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Large Scale Nonlinear Control System Fine-Tuning
Through Learning

Elias B. Kosmatopoulos and Anastasios Kouvelas

Abstract—Despite the continuous advances in the fields of
intelligent control and computing, the design and deployment of
efficient large scale nonlinear control systems (LNCSs) requires a
tedious fine-tuning of the LNCS parameters before and during the
actual system operation. In the majority of LNCSs the fine-tuning
process is performed by experienced personnel based on field
observations via experimentation with different combinations of
controller parameters, without the use of a systematic approach.
The existing adaptive/neural/fuzzy control methodologies cannot
be used towards the development of a systematic, automated
fine-tuning procedure for general LNCS due to the strict as-
sumptions they impose on the controlled system dynamics; on
the other hand, adaptive optimization methodologies fail to guar-
antee an efficient and safe performance during the fine-tuning
process, mainly due to the fact that these methodologies involve
the use of random perturbations. In this paper, we introduce
and analyze, both by means of mathematical arguments and
simulation experiments, a new learning/adaptive algorithm that
can provide with convergent, an efficient and safe fine-tuning of
general LNCS. The proposed algorithm consists of a combination
of two different algorithms proposed by Kosmatopoulos et al.
(2007 and 2008) and the incremental-extreme learning machine
neural networks (I-ELM-NNs). Among the nice properties of
the proposed algorithm is that it significantly outperforms the
algorithms proposed by Kosmatopoulos et al. as well as other
existing adaptive optimization algorithms. Moreover, contrary to
the algorithms proposed by Kosmatopoulos et al., the proposed
algorithm can operate efficiently in the case where the exogenous
system inputs (e.g., disturbances, commands, demand, etc.) are
unbounded signals.

Index Terms—Adaptive fine-tuning, adaptive optimiza-
tion, incremental-extreme learning machine neural networks
(I-ELM-NNs), nonlinear control systems, simultaneous perturba-
tion stochastic approximation (SPSA).

I. INTRODUCTION

D ESPITE the continuous advances in the fields of intelli-
gent control and computing, the design and deployment

of efficient large scale nonlinear control systems (LNCSs) re-
mains a particularly challenging problem. This is partly due to
the fact that practical control design approaches are often based
on simplified models for the system dynamics, leading to LNCS
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control parameters with suboptimal or even unacceptable per-
formance. On the other hand, the use of more complex models
for the design of effective LNCS is often hardly feasible due
to the lack of adequate theory and reliable and practicable de-
sign approaches. Thus, the use of simplified models is virtually
unavoidable in most complex control system applications. As a
result there is a major need for careful and efficient fine-tuning
of the LNCS parameters prior to the actual system operation
that arises from the use of simplified models and control de-
signs while medium- or long-term unpredictable variations of
the system dynamics may call for frequent updates. In the ma-
jority of LNCSs, the fine-tuning process is performed by experi-
enced personnel based on field observations via experimentation
with different combinations of controller parameters, without
the use of a systematic approach.

Urban and motorway traffic networks, large chemical pro-
cesses, sensor networks, advanced computer networks, power
networks, mega city power, water, and communication networks
are specific examples of large scale nonlinear processes that
are controlled via corresponding LNCSs and call for a tedious
fine-tuning procedure for the calibration of their parameters,
whose number may range from dozens to several hundreds or
more. Such a fine-tuning procedure may take months, or, in ex-
treme cases, even years, until the LNCS actually reaches the de-
sired performance. In most cases, this procedure may lead to an
acceptable, but not necessarily optimal, control behavior, while
the need for frequent updates calls for a quasi-continuous effort
with all related technical and organizational (e.g., change of per-
sonnel) risks. In some known cases, the outlined procedure has
even led to a complete failure, i.e., the use of the LNCS was
abandoned after the initial deployment due to the failure of the
fine-tuning process to achieve a satisfactory performance (see,
e.g., [17] and [24]).

Unfortunately, the existing methodologies are unable to
provide a generic, efficient, and systematic approach for the
automated fine-tuning of LNCS. More precisely, we have the
following.

• Adaptive control as well as a neural network, fuzzy and
learning control methodologies are, in general, not ap-
plicable to the fine-tuning of control systems that have
been developed using nonadaptive techniques. Most im-
portantly, these methodologies suffer from the so-called
“loss-of-controllability” problem (see, e.g., [6, Sec. 9.7]
and [9]). Roughly speaking, the “loss-of-controllability”
problem can be explained as follows: adaptive or adap-
tive-like techniques make use of an estimation model of
the actual system and the adaptive controller is designed as
if the estimation model were the actual one; in cases where
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the estimation model becomes uncontrollable, it is im-
possible to construct a controller based on this estimation
model. To overcome this difficulty, most adaptive con-
trol designs impose strict assumptions on the controlled
system; see, e.g., [12] and [6]; such assumptions become
extraordinarily strict in the case of large scale systems. On
the other hand, removal of these assumptions results in
very complicated control designs, which moreover have
the disadvantage of very poor transient behavior; see, e.g.,
[9] and [23] and the references therein.

• On the other hand, methodologies that are based on adap-
tive optimization (AO) principles (e.g., the Kiefer–Wol-
fowitz (KW) algorithm [8], [2], the random directions
Kiefer–Wolfowitz (RDKW) [14], the simultaneous pertur-
bation stochastic approximation (SPSA) [20], [21] etc.),
although they are applicable to control designs that have
been developed using nonadaptive techniques and they
do not require any a priori knowledge or assumption
on the system dynamics, they do not have any mecha-
nism to incorporate the knowledge captured in the past
regarding the dependence of the system performance on
the controller parameters and system exogenous inputs;
in case where such a dependence is highly nonlinear and
complex, the aforementioned algorithms fail to produce
any improvement during the fine-tuning process. Such
a case is reported in [10] where these techniques failed
to produce any fine-tuning improvement for virtually
any choice of their design parameters when applied to
the fine-tuning of an urban traffic control system. Most
importantly, AO methodologies possess the disadvantage
of not guaranteeing efficient and safe control behavior
during the fine-tuning process: due to the fact that these
methodologies involve the use of random perturbations,
there is always the possibility that, during the fine-tuning
process, the controller exhibits poor or, even worse, un-
stable performance; see, e.g., [11].

Recently, we introduced and analyzed a new family of AO al-
gorithms that can be used towards the development of a generic,
efficient, and systematic approach for the automated fine-tuning
of LNCS [10], [11]. The main attributes of these algorithms may
be summarized as follows.

• They are based on AO principles and, as a result, they do
not require any a priori knowledge or assumption on the
system dynamics; moreover, they can be implemented to
any type of LNCS regardless of the methodology used for
the original design of the LNCS.

• They are robust with respect to exogenous disturbances,
noisy measurements, system interactions, component fail-
ures, etc.

• They are utterly generic, computationally efficient, and
straightforward to embed to any type of LNCS, re-
gardless of its size, level of complexity, and level of
decentralization.

• They incorporate powerful learning and estimation mech-
anisms that render them adaptable to short-term and long-
term variations of system characteristics such as demand
long-term variations, system aging, etc. Moreover, through

these learning and estimation mechanisms, they are ca-
pable of incorporating the knowledge captured in the past
regarding the dependence of the system performance on
the controller parameters and system exogenous inputs.

• Most importantly, they guarantee a safe and efficient fine-
tuning procedure, contrary to other popular AO methods
that cannot exclude the possibility of poor or even unstable
performance during the automatic fine-tuning process.

The key idea behind the development of these algorithms is to use
neural approximators, accompanied with appropriate learning
mechanisms for adjusting the neural network weights, in order to
approximate (learn) the overall system performance as a function
of the controller parameters and the exogenous inputs. In other
words, the algorithms of [10] and [11] use appropriate neural
mechanisms to approximate (learn) the relationship

where is an unknown, highly nonlinear function,
system performance, controller parameters, and

are exogenous signals that are either available for mea-
surement (e.g., measurable disturbances, exogenous commands,
demand, etc.) or can be estimated via appropriate estimation al-
gorithms. The approximation of can be then used in one of
the following ways:

— GD: To construct an approximation of the gradient of
with respect to ConPar, in which case, standard gradient-
descent (GD) optimization algorithms can be applied to
obtain a local minimizer for ; it is worth noting that the
algorithm of [10] is based on this principle.

— CP: To check the effect of different ConPar to SysPer; in
this case, algorithms such as the ones presented and ana-
lyzed in [11] can be used which, at each iteration, check
the effect of candidate perturbed (CP) versions of the cur-
rent ConPar and select the “best” among these CP versions
to be the next ConPar.

Rigorous mathematical arguments presented in [10] and [11]
established that the algorithms that are based on the above
principles—when used for LNCS fine-tuning—preserve a
convergent as well as efficient and safe performance, under the
assumption that the system exogenous inputs, disturbances,
etc., are bounded signals. Unfortunately, in many LNCS appli-
cations, such an assumption is not realistic; LNCS applications
where the exogenous inputs are Gaussian noise signals, LNCS
for mitigating the effects of earthquakes in civil structures,
LNCS for sensor networks, etc., are few of the many prac-
tical LNCS applications where the exogenous inputs may be
unbounded1 signals.

In this paper, we show that an appropriate combination of
the principles GD and CP presented above, accompanied with
the incremental-extreme learning machine neural network
(I-ELM-NN) [4], [5] can guarantee a convergent as well as
efficient and safe performance even in the case of unbounded
exogenous signals. The proposed algorithm switches—at
each iteration—among an algorithm that is based on the GD
principle (which is similar to the algorithm proposed in [10])

1The terminology “unbounded signals” is used to denote signals for which it
is impossible to a priori assess an upper bound of their magnitude.
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and a CP-based algorithm; an I-ELM-NN, accompanied with
appropriate learning laws, is used to estimate the unknown
function . The switching among a GD-based and a CP-based
algorithms is crucial for the overall algorithm performance,
since the CP-based algorithm is needed in order for the neural
approximator to be able to efficiently learn the unknown func-
tion , while the use of the GD-based algorithm is essential for
convergence under unbounded exogenous signals.

Simulations experiments performed on a “difficult-to-fine-
tune” large scale traffic control system exhibit the efficient per-
formance of the proposed algorithm. More precisely, the pro-
posed algorithm is shown to always guarantee an efficient and
safe fine-tuning procedure, while the existing algorithms either
totally fail to produce any improvement of the overall control
system (this happens in the case of the SPSA algorithm and the
algorithm of [10]) or may lead to poor steady-state performance
as it happens in the case of the algorithm of [11].

A. Notations

The notation , where are scalars,
vectors, or matrices, is used to denote a vector whose elements
are the entries of (taken columnwise). denote
the set of nonnegative integers. denotes the -dimensional
identity matrix. denotes the integer part of . For a vector

denotes the Euclidean norm of (i.e., ),
while for a matrix denotes the induced matrix
norm of . A function is said to be , where is a positive
integer, if it is uniformly continuous and its first derivatives
are uniformly continuous.

A random (or random-like) vector is said to be
full-rank, zero-mean, -width, where is a positive real, if

and, moreover, for any sequence
of such vectors, the following condition is

satisfied:

(1.1)

where is a finite positive constant.
Finally, in order to avoid definition of too many variables,

constants, etc., we will use the following notation. If is a
function parametrized by the nonnegative parameter , we will
use the notation , if there exists a strictly increasing
scalar, at least , function satisfying

, such that . Note that our
definition of differs from the usual “order of” definition.

B. I-ELM Neural Networks

As already mentioned, in this paper, we make use of a spe-
cial family of neural networks, the I-ELM-NNs [4], [5]. For this
reason, some preliminaries are needed regarding I-ELM-NNs
and their approximation capabilities. More precisely, let

be an unknown function to be approx-
imated and let denote one of the following two norms:

or

where

if
otherwise

with . An I-ELM-NN used for the approximation of
takes the form

(1.2)

where denotes the approximation of denotes the ma-
trix of parameter estimates, denotes the dimension of the
I-ELM-NN estimator (1.2) and, finally, denotes the nonlinear
vector function of I-ELM-NNs neurons

(1.3)

where is an invertible smooth nonlinear function; finally,
the vector and the real parameter are randomly
generated (with being zero mean).

Let us fix an I-ELM-NN of the form (1.2) with neurons
of the form (1.3) and the constant . Then, the optimal param-
eter matrix and the optimal modeling error with respect to
(w.r.t.) are defined as follows:

(1.4)

and

(1.5)

Using the results of [15] and [4], it can be seen that I-ELM-NNs
satisfy the following property.

P1) Consider an I-ELM-NN of the form (1.2) with neu-
rons of the form (1.3). Then, there exists a scalar
function , satisfying

, such that

(1.6)

II. PROBLEM FORMULATION: FINE-TUNING WITH SAFE AND

EFFICIENT PERFORMANCE

Let us consider a general LNCS application where the under-
lying system dynamics is described according to the following
nonlinear difference equation:

(2.1)

where and denote the vectors of system states, con-
trol inputs, and exogenous signals, respectively, denotes the
time index, and is a possibly unknown, sufficiently smooth
nonlinear vector function, while the control law applied to the
system (2.1) is described as follows:

(2.2)

where is a known smooth vector function and is the
vector of control parameters. Note that we do not impose any
restriction on the form of the controller (2.2).



1012 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 6, JUNE 2009

The performance of the controller (2.2) is evaluated through
the following objective function (performance index):

(2.3)

where are known nonnegative functions, denotes the time

horizon over which the control law (2.2) is applied and
denotes the time history of the exogenous

signals. By defining , (2.3) may be rewritten
as

(2.4)

The problem in hand is to construct an appropriate algorithm
which (here denotes the current number of fine-tuning experi-
ments, where the duration of each fine-tuning experiment is as-
sumed to be equal to ):

• evaluates, at each iteration, the LNCS (2.1)–(2.3) perfor-
mance for through the measurement

(2.5)

• updates the current controller parameter vector so that
it converges as close as possible to one of the local minima

of the average value of (w.r.t. the random vectors ),
defined according to

(2.6)

where is an appropriately defined -field generated,
among others, by the past values of the exogenous inputs
(see Section IV for the formal definition of ).

The requirement of convergence of to one of the local
minima is not sufficient in most practical situations; addi-
tionally to this requirement, the fine-tuning algorithm should be
able to provide with safe and efficient performance during the
fine-tuning process. More precisely, at each iteration of the fine-
tuning algorithm, the performance index measurement should
satisfy

(2.7)

where is an appropriately defined “small” positive term,
whose magnitude is proportional to the magnitude and vari-
ance of the exogenous inputs. The requirement (2.7) is more
than crucial in most practical LNCS fine-tuning applications,
since violation of such requirement may cause serious, if not
catastrophic, performance, safety, etc., problems. For instance,
in the case of fine-tuning of traffic control systems, the viola-
tion of requirement (2.7) may lead to serious problems (e.g.,
complaints, dangerous driving, etc.) that may force the traffic
operators to cancel the fine-tuning process; similarly, in the case
of fine-tuning of LNCS for mechanical structures, the violation

of requirement (2.7) may cause the permanent deformation or
even the destruction of the structure. It is worth noting that
standard AO methodologies such as the RDKW and SPSA
algorithms cannot guarantee that the requirement (2.7) holds
during the fine-tuning process mainly due to the use of random
perturbations of the controller parameters [11].

III. THE PROPOSED ALGORITHM

This section presents the details of the proposed algorithm;
the mathematical analysis of the convergence and performance
properties of the proposed algorithm is presented in the next
section. In the sequel, the dimensions of the vectors are
denoted by and , respectively.

Remark 1 (Availability of the Estimate ): The proposed al-
gorithm assumes that an estimate, or prediction, of the vector

is available. In many applications, such an assumption is re-
alistic since the entries of correspond to system states and
exogenous inputs, which are available for measurement or can
be estimated/predicted using appropriate estimation algorithms
(see Section V for such an example). However, there may be
cases where such an assumption is not realistic; in this case, it
can be readily seen that all the results of the paper are still valid
by setting . See also Corollary 1 in Section IV.

Let

(3.1)

where . The proposed algorithm makes use
of a user-defined collection of I-ELM-NN neurons of the
form (note that as already noticed in Section I-B, and are
randomly generated)

(3.2)
Also, the proposed algorithm makes use of two user-defined
positive sequences , and will be specified in
the sequel.

Starting with an initial vector , the proposed algo-
rithm initially imposes a full-rank, zero-mean, -width
perturbation and evaluates the objective function for

and so as to calculate the first difference
. Then, for ,

the following steps take place.
1) A collection of of the form (3.2) is

randomly constructed in order to form an I-ELM-NN with
neurons, where is calculated as follows:

(3.3)

with being a user-defined positive integer. The
I-ELM-NN associated to the collection of

is used for the estimation of the unknown
function

(3.4)
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where denotes the estimate of
parameterized by the parameter vector

(3.5)

for and, as already mentioned, denotes
an estimate/prediction of .

2) CP-Phase: If is an odd number, then the following are
taking place:

a) full-rank, zero-mean, -width vectors
are generated as candidates for

;
b) for each of the generated in the previous step

as well as for its negative, a biased least-squares esti-
mate of is generated
as follows:

(3.6)

where is the solution of the following con-
strained-optimization problem:

(3.7)

where

, and

(3.8)

with being a user-defined nonnegative integer;
c) finally, the perturbation is chosen as follows:

(3.9)

where, with some abuse of notation

(3.10)

3) GD-Phase: If is an even number, then the following are
taking place: is updated based on an unbiased least-
squares estimate of defined as follows:

(3.11)

where

(3.12)

Then, is calculated as follows:

(3.13)
where denotes the -dimensional vector with entries

, and is defined as follows:

if
otherwise

(3.14)

where is a sufficiently large user-defined positive con-
stant.

By applying the well-known Kuhn–Tucker theorem [7], [13]
to the constrained optimization problem (3.7), we obtain that

if

otherwise
(3.15)

where2

(3.16)

[note that above coincides with the solution of the uncon-
strained least-squares optimization problem (3.12)]

(3.17)

Remark 2: It is worth noting that, similarly to the proposed
algorithm, the algorithm proposed and analyzed in [10] consists
of two phases: the GD-phase, which is exactly the same as the
one of the proposed algorithm and the P-phase, which, simi-
larly to conventional AO algorithms, introduces random pertur-
bations to the current control parameter vector . On the other
hand, the algorithm proposed and analyzed in [11] involves only
one phase, which is similar to the CP-phase of the proposed al-
gorithm. The replacement of the P-phase by the CP-phase is
crucial for the efficiency of the proposed algorithm: contrary
to the P-phase, which due to the use of random perturbations
may introduce poor performance or instability problems, the al-
gorithm used in the CP-phase guarantees safe and efficient per-
formance in the sense that requirement (2.7) is fulfilled. On the
other hand, the alternation among the GD- and CP-phases pos-
sesses the advantage, over the algorithm of [11], which involves
only a CP-phase, of efficiently dealing with unbounded exoge-
nous inputs, something that was not possible in the case of the

2By using equality (A.3) (see Appendix A), it can be seen that � exists
with probability 1 and, moreover, that the denominator of (3.17) is different
than zero with probability 1.
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algorithm of [11]; moreover (see Section V), the alternation be-
tween GD- and CP-phases seems to lead to a better performance
over the algorithms that use only a CP-phase.

It is also worth noting that the presence of the CP-phase is
more than crucial for the efficiency of the proposed algorithm;
in particular, the CP-phase is responsible for providing the
proposed algorithm with the so-called persistence of excitation
(PE) property (see, e.g., [6]), which is a sufficient and neces-
sary condition for the neural approximator to be able to
efficiently learn the unknown function .

Remark 3 (Number of Neurons): Contrary to other appli-
cations of neural approximators where the number of neurons

should be large enough to guarantee efficient approximation
over the whole input set, this is not the case here: in the case
of the proposed algorithm, it is sufficient that the approximator
has enough regressor terms to come up with an approximation
of the unknown function over a small neighborhood around
the most recent vector . As a matter of fact, in all practical
applications of algorithms using neural approximators for op-
timization purposes (see [10] and [11]), as well as in various
applications where we tested the proposed algorithm, a choice
for according to was found
to produce quite satisfactory results.

IV. MAIN RESULTS

In this section, we establish the properties of the proposed
algorithm. Our basic analysis is based on two assumptions: The
first assumption is described as follows:

A1) is bounded for all and, moreover,
and , where denotes

the -field generated by
.

In simple words, assumption A1) requires that the exogenous
input estimation error is zero mean with finite variance
and the estimate is bounded; note that assumption A1) al-
lows for to be unbounded. Note also that in the case where
there is no available estimate , assumption A1) reduces to the
requirement that the exogenous vector is zero mean with fi-
nite variance.

In order to describe our second assumption, some prelimi-
naries are needed: let where
is an constant such that

and is a sufficiently large positive constant; let also
(see Section I-B)

and

Then, the second assumption is described as follows.
A2)

.
Typical examples that satisfy assumption A2) are presented

as follows.
1) The case where the exogenous signal is bounded with

probability 1; in this case, property P1) implies A2).

2) The case where and , then
assumption A1) and property P1) imply assumption A2)
with .

3) The case where the function in (3.2) is bounded and
, where is defined as follows:

where if and , otherwise.
The next theorem summarizes the properties of the proposed

algorithm (3.2)–(3.9).
Theorem 1: Let assumptions A1) and A2) hold. Suppose ad-

ditionally that

(4.1)

or (4.2)

where . Moreover, let
and

. Then, we have the
following.

a) At the CP-phase, the following holds: if

(4.3)

while, if

(4.4)

b) At the GD-phase, the following holds:

(4.5)

where
.

c) Moreover, if is sufficiently large

with probability 1 (4.6)

Proof: See Appendix B.
In simple words, Theorem 1 states that both requirements

posed in Section II are met by the proposed algorithm. More
precisely, according to Theorem 1, we have the following.

• The proposed algorithm guarantees convergence of the
control parameter vector arbitrarily close to one of
the local minima . The “distance” between and the
limit of depends on the number of neurons used by the
neural approximator (3.4); roughly speaking, the larger the
number of neurons in (3.4) is, the smaller this distance is.
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• Moreover, the proposed algorithm guarantees that the re-
quirement (2.7) is met. To see this, note that from (4.3),
(4.4), and (4.5), we have that

(4.7)

where at the CP-phase and at the GD-phase,
and the following holds:
— the term3 is a term that is strictly positive when

is far from and becomes negligible or equal to the
design parameter if is close to ;

— the term is an term. This term
can be made arbitrary small, for , by increasing
the number of neurons used in (3.4);

— the term is a term whose magnitude depends on the
magnitude of , and ; note that the
presence of the term in (4.7) is unavoidable regard-
less of the particular algorithm used.

Remark 4: Using Lemma A.1 (see Appendix A), it can be
seen that the SPSA algorithm satisfies
where

On the other hand, the standard gradient-descent algorithm
(which is, though, applicable

only in cases where perfect knowledge of and its gradient is
available) can be seen to satisfy where

Note that the term may become significantly large es-
pecially when is far from a local minimum of w.r.t. , in
which case the term is large. Note also
that the presence of the terms and is
unavoidable no matter what is the particularly algorithm used.

We close this section by presenting a direct corollary of The-
orem 1 for the case , i.e., the case where no estima-
tion/prediction of the exogenous inputs is available.

Corollary 1: Consider the case where . Then,
assumptions A1) and A2) and (4.1) and (4.2) imply parts a) and
b) of Theorem 1 and, moreover

with probability 1

Proof: First, notice that implies that converges
to a constant vector . Let us redefine as follows:

where

if and
otherwise

3The term � is defined, at the CP-phase, according to � � � if � ��
� and � � �� if � � � ; and at the GD-phase, according to
� � � ������������� � � �� .

and . Then, we have that
the terms , defined in the proof of Theorem 1, satisfy

; the rest of the proof is the same as in
Theorem 1.

V. SIMULATION EXPERIMENTS

In this section, we present simulation results on the applica-
tion of the proposed algorithm to the fine-tuning of an LNCS ap-
plied to a motorway ramp metering system. It has to be empha-
sized that the problem of computing the optimal parameters for
this particular control system can be formulated as a nonlinear
optimization problem whose solution depends on the traffic de-
mand (vehicles entering the motorway network); see [18]. As
a result, even in the case where the system dynamics is exactly
known the computation of the optimal control parameters is an
NP-hard problem, and, moreover, it requires knowledge of the
traffic demand. It is also noted that, after a tedious and time-con-
suming fine-tuning, the implementation of the control system
treated in this section in various motorway networks produced
very efficient performance [18]. Next we briefly present some
details regarding the particular application.

A. Traffic Network

Fig. 1 displays a schematic diagram of the 17-km-long mo-
torway stretch assumed in our experiments; this stretch is part of
the Monash–CityLink–West Gate Corridor in Melbourne, Aus-
tralia, operated by VicRoads. The numbered circles in Fig. 1 rep-
resent the network junctions and the numbered dots correspond
to the detector (sensor) locations. The motorway stretch of Fig. 1
contains a total of eight on-ramps and seven off-ramps; conges-
tion usually appears right downstream junction N3 and spills
back, creating severe shock waves. In our simulations, we as-
sumed that controlled ramp metering is imposed at all ramps ex-
cept ramp ON_FERNTREE since congestion appears upstream
that ramp.

B. Control System

The form of the motorway ramp metering control system as-
sumed in our experiments can be described as follows [18]:

(5.8)

where , denotes the discrete time index with sam-
pling time period equal to 30 s, denotes the control input
vector, and is a vector of traffic measurements. The control
input vector corresponds to the ramp flows allowed through
the implementation of ramp metering and corresponds to the
vector of average densities at the detector locations downstream
the controlled ramps. The density measurements from detectors
7980, 7977, 7972, 7848, 7846, and 7838 were used to form the
vector . The nonlinear (saturation) operator is used to guar-
antee that the control decisions satisfy minimum and maximum
allowable ramp flow constraints. Finally, the constant matrix
and the constant vector denote the tunable controller param-
eters. It is worth noting that the popular local ramp metering
strategy ALINEA [18] has exactly the form (5.8) with the matrix

being a diagonal matrix and the vector depending on the
critical densities of the locations downstream of the on-ramps.
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Fig. 1. Motorway stretch used in the simulations.

Also, a variety of multivariable (networkwide) ramp-metering
strategies (see [18]) have the form (5.8) in which case
are calculated using nonlinear optimization or optimal control
techniques.

C. Traffic Network Simulation

The macroscopic traffic simulation tool METANET [16] was
used for the simulation experiments. The traffic model parame-
ters assumed in METANET were obtained by use of nonlinear
parameter estimation techniques [19], minimizing the mismatch
between the METANET states and actual traffic data provided
by VicRoads.

D. Traffic Demand Scenarios

Based on actual traffic data provided by VicRoads, a basic
daily traffic demand scenario (where denotes the
number of vehicles entering the th motorway origin4 at the
th interval) with duration equal to 8 h5 was designed based on

actual measurements; at each fine-tuning experiment, a random
perturbation of the basic scenario was used. More precisely, at
each fine-tuning experiment, the traffic demand was calculated
according to , where de-
notes the traffic demand at the th fine-tuning experiment and

is a Gaussian zero-mean term with variance equal to 0.2.
It is worth noting that the basic demand scenario corresponded
to highly congested traffic conditions. Note also that due to the
use of the Gaussian random term , the exogenous signal

, whose entries correspond to the elements of , is an
unbounded signal in the sense that it is not possible to a priori
assess an upper bound for its magnitude.

4The motorway origins are defined as the mainstream origin N12 in Fig. 1 as
well as eight on-ramps.

5Only the “peak-hour period”, i.e., the period of high traffic demand within
the day, was considered in the simulations.

E. Performance Index

The average mean speed of the whole traffic network (in kilo-
meters per hour) over 8 h was used as the performance metric
to be optimized by the fine-tuning algorithm. It is worth noting
that the average mean speed can be calculated based on detector
measurements. Note also that since the goal of a traffic control
system is to maximize mean speed, performance index maxi-
mization (by appropriately modifying the proposed algorithm)
instead of minimization was implemented.

F. Tunable Parameters

All entries of and were fine-tuned, corresponding
to a vector of tunable parameters with dimension equal to

.

G. Estimation of Exogenous Signals

The exogenous vector in this particular application cor-
responds to the traffic demand . As it was shown in [10],
a low-dimension, noisy estimate6 of the traffic demand can
be constructed based on traffic measurements at the networks
origins; see [10] for more details. In the particular application
treated here, the methodology of [10] produced a vector with
dimension .

H. Algorithm and I-ELM-NN Design

As explained in Section V-K, the proposed algorithm was
applied for 149 iterations7 in all simulation experiments; as a
result, the maximum allowable number of I-ELM-NN nodes,
denoted by in Section III, is equal to ; see also

6It is worth noting that the methodology of [10] for calculating �� results in
an estimation error � � �� that is also an unbounded signal.

7The number of days (iterations) the fine-tuning was active was chosen to be
equal to 149 in order to provide all algorithms considered in the simulations
with sufficient time to converge to their “best” value for �.
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(3.3). The I-ELM-NN activation function in (1.3) was chosen
according to , while the entries of and

in (1.3) were chosen, at each algorithm iteration, to be
Gaussian zero-mean random terms with variance equal to
0.1. The design constant in (3.8) was chosen according
to ; see Remark 3. The design sequences
were chosen according to , and

, where are
positive constants. The choice of the constants was
quite straightforward. More precisely, by checking the values
of produced by the control strategy ALINEA in similar
applications, we found that a modification of the elements of

according to the choice was sufficient
to produce a nonnegligible change in the performance index
without introducing stability problems; on the other hand,
it can be seen that corresponds to a “doable” increase of
the performance index (mean speed) at each iteration of the
algorithm; as a result, a choice of is sufficient since it
corresponds to a mean speed increase of 1 km/h. While the
choice for was quite straightforward, this was not the
case for the constant ; as a result, different values for were
tested throughout the simulation experiments.

I. Initial Controller Parameters

The initial matrices and were set equal to zero and,
therefore, the starting point of the fine-tuning algorithms was a
controller incorporating no knowledge about the overall system
dynamics.

J. Comparison With Existing AO Algorithms

In order to evaluate the efficiency of the proposed approach,
its performance was compared with the following existing AO
algorithms: the SPSA algorithm [20] as well as the algorithms
P-GD [10] and CP [11]. Since the design of the three afore-
mentioned algorithms involves quite a few design parameters
(similar to the design parameters , etc., of the pro-
posed algorithm), the performance of each of these three algo-
rithms was optimized by experimenting with different sets of
their design parameters. In all cases, the proposed algorithm
performance was compared to the optimized set of design pa-
rameters for the aforementioned three algorithms. Due to space
limitations, more details on the choice of the design parameters
of these algorithms are omitted.

K. Simulation Runs

For each of the compared algorithms, ten different runs using
the same algorithm’s design parameters but different randomly
generated traffic demand scenarios (calculated as described in
Section V-D) were executed. In this way, a significant number
of samples was created. It has to be noted that in all runs consid-
ered, the fine-tuning process was active for 149 days (iterations);
after day 149, the fine-tuning process was stopped and the best
ramp metering controller (corresponding to that produced the
maximum mean speed over the 149 daily experiments) obtained
throughout the fine-tuning process was tested for the next 20
daily experiments.

L. Evaluation Criteria

In order to compare the algorithms’ performance, three dif-
ferent evaluation criteria were used.

• average number of days (over
all ten different runs) with mean speed below an appropri-
ately defined threshold, i.e.,

where denotes the run index, denotes the day (itera-
tion) index, denotes the daily mean speed at the th
algorithm iteration for the th run, denotes the
aforementioned threshold and if

km/h and , oth-
erwise. The was chosen so that it reflects a daily
mean speed bound beyond which the overall system opera-
tion is considered unsafe. It is worth noting that in practical
ramp metering applications the traffic operators impose
such thresholds; if these thresholds are repeatedly violated,
then the fine-tuning process, or, even the overall ramp me-
tering system operation may be canceled. The particular
value for was chosen according to
50 km/h; this particular choice is 2–3 km/h below the av-
erage mean speed obtained using . Ap-
parently, the criterion is used for
evaluating the safety attributes of the compared algorithms,
i.e., their ability to keep the constant in (2.7) as small as
possible.

• the average and max-
imum day number (over all ten different runs) the algo-
rithm performance reaches a 10% distance from the best
algorithm performance over the days 1–149, i.e.,

where if and
, otherwise, with denoting

the best algorithm performance over days 1–149, i.e.,
. This criterion was introduced

in order to evaluate the convergence rate of the algorithms
being evaluated. Note that due to the highly stochastic na-
ture of the fine-tuning problem considered in this section,
the iteration (day) number the algorithms converge to, or
close to, their optimal value can vary significantly and that
is the reason we incorporate the worst case performance,
identified by , in the convergence rate
evaluation.

• average daily mean speed (over all
ten different runs and all days 150–170) after fine-tuning
was stopped, i.e.,
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Fig. 2. Fine-tuning results using (a) SPSA [20], (b) P-GD [10], and (c) CP [11]
algorithms: in all three cases, the algorithm’s performance for optimized set of
their design parameters is exhibited.

This criterion provides an estimate of the steady-state con-
vergence characteristics of the algorithm being evaluated.

Fig. 3. Fine-tuning results using the proposed algorithm for different values of
the parameter � .

Fig. 2 shows some instances of the application of SPSA,
P-GD, and CP algorithms, respectively, for different simulation
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TABLE I
PERFORMANCE OF AO ALGORITHMS

runs. As already mentioned, the performance of the above
three algorithms for the best set of their design parameters is
exhibited. Fig. 3 shows some instances the performance of the
proposed algorithm (referred to as the CP-PD algorithm) for
different values of the parameter . Table I summarizes the
performance evaluation based on the three evaluation criteria
defined previously.

Close inspection of Table I and Figs. 2 and 3 reveals the
following.

• SPSA and P-GD algorithms practically fail to produce any
improvement on the overall system performance. In almost
all runs, for both algorithms, the best performance achieved
was about the same as the one achieved using the initial
ramp meter controller.

• The CP algorithm guarantees a safe performance while in
most cases it achieves a quickly converging performance.
However, there may be cases where the CP algorithm fails
to produce a significant performance improvement. Such a
case is exhibited in case of Simulation Run 3 [Fig. 2(c)].
In other words, while the CP algorithm guarantees safe
performance, there is always the risk that the CP algorithm
fails to improve the overall system performance.

• The proposed algorithm always achieves to considerably
improve the overall control system’s performance. Note,
however, that the improvement in the overall system per-
formance is made possible by sacrificing safety, since the
proposed algorithm’s safety attributes (identified by the
criterion ) can be slightly (case

) or significantly worse (case or
) than those of the CP algorithm. In all cases,

though, the steady-state improvement produced by the pro-
posed algorithm is significantly larger than that of the rest
three algorithms (see the last column in Table I). Moreover,
having in mind that for all choices of , the proposed al-
gorithm produces a significant improvement over the rest
algorithms and, moreover, in the case where and
the is quite small, it is expected
that a real-life implementation of the proposed algorithm
can be extremely successful.

VI. CONCLUSION

Fine-tuning of LNCSs if often a tedious, complicated,
and risky task that is usually performed by human experts
without the use of a systematic approach. In this paper, a new
adaptive/neural algorithm has been proposed that can be used

towards the development of a systematic, automated procedure
that will make possible the efficient and safe fine-tuning of
LNCS through appropriate learning mechanisms. The proposed
approach combines appropriately existing algorithms proposed
by the authors in the past and the I-ELM-NNs. Among the
nice properties of the proposed algorithm is its ability to deal
with unbounded exogenous signals as well as its significantly
improved convergence over the existing algorithms.

APPENDIX A
TECHNICAL PROOFS

The following lemmas are needed for the establishment of the
proof of Theorem 1 presented in Appendix B.

Lemma 1: The following holds:

(A.1)

where is8 a positive function that is bounded for bounded
and is a function satisfying

for any bounded .
Proof: Following the approach adopted in [1], we fix two

vectors and define as the scalar parameter satisfying
. Using the chain rule, we have that

. Therefore

(A.2)

8Note that � ��� is a function that is bounded for bounded � and not a
bounded function; in other words, � ��� may be unbounded when � becomes
unbounded.
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Since is at least , we have that there exists a positive func-
tion (which is bounded for bounded ) such that for all

and therefore, the second term on the right-hand side of (A.2)
satisfies

By setting in (A.2) and using
the above inequality, we obtain

where is a term satisfying
. The proof is established by defining

and
.

Lemma 2: For all odd, the following holds, provided that
:

with probability 1

(A.3)

Proof: We only provide a sketch of the proof: it can be seen
that, since is invertible, if (A.3) does not hold, then there exists
a nonzero vector such that

, and
where denotes the matrix whose rows are the vectors and

. Since and are randomly chosen and
moreover (due to the requirement that ), it is
quite straightforward to show that the probability that a nonzero
vector satisfies the above system of equations is zero.

Lemma 3: Consider the assumptions imposed in Theorem 1.
Then, implies (B.6).

Proof: Using (B.1), we directly obtain that

where

Using the above relationship, it is straightforward to see that
where

Note now that relation (B.6) is directly obtained from (B.5) and
(B.4) in the case where ; therefore, it suffices to estab-
lish (B.6) in the case where : since , it is easily
seen that , where

Moreover, from (B.4) and , we have that ,
where

It is not difficult to see that is the projection of a vector
into . Note also that the subsets

are convex. We have three cases.
a) . In this case

(A.4)

and thus, it is easily seen that since are convex,
the distance between and is bounded by ,
which establishes (B.6) for this case.

b) and . In this
case, it can be easily seen that the distance between and

is bounded by (see the definition of the subset
) which establishes (B.6) for this case.

c) and , or,
equivalently, , which is a contradiction. Thus,
(B.6) has been established.

Lemma 4: Consider the assumptions imposed in Theorem 1.
Then

implies that and that (B.17) holds.
Proof: Let . From (A.1)

(see Lemma 1), we have that

which implies (since ) that

where . By using (1.1), it is straight-
forward to establish that . Using the definition of
the subset , the fact that , and Lemma 1, we
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have that since for some
, then

, which establishes
(B.17).

APPENDIX B
PROOF OF THEOREM 1

Since the proposed algorithm is applied after iteration ,
the proof concentrates in the case where . Note also that
from (3.14) and the fact that is bounded, we have that is
bounded for all .

Using the definitions of (see Section IV), we have that

(B.1)

where denote the estimates of , respectively; therefore,
if , then

(B.2)

where denotes the parameter estimation error and

(B.3)

Using (3.16), (B.1), and (B.3), we obtain

(B.4)

where, with some abuse of notation,
. Let also

if

otherwise.

Using (3.15), we have that

(B.5)

For each , we have the following two
different cases.

1) . In Lemma 3, we
establish that in this case the following holds:

(B.6)

where .

2) . Using sim-
ilar arguments as those of the proof of Lemma 3, we can
see that in this case

(B.7)

Moreover, from (3.7), we have that

(B.8)

Subtracting (B.7) from (B.8), we obtain that

which implies that

(B.9)

for some positive constant .
Consider now the process of selection of

according to (3.9). We have the following two cases.
such that

.
If defined in (3.9) satisfies , then we have
from (B.6) that

(B.10)

On the other hand, if for some
with , we have that

with .
From (3.9), we have that since and

(B.11)

Using the above inequality, (B.10), and the definition of in
(B.4), it can be easily established that

(B.12)

Moreover, we have that in this case, (B.9) holds, i.e.,

which implies, by taking into account (B.12), that

(B.13)

Using the definitions of , the fact that from Lemma
2 is bounded with probability 1 and property P1), it can be
seen, after some manipulations, that

(B.14)
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where
; (here the notation is used to denote a ma-

trix whose columns are the vectors ; notice also that
is a zero-mean term) and

(B.15)

By combining (B.10) and (B.13), we finally conclude that

(B.16)

where satisfies (B.14).

.
In Lemma 4, we show that in this case, and,

moreover, that

(B.17)
Therefore, we have that condition holds for ;

this together with (B.16), (B.14), (B.15), and (B.17) establish
part a).

We will now establish parts b) and c). In the establishment of
the proof of parts b) and c), we consider only the gradient-de-
scent phase; therefore, from now on, the subscript corresponds
to an even number.

Consider any bounded -dimensional vector ; by using
similar arguments as in (B.1) and (B.2), we obtain

where and the second equality was obtained
by using (B.4). The terms in the above relation can be
decomposed as

and, thus, we have that

Using the above equality and (3.13), it is quite straightforward
to see that

where

Combining the above two equalities with Lemma 1, we readily
establish part b).

Coming to part c), first notice that from A1), we have
that the second term in the above equation is zero mean
and has finite variance; moreover, from A1) and A2), and
(3.14), we have that

. Using the analysis
above, we obtain

(B.18)

where and is a zero-mean
sequence with finite variance. Moreover, by defining

we can rewrite (B.18) as

(B.19)

where
and . If the term

was not present, then the above difference equation would
be in the standard Kiefer–Wolfowitz (KW) form, in which
case convergence of could be established by using standard
arguments; see, e.g., [14] and [3]; in the analysis that follows,
we will show that the term cannot have a destabilizing
effect. Let and

. Standard arguments
(see, e.g., the proof of Proposition 3.1 of [3]) can be used to
establish that , where and is a
zero-mean term with finite variance. Therefore, we have that
(B.19) implies
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where is an finite constant and is the Lipschitz con-
stant. Taking conditional expectations and using the definition
of , we obtain

(B.20)

where . It is not difficult to see
that

which imply that and ; let us
define the variable (note that )

if

otherwise.
Then, inequality (B.20) implies

Using the Robbins and Siegmud theorem [22] on nonnegative al-
most-supermartingales, we have that since and
converge, then converges with probability 1; standard ar-
guments can be now applied (see, e.g., proof of part b) of Propo-
sition 3.1 of [3]) to show that the convergence of together
with the facts that and is at least imply (4.6).
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