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ABSTRACT

Currently, a considerable amount of human effort and time isspent for initialization or calibration of operational traffic
control systems. Typically, this optimization (fine-tuning) procedure is conducted manually, via trial-and-error, relying
on expertise and human judgment and does not always lead to a desirable outcome. This paper presents a new learn-
ing/adaptive algorithm that enables automatic fine-tuningof general traffic control systems. The efficiency and online
feasibility of the algorithm is investigated through extensive simulation experiments. The fine-tuning problem of three
mutually-interacting control modules – each one with its distinct design parameters – of an urban traffic signal control
strategy is thoroughly investigated. Simulation results indicate that the learning algorithm can provide efficient automatic
fine-tuning, guaranteeing safe and convergent behavior.

Keywords: Traffic control, parameter optimization, self-optimizingcontrol, adaptive control, large-scale systems.

INTRODUCTION

Despite the continuous advances in the fields of control and computing, the design and deployment of an efficient Traffic
Control System (TCS) remains a significant objective, mainly because of the involved complexity and the strong non-
linearities. The ultimate performance of a designed or operational TCS (e.g. urban signal control or ramp metering or
variable speed limit (VSL) control) depends on two main factors: (a) the exogenous influences, e.g. demand, weather
conditions, incidents; and (b) the values of some design parameters included in the TCS.
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As a matter of fact, when a new control algorithm is implemented (or an operational but “aged” control algorithm needs
to be updated), there is a period of, sometimes tedious, fine-tuning activity that is needed in order to elevate the control
algorithm to its best achievable performance. Fine-tuningconcerns the selection of appropriate (or even optimal) values
for a number of design parameters included in the control strategy. Typically, this fine-tuning procedure is conducted
manually, via trial-and-error, relying on expertise and human judgment and without the use of a systematic approach.
Experienced engineers (in cooperation with practitionersor system operators) experiment with different sets of design
parameters, trying to achieve an acceptable (close to optimal) system performance, according to some pre-specified per-
formance metrics.

To address this problem, a research activity has been ongoing recently ((1), (2), (3)), aiming at developing learning/adaptive
algorithms that will enable an automatic fine-tuning of TCSs, so as to reach the maximum performance that is achievable
with the utilized control strategy. The algorithm AFT (Adaptive Fine-Tuning) is the latest development in this research di-
rection and is based on rigorous but simple adaptive optimization and stochastic approximation principles. The proposed
learning algorithm is aiming at replacing the conventionalmanual optimization practice with a fully automated online
procedure.

BACKGROUND

This section presents the problem formulation and a short review of stochastic approximation algorithms and methodolo-
gies which attempt to solve the same problem.

Problem formulation

Consider a general discrete-time control system where the underlying dynamics are described according to the following
nonlinear first-order difference equation

z(t+ 1) = F (z(t), ui(t), d(t), t) , z(0) = z0 (1)

wherez(t), ui(t), d(t) are the vectors of system states, control inputs, and exogenous (possibly measurable) signals,
respectively,t denotes the discrete time-index,i denotes the regulator-index andF (·) is a sufficiently smooth nonlinear
vector function. Note, that the proposed methodology can beapplied to a system even if the functionF is unknown.

Consider also, that one or more control laws are applied to the system (1), which are described as follows:

ui(t) = ̟i (θi, z(t)) (2)

where̟i(·) are known smooth vector functions andθi is the vector of the tunable parameters for thei-th regulator. Note,
that we do not impose any restriction neither on the form of the equation (2), nor on the number of the applied control
laws. Also, the discrete time-indext may be different for each control lawi.

The overall system performance is evaluated through the following objective function (performance index)

J (θ; z(0), DT ) = πT (z(T )) +

I∑

i=1

T−1∑

t=0

πi,t (z(t), ui(t))

= πT (z(T )) +

I∑

i=1

T−1∑

t=0

πi,t (z(t), ̟ (θi, z(t))) (3)

whereθ = vec (θ1, θ2, . . . , θI), πT andπi,t are known non-negative functions,I is the number of the fine-tuned regulators,

T the finite time-horizon over which the control laws (2) are applied andDT
△
= [d(0), d(1), . . . , d(T − 1)] denotes the

time-history of the exogenous signals over the optimization horizonT . By definingx = vec (z(0), DT ), equation (3) may
be rewritten as

J (θ; z(0), DT ) = J (θ, x) . (4)

Equation (4) indicates that the system performance is affected by the vector of the system’s tunable parametersθ and
the exogenous vectorx. The problem in hand is to develop an appropriate iterative algorithm, which will be applied
everyT and will update the current control system parameters vector θ, so as to achieve better performance but also
provide safe and efficient behavior. This means, that the algorithm should guarantee the stable and sustainable system
performance during the fine-tuning process. This requirement is crucial in most practical TCS fine-tuning applications,
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since its violation may cause serious performance, safety,etc., problems. For instance, in the case of traffic control systems
fine-tuning, the violation this requirement may lead to serious problems (e.g., complaints, dangerous driving, etc.) that
may force the traffic operators to cancel the fine-tuning process.

Related methodologies

The fine-tuning problem described in the previous section isclosely related to the parameter estimation problem. LetΘ
denote the domain of allowable values for the vectorθ of dimensionnθ. The main problem of interest is to find the values
of a vectorθ∗ ∈ Θ that maximize a scalar-valued performance functionJ(θ, x). The vectorθ represents a collection of
tunable (or “adjustable”) parameters that one is aiming to pick in the best way. The nonlinear functionJ(θ, x) is a scalar
measure that summarizes the performance of the system for a given set of values of the tunable parameters. The domain
Θ reflects allowable values (constraints) on the elements ofθ andθ∗ represents the optimal solution.

Many stochastic approximation algorithms have been developed for the solution of this problem. Robbins and Monro (4)
were the first to propose an adaptive technique for parameterestimation. Important generalizations and extensions of this
algorithm followed close behind by Kiefer and Wolfowitz in (5) where the FDSA (Finite Difference Stochastic Approx-
imation) algorithm was introduced. FDSA has provided the basis for many learning or “parameter tuning” algorithms
in control engineering problems. An extension of FDSA is theRDSA (Random Directions Stochastic Approximation)
algorithm which was firstly introduced in (6) and makes use ofmany random perturbations of the tunable parametersθ in
order to come up with a “good” set (according to the performance criterionJ(θ, x)).

Finally, Spall in (7) introduced the SPSA (Simultaneous Perturbation Stochastic Approximation) algorithm for stochastic
optimization of multivariate systems. In this paper we compare the performance of SPSA algorithm with the AFT algo-
rithm to an online large-scale fine-tuning problem of the urban signal control strategy TUC ((8), (9)) through simulation
experiments.

THE PROPOSED ALGORITHM

Introduction

Figure 1 illustrates the working principle of the AFT algorithm. The basic functioning procedure for AO methods may be
summarized as follows:

• The traffic flow process (e.g. urban road network) is controlled in real time by a control strategy (of any kind) which
includes a number of parameters to fine-tune.

• At the end of appropriately defined periods (e.g. at the end ofeach day), the AFT algorithm receives the value of
the real (measured) performance index (e.g. average speed over space and time for traffic networks, total number
of containers loaded/unloaded for seaport container terminals, etc.), as well as some aggregated values of the most
significant external factors (e.g. demand). Note, that the performance indexJ (θ, x) is a (generally unknown)
function of the external factorsx and the tunable parameters to be adjustedθ.

• Using the measured quantities (the number of which increases iteration by iteration), the AFT algorithm calculates
new tunable parameter values to be applied at the next period(e.g. the next day) in an attempt to improve the system
performance.

• This (iterative) procedure is continued over many periods (e.g. days) until a maximum in performance is reached;
then, the AFT algorithm may remain active for continuous adaptation or can be switched off and re-activated at a
later stage (e.g. after few months).

The developed approach appropriately combines the nice features of adaptive optimization algorithms with those of ap-
proximation theory. The resultant adaptive optimization methodology is capable of rapidly and efficiently optimizing
systems of arbitrary complexity and scale, such as general TCS and, most importantly, guaranteeing robust and safe per-
formance while the maintenance operation is on. The main components of the employed algorithm are summarized as
follows:

• An approximatorĴ (θ, x) is used (e.g., a neural network or a polynomial-like approximator) in order to obtain an
approximation of the nonlinear mappinĝJ (θ, x) = J (θ, x).

• An on-line adaptive/learning mechanism is employed for “training” the above approximator. Globally convergent
learning algorithms (see e.g., (10), (11)) are required forsuch a purpose.
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Figure 1: Working principle of AFT for automatic calibration of TCSs.

• At each algorithm iterationk, many randomly chosen candidate perturbations (of dimension nθ) of vectorθ(k)
are generated. The effect of each of these perturbations to the LNTCS performance is estimated by use of the
approximator mentioned above. The perturbation that corresponds to the “best” estimate (i.e., the one that leads
to the best value for̂J) is picked to depict the new values for the tunable parameters θ(k + 1). That is,θ(k + 1)

corresponds to the best estimate ofĴ , selected to be applied at the next period (e.g. the next day).

Linear-in-the-weights Universal Approximator

The universal approximator used in the simulation experiments in order to approximate the objective functionJ (θ, x), is
a linear-in-the-weights polynomial-like approximator withLg regressor terms, which takes the form

Ĵ (θ, x) = ϑTφ (θ, x) (5)

whereϑ denotes the vector of the approximator parameter estimatesand

φ (θ, x) =
[
φ1 (θ, x) , φ2 (θ, x) , . . . , φLg

(θ, x)
]T

. (6)

The non-linear functionsφi (θ, x) are given by

φi (θ, x) = Sd1(θm1)·S̄
d2(xm2)·S

d3(θm3), di ∈ {0, 1} (7)

wheredi,mi are randomly chosen at each iteration of AFT (withm1,m3 ∈ {1, 2, . . . , nθ}, m2 ∈ {1, 2, . . . , nx} and∑
i mi ∈ {2, 3}) andS(·), S̄(·) are smooth monotone nonlinear functions. In the neural networks literature (12), (13)

these functions are usually chosen to be “sigmoidal”. In oursimulations we choose

S(θ) = tanh (λ1θ + λ2) , S̄(x) = tanh (λ3x+ λ4) (8)

whereλi are non-negative real numbers initially defined by the user;after 4–5 iterations of the algorithm the values ofλi

are optimized so as to minimize

min
k−1∑

ℓ=1

(
Jℓ − ϑTφ

(k)
ℓ

)2

. (9)

The factorsℓi are relevant to the normalization of the values of the approximator inputsθ, x.

AFT algorithm description

For the implementation of AFT, it is assumed that an estimate, or prediction,̄x(k) of the vectorx(k) is available (referring
to the estimate of next iteration). In many applications such an assumption is quite realistic, since the entries ofx(k)
correspond to system states and exogenous inputs, which areavailable or measurable. However, there may be cases where
such an assumption is not realistic; in this casex̄(k) can be estimated/predicted using appropriate estimation algorithms.
It should be noted, that the dimensionnx of the estimate vector̄x(k) should be comparative to the dimensionnθ of the
vector of tunable parametersθ. Below, we discuss in details the application steps of the algorithm displayed in Table 1,
which are performed at every iterationk:
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Table 1: AFT algorithm mathematical description.

Step 1: ∆θ
(j)
i (k + 1) = α(k)∆

(j)
i (k)− θi(k) + θ∗i (k), j ∈ {1, . . . ,K}

Step 2: Lg(k) = min
{
2 (k − 1) , L̄g

}

Step 3: ℓ(k) = max {k − Th, 1}

Step 4: φℓ(k) = φ (θℓ(k), x̄ℓ(k))

Step 5: ϑ(k) 7→ argminϑ
1
2

∑k

ℓ=ℓ(k) (Jℓ − ϑτφℓ(k))
2

Step 6: Ĵ
(
±∆θ(j)(k + 1) + θ∗(k), x̄(k + 1)

)
= ϑ(k)τφ

(
±∆θ(j)(k + 1) + θ∗(k), x̄(k + 1)

)

Step 7: ∆θ(k + 1) = argmax∆θ(±j)(k+1) Ĵ
(
±∆θ(j)(k + 1) + θ∗(k), x̄(k + 1)

)

∆θi(k + 1) = θi(k + 1)− θi(k)
α(k) is a user-defined positive sequence (e.g. constant stepsizeα(k) ≡ α ∈ (0, 1))
Th, L̄g,K are user-defined positive integers
θ∗(k) + ∆θ(k + 1) denotes the vector of tunable parameters picked to be applied at
the next experimentk + 1

• Step 1: CalculateK random perturbations. In this stepK random perturbations are calculated (according to e.g.
Gaussian distribution). The resulting candidate vectorsθi(k + 1) = θ∗i (k) + ∆θi(k) are then projected inΘ, in
order to satisfy the problem constraints (withθ∗i (k) the best set of tunable parameters found so far).

• Step 2: Calculate the number of approximator regressor terms. The number of the approximator’s regressor terms
Lg(k) to be used for this iteration is calculated.

• Step 3: Calculate the number of past measurements. The algorithm keeps a window of past measurements which
moves along with the iterations. In this step the starting point of the window in the past is calculated. The end point
of the window is alwaysk.

• Step 4: Produce the polynomial-like approximator. After steps 2, 3 the structure of the universal approximator may
be formed and applied to the window of the past measurements.

• Step 5: Calculate the optimal approximator parameter estimates. The optimal values of the approximetor’s param-
etersϑ are calculated according to the solution of a least squares estimation method.

• Step 6: Apply the2K random perturbations±∆θ(k)
(j) to theĴ(k). The2K candidate vectorsθ∗(k)±∆θ(k)

(j)

are applied to the approximator̂J(k) for evaluation.

• Step 7: Pick the “best” random perturbation (according to thêJk). The vectorθ(k + 1) with the best estimated
performance is selected for application to the next simulation experiment.

It is worth noting, that similarly to RDSA, the proposed algorithm introduces random perturbations to the control design
parameter vectorθ. Besides, the use of random perturbations is crucial for theefficiency of the proposed algorithm as it
provides the so-called persistence of excitation (PE) property, which is a sufficient and necessary condition for the neural
approximatorĴ to be able to efficiently learn the unknown functionJ . However, due to the use of Step 6 (see Table 1) the
proposed methodology avoids poor performance or instability problems, and guarantees safe and efficient performance is
fulfilled.

BRIEF INTRODUCTION TO TUC STRATEGY

TUC ((8), (9)) is a recently developed, efficient real-time urban traffic control strategy, whose design principles are
based on feedback control theory as opposed to most of the existing strategies employing model-based optimization
techniques. TUC consists of four distinct interconnected control modules that allow for real-time control of the following:
(a) green times (split); (b) cycle time; (c) offset (green wave along an arterial), as well as (d) provision of public transport
priority. These four control modules are complemented by a fifth data processing module. All control modules are
based on feedback concepts of various types, which leads to TUC’s computational simplicity as compared to model-based
optimization approaches, without actually sacrificing efficiency. In this paper, we will concentrate on the fine-tuningof
the TUC split, cycle and offset control module parameters.
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Split control regulator

The basic methodology used by TUC for split control, is the formulation of the urban traffic control problem as a Linear
Quadratic (LQ) optimal control problem, based on a store-and-forward type of mathematical modeling. This modeling
philosophy circumvents the inclusion of discrete variables in the signal control problem formulation, thus allowing the
application of polynomial-complexity solution methods ofoptimization and control. This part is been described in details
elsewhere ((8), (9), (14)), hence, a short summary is provided here.

The LQ approach leads in a straightforward way to the following multivariable regulator:

g(ts) = gN − Lx(ts) (10)

where:

• ts = 0, 1, 2, . . . is the discrete time index reflecting corresponding signal cycles.

• g is the vector of the green times of all stages and all junctions in the network.

• gN is the vector of nominal green times for all network stages; these nominal green times correspond to a prespeci-
fied fixed signal plan for the network.

• x is the vector of the vehicle-numbers in all network links.

• L is a constant gain matrix (of appropriate dimensions) the values of which depend on the network geometry, the
turning rates and the saturation flows, but were found to be little sensitive to moderate variations of these values
(14), (15).

Calculation ofL is the straightforward outcome of the LQ problem formulation and is carried out off-line (at the lab)
once per application network, while the online real-time calculations are limited to the execution of equation (10) with
a given constant control matrixL and state measurementsx(ts). After the application of equation (10), a simple low-
cost algorithm ((14)) applies any existing constraints (e.g. cycle constraints and minimum admissible green times) tothe
obtained values ofg(ts). Given the split decisions of this part of the TUC strategy, as well as the input this part has
received from the cycle and offset control parts, complete network-wide signal settings including cycle, split, and built-in
offsets are available for implementation at the end of splitcontrol.

Cycle control regulator

One way to influence traffic conditions via traffic lights is bymodifying cycle time. Note that one single cycle time
is considered here for the whole network, in order to enable junction coordination via suitable offsets. Fundamentally,
a longer cycle time typically increases the junction capacity, because the proportion of the constant lost (intergreen)
times becomes accordingly smaller; on the other hand, a longer cycle time may increase vehicle delays in undersaturated
junctions due to longer waiting times during the red phase.

The network cycleC(tc) is calculated from the feedback P-type brunch regulator

C(tc) =

{
CN +K1 [σ(tc)− σN1 ] , if σ(tc) ≤ σcr

CN −K2 [σ(tc)− σN2 ] , if σ(tc) > σcr

(11)

where:

• tc = 0, 1, 2, . . . is the discrete time index for applying cycle control.

• CN a nominal network cycle time (e.g. equal to the minimum admissible cycleCmin).

• σN a nominal average load (e.g. equal to zero).

• K1,K2 are tunable control parameters, the value of which affect the intensity of the control reactions.

A prespecified percentage of network links with currently maximum load (link loadσz(tc) for link z derives from
σz(tc) = xz(tc)/xz,max, with xz(tc) the vehicle-number in the link andxz,max the capacity of the link) are identified
and the corresponding loads are averaged to provide the average maximum loadσ(tc). After applying (11), the calculated
cycle time is constrained within the range[Cmin, Cmax], if necessary, to become feasible, whereCmin andCmax are the
minimum and maximum admissible network cycle times, respectively.
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Offset control regulator

The feedback control law that calculates the offset betweentwo successive junctionsj1 andj2 reads

tj1,j2(tc) =
lz
νz

− lzK
o
z

xz(tc)

xz,max
(12)

whereνz denotes the free-flow mean speed on linkz, lz the length of linkz andKo
z = (νc−νz)/νzν

c is a tunable control
parameter (withνc the speed of the kinematic wave moving upstream, along the queue of the link). Generalization of the
previously described logic leads to the relevant formulas which are used at each successive couple of junctions (ji, ji+1)
along a predefined arterial, in order to specify the offset between the two junctions and consequently along the arterial. In
order to implement the new offset specified in (12), a transient cycle timeCj2 is temporarily implemented in junctionj2.
The transient cycle is implemented one single time, after which, the junctions are coordinated according to the new offset.

APPLICATION OF AFT TO TUC STRATEGY

In order to evaluate the efficiency of AFT algorithm to the problem of optimizing the design parameters of the split, cycle
and offset control modules of TUC, extensive simulation experiments have been carried out, comparing the performance
of AFT to the base-case (no AFT case). In the base-case, the aforementioned design parameters of the original TUC
system were manually fine-tuned to virtual perfection by thesystem operators (16).

Network and simulation setup

Chania, located at the north-western part of Crete, is the capital of the prefecture of Chania and covers 12.5km2. Chania
is the second biggest prefecture of Crete in size, population and development. Figure 2(a) exhibits a satellite view of the
trial urban road network (red bullets correspond to the controlled junctions), which has a total length of approximately
8km and consists of 16 controlled junctions.

Figure 2(b) represents the model of the network developed for the simulation investigations. It consists of 16 signalized
junctions (nodes) and 60 links (arrows). Each network link corresponds to a particular junction phase. Typical loop-
detector locations within Chania urban network links are either around the middle of the link or some 40m upstream of
the stop-line. The traffic network characteristics (turning rates, lost times, staging, and saturation flows) and the fixed
plan gN of equation (10) used in AIMSUN and in TUC were provided by thesystem operators of the Traffic Control
Centre (TCC) of the city. Note that the fixed plangN is one of the six fixed predefined network signal plans used by the
TCC. Split, cycle and offset control modules of TUC strategyare applied to the network for all simulation investigations.
Finally, a simulation step of 0.25s is considered for the microscopic simulation model.

For the application of the TUC strategy the following typical design values were used:ks = C, kc = 600s, Cmin = 60s,
Cmax = 120s, CN = Cmin. Also, for the implementation of AFT algorithm the following design values were used:
Th = 90, L̄g = 150, K = 100 and initial values toλi according toλ1 = 100, λ3 = 0.1, λ2 = λ4 = 0. The exogenous
vectorx(k) in this application corresponds to the traffic demand (time-history of the number of vehicles entering the
network in each of the network origins). Following the procedure presented in the description of AFT algorithm, an
estimate of the demand̄x(k) every 1h was constructed (i.e., four different estimates for the demand of the whole day).
This low-dimension, noisy estimatēx(k) of the traffic demand was again based on the average number of vehicles entering
every particular origin over the 1-h period and resulted in vectors of dimensionnx = 88 (4(hours)x22(network origins)).

Tunable parameters

The next three paragraphs describe the reasoning for the definition of the set of tunable parameters for the split, cycle and
offset control respectively.

The aim of regulator (10) is to balance the relative space occupanciesxz/xz,max in the network links, so as to minimize
the risk of queue spillovers which may lead to a waste of greentime and even to gridlocks. For this reason, a non-negative
design parameterbz is introduced for each linkz (so-called “importance factor”), such that thexz(ts)-values can be
affected. These design parameters are critical for the successful deployment and operation of the signal control strategy
TUC, and hence were selected for automated fine-tuning by AFTalgorithm.

Equation (11) describes the feedback P-type regulator of the cycle control module of TUC. In this equation there are 5
network-wide design parameters, the selection of which affects the intensity of the cycle control module reactions, and
hence may cause a degradation in the overall performance of TUC strategy if not suitably configured. For this reason, the
design parametersK1,K2, σN1 , σN2 , σcr were selected for automated fine-tuning by AFT algorithm.



ITS 2011, Patra, Greece 8

4 5

6

8 9

11

6

12

13

14

21

19

26

25

24

29

28

30

15

17

18

16

27

10

2

3

7

5

4

32

31
34

33

8

9

7

20

1

1

2

3

10

22

23

11

41

42

44

43

46

47

4839

37

38

36

50

49

51

53

55

57

58

56 59

54

52

35

40

60

12 13

14 15

1645

...

...

Urban junction

Controlled link

Non-controlled link

(a) (b)

Figure 2: The Chania urban road network (a) satellite view of the network; (b) simulation model.

Finally, the feedback regulator (12) is applied for offset coordination in all simulation experiments. Equation (12) is
applied to all network links that connect successive junctions that belong to the main arterials of the network. The
parametersKo

z and1/νz (two for each linkz), which affect the efficiency of the offset control of TUC were selected for
automated fine-tuning by AFT algorithm.

The initial valuesθ(0) were chosen so as to correspond to values that have been manually fine-tuned in past field imple-
mentations of TUC in Chania network (16). In order to assess the overall system performance the criterion was set to the
actual daily network mean speed (J ≡ ms). Finally, a projection to the nearest valid point is applied whenever a vectorθ
violates the imposed constraints.

Demand scenarios and integration with AIMSUN simulator

In order to investigate the performance of AFT algorithm under different traffic conditions, two basic traffic demand
scenarios (time-history of vehicles entering the network in the network origins during the day) were designed based on
actual measurements, each with a simulation horizon of 4 hours. Scenario 1 comprises medium demand in all network
origins, while scenario 2 comprises high demand and the network faces serious congestion for some 2 hours, with some
link queues spilling back into upstream links. For simplicity, we assume that a demand scenario with a time horizon of 4
hours corresponds to a day. Each day (iteration of the AFT algorithm) a randomly perturbed 5%-width version of the basic
demand scenarios is produced and the assessment criterion is gathered from the AIMSUN simulator. Then, the design
parameters of TUC strategy are updated by AFT algorithm according to the calculated assessment criterion.

The overall closed-loop scheme consists of two main controlloops as inner and outer loops. The inner loop is used by the
TUC strategy to produce the traffic signal settings. More specifically at each cycleC, AIMSUN delivers the (emulated)
occupancy measurements at the locations where detectors are placed (as in real conditions). These measurements are used
by the control modules of TUC strategy to produce the traffic signal settings (splits, cycle, and offsets). These signal
settings are then forwarded to the micro-simulator for application. The outer loop is used by AFT algorithm to update the
design parameters of TUC strategy. More specifically, at each day, AIMSUN delivers the mean speed for the whole urban
road network. The mean speed is used by AFT algorithm (together with the average demand estimation of next dayx̄(k))
in order to produce the new values for the design parameters of split, cycle and offset control modules of TUC strategy
(the vectorθ = vec (θ1, θ2, θ3)). The new set of the design parameters is then forwarded to TUC strategy for application,
and so forth.

SIMULATION RESULTS

In order to evaluate the efficiency of the presented AFT algorithm to the problem of optimizing the design parameters
of split, cycle and offset control modules of TUC, extensivesimulation experiments have been conducted. AIMSUN
is based on stochastic distributions in order to calculate all the internal parameters of the simulations. As a result, two
replications of the same simulation are not identical, unless they are fed with the same random seed. For our experiments,
10 simulation runs with different random seeds were carriedout for each scenario for statistical justification.

Table 2 displays the average mean speed for the original TUC system and the average mean speed when using AFT or
SPSA for the system fine-tuning, for 10 different replications. It can be seen that the use of AFT algorithm leads to an
average improvement of the system performance of some 17% for demand scenario 1 and some 36% for demand scenario
2. For scenario 1, the average mean speed for the original TUCsystem is 16.29 km/h and after the convergence of AFT
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Table 2: Comparison of the average mean speed (ms) for original TUC system, AFT and SPSA.

average space-time mean speed (km/h) mean speed improvement
scenariooriginal TUC systemwith AFT algorithmwith SPSA algorithmwith AFT algorithmwith SPSA algorithm

1 16.29 19.13 16.47 17.43% 1.10%
2 9.67 13.19 9.88 36.40% 2.17%
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Figure 3: Mean speed trajectories with and without the use of AFT algorithm (a) for scenario 1 (4 different repli-
cations); (b) for scenario 2 (4 different replications).

this speed is increased to 19.13 km/h, whereas, for scenario2 the average mean speed for the original TUC system is 9.67
km/h and is increased to 13.19 km/h.

For the same simulation experiments SPSA algorithm was applied in order to fine-tune TUC’s design parameters. It is
clear from Table 2 that SPSA cannot increase the mean speed ofthe network. The scale and complexity of the fine-tuning
problem prevents SPSA from providing a good estimation of the system’s performance gradient. Thus, the applied sets
of parameters by SPSA algorithm are “random” and fail to achieve any improvement to the system performance. The
average mean speed for the original TUC system is 16.29 km/h and for SPSA 16.47 km/h.

Results for demand scenario 1

Figure 3(a) compares the network-wide mean speed of the original TUC system (blue line) versus TUC system combined
with AFT algorithm (red line) delivered for scenario 1 for 4 different simulation runs. In all diagrams, it can be seen that
the application of AFT algorithm to the signal control strategy TUC leads to better performance than the original TUC for
this demand scenario.

More precisely, AFT algorithm achieves to optimize the overall system performance within few days (iteration number
in x-axis), by efficiently fine-tuning the design parametersfor all TUC’s control modules, while avoiding decreasing the
daily mean speed lower than the initial point. The trajectory of the system performance (mean speed) is persistently
increasing until it converges to a local maximum value. Notethat the oscillations appearing in both blue and red lines of
the diagrams are due to the±5% daily random perturbations applied to the demand scenario.

Results for demand scenario 2

Figure 3(b) compares the network-wide mean speed of the original TUC system (blue line) versus TUC system combined
with AFT algorithm (red line) delivered for 4 different simulation runs for this demand scenario. In all diagrams, it can
be seen that the application of AFT algorithm leads to betterperformance than the original TUC system itself. Again,
AFT algorithm achieves to optimize the overall system performance within few days, by efficiently fine-tuning the design
parameters for all TUC’s control modules, while avoiding decreasing the daily mean speed lower than the initial point.

The mean speed is persistently increasing until it converges to a local maximum value. Note that the oscillations appearing



ITS 2011, Patra, Greece 10

in the blue lines of the diagrams (no AFT case), are due to the±5% daily random perturbations applied to the demand
scenario. The same perturbations are also applied to the AFTcase; however, the oscillations of the red lines are clearly
lower. Finally, the diagrams depict slight differences between the replications due to the stochasticity of the simulator
and the random demand perturbations. However, all the simulations experiments demonstrate the superiority of AFT
algorithm over the manually fine-tuned TUC system.

CONCLUSIONS

The paper investigated the efficiency of the AFT algorithm for the problem of optimizing the design parameters of traffic
control systems composed of distinct and mutually-interacting modules. This adaptive optimization methodology aimsat
replacing the conventional manually-based optimization with a fully-automated procedure. Extensive simulation experi-
ments have been conducted for the signal control problem of the traffic network of Chania, where the design parameters
of three distinct and mutually-interacting modules of TUC strategy were fine-tuned by the AFT algorithm.

The simulation results demonstrate that the application ofAFT algorithm leads to better network performance (in terms
of daily mean speed) compared to the original TUC system. This underlines the superiority of the fully-automated op-
timization procedure, pursued by the AFT algorithm, even inthe case that the design parameters are already manually
fine-tuned by field experts, indicating the algorithm’s efficiency and real-time feasibility.
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