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ABSTRACT

Currently, a considerable amount of human effort and timspent for initialization or calibration of operationalffia
control systems. Typically, this optimization (fine-tug)rprocedure is conducted manually, via trial-and-errelying

on expertise and human judgment and does not always lead eégimlle outcome. This paper presents a new learn-
ing/adaptive algorithm that enables automatic fine-turihgeneral traffic control systems. The efficiency and online
feasibility of the algorithm is investigated through ex¢ae simulation experiments. The fine-tuning problem oé¢hr
mutually-interacting control modules — each one with itstidct design parameters — of an urban traffic signal control
strategy is thoroughly investigated. Simulation resultidate that the learning algorithm can provide efficiebeatic
fine-tuning, guaranteeing safe and convergent behavior.

Keywords: Traffic control, parameter optimization, self-optimiziogntrol, adaptive control, large-scale systems.

INTRODUCTION

Despite the continuous advances in the fields of control antpeiting, the design and deployment of an efficient Traffic
Control System (TCS) remains a significant objective, nyabdcause of the involved complexity and the strong non-
linearities. The ultimate performance of a designed or aip@nal TCS (e.g. urban signal control or ramp metering or
variable speed limit (VSL) control) depends on two main dast (a) the exogenous influences, e.g. demand, weather
conditions, incidents; and (b) the values of some desigarpaters included in the TCS.
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As a matter of fact, when a new control algorithm is implenedr(or an operational but “aged” control algorithm needs
to be updated), there is a period of, sometimes tedioustdimeg activity that is needed in order to elevate the cdntro
algorithm to its best achievable performance. Fine-tugimgcerns the selection of appropriate (or even optimal)esl

for a number of design parameters included in the contratesly. Typically, this fine-tuning procedure is conducted
manually, via trial-and-error, relying on expertise andran judgment and without the use of a systematic approach.
Experienced engineers (in cooperation with practitiormersystem operators) experiment with different sets ofgiesi
parameters, trying to achieve an acceptable (close to aptsystem performance, according to some pre-specified per
formance metrics.

To address this problem, a research activity has been ogigeiently ((1), (2), (3)), aiming at developing learnirdgptive
algorithms that will enable an automatic fine-tuning of TCS&sas to reach the maximum performance that is achievable
with the utilized control strategy. The algorithm AFT (Ad&e Fine-Tuning) is the latest development in this resedic
rection and is based on rigorous but simple adaptive opéitiniz and stochastic approximation principles. The predos
learning algorithm is aiming at replacing the conventiomanual optimization practice with a fully automated online
procedure.

BACKGROUND

This section presents the problem formulation and a sheieweof stochastic approximation algorithms and methodolo
gies which attempt to solve the same problem.

Problem for mulation

Consider a general discrete-time control system whererildenlying dynamics are described according to the follgwin
nonlinear first-order difference equation

Z(t+1) :F(Z(t)aui(t)vd(t)vt)v Z(O):ZO 1)

wherez(t), u;(t),d(t) are the vectors of system states, control inputs, and exagefpossibly measurable) signals,
respectivelyt denotes the discrete time-indéxjenotes the regulator-index aft{-) is a sufficiently smooth nonlinear
vector function. Note, that the proposed methodology caappdied to a system even if the functidhis unknown.

Consider also, that one or more control laws are appliedg@yistem (1), which are described as follows:
u;(t) = w; (0;, 2(1)) 2

wherew; (-) are known smooth vector functions afids the vector of the tunable parameters fork regulator. Note,
that we do not impose any restriction neither on the form eféfjuation (2), nor on the number of the applied control
laws. Also, the discrete time-indéxmay be different for each control laiv

The overall system performance is evaluated through thesoig objective function (performance index)
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wheref) = vec (61,02, . ..,0r), mr andr; , are known non-negative functiorisis the number of the fine-tuned regulators,

T the finite time-horizon over which the control laws (2) arglégd andDr 2 [d(0),d(1),...,d(T — 1)] denotes the
time-history of the exogenous signals over the optimizdiorizonT'. By definingz = vec (z(0), D7), equation (3) may
be rewritten as

J(6;2(0),Dr) = J (6, ). 4)

Equation (4) indicates that the system performance is taffielby the vector of the system’s tunable parametesiand

the exogenous vectar. The problem in hand is to develop an appropriate iteratigerahm, which will be applied
everyT and will update the current control system parameters véGteo as to achieve better performance but also
provide safe and efficient behavior. This means, that therihgn should guarantee the stable and sustainable system
performance during the fine-tuning process. This requirgnsecrucial in most practical TCS fine-tuning applications
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since its violation may cause serious performance, saftty,problems. For instance, in the case of traffic conystiesns
fine-tuning, the violation this requirement may lead to @esiproblems (e.g., complaints, dangerous driving, elaj t
may force the traffic operators to cancel the fine-tuning @sec

Related methodologies

The fine-tuning problem described in the previous sectiandsely related to the parameter estimation problem.Q.et
denote the domain of allowable values for the veétof dimensiomy. The main problem of interest is to find the values
of a vectord* € © that maximize a scalar-valued performance functiéé, =). The vectom represents a collection of
tunable (or “adjustable”) parameters that one is aimingc¢k im the best way. The nonlinear functioifd, z) is a scalar
measure that summarizes the performance of the system feema get of values of the tunable parameters. The domain
O reflects allowable values (constraints) on the elemenisamid* represents the optimal solution.

Many stochastic approximation algorithms have been deegldor the solution of this problem. Robbins and Monro (4)
were the first to propose an adaptive technique for paramstenation. Important generalizations and extensionkisf t
algorithm followed close behind by Kiefer and Wolfowitz if)(where the FDSA (Finite Difference Stochastic Approx-
imation) algorithm was introduced. FDSA has provided thsiv#or many learning or “parameter tuning” algorithms
in control engineering problems. An extension of FDSA is Ri2SA (Random Directions Stochastic Approximation)
algorithm which was firstly introduced in (6) and makes usmahy random perturbations of the tunable paramétars
order to come up with a “good” set (according to the perforogeriterionJ (6, x)).

Finally, Spall in (7) introduced the SPSA (Simultaneoust#bation Stochastic Approximation) algorithm for stostia
optimization of multivariate systems. In this paper we cangthe performance of SPSA algorithm with the AFT algo-
rithm to an online large-scale fine-tuning problem of theamrkignal control strategy TUC ((8), (9)) through simulatio
experiments.

THE PROPOSED ALGORITHM
Introduction

Figure 1 illustrates the working principle of the AFT algbrn. The basic functioning procedure for AO methods may be
summarized as follows:

e The traffic flow process (e.g. urban road network) is corerbih real time by a control strategy (of any kind) which
includes a number of parameters to fine-tune.

e At the end of appropriately defined periods (e.g. at the erehoh day), the AFT algorithm receives the value of
the real (measured) performance index (e.g. average speedmace and time for traffic networks, total number
of containers loaded/unloaded for seaport container telsj etc.), as well as some aggregated values of the most
significant external factors (e.g. demand). Note, that #adopmance index/ (0, z) is a (generally unknown)
function of the external factors and the tunable parameters to be adjusted

e Using the measured quantities (the number of which inceeigsetion by iteration), the AFT algorithm calculates
new tunable parameter values to be applied at the next pirigdthe next day) in an attempt to improve the system
performance.

e This (iterative) procedure is continued over many peri@dg.(days) until a maximum in performance is reached,;
then, the AFT algorithm may remain active for continuouspdaltion or can be switched off and re-activated at a
later stage (e.g. after few months).

The developed approach appropriately combines the niterésaof adaptive optimization algorithms with those of ap-
proximation theory. The resultant adaptive optimizatioetinodology is capable of rapidly and efficiently optimizing
systems of arbitrary complexity and scale, such as gen€&8land, most importantly, guaranteeing robust and safe per-
formance while the maintenance operation is on. The mairpoments of the employed algorithm are summarized as
follows:

e An approximatorf(e, x) is used (e.g., a neural network or a polynomial-like appratpr) in order to obtain an
approximation of the nonlinear mappidg6, z) = J (6, x).

e An on-line adaptive/learning mechanism is employed faaitting” the above approximator. Globally convergent
learning algorithms (see e.g., (10), (11)) are requirecfah a purpose.
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Figure 1: Working principle of AFT for automatic calibration of TCSs.

e At each algorithm iteratiort, many randomly chosen candidate perturbations (of dimensj) of vectorf(k)
are generated. The effect of each of these perturbationsetdNTCS performance is estimated by use of the
approximator mentioned above. The perturbation that spmeds to the “best” estimate (i.e., the one that leads
to the best value foy) is picked to depict the new values for the tunable paramétér+ 1). Thatis,f(k + 1)
corresponds to the best estimate/pBelected to be applied at the next period (e.g. the next day)

Linear-in-the-weights Univer sal Approximator

The universal approximator used in the simulation expemis& order to approximate the objective functib(¥, =), is
a linear-in-the-weights polynomial-like approximatottivi , regressor terms, which takes the form

J(0,2)=9"¢(0,) (5)

whered denotes the vector of the approximator parameter estinaatks

6(6,2) = [61(8.2), 62 (0,2) ... 01, (B, 2)] " )
The non-linear functiong; (9, x) are given by

6i (0,0) = S (O, )-S5 (wm, ) ST (Omy), di € {0,1} (7)
whered;, m; are randomly chosen at each iteration of AFT (with, m3 € {1,2,...,ns}, ma € {1,2,...,n,} and

>, m; € {2,3})andS(-), S(-) are smooth monotone nonlinear functions. In the neural orsviiterature (12), (13)
these functions are usually chosen to be “sigmoidal”. Insmulations we choose

S(0) = tanh (M0 + X2), S(z) = tanh (A2 + \4) (8)

where)\; are non-negative real numbers initially defined by the wsiger 4-5 iterations of the algorithm the values\f
are optimized so as to minimize

k—1
2
minz (Jg — 19T¢§k)) . (9)
=1
The factord; are relevant to the normalization of the values of the apprator inputsd, x.

AFT algorithm description

For the implementation of AFT, it is assumed that an estipmatpredictionz(k) of the vector:(k) is available (referring

to the estimate of next iteration). In many applicationshsan assumption is quite realistic, since the entries(&f)
correspond to system states and exogenous inputs, whielaifteble or measurable. However, there may be cases where
such an assumption is not realistic; in this caék) can be estimated/predicted using appropriate estimalgmmitoms.

It should be noted, that the dimensiop of the estimate vectat(k) should be comparative to the dimensiapnof the
vector of tunable parametef's Below, we discuss in details the application steps of tgerithm displayed in Table 1,
which are performed at every iteratién
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Table 1: AFT algorithm mathematical description.

step1: A0 (k+1) = a(k)AY (k) — 6;(k) + 607 (k), j € {1,..., K}

Step2: Ly(k) =min{2(k—1),Ls}

Step 3: 4(k) = max{k — Tp, 1}

Step4: ¢u(k) = ¢ (0e(k), ze(k))

Step5: W(k) — argming 3 Sy, (Jo — 97 de(k))?

Step6: J (£A0U) (k+ 1) + 6*(k), z(k + 1)) = 9(k)7¢ (£A0D (k + 1) + 0% (k), 2(k + 1))
Step 7: Af(k+1) = argmaxagien 1) J (FA0D (k + 1) + 0*(k), T(k + 1))
Abi(k+1)=0;(k+1)—0;(k)

a(k) is a user-defined positive sequence (e.g. constant step@ize= a € (0, 1))

Ty, Ly, K are user-defined positive integers

0* (k) + AO(k + 1) denotes the vector of tunable parameters picked to be dptlie
the next experimerit + 1

e Step 1: Calculate K random perturbationsin this step/X random perturbations are calculated (according to e.g.
Gaussian distribution). The resulting candidate vecipf® + 1) = 67 (k) + A6;(k) are then projected i®, in
order to satisfy the problem constraints (Wit( k) the best set of tunable parameters found so far).

e Step 2: Calculate the number of approximator regressor terifise number of the approximator’s regressor terms
L,(k) to be used for this iteration is calculated.

e Step 3: Calculate the number of past measuremeiitse algorithm keeps a window of past measurements which
moves along with the iterations. In this step the startinigtpaf the window in the past is calculated. The end point
of the window is alway$:.

e Step 4: Produce the polynomial-like approximatdkfter steps 2, 3 the structure of the universal approximatay
be formed and applied to the window of the past measurements.

e Step 5: Calculate the optimal approximator parameter estimafdse optimal values of the approximetor’s param-
etersy are calculated according to the solution of a least squateaaion method.

e Step 6: Apply the2 K random perturbation&AH(k)(j) to the J (k). The2K candidate vectorg" (k) + Ae(k)(j)
are applied to the approximatd(k) for evaluation.

e Step 7: Pick the “best” random perturbation (according to thfi@). The vecto®(k + 1) with the best estimated
performance is selected for application to the next sinmiagxperiment.

It is worth noting, that similarly to RDSA, the proposed aigfam introduces random perturbations to the control desig
parameter vectdf. Besides, the use of random perturbations is crucial foeffieiency of the proposed algorithm as it
provides the so-called persistence of excitation (PE) gntypwhich is a sufficient and necessary condition for therale
approximatot/ to be able to efficiently learn the unknown functiénHowever, due to the use of Step 6 (see Table 1) the
proposed methodology avoids poor performance or instalpitbblems, and guarantees safe and efficient performance i
fulfilled.

BRIEF INTRODUCTION TO TUC STRATEGY

TUC ((8), (9)) is a recently developed, efficient real-tindan traffic control strategy, whose design principles are
based on feedback control theory as opposed to most of tlstinexistrategies employing model-based optimization
techniques. TUC consists of four distinct interconnectattiml modules that allow for real-time control of the fallmg:

(a) green times (split); (b) cycle time; (c) offset (greenvevalong an arterial), as well as (d) provision of public faort
priority. These four control modules are complemented byfth flata processing module. All control modules are
based on feedback concepts of various types, which leadsd@sTcomputational simplicity as compared to model-based
optimization approaches, without actually sacrificingoédfincy. In this paper, we will concentrate on the fine-turofig
the TUC split, cycle and offset control module parameters.
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Split control regulator

The basic methodology used by TUC for split control, is therfolation of the urban traffic control problem as a Linear
Quadratic (LQ) optimal control problem, based on a stor@-f@mnward type of mathematical modeling. This modeling
philosophy circumvents the inclusion of discrete variabfethe signal control problem formulation, thus allowitg t
application of polynomial-complexity solution methodsogftimization and control. This part is been described imitket
elsewhere ((8), (9), (14)), hence, a short summary is pealitere.

The LQ approach leads in a straightforward way to the folimwnultivariable regulator:
g(ts) = gN — Lax(ts) (10)
where:

e t,=0,1,2,...Iis the discrete time index reflecting corresponding sigpeles.

g is the vector of the green times of all stages and all junstiorthe network.

g™ is the vector of nominal green times for all network stagleesé nominal green times correspond to a prespeci-
fied fixed signal plan for the network.

z is the vector of the vehicle-numbers in all network links.

L is a constant gain matrix (of appropriate dimensions) theesof which depend on the network geometry, the
turning rates and the saturation flows, but were found totbe Bensitive to moderate variations of these values
(14), (15).

Calculation ofL is the straightforward outcome of the LQ problem formulatand is carried out off-line (at the lab)
once per application network, while the online real-tim&gkations are limited to the execution of equation (10)hwit
a given constant control matrik and state measurementg ). After the application of equation (10), a simple low-
cost algorithm ((14)) applies any existing constraintg.(eycle constraints and minimum admissible green time)do
obtained values of(ts). Given the split decisions of this part of the TUC strategymeell as the input this part has
received from the cycle and offset control parts, completevark-wide signal settings including cycle, split, andltsin
offsets are available for implementation at the end of gpilittrol.

Cycle control regulator

One way to influence traffic conditions via traffic lights is odifying cycle time. Note that one single cycle time
is considered here for the whole network, in order to enalsletjon coordination via suitable offsets. Fundamentally
a longer cycle time typically increases the junction cafyadiecause the proportion of the constant lost (intergreen
times becomes accordingly smaller; on the other hand, selonygle time may increase vehicle delays in undersaturated
junctions due to longer waiting times during the red phase.

The network cycle”(¢.) is calculated from the feedback P-type brunch regulator

ot = {ON 1K [o(te) —ony], if o(te) < our o

CN —Kylo(te) —on,|, ifo(te) > oe
where:
e t.=0,1,2,...is the discrete time index for applying cycle control.
¢ CN a nominal network cycle time (e.g. equal to the minimum agihls cycleC.y;y,).
¢ ¢ anominal average load (e.g. equal to zero).

e K1, K, are tunable control parameters, the value of which affecirttensity of the control reactions.

A prespecified percentage of network links with currentlyximaum load (link loado.(t.) for link z derives from
0x(te) = (te)/% s max, With x,(¢.) the vehicle-number in the link and, ., the capacity of the link) are identified
and the corresponding loads are averaged to provide thageveraximum load (¢..). After applying (11), the calculated
cycle time is constrained within the ranf&,,;,, Ciuax|, if Necessary, to become feasible, whétg,, andC,,.x are the
minimum and maximum admissible network cycle times, retpelg.
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Offset control regulator

The feedback control law that calculates the offset betwersuccessive junctiong andj, reads

l, o Tz (te)
L1, (tC) - lZKz

Ve Tz max

(12)

wherev, denotes the free-flow mean speed on kink. the length of linkz andK? = (v —v,)/v.v¢ is a tunable control
parameter (with/° the speed of the kinematic wave moving upstream, along teaejaf the link). Generalization of the
previously described logic leads to the relevant formulaitvare used at each successive couple of junctiing; ()
along a predefined arterial, in order to specify the offsében the two junctions and consequently along the artérial
order to implement the new offset specified in (12), a trarsigcle timeC}, is temporarily implemented in junctiof.
The transient cycle is implemented one single time, aftécktihe junctions are coordinated according to the nevetffs

APPLICATION OF AFT TO TUC STRATEGY

In order to evaluate the efficiency of AFT algorithm to thelgeon of optimizing the design parameters of the split, cycle
and offset control modules of TUC, extensive simulationezkpents have been carried out, comparing the performance
of AFT to the base-case (no AFT case). In the base-case, thenaéntioned design parameters of the original TUC
system were manually fine-tuned to virtual perfection bysyetem operators (16).

Network and simulation setup

Chania, located at the north-western part of Crete, is thetataf the prefecture of Chania and covers 12i5. Chania
is the second biggest prefecture of Crete in size, populatnal development. Figure 2(a) exhibits a satellite vievhef t
trial urban road network (red bullets correspond to the radled junctions), which has a total length of approximatel
8km and consists of 16 controlled junctions.

Figure 2(b) represents the model of the network developethfosimulation investigations. It consists of 16 sigrediz
junctions (nodes) and 60 links (arrows). Each network liokresponds to a particular junction phase. Typical loop-
detector locations within Chania urban network links athegiaround the middle of the link or some 40m upstream of
the stop-line. The traffic network characteristics (tughrates, lost times, staging, and saturation flows) and tteel fix
plan gN of equation (10) used in AIMSUN and in TUC were provided by siystem operators of the Traffic Control
Centre (TCC) of the city. Note that the fixed plah is one of the six fixed predefined network signal plans usedhéy t
TCC. Split, cycle and offset control modules of TUC stratagy applied to the network for all simulation investigason
Finally, a simulation step of 0.25s is considered for therogcopic simulation model.

For the application of the TUC strategy the following typidasign values were usefl; = C, k. = 600s, Cp,i, = 60s,
Chax = 120s, CN = Cpin. Also, for the implementation of AFT algorithm the follovgrdesign values were used:
Ty = 90, Eg = 150, K = 100 and initial values to\; according to\; = 100, A3 = 0.1, A\ = A4 = 0. The exogenous
vectorz(k) in this application corresponds to the traffic demand (threry of the number of vehicles entering the
network in each of the network origins). Following the prdgee presented in the description of AFT algorithm, an
estimate of the demane(k) every 1h was constructed (i.e., four different estimatesHe demand of the whole day).
This low-dimension, noisy estimaigk) of the traffic demand was again based on the average numbehiafes entering
every particular origin over the 1-h period and resultedantars of dimension, = 88 (4(hours)x22(network origins)).

Tunable parameters

The next three paragraphs describe the reasoning for thetaefiof the set of tunable parameters for the split, cycdle a
offset control respectively.

The aim of regulator (10) is to balance the relative spacepascies:, /. max in the network links, so as to minimize
the risk of queue spillovers which may lead to a waste of gtiee®and even to gridlocks. For this reason, a non-negative
design parametdr, is introduced for each link (so-called “importance factor”), such that the(t¢)-values can be
affected. These design parameters are critical for theessful deployment and operation of the signal control etrat
TUC, and hence were selected for automated fine-tuning by agdrithm.

Equation (11) describes the feedback P-type regulatoreotyicle control module of TUC. In this equation there are 5
network-wide design parameters, the selection of whichcadfthe intensity of the cycle control module reactionsl an
hence may cause a degradation in the overall performancg@Gfsirategy if not suitably configured. For this reason, the
design parametets, Ko, on,, 0N, , 0 Were selected for automated fine-tuning by AFT algorithm.
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Non-controlled link

Figure 2: The Chania urban road network (a) satellite view of the network; (b) simulation model.

Finally, the feedback regulator (12) is applied for offsebination in all simulation experiments. Equation (1) i
applied to all network links that connect successive jumgithat belong to the main arterials of the network. The
parameterd(? and1/v, (two for each linkz), which affect the efficiency of the offset control of TUC weeselected for
automated fine-tuning by AFT algorithm.

The initial values)(0) were chosen so as to correspond to values that have beenlipdimgatuned in past field imple-
mentations of TUC in Chania network (16). In order to asses®verall system performance the criterion was set to the
actual daily network mean speed € ms). Finally, a projection to the nearest valid point is apphehenever a vectdar
violates the imposed constraints.

Demand scenarios and integration with AIMSUN simulator

In order to investigate the performance of AFT algorithm emdifferent traffic conditions, two basic traffic demand
scenarios (time-history of vehicles entering the netwarkhie network origins during the day) were designed based on
actual measurements, each with a simulation horizon of 4shdscenario 1 comprises medium demand in all network
origins, while scenario 2 comprises high demand and thear&tfaces serious congestion for some 2 hours, with some
link queues spilling back into upstream links. For simpjicive assume that a demand scenario with a time horizon of 4
hours corresponds to a day. Each day (iteration of the ARdréhgn) a randomly perturbed 5%-width version of the basic
demand scenarios is produced and the assessment criteigathiered from the AIMSUN simulator. Then, the design
parameters of TUC strategy are updated by AFT algorithmraaeg to the calculated assessment criterion.

The overall closed-loop scheme consists of two main coldogs as inner and outer loops. The inner loop is used by the
TUC strategy to produce the traffic signal settings. Morecgpally at each cycle”, AIMSUN delivers the (emulated)
occupancy measurements at the locations where detecégpiaaed (as in real conditions). These measurements atde use
by the control modules of TUC strategy to produce the traffioal settings (splits, cycle, and offsets). These signal
settings are then forwarded to the micro-simulator for mpibn. The outer loop is used by AFT algorithm to update the
design parameters of TUC strategy. More specifically, at éagy, AIMSUN delivers the mean speed for the whole urban
road network. The mean speed is used by AFT algorithm (tegettih the average demand estimation of next @déy))

in order to produce the new values for the design parameteyslig cycle and offset control modules of TUC strategy
(the vector = vec (61, 02, 05)). The new set of the design parameters is then forwarded © Jtthtegy for application,
and so forth.

SIMULATION RESULTS

In order to evaluate the efficiency of the presented AFT dtigor to the problem of optimizing the design parameters
of split, cycle and offset control modules of TUC, extenssimulation experiments have been conducted. AIMSUN
is based on stochastic distributions in order to calcullitha internal parameters of the simulations. As a resulg, t
replications of the same simulation are not identical, sstbey are fed with the same random seed. For our experiments
10 simulation runs with different random seeds were cawigtdor each scenario for statistical justification.

Table 2 displays the average mean speed for the original Wd@m and the average mean speed when using AFT or
SPSA for the system fine-tuning, for 10 different replicasio It can be seen that the use of AFT algorithm leads to an
average improvement of the system performance of some 178&foand scenario 1 and some 36% for demand scenario
2. For scenario 1, the average mean speed for the original§ydtem is 16.29 km/h and after the convergence of AFT
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Table 2: Comparison of the average mean speed (ms) for original TUC system, AFT and SPSA.

average space-time mean speed (km/h) || mean speed improvement
scenariforiginal TUC systewith AFT algorithnwith SPSA algorithgwith AFT algorithnwith SPSA algorithm
1 16.29 19.13 16.47 17.43% 1.10%
2 9.67 13.19 9.88 36.40% 2.17%

Mean Spee (knih)

(a) (b)
Figure 3: Mean speed trajectorieswith and without the use of AFT algorithm (a) for scenario 1 (4 different repli-
cations); (b) for scenario 2 (4 different replications).

this speed is increased to 19.13 km/h, whereas, for sceh#nmaverage mean speed for the original TUC system is 9.67
km/h and is increased to 13.19 km/h.

For the same simulation experiments SPSA algorithm wasexpjpl order to fine-tune TUC's design parameters. Itis
clear from Table 2 that SPSA cannot increase the mean spéled nétwork. The scale and complexity of the fine-tuning
problem prevents SPSA from providing a good estimation efdystem’s performance gradient. Thus, the applied sets
of parameters by SPSA algorithm are “random” and fail to eshiany improvement to the system performance. The
average mean speed for the original TUC system is 16.29 kntflica SPSA 16.47 km/h.

Resultsfor demand scenario 1

Figure 3(a) compares the network-wide mean speed of thimaligUC system (blue line) versus TUC system combined
with AFT algorithm (red line) delivered for scenario 1 for #fdrent simulation runs. In all diagrams, it can be seen tha
the application of AFT algorithm to the signal control sé@y TUC leads to better performance than the original TUC for
this demand scenario.

More precisely, AFT algorithm achieves to optimize the allesystem performance within few days (iteration number
in x-axis), by efficiently fine-tuning the design paramefersall TUC's control modules, while avoiding decreasing th
daily mean speed lower than the initial point. The trajectof the system performance (mean speed) is persistently
increasing until it converges to a local maximum value. Nb## the oscillations appearing in both blue and red lines of
the diagrams are due to thes% daily random perturbations applied to the demand scenario.

Resultsfor demand scenario 2

Figure 3(b) compares the network-wide mean speed of thnatiUC system (blue line) versus TUC system combined
with AFT algorithm (red line) delivered for 4 different sidadion runs for this demand scenario. In all diagrams, it can
be seen that the application of AFT algorithm leads to bettegformance than the original TUC system itself. Again,
AFT algorithm achieves to optimize the overall system panfance within few days, by efficiently fine-tuning the design
parameters for all TUC's control modules, while avoidingidasing the daily mean speed lower than the initial point.

The mean speed is persistently increasing until it conswtiga local maximum value. Note that the oscillations apgpgar
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in the blue lines of the diagrams (no AFT case), are due tatthig daily random perturbations applied to the demand
scenario. The same perturbations are also applied to thecAB&; however, the oscillations of the red lines are clearly
lower. Finally, the diagrams depict slight differencesvedn the replications due to the stochasticity of the sitoula
and the random demand perturbations. However, all the abak experiments demonstrate the superiority of AFT
algorithm over the manually fine-tuned TUC system.

CONCLUSIONS

The paper investigated the efficiency of the AFT algorithmtfie problem of optimizing the design parameters of traffic
control systems composed of distinct and mutually-inteémganodules. This adaptive optimization methodology aéhs
replacing the conventional manually-based optimizatidth & fully-automated procedure. Extensive simulationezkp
ments have been conducted for the signal control probleineofraffic network of Chania, where the design parameters
of three distinct and mutually-interacting modules of TUfategy were fine-tuned by the AFT algorithm.

The simulation results demonstrate that the applicatioiFof algorithm leads to better network performance (in terms
of daily mean speed) compared to the original TUC systems Thderlines the superiority of the fully-automated op-
timization procedure, pursued by the AFT algorithm, evethim case that the design parameters are already manually
fine-tuned by field experts, indicating the algorithm’s éfficy and real-time feasibility.
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