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Abstract—Practical large-scale nonlinear control systems re-
quire an intensive and time-consuming effort for the fine-tuning
of their control parameters in order to achieve a satisfactory
performance. In most cases, the fine-tuning process may take
years and is performed by experienced personnel. The purpose of
this paper is to introduce and analyze a systematic approach for
the automatic fine-tuning of the control parameters of practical
large-scale nonlinear control systems and investigate its efficiency
when applied to the recently developed urban traffic control
strategy traffic-responsive urban control. The proposed approach
is based on a concept similar to the Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithm. The difference
between the SPSA algorithm and the proposed approach is that,
SPSA employs an approximation of the gradient of an appro-
priate objective function using only the most recent fine-tuning
experiments, while in the proposed approach the approximation
of the gradient is performed by using a linear-in-the-parameters
approximator that incorporates information of a user-specified
time-window of the past experiments. Mathematical analysis of
the proposed approach establishes its convergence properties
and that SPSA can be regarded as a special case of the proposed
approach. Simulation results using the traffic network of the city
of Chania, Greece—a typical urban traffic network containing all
possible varieties of complex junction staging—demonstrate the
efficiency of the proposed approach.

Index Terms—Adaptive fine-tuning, adaptive optimization, non-
linear control, simultaneous perturbation stochastic approxima-
tion (SPSA), stochastic approximation.

I. INTRODUCTION

A. Motivation

THE motivation for the adaptive approach presented in this
paper was the need for the development of an automatic

fine-tuning procedure for the parameters of the recently de-
veloped urban traffic signal control strategy traffic-responsive
urban control (TUC) [5], [6], [13]. TUC is an efficient real-time
traffic control strategy whose design principles are based on
feedback control theory as opposed to most of the existing
strategies employing model-based optimization techniques.
Under the European research project SMARTNETS, TUC has
been implemented in three traffic networks with quite different
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traffic and control infrastructure characteristics: Chania, Greece
(23 junctions); Southampton, U.K. (53 junctions); and Munich,
Germany (25 junctions), where it has been compared to the
respective resident real-time traffic control strategies TASS,
SCOOT, and BALANCE [2], [13]. The main conclusions
drawn from this comparative evaluation are that TUC is an
easy-to-implement, inter-operable, low-cost real-time traffic
control strategy whose performance, after limited fine-tuning,
proved to be better or, at least, similar to the ones achieved by
the resident long-standing strategies that were in most cases
very well fine-tuned over the years in the specific networks.
More specifically, while the TUC parameter fine-tuning took
place in a period less than one month, the residence strategies’
good performance has been achieved after extensive fine-tuning
over many years. In all three networks, the fine-tuning of TUC
parameters was performed by experienced personnel based on
field observations and by experimenting with different com-
binations of parameter values without the use of a systematic
approach.

The lack of a systematic approach in the fine-tuning of TUC
parameters motivated us to investigate the possibility of using
adaptive optimization techniques; a very promising and quite
popular technique is the Simultaneous Perturbation Stochastic
Approximation (SPSA) technique [16], [18]. SPSA is a com-
putationally efficient stochastic approximation technique that
overcomes the problem emerging in conventional stochastic
approximation algorithms where the number of function eval-
uations needed for each algorithm iteration is proportional to
the dimension of the parameter vector, thus, rendering their ap-
plication to high-dimensional problems impossible. SPSA has
been efficiently implemented in the fine-tuning of controller
parameters in many control applications (see, e.g., [19]); it is
worth noticing that the SPSA technique has been also applied
to the fine-tuning of the parameters of a neural network-type
urban traffic control system [17]. The efficiency of the tech-
nique has been demonstrated in [17] through simulations of
part of the traffic network of the central business district of
Manhattan, NY.

Unfortunately, the application of SPSA to the fine-tuning of
TUC parameters failed to produce satisfactory results for the
case of TUCs application to the traffic network of the city of
Chania, Greece. It is worth noticing that, while the junction
staging structure of the Manhattan network simulated in [17] is
a very simple one (two stages per junction), the junction staging
structure in Chania (and most urban networks in Europe) is more
complex, containing all possible varieties of junction staging
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(e.g., double junctions with common staging, junctions with
three and more stages, junctions where phases receive green in
more than one stages, etc.).

The failure of SPSA to produce satisfactory results motivated
us to develop a new algorithm, the adaptive fine-tuning (AFT).
As in the case of SPSA, the AFT algorithm uses a small number
of objective function evaluations for each algorithm iteration.
Moreover, as in the SPSA case, the objective function evalu-
ations at each iteration of the AFT algorithm, are performed
on random perturbations around the current control parameter
vector. The main difference between both algorithms is that
SPSA uses the finite differences of these function evaluations to
estimate the gradient of the objective function, while in the AFT
case a linear-in-the-weights universal approximator (LUA) is
used to locally approximate the objective function as a function
of the control parameters; the gradient of the objective function
is then approximated by the gradient of the LUA. Using mathe-
matical analysis it is shown that AFT preserves similar conver-
gence properties as SPSA; the convergence proof of the AFT
algorithm also reveals its superiority over SPSA. More specif-
ically, it is shown that the SPSA algorithm can be regarded as
a special case of the AFT algorithm if a specific simple LUA is
used.

Simulation results using a macroscopic simulation model of
the complex traffic network of the city of Chania, demonstrate
the efficient performance of the proposed approach. Contrary to
SPSA, the proposed approach manages to improve significantly
TUCs performance even in the case of high daily traffic demand
variation and in the case of little or zero knowledge about the
traffic network characteristics. The improvement of TUCs ef-
ficiency is significant even in the case where TUC is designed
based on the assumption of perfect knowledge of traffic network
characteristics.

The simulation results concentrate only on the fine-tuning
of the split control module of TUC, which is indeed the most
difficult to fine-tune. We note that very useful conclusions are
drawn from the simulations regarding the significance of partic-
ular control parameters to the efficiency of TUC and the effect
of fine-tuning to these parameters.

B. Preliminaries

A function is said to be , where is a positive integer,
if it is continuous and its first derivatives are continuous. If

is a function parametrized by the nonnegative vector ,
we say that is , if there exists a scalar function
satisfying , and

such that for every and every there exists a nonnegative
real for which .

The notation , where are vectors or matrices,
is used to denote a vector whose elements are the entries of
and (taken columnwise). If is a vector then denotes
the diagonal matrix whose diagonal entries are the entries of .

C. Linear-in-the-Weights Universal Approximators

The form of a linear-in-the-weights universal approximator
(LUA) is as follows:

(1.1)

where denotes the input vector to the LUA,
denotes the output vector of the LUA, denotes a
matrix of constant parameters, is a nonlinear
vector function of regressor terms and the integer denotes the
number of regressor terms. It can be shown that various neural
network models, fuzzy systems, polynomial approximators be-
long to the class (1.1); for instance, high order neural networks,
radial basis function networks, neural network with shifted sig-
moidals, adaptive fuzzy systems, etc., (see, e.g., [1], [3], [4],
[10]–[12], [14], [15], [20], and the references therein) belong to
the class of LUA (1.1).

A very important property that many LUA of the form (1.1)
satisfy follows.

(P1) We say that a family of LUA of the form (1.1) is a
family of universal approximators, if for every continuous
function , for every and every
compact subset there is an integer and a matrix

such that the LUA with regressor terms satisfies

Many families of LUA of the form (1.1) such as high order
neural networks, radial basis function networks, neural network
with shifted sigmoidals satisfy property (P1).

Let us now fix , the function and the compact set .
Then, the optimal parameter matrix and the optimal mod-
eling error w.r.t. and are defined as follows:

and . It is
worth noticing that from property (P1) can be
made arbitrarily small by appropriately selecting . In general,

becomes smaller whenever increases.

II. AFT FOR FUNCTION OPTIMIZATION

We will first introduce the AFT algorithm under the frame-
work of stochastic approximation. More specifically, consider
the problem of finding the parameter vector that minimizes
the bounded-from-below objective function in the case
where the closed form of this function is not known and only
noisy measurements of this function are available

(2.1)

Here denotes the noise concatenating the measurement,
is an at least bounded-from-below unknown function, is
a multidimensional control parameter vector or decision vari-
ables vector, and is a multidimensional vector of input vari-
ables. The problem at hand is to find the parameter vector
that minimizes the average of w.r.t. , i.e.,
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In many practical problems, the vector may not be available
for measurement, but it is natural to assume that an estimation

of is available. Note that constraints on may be also im-
posed (e.g., could belong to a bounded set , in which case
the above minimization should take place for ). In the se-
quel, we will assume for simplicity that can take any value;
the generalization for the case where is straightforward.

We are now ready to introduce the AFT algorithm.
AFT Algorithm:
Step 0) Choose . Set .
Step 1) Set . Set

(2.2)

where is a vector of i.i.d. entries with zero mean
and variance equal to 1. Calculate
(see comment C1).

...

Step ) Set . Set

(2.3)

where is defined similarly to the previous step.
Calculate (see comment C1).

Step ) Set . Define the LUA with regressor
terms

(2.4)

where denotes an estimate of the actual (see com-
ments C2, C3).
Find the vector that minimizes the LUA least-square
error for the last iterations

(2.5)

(see comment C4).
Step ) Calculate according to

(2.6)

where
is a vector whose entries are all zero except

the th entry which is equal to 1, is a predicted value
of (see comment C5) and is the value of
the parameter vector obtained in the previous algorithm
iteration (see comment C6). Calculate

(see comment C1).
Step ) Adjust the values of if nec-

essary (see comment C7). If a termination condition is
not satisfied (see comment C8) Go to STEP 1; otherwise
END.

Several comments are in order.
(C1) Note that Step 1–Step correspond to one full it-

eration of the AFT algorithm. Similarly to the SPSA algorithm,

the parameter vector in each algorithm iteration is first randomly
perturbed times and the objective function is evaluated for
these randomly perturbed parameter vector values. These values
as well as past values of objective function evaluations are then
used in order to approximate (estimate) the unknown objective
function using an LUA. Note also that the SPSA algorithm can
be regarded as a special case of the AFT algorithm. More specif-
ically, in the case of the SPSA algorithm: 1) , that
is, only the last measurements are used for the estimation
of the unknown objective function, while the AFT algorithm al-
lows also for evaluations of previous iterations to be used for the
approximation of the unknown objective function; 2) it can be
easily seen that, if the regressor vector of the LUA used in (2.4)
takes the form (here )

if

otherwise

then, the vector that minimizes the LUA least-square error
can be easily seen to be as follows:

With the previous choices for the regressor vector and the
vector , the AFT algorithm reduces to the SPSA algorithm.
Of course, the previous simple approximator does not possess
the powerful approximation capabilities of other more elaborate
LUAs.

(C2) In many cases, the measurement of the input vector
may be concatenated by measurement noise. Therefore, it is nat-
ural to assume that there exists an estimate of which satis-
fies , where accounts for the measurement noise.

(C3) Contrary to other applications of LUA where the
number of regressor terms should be large enough to guar-
antee that the LUA can approximate complicated functions
over large input sets, in the case of the proposed algorithm
there is no need for a large number of regressor vectors. As it
will be shown in the proof of the convergence properties of the
proposed algorithm, it is sufficient if the LUA has enough re-
gressor terms to efficiently approximate the unknown function

in a small neighborhood around the most recent control
parameter vector obtained at step . The size of this
small neighborhood is proportional to the design parameters

which should be kept small in order for the proposed
algorithm to be efficient.

(C4) Many different algorithms can be used for the calcula-
tion of in (2.5). In our simulations, a simple gradient algo-
rithm was used [9] for this purpose. (C5) A possible choice for

is the average value of or its value during the previous day.
Of course, in the case where prediction models are available they
can be used for the calculation of . In the application of the
AFT algorithm to the fine-tuning of TUCs parameters, special
attention has been paid to the calculation of for reasons that
are explained in Section IV.

(C6) [Algorithm modification]: As in the case of the SPSA
algorithm, the value of used in each algorithm iteration, is the
most recent value obtained at Step . An intrinsic draw-
back of such a choice is that if during the last iteration a “bad”
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value for has been obtained then in the next iteration the algo-
rithm should continue from this “bad” value. To overcome this
problem the following value can be used in (2.6) instead of the
value obtained in the previous iteration

(2.7)

The value corresponds to the value of the control parameter
vector that produced the best value for the objective function
over the last iterations. In our simulations, we used in (2.6),
the value of as calculated in (2.7) instead of ob-
tained in the previous iteration. Other choices for that take
into account the “best” value under the worst demand scenario
are also possible, e.g.,

(2.8)

(C7) The design parameters can be chosen as in
the case of the SPSA algorithm [16], [18]. For instance
can be chosen to be positive slowly-decaying-to-zero sequences
(more formally, zero-decaying, positive sequences with infinite

norms) while can be chosen to take any positive value.
However, the AFT algorithm—after experimenting with a va-
riety of choices for —was found to perform more ef-
ficiently under a different choice for , which is de-
scribed in the simulation section.

(C8) Many different termination conditions for terminating
the algorithm may be employed. For instance, the following ter-
mination condition can be used

where is a small positive design constant. Alternative ter-
mination conditions used in similar algorithms may also be
employed.

The following theorem establishes that the proposed algo-
rithm approximates the behavior of the standard gradient-de-
scent method. Note that contrary to [16] and [18] where the
convergence properties of the SPSA algorithm are established
under a stochastic framework, our proof will follow a determin-
istic analysis; a stochastic framework may be, of course, fol-
lowed as well.

Theorem 1: Assume that in (2.6) is set equal to .
Assume also the following.

(A1) The function is at least . Let also ,
where denotes the input vector measurement noise.
(A2) The regressor vector satisfies the following per-
sistency of excitation condition:

where is an positive constant.
Then, the following holds:

(2.9)

where

and is an exponentially-zero-decaying nonnegative term.
Proof: Consider an instant at Steps of the

AFT algorithm and let denote the smallest closed subset
satisfying

Obviously, the subset depends on the choice of the de-
sign parameters ; more precisely, the “smaller” these pa-
rameters are, the “smaller” the subset is. Let us rewrite
the gradient of as follows:

where because of assumption (A1) is locally
Lipschitz continuous and is a function satisfying

(2.10)

for some positive constant . Let us fix the number of the re-
gressor terms of the LUA (2.4). By defining (see subsection I.D)

and
, we have

therefore, we have

where denotes the parameter estimation error.
Standard results from the theory of parameter estimation (see,
e.g., [9] and [11]) can be used to establish that, due to the per-
sistency of excitation property (A2) the following is satisfied:

where is an positive constant, are positive con-
stants, is an exponentially-zero-decaying term and, thus, we
finally obtain that

where

where is a positive constant satisfying
is a positive con-

stant which depends on the size of and . From
standard results on approximation theory [8], the size of the
modelling error term is proportional to the size of the
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subset and inversely proportional to the number of
regressor terms. Therefore, we finally obtain that

which concludes the proof.
Some more comments are in order.
(C9) Theorem 1 simply states that the AFT algorithm is

equivalent to the standard gradient descent optimization algo-
rithm plus a “disturbance” term consisting of two parts: the
“size” of the first part can be made arbitrarily small by choosing
the design parameters sufficiently small and/or the
number of regressor terms sufficiently large; while the
“size” of the second part is proportional to the size of the noise
and prediction errors.

(C10) Obviously, in the case where is used instead of
in (2.6) [where is calculated via (2.7) or (2.8); see

comment C6], inequality (2.9) in Theorem 1 should be replaced
by the following inequality:

(2.11)

(C11) Note that, in order to keep the proof of Theorem 1
as simple as possible, we have defined the symbol in a
more general fashion than that of the frequently used “order of”
symbol defined as follows: the function parame-
trized by the positive constant is said to be , where

a nonnegative function, if there exists a positive constant
such that for all and all .
(C12) The proof of Theorem 1 can be extended to cover the

cases where the function is not necessarily . The proof
in this case is very lengthy and, therefore, omitted here.

(C13) Assumption (A2) about persistency of the regressor
vector which is crucial for the proof of Theorem 1, is not
automatically satisfied by the AFT algorithm for any choice of
the LUA. However, if the LUA employed is a polynomial-in-
approximator (as the one chosen in our simulations), it can be
easily seen that the random perturbation of in Steps
is sufficient for the regressor vector to satisfy assumption (A2).

III. AFT FOR NONLINEAR CONTROL OVER A TIME-HORIZON

The proposed algorithm can be directly applied for the fine-
tuning of nonlinear control systems. More precisely, consider a
nonlinear discrete-time control system

(3.1)

where denote the vectors of system states, control in-
puts, and exogenous signals, respectively, denotes the time-
index, and is a—possibly unknown—sufficiently smooth
nonlinear vector function. Suppose that the following control
law is applied to the system (3.1):

(3.2)

where is a known vector function and is the vector of
control parameters. The performance of the controller (3.2) is
evaluated through the following objective function:

(3.3)

where are known nonnegative functions, denotes the time-
horizon over which the control law (3.2) is applied and

denotes the time-history of the exogenous
signals.

By defining , the minimization of (3.3) w.r.t.
—and thus the problem of constructing an efficient fine-tuning

algorithm for —reduces to the minimization of (2.1). There-
fore, the proposed AFT algorithm and Theorem 1 are directly
applicable to the problem of fine-tuning the control parameters

so that (3.3) is minimized. It should be noticed that the appli-
cation of the proposed AFT algorithm to a nonlinear system of
the form (3.1)–(3.3) does not guarantee that the closed-loop so-
lutions for the different choices of are stable. In our application
of the fine-tuning of the traffic control strategy TUC, this prac-
tically means that during the fine-tuning process there may be
days where the closed-loop system behavior is very poor which
can lead to severe congestion problems, complaints from the
drivers and the authorities, etc.

In the simulations, we partly overcame this problem by the
use of offline testing of the control decisions under the new
control parameter vector before evaluating online the control
strategy with the new . In this offline testing, the control deci-
sions using the new and data from previous days are compared
to past control decisions that achieved an acceptable behavior.
If the comparison does not identify any major differences then
the new is accepted for evaluation. Of course, the problem of
guaranteeing closed-loop stability during the application of the
AFT algorithm is an open one and of major importance. Our fu-
ture research focuses on the resolution of this problem.

IV. APPLICATION TO THE FINE-TUNING OF TUC

A. Brief Introduction to TUC

TUC consists of four distinct interconnected control modules
that allow for real-time control of the following:

• green times (split);
• cycle time;
• offsets; as well as
• for the provision of public transport priority.

These four control modules are complemented by a fifth data
processing module. All control modules are based on feedback
concepts of various types, which leads to TUCs computa-
tional simplicity as compared to model-based optimization
approaches, without actually sacrificing efficiency. The split
control and data processing modules were the first to be devel-
oped (see [5] for details) while the other three control modules
were developed at a later stage (see [6] for details). In this
paper, we will concentrate on the fine-tuning of the TUC split
control module parameters. The split control module is the
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most difficult to fine-tune since it consists of many control
parameters (typically equal to the number of stages times the
number of links). Of course, the proposed algorithm can be
applied to the fine-tuning of the other control modules of TUC
as well. It is worth noticing that since the cycle and offset con-
trol modules consist of a small number of control parameters
(e.g., three design parameters for the cycle control module) it is
expected that the performance of the proposed algorithm to the
fine-tuning of all control modules will be as efficient as in the
case of fine-tuning the split control module alone.

We next briefly describe the split control module of TUC.
This is a network-wide control module, i.e., all available mea-
surements are used to calculate the green time of each stage via
the multivariable regulator

(4.1)

where is the discrete time index with sample
time period typically equal to the cycle time ; the vector

includes the green times of all stages in all junctions to
be applied during the next cycle; is a prespecified vector
of fixed green times (fixed plan) whose impact on the resulting
control was found to be limited; the vector comprises
the numbers of vehicles in each network link during the last
cycle, estimated by the data processing module; is the control
matrix (with dimensions number-of-stages/number-of-links)
which results from an offline applied software code based on
the linear-quadratic (LQ) regulator design procedure; the traffic
data required to calculate are: saturation flows of links; av-
erage turning rates at junctions; maximum numbers of vehicles

in links. The aim of (4.1) is to balance the relative space
occupancies in the network links so as to minimize
the risk of queue spillovers which may lead to a waste of green
time and even to gridlocks; to this end the regulator (4.1) may
apply an inherent gating, i.e., reduce the green time of links
that feed a saturating road, even if these links are two or more
junctions away. The green times for the stages of each junction
resulting from (4.1) will generally not add up to a cycle and may
also violate minimum-green constraints; a suitably designed
knap-sack optimization modifies the green times so as to satisfy
these constraints but keep the relative proportions of the green
times as close to the ones of (4.1) as possible. In other words,
the actual green times applied to the network, are not the
calculated in (4.1) but the obtained as a solution to the
following minimization problem:

subject to

(4.2)

where is the set of all stages in the th junction, while is
the total lost time (due to stage switchings) in the same junction.

The number of vehicles for the th link are estimated
via the following function:

(4.3)

where denotes the measured average time-occupancy
(measured usually by loop-detectors located at a certain dis-
tance from the stop light) during the last cycle time;
is an empirical function [6], [13] constructed from practical
investigations; denotes the distance of the loop-detector from
the stop line divided by the total link length; finally, the non-
negative “gating” constant is used to increase the influence
of particular links to TUC’s control decisions. Typically, is
set equal to zero.

The TUC control law (4.1) is based on the linearized store-
and-forward model [5]

(4.4)

where is a constant matrix depending on the saturation flows
of links, the average turning rates at junctions and the cycle time.
The control matrix in (4.1) is constructed using the LQ op-
timal control technique on the model (4.4); more precisely, is
calculated so as to minimize the following function:

(4.5)

where , with a positive design
constant. The aim of the function is to balance the relative
space occupancies in the network links so as to min-
imize the risk of queue spillovers which may lead to a waste of
green time and even to gridlocks.

Although the linear system (4.4) represents a simplified
model of the highly nonlinear and complicated traffic dy-
namics, the use of LQ optimal control techniques as previously
described for the development of the split control module of
TUC, provides a computationally simple yet efficient technique
for split control as proven in the various TUC implementa-
tions [13].

B. Traffic Network of Chania

Fig. 1 displays the Chania urban traffic network, a typical
urban traffic network containing all possible varieties of com-
plex junction staging. The junctions are represented by nodes
(junctions with common signalling have the same number, e.g.,
1A, 1B, 1C) and the links are represented by arrows. Each net-
work link corresponds to a particular junction phase. As it is
seen in Fig. 1, there are cases where there are more than one
links (phases) from a particular junction to another (e.g., links
L11 and L12 from junction 5–7); note that in the case of the net-
work used in [17] there is only one link (stage) from a particular
junction to another. Typical detector locations within the Chania
network links are either around the middle of the link or some 40
m upstream of the stop line. As in most traffic networks there are
two traffic demand peaks daily (noon and evening peaks). A typ-
ical time-history of the network mean-speed is shown in Fig. 2
(the mean speed time-history plotted in Fig. 2 corresponds to the
case where TUC split control is applied with TUC’s matrix
equal to the matrix described in the following).

The macroscopic simulation tool METACOR [7] was used
for the simulation experiments. The traffic network character-
istics (saturation flows, turning rates) used in METACOR were
suggested by the operators of the Traffic Control Centre (TCC)
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Fig. 1. Chania urban traffic network.

of the city; the fixed plan in (4.1) was also provided by the
operators (it is one of the six fixed plans used by the TCC). A

Fig. 2. Typical mean-speed daily time-history.

basic traffic demand scenario (time-history of vehicles entering
the network in the network origins during the day) was designed
based on actual measurements.

C. Choice of AFT Structure and Parameters

For the design of the LUA of the AFT algorithm for the par-
ticular application, a careful choice for the vectors had
to be made. Note that in this particular application, the input
vector in (2.1) [or the vector in
(3.3)] denotes the time-history of the number of vehicles en-
tering the network in each of the network origins. Given the fact
that there are a total of 22 origins in the network and a daily
demand scenario corresponds to 14 hours, it would be compu-
tationally cumbersome to use vectors whose entries cor-
respond to estimates of the vector at small time-intervals (e.g.,
if the entries of correspond to 5-min estimates, the total
size of these vectors is equal to 3696 entries). On the other hand,
given that the demand estimate for the next day will be anyway
inaccurate (due to a natural variation of the demand), it does not
make sense to use estimates over small time-intervals. In our
experiments, we found that it suffices to use an estimate every
3.5 h (i.e., four different estimates for the demand of the whole
day); this estimate was calculated by taking the average number
of vehicles entering a particular origin over the 3.5-h period and
resulted in vectors of dimension equal to 88. A second
arising problem was due to the calculation of the average de-
mand based on flow measurements provided by loop-detectors;
these measurements correspond to the actual demand when the
queue at the origin link is small, but may severely underestimate
the demand when the queue becomes long enough to cover the
loop detector. In other words, when there is high demand or the
particular control strategy cannot efficiently manage the queues
at the origins, it is most likely that the flow measurements under-
estimate the actual demand. To partly overcome this problem,
the vector used in the AFT algorithm was the average over
3.5 h flow measurement at each origin that corresponded to the
best daily performance (in mean speed) obtained so far. In this



998 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 6, NOVEMBER 2007

way, we avoided the risk of using a that corresponds to a non-
efficient choice for the control parameter vector; of course, the
vector in Step was the average over 3.5 h flow mea-
surement at each origin of the most recent daily experiment.

The LUA chosen for the algorithm implementation is a third-
order—in and —polynomial approximator taking the form

(4.6)

where denotes the estimate of the actual network
mean speed, and are the LUA constant parameters estimated
through minimization of (2.4). The indices were ran-
domly chosen in each algorithm iteration; in other words, in-
stead of taking all the possible combinations in the previous
third-order polynomial approximator, only a limited number of
randomly chosen combinations was considered at each algo-
rithm iteration. After experimenting with different values for

, we concluded that a value was sufficient for an
efficient AFT algorithm implementation. Note that with the pre-
vious choice for the LUA, it can be easily seen that the random
perturbation Steps of the AFT algorithm are sufficient
for the persistency of excitation assumption (A2) to always hold.
Finally, since our aim is to maximize the performance measured
in network mean speed, in Step is calculated by using
the following equation [see comment (C6)]:

(4.7)

The AFT design parameters were chosen as follows.
• was chosen initially equal to 5 and was set equal to 1

after the first algorithm iteration. In other words, for the
first five days of the experiments, random perturbations
around the initial control parameter vector were used for
each day, while after that, a random perturbation around
the current control parameter vector was used every second
day. The random perturbations for the first five days were
used in order to provide the LUA with “enough” informa-
tion about the unknown function , while the choice of

for the rest of the experiments was chosen in order
to minimize the instability behavior that a random pertur-
bation of may cause.

• The parameter was set equal to 30, that is, the LUA
approximator was using the 30 most recent experiments to
obtain an approximation of the unknown function .
Since—as already mentioned in comment (C3)—the pur-
pose of the LUA is to approximate the unknown function

around a small neighborhood of the most recent con-
trol parameter vector, it does not make sense to set
large. In the case where is chosen to be large, infor-
mation from outside this small neighborhood will be in-
troduced to the LUA, which may result in reducing its ap-
proximation capabilities.

• The parameters and were kept constant and equal to
small positive values (e.g., and ). It is
worth noticing that different choices for the parameters
and (e.g., ) produced similar perfor-
mance results; in other words, the algorithm seems to be

robust with respect to the choice of the parameters and
. For the case of the gradient descent step-size , the fol-

lowing simple rule was used: was initially set equal to
0.01. After each algorithm iteration, if the measured per-
formance was better than this of the previous iteration (i.e.,
if ) then the value of was increased ac-
cording to . The increasing of continued as
long as ; if , then was
reset to 0.01.

• [defined comment (C8)] was set equal to 0.01.

D. Simulation Experiments

In all simulation experiments, a constant cycle time of 90 s
was selected, and the offsets (time-differences of the start of
each cycle) between adjacent junctions were constant, too. The
following definition will help us explain the set up of the dif-
ferent experiments performed:

Definition 1: In the following, we will say that a value is
a randomly perturbed %-width version of a nominal value ,
if the randomly perturbed value is calculated according to

where is a zero-mean uniform random value in . In
other words, if we say that a demand scenario is a randomly per-
turbed 40%-width version of the basic scenario, we will mean
that each element of the randomly perturbed scenario was cal-
culated according to the previous formula with and
the corresponding element of the basic scenario.

Different matrices were designed based on assumed knowl-
edge of the traffic network characteristics. In order to distin-
guish the different matrices, we will use the notation
where ms is a number (in kilometers per hour) that corresponds
to the average mean speed of the whole network obtained for
the basic demand scenario when TUC is using a particular
matrix. For instance, the matrix is the matrix whose cor-
responding average network mean speed is 7.53 km/h for the
basic demand scenario. The following four different matrices
were designed.

• The matrix which was designed by assuming per-
fect knowledge of the network characteristics (saturation
flows, turning rates).

• The matrices which were calculated by
using randomly perturbed 40%-width versions of the
actual values of the network characteristics (i.e., the sat-
uration flows and the turning rates used in the design of
these matrices were randomly perturbed 40%-width
versions of the ones used in the METACOR simulator and
in the design of the matrix ).

• The matrix whose entries are all equal to zero (i.e.,
zero knowledge of the network characteristics). Note that
in this case, only the fixed plan is applied (i.e., no real-
time control is applied), and the resulting mean speed is
much less than in the cases where TUC operates with an
matrix based on uncertain or perfect knowledge.

Two different experiments sets were conducted.
Experiment Set 1: In this experiment set, each day a

randomly perturbed 5%-width version of the basic demand
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Fig. 3. Mean-speed results for the case of Experiment Set 1: (a) Experiment Set 1.a) for different choices of the initialLmatrix (L = L ;L ;L ) and
different choices for the design parameters � and ; (b) Experiment Set 1.a) with initial L matrix equal to L = 0; (c) Experiment Set 1.b) for different choices
of theLmatrix (L = L ;L ;L ); (d) Experiment Set 1.c) where the blue curves correspond to the controller g(k) = g �Lx(k�1)+NN(x(k�1))
for different choices of the matrix L (L = L ;L ), and the red curve corresponds to the controller g(k) = g � Lx(k � 1) + NN(f(k � 1)) with
L = L .

scenario was used. Note that a 5%-width random perturbation
makes small difference in the whole network’s traffic behavior.
In this experiment set we intended to investigate the capabilities
of the proposed algorithm under different choice of the algo-
rithm’s design parameters and this was the reason for assuming
small variation in daily demands. Within Experiment Set 1, the
following three different fine-tuning approaches were tested.

1.a) In this case, the 544 most important entries of the
matrix were fine-tuned. As a matter of fact the ma-
trix has a total of 2982 entries (equal to [number of stages

] [number of links ]); most of these entries
have relatively small values since they correspond to links
quite far from the junction of a particular stage and hence
it does not seem necessary to fine-tune all of the entries
of the matrix. By checking the entries of the matrices

we concluded that only 544 of these
entries correspond to values that are not negligible. The
simulation results of the proposed fine-tuning approach for
this case and for different initial matrices and different
choices of the algorithm parameters are summarized
in Fig. 3(a) and (b). In all of the experiments of Fig. 3(a)
and (b), the gating parameters were equal to 0.
1.b) In this case, the matrix was kept constant while the
gating parameters were fine-tuned using the proposed
approach. Initially, the gating parameters were set equal to
0. Fig. 3(c) summarizes the simulation results for different

matrices. Note that one of the matrices used (namely
matrix ) was obtained after the fine-tuning of the en-
tries of the matrix [shown in Fig. 3(a)].
1.c) As in the previous case, the matrix was kept con-
stant. The TUC control (4.1) was modified to

(4.8)

where was the output of a multilayer neural
network. Two different neural networks were used, one re-
ceiving as inputs the measurements and the second
receiving as inputs the measured flows at the de-
tector locations over the previous cycle. The initial neural
network weights were chosen equal to zero. Fig. 3(d) sum-
marizes the simulation results for different choices of the

matrix. As in case 1.a), the gating parameters were
equal to 0.

Experiment Set 2: In this experiment set, the basic demand
scenario was randomly perturbed to an average 50% of its values
in order to create nine more basic demand scenarios; each day
a random perturbation (with average 5% of the nominal values)
of one of these ten basic scenarios1 was used. In this way, the
efficiency of the proposed approach to demand scenarios with

1The same sequence of scenarios was used throughout this experiment set;
this was done in order to make easier the performance of the AFT algorithm
by comparing the performance at the current iteration with the one 10 iterations
back.
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Fig. 4. Mean-speed results for the case of Experiment Set 2: (a) initialLmatrix
equal to L ; (b) initial L matrix equal to L .

high variation was examined. Within the Experiment Set 2 only
the fine-tuning of the 544 most important entries of the matrix

was tested. Fig. 4 summarizes the simulation results for two
different choices of the initial matrix. In both cases the values
of the gating parameters were equal to 0.

An important issue raised in the Experiment Set 1 was the
problem occurred in some of the simulation runs where a
particular choice for leads to a poor behavior, especially in
the case of experiment set 1.a) with initial matrix equal to

[see Fig. 3(b)], where at certain days the mean speed
achieved reaches very small values. To partly overcome this
stability problem, in Experiment Set 2 we modified the AFT
algorithm in Steps as follows: at each of these steps
the randomly perturbed control parameter value obtained in
(2.2) and (2.3) is first offline checked whereby the previous
day occupancy measurements are used to calculate the control
decisions based on the new perturbed control parameter
vector; if these decisions are significantly different from the
ones obtained online on the previous day, then this perturbed
control parameter vector is rejected and a new one is obtained
by use of (2.2) and (2.3). This procedure is repeated until a
perturbed control parameter vector is obtained whose offline
control decisions are not significantly different from the pre-
vious day’s. The comparison was taking place by checking
the norm of all the differences between the online and offline
control decisions; if the norm exceeded a certain threshold, then
the particular perturbed control parameter vector is rejected.

The following several conclusions are drawn by inspecting
Figs. 3 and 4.

• The AFT algorithm can very effectively fine-tune the con-
trol parameters of the system. We repeat at this point that
application of the SPSA algorithm to the same fine-tuning
problem described in this section failed to produce sat-
isfactory results (in most of the cases, no improvement
was observed during the application of the SPSA algo-
rithm). Both for low variation of demand (experiment set
1 with 5%-width demand variation) and for high varia-
tion of demand (experiment set 2 with 40%-width demand

variation), the fine-tuning of the entries of TUC’s -ma-
trix using the AFT algorithm resulted in an average im-
provement from 7.5 to 8.5 km/h (or 13.3% improvement)
in the case of perfect knowledge of the network charac-
teristics, from 6.4–7.9 km/h (or 23.4% improvement) in
the case where the uncertainty on the network character-
istics is random with 40%-width, and from 3 to 5.2 km/h
(or 73.3% improvement) in the case where both TUC and
the AFT algorithm assume zero knowledge about the net-
work characteristics.

• The TUC design principles lead to an efficient traffic
controller with a satisfactory behavior even without
fine-tuning. In fact the controller that is based on perfect
knowledge of network characteristics (i.e., the approach
that corresponds to ), leads to a traffic performance
which is not much lower than the one obtained after
fine-tuning; moreover, the fine-tuning process that is based
on a poor TUC design (i.e., the approach that corresponds
to ) leads to a performance that is only slightly
better than the one achieved by the matrix . In a
nutshell, TUC split control leads to a quite satisfactory
behavior, which, of course, can be improved further by
use of the AFT algorithm.

• Fine-tuning of the gating parameters can lead to a faster
performance improvement when compared to fine-tuning
of the entries of TUCs -matrix [compare Fig. 3(c) with
Fig. 3(a) where similar improvement is achieved in less
days for the case of fine-tuning of ’s]. However, the fine-
tuning of ’s cannot achieve as much improvement as
in the case of fine-tuning of the entries of TUC’s -ma-
trix. Therefore, the best fine-tuning policy could be to first
fine-tune the entries of TUCs -matrix until performance
is not improved anymore and then to fine-tune the gating
parameters .

• The use of neural network control addition-
ally to the TUC linear split controller in (1.1) resulted in
worse fine-tuning results than those of the linear controller
(4.1). This in conjunction with the fact that the multilayer
neural network used to represent can virtually
approximate the behavior of any nonlinear controller, leads
us to the conclusion that replacement of the linear con-
troller (4.1) by a nonlinear controller will not improve the
capabilities of the split control module of TUC.

• From the simulation results it is apparent that there are
many different local minima for the matrix [see, e.g.,
Fig. 3(a), where different initial matrices converge to
matrices with different performance; moreover, in the case
of initial matrix equal to the same initial ma-
trix but different AFT design parameters lead to different
final matrices]; however, in all cases the final matrices
where AFT converges lead to a satisfactory behavior.

• As mentioned in Section IV-C, due to the use of loop-de-
tectors, the demand may be severely underestimated when
the queue becomes long enough to cover the loop detector,
and, as a result, the estimate may be very noisy in
many cases. It is, therefore, expected that the performance
of the proposed algorithm will be improved if instead of
loop-detector, image sensors—which can more accurately
measure the link queues—are used for the measurement of
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traffic flow/queues within traffic network links. Of course,
image sensors are rarely used by urban traffic control sys-
tems mainly due to their high cost.

V. CONCLUSION

In this paper, a new algorithm for fine-tuning of parameters
of nonlinear control systems has been proposed and analyzed
both by mathematical analysis and by means of simulations of
the traffic control strategy TUC as applied to the traffic net-
work of the city of Chania. The proposed approach is based on
a concept similar to the SPSA algorithm, which has been ap-
plied and analyzed for the fine-tuning of a simple traffic con-
trol system. The difference between the SPSA algorithm and
the proposed approach is that, while SPSA uses an approxi-
mation of the gradient (of an appropriate objective function)
that uses only the most recent fine-tuning experiments, in the
proposed approach the approximation of the gradient function
is performed by using a linear-in-the-parameters approximator
that incorporates information of a user-specified time-window
of past experiments. Mathematical analysis of the proposed ap-
proach establishes its convergence properties while SPSA can
be regarded as a special case of the proposed approach.

Simulation results using the complicated traffic network of
the city of Chania, establish the efficient performance of the pro-
posed approach. It is worth noticing that the SPSA algorithm
fails when applied to the fine-tuning of the TUC control param-
eters for the Chania traffic network. Finally, some useful con-
clusions about the efficiency of the TUC strategy are drawn.
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