension (a,b,c) vs searching
for the single target defined by the conjunction of two dimensions (d).
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would have the role of binding features. The slope of the serial
search function or search rate (milliseconds per item) provided
the amount of time it took focal attention to move from one item
to another. Furthermore, the theory predicted that for the target
absence case, the overall search time should be twice that for the
target present case. This required the assumption that subjects
searched the display with full memory so that they would not be
wasting time with repeated attentional visits to the same item.

Treisman’s theory fit the data both qualitatively and quantita-
tively and in comparison to other areas of psychology, the theory
was rich in detailed predictions. For those of us in the field of visual
perception and psychophysics (readers of this journal) and who
had ambitions to link perception to brain function, FIT was extre-
mely attractive. It meant that simply designed experiments in
visual search could reveal new feature maps or at least confirm
them. In contrast, topics like object recognition were deemed too
complicated and distant for possible neurologizing. Explaining
everyday behavior in terms of the known properties of neurons
was heady stuff. Furthermore it gave a new possible meaning to
the intuitive yet somewhat ill defined concept of attention. Instead
of just meaning greater processing, it gave attention a designated
computational role, linking features to locations, something that
appealed to those of us who wanted something more concrete.

Furthermore, it implied that simple psychological experiments
themselves could conceivably play a key role and be on a par with
single unit recording itself, since FIT postulated that flat search
functions would be diagnostic of a canonical feature map. Julesz’s
texton theory also posited a similar role for psychological and psy-
chophysical experiments. Thus, psychological experiments alone
might find out important facts about the neurological organization
of the visual system.

Those of us vision researchers who were drawn to this frame-
work were tempted to think of how feature integration theory
might be more specifically realized within particular visual cortical
structures with their known receptive field properties. The story fit
at least in broad outline, because it was clear that neurons in var-
ious parts of the visual cortex were selectively sensitive to features
and thus it seemed entirely reasonable that a feature map based on
say a given color, a given orientation, a particular direction of
motion existed. This would in turn form the substrate for feature
maps that could mediate rapid search or popout.

On closer reflection, however, it became clear that some neu-
rons in striate and extrastriate cortex were not tuned to just one
feature, but to many and jointly at least to two. For example, striate
cortical neurons jointly coded spatial frequency and orientation
(De Valois et al., 1982; Campbell et al., 1969). If one thought of
other visual cortical areas, there were additional examples of other
cells tuned to joint dimensions such that optimal stimulation along
each dimension would yield the greatest responses. In MT for
example, cells were tuned both to direction of motion and binocu-
lar disparity (Maunsell & van Essen, 1983). Thus, it seemed reason-
able to extend FIT’s popout account to include conjunctions, since
unique conjunctions in a given cortical area might be thought
themselves to have the same properties as single features in terms
of a singular pattern of activation.

With this in mind, Nakayama and Silverman (1986) reasoned
that since binocular disparity was coded in many cortical areas
jointly with other dimensions such as motion and color, conjunc-
tions of binocular disparity with dimensions might also enjoy such
pre-attentive status. As such, they constructed a search array in
three dimensions using stereopsis such that for a given rectangular
grid of search elements, each element in the array could either be
‘‘in back” or ‘‘in front” as defined by binocular disparity. If one put
all of the blue colored distractors in back and red ones in the front,
a conjunctive target could be defined as a red behind (as shown in
Fig. 2a) or a blue in front. According to FIT’s original formulation,
these targets should not popout since no map coding a single
feature would be uniquely activated. In contrast, Nakayama and
Silverman found that there was no increase in search time. The
same flat functions obtained for stereo-motion (SM) and stereo
color (SC) conjunctions (Fig. 2b).

Nakayama was very pleased with these results, for although
they contradicted a central tenet of feature integration theory in
its original form, they could be seen as strongly supportive of FIT
if one widened the definition of feature maps to include joint cod-
ing of features by neurons. Initially, he saw the result as the obvi-
ous and necessary extension of FIT, given the need to reconcile the
theory with existing neurophysiological knowledge. It was deemed
a happy marriage because feature maps of two dimensions plainly
existed and the flat search functions supply ample evidence for
such an extension of Feature integration theory. Furthermore, by
doing more experiments using conjunctions, one might distinguish
those features in neurons that were jointly coded from those which
were not.

Already, however, there were a couple of disquieting facts in
this report that seemed to go against feature integration theory.
First (referring to Fig. 2B), while there was no increase in response
time with increasing distractor number, the Y intercepts for the
stereo motion (SM) and the stereo color (SC) were very high,
approximately 1500–2000 ms. This kind of behavior was never
seen in previous ‘‘popout” experiments where constant reaction
times were more on the order of 500 ms or far less. Later studies
would show that popout defined more precisely could be very slow
(Bravo & Nakayama, 1992) so this may have been a less serious
objection.

More worrisome was a phenomenological aspect of the experi-
ment, namely that it seemed to the subjects that they were attend-
ing to each depth plane selectively, perhaps sequentially and that
they were then finding the odd color within a given attended depth
plane. This observation was odds with the unique spirit of FIT,
which postulated that attention was not required for popout. So,
while objectively it seemed that the results extended the results
of feature integration theory to conjunctions, subjectively at least
it seemed violate one of its central tenets – the assertion that there
was some form of privileged communication between early visual
processing and the site where search performance is determined,
thus bypassing attention. However, it took more formal experi-
mentation with more objective measures to deal with these issues,
one to show that binocular disparity cannot be seen as a defining
feature in explaining conjunctive search and another to show that
attention was clearly required for simple feature search.



Fig. 2. (A) Schematic description of the Nakayama (1986) conjunctive stereo color (SC) visual search display. The observer’s task was to find the odd color for a given depth
(red target in back or blue in front). Elements in both the front and back are fully visible (not occluded) and are only seen as opaque planes here for illustrative purposes; (B)
Reaction times plotted against number of distractors show constant reaction time flat functions for conjunctions of stereo and color (SC) and stereo and motion (SM). In
comparison, another conjunction task, color and motion (CM) showed very steep slopes. Simple tasks, finding a single color alone (C) or motion alone (M) showed much
shorter reaction times and flat functions.
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Replicating and further characterizing the phenomenological
observations accompanying the Nakayama and Silverman visual
search experiment, He and Nakayama (1995) had observers attend
to elements having the middle–depth values (defined by binocular
disparity) where there was an odd colored target amongst distrac-
tors and where the same target colors were also present in the
nearer and farther distances (Fig. 3a and b). For the case depicted
in Fig. 3a, it was possible to attend to the middle disparity, ignoring
closer and farther disparities. Reaction times were short and there
was little increase in reaction time with increasing distractor num-
ber, thus replicating Nakayama (1986). However, binocular dispar-
ity differences alone were not sufficient to assure ‘‘popout”. Note
that in this case, the search elements are not only at a particular
disparity but the elements are arranged so that each element is
coplanar with all other elements at this disparity. Thus, all middle
Fig. 3. Visual search task where the subject is to find the odd color target at the intermed
they do not (B). Fig. 3C shows the stimulus configuration where its easy to search a horiz
whereas in Fig. 3D, it’s very hard to do this because the elements do not lie within this
disparity elements form a well defined surface. However, note that
in Fig. 3b, the elements in a search plane were not co-planar. In this
case, He and Nakayama (1995) reported that it was very difficult to
selectively attend to the middle disparity elements, requiring great
effort and search times were consistently higher by almost half a
second. Therefore binocular disparity was not sufficient for this
efficient focusing of attention to a middle plane because there
was the additional requirement of co-planarity.

Not only was binocular disparity not sufficient, it was not
necessary as He and Nakayama (1995) also showed that a common
binocular disparity was irrelevant for selecting planes by using un-
iquely colored targets in horizontally oriented planes (compare
Fig. 3c and d). These easily attended planes having co-planar
elements did not even share a common disparity. Simply put,
whether an array could be effectively attended was not determined
iate depth value, where the elements comprise a well formed surface (A) and where
ontal surface spanning many values of binocular disparity with co-planar elements
horizontal plane. (Reprinted with permission from He and Nakayama (1995)).
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by any scheme of joint codings by elementary receptive fields, but
by whether they comprised a well formed surface, a higher-level
form of representation (see also Nakayama, He, & Shimojo, 1995).

Joseph, Chun, and Nakayama (1997) directly addressed another
central tenet of FIT, that attention can be bypassed and can have a
direct route to those processes which report target detection in a
visual search task. In a dual task attentional blink paradigm sub-
jects were instructed to report a cued letter in an RSVP letter
stream while also doing a ‘‘popout” task, determining whether an
otherwise easily visible, oddly oriented Gabor patch was present.
There was a dramatic diminution of performance for several
100 ms in the dual task condition, showing that indeed the atten-
tional resources captured by the RSVP task essentially abolish the
phenomenon of popout. This confirmed in a very different way
the notion that detecting popout of a singleton in a display
required attention, dispelling the notion of an ‘‘attention free”
privileged route.
3. More doubts about the importance of low-level features

The basic assumption as well as a motivating force for early
researchers in the study of visual search was the notion that the
simple receptive properties of neurons in retinotopic cortex had
a privileged role in perception. There were many good reasons to
make this optimistic assumption, as psychophysics had been suc-
cessful in identifying color channels corresponding to the ones
measured physiologically and the most recent identification of
spatial frequency channels with characteristics similar to cortical
neurons (Blakemore, 1969; De Valois & De Valois, 1988) was sim-
ilarly encouraging. Thus, there was no denying that the existence
and characteristics of early mechanisms could be felt in some care-
fully designed psychophysical studies. The question remained as to
whether these mechanisms are the ones that will reveal them-
selves more generally, specifically in other tasks such as visual
search. Over the period of a few years it became clear that these
putative elementary processes played little or no direct role in
determining visual search performance.

First there were well known effects of practice. For any given vi-
sual search pattern, many studies have shown that accuracy im-
proves and reaction times decline over time. If we assume that
visual search were to be determined by many invariant simple fea-
tures, this is an aberrant finding. Against this, it was argued that in
some situations subjects were learning some extraneous aspect of
the task, getting used to the procedures, developing a strategy.
Such arguments do not apply to the experiments of Wang, Cava-
nagh, and Green (1994), who relied on extreme differences in
familiarity with patterns which should otherwise be equivalent
at the level of low-level feature maps. They showed that detecting
a target shaped as a among a shape as distractors was very
easy, whereas finding among distractors was much harder.
Each had essentially the same configuration of elements in terms
of an early visual representation and should activate early maps
similarly. Because the and resemble the numerals 2 and 5,
a highly practiced pattern for westerners, did it now qualify as a
feature? Similar findings showing a strong role for familiarity were
seen for Chinese and Persian writing symbols in these populations.

Another important and otherwise puzzling finding was the very
different search rates for differently shaded cubes (see Fig. 4a and b
reported by Enns and Rensink (1990)). Small differences in the
ordering of brightness on cube-like patterns have a huge effect
on visual search performance. Here the difference is very subtle
if one thinks only of image feature combinations but is much more
interpretable if these cubes are seen as a three dimensional scene,
where in the normal viewing situation a planar surface of cubes is
lit from above as shown in Fig. 4A. Here the task was very easy.
This should be compared to the case where they are lit form below
(Fig. 4B), something occurring very infrequently and thus leading
to very slow search. The difference in performance was dramatic
as shown by the data presented on the right panel of Fig. 4.

In other experiments, researchers questioned the importance of
image features at all. Employing binocular disparity to manipulate
depth, He and Nakayama (1992) showed that one could find Ls
among reversed L’s with ease if the L’s were put in front of squares
so that they were perceived as L shapes (Fig. 5A). However, if depth
was manipulated such that the L image region was seen behind the
squares, visual search became extremely difficult. In this case, the L
image shape was not seen as an L but as a square, amodally com-
pleting behind an occluding square (Fig. 5B). Thus L’s and reversed
L’s are seen as much less distinct by virtue of them both looking
more like squares. This means that visual search was not deter-
mined by properties of the image, i.e. low level representations,
but by higher order ones, the inferred shape of partially occluded
objects.

All of these findings taken together strongly indicate that image
properties are not determinative of visual search performance, that
simple cortical receptive fields are not able to account for the
results (see also Nakayama and Joseph, 1998).

All of these results point out that the provisional architecture
suggested by FIT or any other image-based feedforward architec-
ture (we dub this Visual Architecture 1.0) is an inappropriate one
to encompass all the findings of visual search. Nevertheless,
Treisman’s FIT was a great service to vision researchers as it helped
the research community to embrace and for many to reject the
simple models of vision implied by the single unit physiology of
the Hubel and Wiesel era. A new conception was needed, but it
did not come out as a single framework or theory, but several
related ones (Hochstein & Ahissar, 2002, Edelman, 1987; Lamme,
2003). It is still today in embryonic form, but discernible is a core
which de-emphasizes canonical detectors, ignores the ‘‘binding”
problems and allows for very high level processing to occur very
early in time. While not all of this emerging framework is needed
to contextualize visual search, a brief sketch of some of these
developments provides an alternative perspective.
4. Vision Architecture 2.0

There were a number of antecedents that set the stage for the
birthpangs of what may eventually become Vision Architecture 2.0.
5. Short latency responses in higher visual areas

Hubel and Wiesel and those that followed broadly assumed a
serial model of vision, with many stages in the visual pathway that
made sense, both in terms of simple neural connectivity as well as
in terms of the properties of neurons at progressively higher
stages. This serial hierarchical framework was the implicit operat-
ing assumption for years and many models of vision mirrored this
assumed structure. However, there were always well known bits of
information that raised doubts, reminders that the visual system
was unlikely to operate in this way. Most well known for decades
was the existence of back projections in the visual system. For
example, the number of centrifugal fibers projecting back from
the visual cortex to the lateral geniculate nucleus exceeds the
number of centripetal fibers by an order of magnitude. This was
troubling indeed if one were to think of a strict feed-forward
scheme.

Also, there were several related pieces of information which
indicated that the flow of information might not precede from
the simple to complex. First, were studies of the latencies of
responses in various visual areas. Despite the hierarchy suggested



Fig. 4. Comparison of visual search arrays and performance for odd shaded cubes, showing examples which mimic top lit cubes (A) and where they do not (B) Search for odd
target in (A) is relatively easy with little increase in reaction time as increasing display sizes in comparison to odd target in (B) which is much harder to find. (from Enns &
Rensink, 1990).

Fig. 5. Comparison of the perception evoked by an L shaped image region presented
stereoscopically in front (A) or in back (B). When present in front, it looks like an L,
when in back, it is perceived as a square, amodally completing behind the black
occluder. Correspondingly, in a visual search task finding the single oppositely
oriented ‘‘L” in B is much slower than in A, because both L and reversed Ls look like
squares (He & Nakayama, 1992).
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by van Essen and colleagues, many reports showed that the laten-
cies of cortical neurons did not correspond to the positions on hier-
archical maps (Schmolesky et al., 1998). Response latencies in
putatively much later areas (frontal eye fields, MT) could respond
more quickly than many cell types in earlier cortical structures.
This was not surprising given the well known existence of parallel
pathways (magnocellular and parvocellular) having different
response times which indicated that there should be no simple
time sequencing of signals as one moved up the visual hierarchy,
that cells at the highest levels might respond equally quickly as
cells in low level retinotopic areas.
5.1. Rapid high level discrimination

Consistent with these findings and further challenging a simple
serial model, single units in higher brain areas show surprisingly
short latency responses to abstract visual categories. For example,
there exists a differential response in neurons in cortex which re-
spond with latencies of 100 ms or less to food vs non-food (Fukuda,
Ono, Nishino, & Sasaki, 1986). Simon Thorpe and colleagues have
also found comparable evidence for this in humans using behav-
ioral and ERP studies. Most dramatic is the recent work (Kirchner
& Thorpe, 2006) where using a two choice eye movement task,
complex shapes can be discriminated extremely quickly, with the
correct choice occurring in 130 ms. Similar work using faces shows
correct latencies of even shorter duration, less than 110 ms
(Crouzet, Kirchner, & Thorpe, 2010). Furthermore, even very high
level discrimination tasks such the discrimination of emotional
scenes can be accomplished in less than 100 ms (Maljkovic &
Martini, 2005a). This means that contrary to the assumptions of
a simple serial model of visual processing, there is much temporal
mixing of signals in the visual system, with fast and slow streams
co-existing.

5.2. Unconscious vision

The study of unconscious vision has had a long and irregular
career, gaining acceptance only after many decades. It started in
the 1950s under the moniker of the ‘‘New Look in Perception”
(Bruner & Goodman, 1947). Inspired by concepts of psychoanalysis
then prevalent, McGinnies (1949) reported that observers failed to
perceive taboo words (usually with sexual content) as they had
special mechanisms that protected them from gaining access to
conscious awareness (perceptual defense). These claims were
challenged, however, by those who pointed out the likelihood of
response bias and criterion changes (see Goldiamond, 1958).

Traditional vision researchers paid little attention to these
claims as they measured thresholds – that minimum amount of
stimulus strength to elicit ‘‘conscious vision”. Researchers made
the pragmatic assumption that signals had to pass through a series
of stages and with appropriate stimulus manipulations there
would be some critical, limiting stage (retinal or cortical) whose
characteristics would be revealed (Blakemore, 1969; Westheimer,
1965). Conscious visual experience was just a handy indicator.
They were not interested in looking for examples where the choke
point (or bottleneck), between seeing and not seeing would be
determined elsewhere, mediated possibly by attention and per-
haps at the level of object recognition. This would have to wait



1532 K. Nakayama, P. Martini / Vision Research 51 (2011) 1526–1537
until it became more than evident that unconscious visual process-
ing was something that could not be ignored.

This occurred quietly over the past three or four decades, as the
vision research community became slowly aware of widespread
examples of visual processing without awareness. It started with
the phenomenon of blind sight, showing correct behavioral
responses in cortically blind fields (Weiskrantz, Warrington,
Sanders, & Marshall, 1974). This was followed by the phenomenon
of adaptive motor behavior to unseen changes in target position
(Bridgeman, Lewis, Heit, & Nagle, 1979). This was followed by
the even more surprising phenomenon of masked priming, the fact
that words were recognized faster if preceded by unseen versions
of them or related words (Marcel, 1983). Despite the range and
scope of these studies and their important implications, such
results were either ignored or regarded with sceptism.

A decade later, however, the floodgates opened, with reports of
a diverse set of phenomena showing very strong effects of unseen
visual stimuli, including effects under binocular rivalry, RSVP
streams (the attentional blink), continuous flash suppression,
fusion suppression, backward masking and object substitution
masking. In all of these cases, there were noticeable behavioral
consequences, but the stimulus which triggered these effects re-
mained invisible. Although there were many skeptics at first, the
sheer volume of unconscious effects grew too large to ignore. The
traditional methods of threshold psychophysics was obviously
not the only approach to studying the performance characteristics
of the visual system. Visual threshold psychophysics could delin-
eate the ‘‘seen” from the ‘‘unseen”, but this only heightened ones
curiosity as to a new zone of mystery, the extent and characteris-
tics of the ‘‘unseen”.

The territory of the ‘‘unseen” turns out to be surprisingly large
as further characterized by behavioral and human neurophysio-
logical approaches (Dehaene, Changeux, Naccache, Sackur, &
Sergent, 2006). A briefly flashed word rendered ‘‘unconscious” by
masking, nevertheless accelerates the recognition of the same
word vs other visible words presented subsequently. In addition,
the magnitude of this effect occurs independent of case, indicating
the activation of a more abstract representation of words not di-
rectly tied to visual appearance. In addition, these unseen words
activated areas of the fusiform gyrus of the temporal lobe as mea-
sured by fMRI (Dehaene et al., 2001). Unseen faces rendered
unconscious either by continuous flash suppression or other forms
of binocular rivalry showed strong fMRI activation in FFA and
amygdala (Williams, Morris, McGlone, Abbott, & Mattingley, 2004).

All of these experiments suggest that high-level meaningful as-
pects of a stimulus go very far into the visual system. In fact they
can go all the way to the motor output. Well known are Milner
and Goodale’s results (1995) showing that subject DF can correctly
grasp objects that she cannot report the shape of. This suggests a
direct linkage of vision processing to motor output, mediated by
a ‘‘dorsal” visual system hypothesized to determine behavior with-
out the need for consciousness. But the level of unconscious pro-
cessing that can directly lead to motor responses may not only
be confined to the dorsal visual pathway. For example, flashed
and masked unseen words, which are presumably processed in
the ventral pathway, can nevertheless elicit quick responses. This
was demonstrated in a study where subjects were to identify the
color of a verbally defined item (spinach, blood) by touching a
red or green square on the screen. Here an unseen incongruent
word ‘‘red” or ‘‘green”, presented just before, initiated incorrect
trajectories towards the colored button corresponding to the
unseen word, rather than the color of the seen item (Finkbeiner,
Song, Nakayama, & Caramazza, 2008). This study shows that
unseen symbols (in the form of otherwise arbitrary letter shapes)
having no inherently visual relation to colors, can by linguistic
association drive behavior. Equally dramatic is the fact that unseen
erotic stimuli masked in a binocular rivalry paradigm can direct
attention to and away from different parts of the visual field
depending on sexual orientation (Jiang, Costello, et al., 2006).

There are additional aspects to the emergence of Vision Archi-
tecture 2.0, such as the issue of re-entrant processing and its rela-
tion to consciousness that go beyond the scope of the present topic.
6. Implications for visual search

It appears from these general findings about vision that the sys-
tem very quickly processes information at a deep level of meaning
and that much of this can be automatic and unconscious. These
results are at odds with the Vision 1.0 idea that there are elemental
primitives of vision, features or textons, that later and presumably
slower stages (needing attention) can assemble.

The existence of significant depth of processing for both uncon-
scious vision and rapid vision is also mirrored in visual search find-
ings. It’s not the shape of the visible fragment of an L itself, but the
inferred square shape of the L-shaped region amodally completed
behind (Fig. 5). Additionally its not just collection of cubes but a
surface array of cubes lit from above (Fig. 4).

Perhaps it is no coincidence that neither rapid high-level visual
recognition nor efficient visual search are convincingly understood
in terms of primitive canonical textons or features, that they both
require relatively high-level visual representations. We argue that
both are problems in the recognition of objects and patterns. Each
requires that we distinguish one thing from another, one object
class from another in the case of object recognition and whether
a target is present or absent, essentially one pattern vs another,
in a search task.

As such, we briefly survey work on object recognition to see
how it might shed light on visual search. An important issue in ob-
ject recognition has been the problem of invariance. How is it that
we can recognize an object or groups of objects under so many
poses, lighting, exemplars? Sixty years ago there was much talk
of cardinal object recognition units (Konorski, 1967) or grand-
mother cells (Gross, 2002) units that fire for that object under a
wide range of circumstances. While not repudiating the notion of
cardinal units, recent emphasis has been on understanding how
one class of objects or one specific object can be discriminated
from others.

Implicitly retaining the notion of possible decision units for rec-
ognition, DiCarlo and Cox (2007) considered object recognition as a
problem of linear classification. Thus a neural response to a given
sampled image of an object can be considered as a vector (in a very
high dimensional space) and that all appearances of this object
(under different guises, poses, lighting, etc.) trace out a manifold
of such vectors in this space (see Fig. 6a and b). For object recogni-
tion, the task is to find a way to separate one manifold from
another. Assuming a linear classification scheme, one must find
that set of discriminative hyper-planes that best separates the
two (as shown in Fig. 6a). This sidesteps the problem of invariance,
allowing each object to have a range of neural representations
yet also allowing it to be distinctive (DiCarlo & Cox, 2007). The
advantage of this conception lies in its compatibility with the long-
standing ‘‘integrate and fire” models of neurons, that they can sum
up excitatory and inhibitory influences (from many dimensions)
and come up with an output, and that in doing so they can serve
as object memory units.

However, as DiCarlo and Cox point out, for most neural repre-
sentations of a stimulus, there is no possible hyper-plane cut to
separate the two objects, as their corresponding representational
manifolds are hopelessly entangled (as shown in Fig. 6b). The chal-
lenge for the visual system, as outlined in this framework, is to
have some well coded and appropriate representation (as depicted



Fig. 6. Manifolds corresponding to untangled (a) and tangled (b) representations of two objects. Manifolds represent multiple image samples from a given object or class of
object, occupied by changes of view, lighting, different exemplars, etc. Note that for the untangled representation (A), where object recognition is possible, there exists a linear
cut (a hyper-plane) that separates the two objects over these widely varying conditions. For the tangled representation (B), no such plane exists and object recognition is not
possible. (reproduced with permission from DiCarlo and Cox (2007).
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Fig. 7. Color space (YB, RG axes) framework to understand why visual search is easy
sometimes (left) but hard at other times (right) when a single color target (solid
symbol) is searched among two distractor colors (open symbols). It’s easy when a
straight line can be between the distractors and targets as on the left (redrawn from
D’Zmura, 1991).
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in Fig. 6a) so that such a cut is possible. This issue of recoding the
image has been a longstanding topic in vision (Barlow, 1961). With
respect to object recognition, some treatments suggest recoding of
the image by concatenating elementary units inspired by Hubel
and Wiesel era neurophysiology (Fukushima, 1980; Riesenhuber
& Poggio, 1999) whereas other approaches have attempted to
develop image fragment detectors that are particularly effective in
best discriminating the identity of real world objects under various
views (Ullman, Vidal-Naquet, & Sali, 2002). The latter approach has
appeal in that the units look more like the kinds of receptive fields
found in IT cortex (Tanaka, 1996), although its often hard to make
this determination unequivocally. Whatever the mechanism,
however, its clear that IT neurons have many if not all of the charac-
teristics to do the job of general object recognition.

Work by Hung, Krienen, Poggio, and DiCarlo (2005) suggests
that it’s likely that this is accomplished by progressively better
coding of stimuli at successive visual stages. By combining the
aggregate multiple recordings over time from single units in mon-
key IT cortex, Hung et al. (2005) simulated a cortex of 256 sites and
asked whether their outputs (using machine learning methods)
could be used to correctly classify eight different object classes.
The results were dramatic, a classification score of 94% was
obtained. This means that well placed hyper-planes in these linear
spaces were extremely successful in assigning stimuli to the vari-
ous categories, thus accomplishing the job of object classification.
Similar results were obtained for specific objects themselves. In
contrast, by taking the outputs of earlier stages than IT (V1 neurons
for example) and doing the same procedures, little performance
above chance was obtained. This means that in the information
flow from V1 to IT cortical areas, there is a radical re-representa-
tion of data so that the classification of objects becomes possible.
Furthermore the process is accurate even with very short latencies
(100 ms) and with minimal duration of the response (12.5 ms).
This synthetic exercise thus argues for the DiCarlo and Cox
(1997) concept of untangling in understanding object recognition.

Can we now apply this untangling concept to the domain of vi-
sual search? Twenty years ago, D’Zmura (1991) came up with an
essentially identical formulation in a visual search experiment
where he had subjects look for a designated target color among a
set of two colored distractors. Using a variety of targets and dis-
tractors arrayed in two dimensional hue space, he concluded that
the key determinate as to whether the search would be easy (no
increase in RT with increasing distractor number) was the ability
to draw a straight line in the color space separating targets and dis-
tractors. Thus, in Fig. 7a the target can be easily dissociated from
the distractors whereas this is not the case for Fig. 7b. Further work
by Bauer, Jolicoeur, and Cowan (1996) confirmed D’Zmura’s results
and made the stronger case that it was unlikely to be target dis-
tractor distance in the space, but the ease with which the targets
and distractors could be cleaved by a single line. Thus we have a
foreshadowing in miniature (with just two dimensions) of the
higher dimensional untangling hypothesis of DiCarlo and Cox
(2007). The line suffices to do the job of linear classification of
the hyper-plane.

These two contributions, DiCarlo and Cox (2007) for object rec-
ognition and D’Zmura (1991) for visual search, highlight their sim-
ilarities as well as their differences. Both rest on the same idea of
linear classification to do pattern recognition. For object recogni-
tion, it’s for one object at a time with a high number of dimensions
required for the classification. For visual search, it’s for many
objects at a time, with very few distinguishing dimensions
(or detail). Thus each represents the extremes of plausible
trade-offs between dimensions vs objects (or details vs scope).
We suggest that there are finite computational resources for any
pattern recognition task for a given system, one can have lots of
dimensions or lots of objects but not both. In Fig. 8, we illustrate
this limitation by showing the conceivably possible relations
between scope (objects) on the abscissa and dimensions (detail)
on the ordinate. Assuming a logarithmic scale, the negative 45� line
traces out the limits of a system with fixed capacity (since all
points along this line have the same product). For any pattern
classification that can be done in single glance, we suggest that
points must lie below this 45� line, patterns represented by points
above this line exceed the capacity of the recognition system.

Object recognition and visual search thus occupy extreme posi-
tions within this feasibility triangle, with object recognition nes-
tled into the upper left corner and easy visual search, in the
lower right hand corner. Object recognition is usually described
for one object at a time and thus allows for recognition using the
maximum numbers of dimensions. This is the DiCarlo and Cox
formulation where manifolds must be untangled for object
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Fig. 8. Computational resource framework to understand the relation between
object recognition and visual search. The negative dashed 45� diagonal line in this
log–log plot depicts a line of fixed computational resources (the product of number
of objects and dimensions). The area below this line represents a feasibility triangle
where pattern recognition can occur in a single glance. Object recognition is
customarily based on single objects at a time with a maximum number of
dimensions is in the upper left corner, whereas easy visual search spans many items
with few dimensions and resides in the lower right corner. More difficult visual
search can occupy intermediate positions (serial search) depending on the number
of recognition dimensions required.
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recognition to proceed. Easy visual search on the other hand, as
described by Treisman and also by D’Zmura, is formally the same,
a pattern recognition task but over many objects and larger spatial
extents with only few distinctive dimensions required, dimensions
which represent efficient codes and could be complex (Ullman
et al., 2002) It thus correspondingly lies in the lower right corner.
Search that cannot be done in one glance or in a single attentional
fixation (Nakayama, 1990) must undergo the same pattern recog-
nition process repeatedly but can only do this with a subset of
the whole display. The size of the subset is dictated by the number
of dimensions required for this identification (Alvarez & Cavanagh,
2004). More difficult searches require more dimensions and thus a
reduced spatial extent of pattern recognition and points are corre-
spondingly shifted leftward on this diagram. Less difficult searches
requiring fewer dimensions, can operate over more objects and
larger areas and are shifted rightward. As such, the locus of serial
search tasks in our framework traces out diagonal line within the
feasibility triangle (also shown in Fig. 8).

The trade-off between scope (number of dimensions) and scale
(number of objects) allows one to situate any visual search task
within this framework – meaning that there is an essentially infi-
nite combination of intermediate cases where tasks partake char-
acteristics of object recognition and/or visual search to varying
degrees. Somewhat elastic is the concept of an object or an item
and this can be easily influenced by efficient coding. For example,
the Enns and Rensink easy search for a plane of top lit cubes (Fig. 5)
might be considered as a single object or surface rather than
numerous cubes. Thus search is easy, not because it just had a
low numbers of dimensions, but because the display itself might
be considered as a single object and thus placed further to the left
on the feasibility triangle than other easy search tasks. We also
suggest that examples of rapid scene categorization described ear-
lier (Kirchner & Thorpe, 2006) can be situated within this same
framework, sharing the locus with easy search in the lower right
corner in Fig. 8.

Summing up. We have been developing the view that visual
search has had a disproportionate role in the history of vision
science, that it was certainly popular and continues to be so. Our
view is that some of this enthusiasm has been misplaced, based
on the often unexamined assumption that visual search is closely
tied to elementary canonical detectors so seemingly well estab-
lished for early visual areas. However, by conceptualizing visual
search in the category of object recognition tasks, we hope to stim-
ulate research along these lines which could better characterize
visual search as well as object recognition itself.
7. Prediction and memory in visual search

So far we have stressed the link between visual search and
emerging ideas about visual function, tracing the history of visual
search, showing that it mirrors ideas about how we understand
the visual system.

Thinking farther afield and into the future, it seems that visual
search has and will continue to have a prominent role in under-
standing a broader range of issues, ones that have long been a con-
cern to researchers who have considered visual search in a more
applied framework – from searching for lost men and submarines
at sea (Koopman, 1980), for predators looking for things to eat
(Poulton, 1890) and more recently, for security screeners looking
for weapons in baggage and doctors looking for rare tumors
(Wolfe, Horowitz, & Kenner, 2005).

A wide range of endeavors have considered visual search in this
context and we trace this back to some of its origins. We men-
tioned Bernard Koopman earlier, a then well known mathemati-
cian who developed the notion that search for targets in a
featureless field (searching for a ship in a wide ocean) was likely
to be akin to a random process, because the uncertainty due to
imperfect visibility and other factors limited the probability of
detecting the target in a single sample (Koopman, 1956b). As such,
search is closely related to the classic sampling with replacement
from an urn with easily derivable predictions. The probability of
success as a function of samples (or time) would be exponential.
Koopman’s predictions were confirmed in great detail in well con-
trolled visual search experiments in Philadelphia’s Franklin plane-
tarium, where small targets were to be found against a featureless
sky under varying durations and spatial extent (Krendel &
Wodinsky, 1960). The results were entirely consistent with a con-
strained random walk with no memory. These dramatic findings
indicated that very simple ideas, describable mathematically,
could make exact predictions about complex behavior.

However, most of the visual search displays concocted by psy-
chologists were more structured, they comprised target items
and distractors and it would seem reasonable that memory would
be important. In fact, perfect memory was the underlying assump-
tion for Treisman and Gelade’s prediction of the 2:1 ratio of the
slope of reaction time functions for serial search, where target
present trials would have half the slope as target absent ones.

However, many factors are involved in deciding when to termi-
nate a serial search (Chun & Wolfe, 1996) and so the role of mem-
ory cannot be so easily isolated and assessed. For some search
tasks, with moderate numbers of items, search may appear to be
random, as demonstrated by Horowitz and Wolfe in a very clever
study: by replacing items continuously under intermittent stimu-
lation, they showed no costs, thus no evidence of memory for serial
search (see also Kristjansson, 2000). However, a simple tendency to
avoid resampling from a just visited location, known as the inhibi-
tion of return phenomenon (Klein, 1988; Klein & MacInnes, 1999),
can mimic very closely the performance of an ideal searcher
(Najemnik & Geisler, 2005), suggesting that what is necessary
and sufficient for optimal behavior might be a form of memory
of an elementary kind, just keeping track of what happened one
trial back.
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Situating visual search in its ecological context of foraging may
provide further clues. Ecologists have long known that foraging
animals do not behave as random searchers, rather the time series
of their feeding choices depart from randomness in very distinctive
ways. Birds feeding on grains of different types tend to produce
long streaks of pecks to the same grain type (Fig. 9), unlikely to
arise from random sampling (Dawkins, 1971). Predators feeding
on cryptic prey tend to eat disproportionately more the most com-
mon type of prey ((Bond, 2007; Bond & Kamil, 2002), the phenom-
enon is called frequency-dependent predation. In laboratory
situations, where different targets are rewarded with uneven fre-
quencies, animals tend to match the frequency of reward by choos-
ing targets in proportion to the frequency of rewards received
according to Herrnstein’s (1961) matching law.

In human visual search behavior, such as security screening for
baggage control at airports or inspection of organ tissues in the
medical profession, rarely encountered items such as weapons or
tumors are missed much more often than expected by chance
(Wolfe & Van Wert, 2010; Wolfe et al., 2005). As such, the statisti-
cal frequency of stimuli must play a strategic role in visual search.

What mechanism is responsible for these frequency dependent
behaviors? A crucial observation is that statistical frequency is
inextricably linked to the degree of repetition of the stimulus: stim-
uli that occur more frequently also repeat more often (Maljkovic &
Martini, 2005b). In the early days of the Cognitive Revolution during
the 1960s it was realized that repetition was the crucial determinant
of the dependence of choice reaction time on stimulus frequency,
formally known as Hick’s law (Kornblum, 1968, 1969; Schweickert,
1993). The further realization that an elementary form of memory
needs to be invoked to explain sensitivity to repetition arose from
two distinct, but arguably linked fields of study.

First were the findings of Maljkovic and Nakayama (1994,
1996), demonstrating that the reaction time for finding a target
singleton in a three-items, pop-out search display depends on
the history of the stimulus sequence. By adopting a reverse corre-
lation analysis familiar to system neuroscientists, they computed
memory kernels for the target’s features (Fig. 10A). These kernels
indicated that each encounter with a target speeds up the future
8–10 responses to targets with the same features and at the same
time slows down responses to targets with different features.

Secondly, a similar history effect was independently discovered
in the study of responses to rewards. Hunter and Davison (1985)
Fig. 9. Right panel shows long sequences of pecks at light or dark grains during the feed
Data obtained from video tape (from Dawkins, 1971).
studied the dynamics of responses to changes in reinforcer ratios
in concurrent variable-interval schedules and computed kernels
demonstrating that pigeons’ response ratios following an abrupt
change in reinforcer ratio reached steady state in about five
sessions. The more recent studies by Newsome and colleagues
(Corrado, Sugrue, Seung, & Newsome, 2005) and Glimcher (Lau &
Glimcher, 2005) used techniques identical to those of Maljkovic
and Nakayama to compute kernels for a single reward, demon-
strating that in the monkey a single rewarding event influences
several future choices according to a kernel function that is suspi-
ciously similar to that found in pop-out search (Martini, 2010). As
such, these studies demonstrated that reward frequency is com-
puted locally through a form of leaky integration of past reward
encounters (Fig. 10B).

Both phenomena, i.e. sequential dependencies in pop-out
search and in reinforcement schedules, can be described as forms
of implicit short-term memory (Maljkovic & Nakayama, 2000),
yet such description may appear to have limited explanatory
power, being essentially a restatement of the phenomenon. What
is needed is a functional explanation.

Progress in this direction appears more advanced in the field of
reward processing than in visual search, where ideas from animal
behavior, physiology and machine learning have congealed into
the coherent explanatory framework of reinforcement learning
(Sutton & Barto, 1998). Particularly important in this context has
been the concept of temporal difference learning, where choices
are driven by value functions that are updated on every trial by
adding a weighted prediction error, the difference between the
actual reward and the previously computed value. Theories of this
kind have recently received much attention following the discov-
ery that dopaminergic activity may be the physiological substrate
of the prediction error (Schultz, Dayan, & Montague, 1997).

In contrast, memory kernels in visual search have been dis-
cussed mostly within the confines of attention guidance mecha-
nisms. The idea that exposure to a particular feature increases
the attentional weight to that feature in future choices has been
suggested in diverse species performing diverse tasks: pigeons
pecking at grains of different colors (Dawkins, 1971), blue jays
feeding on polymorphic moths (Bond & Kamil, 2002) and
humans searching for a pop-out target (Maljkovic & Nakayama,
2000), to name a few examples. The question remains as to
why attention should be weighted more heavily towards features
ing of a chick, where randomly placed grains are on the ground (as shown on left).



Fig. 10. Behavioral memory kernels derived from studies on the deployment of attention and from reinforcement schedules. In (A), we see one of the first examples using
reverse correlation in behavioral studies to obtain the effect of a particular color target on reaction times to the same vs different colored targets across trials (Maljkovic &
Nakayama, 1994). The facilitation (negative reaction time difference) for the same color target is plotted as a function of trials since presentation. Note that there is a long
lasting effect of a single presentation, such that a target presented as many as 15 trials in the past still has a measurable influence on the current trial. As a cross check on the
method, its clear that there is no effect of future trials on the present. In (B), we see a similar dependence of reward in a two choice reinforcement schedule, where reward in
the current trial can have effects long into the future (redrawn from Corrado et al., 2005). In both cases, the decay functions have similar forms.
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or targets that have just occurred: why isn’t attention dimin-
ished by repetition?

One possible answer has to do with prediction. Consider the
goal of finding a target among distractors: is there anything that
can be learned from the history of trials that will improve the
chance of finding the target quickly? This amounts to learning
regularities or departures from randomness that can lead to antic-
ipation of the next trial, such as uneven target probabilities or
temporal correlations in the targets’ sequence. The priors for
assuming that prediction should be possible must be very high,
because completely random phenomena are very uncommon in
nature. Most natural time series are significantly correlated, as
demonstrated by ubiquitous 1/f-type spectra (Hurst, Black, &
Simaika, 1965), and resources tend to be spatially clustered within
homogeneous patches (Taylor, Woiwod, & Perry, 1978). A searcher
with an inbuilt tendency toward prediction will then try to exploit
these regularities by default.

In temporal difference learning discounting past and predicting
future rewards are two aspects of the same learning algorithm. We
suggest that a similar learning process operates also in visual
search: prediction is attained by weighting attention to one feature
in the upcoming trial proportionally to its previous encounters. As
such, fluctuations in attentional weights related to feature repeti-
tions have much in common with fluctuations in motivational
salience induced by rewards (Maunsell, 2004).
8. Searching into the future

Long-term predictions are hazardous, especially in evolving
systems such as scientific research. Nevertheless, with over two
thousand articles on visual search, one thousand of these in the
past decade, it’s unlikely that researchers will abandon visual
search arrays in studying vision and behavior. If our personal
sampling and reflection of this literature has captured significant
underlying themes, we suggest ways that further studies of visual
search could reap benefits.

As visual search is more widely understood as a species of pat-
tern recognition along with other object recognition problems,
conceptual advances in each field should be mutually beneficial,
progress in object recognition should inform our understanding
of visual search and vice versa.
Similarly, as visual search captures choice behavior in a micro-
cosm, with its easily characterizable properties it may offer oppor-
tunities for understanding reinforcement and value, and hopefully
it may benefit from the large research effort currently undergoing
in decision making.
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