
An Autonomic Methodology for Embedding
Self-tuning Competence in Online Traffic
Control Systems

Anastasios Kouvelas, Diamantis Manolis, Elias Kosmatopoulos,
Ioannis Papamichail, and Markos Papageorgiou

Abstract Recent advances in technology, control and computer science play a
key role towards the design and deployment of the next generation of intelligent
transportation systems (ITS). The architecture of such complex systems is crucial
to include supporting algorithms that can embody autonomic properties within
the existing ITS strategies. This chapter presents a recently developed adaptive
optimization algorithm that combines methodologies from the fields of traffic
engineering, automatic control, optimization and machine learning in order to
embed self-tuning properties in traffic control systems. The derived adaptive fine-
tuning (AFT) algorithm comprises an autonomic tool that can be used in online
ITS applications of various types, in order to optimize their performance by
automatically fine-tuning the system’s design parameters. The algorithm has been
evaluated in simulation experiments, examining its ability and efficiency to fine-tune
in real time the design parameters of a number of traffic control systems, including
signal control for urban road networks. Field results are in progress for the urban
network of Chania, Greece, as well as for energy-efficient building control. Some
promising preliminary field results for the traffic control problem of Chania are
presented here.
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1 Introduction

Despite the continuous advances in the fields of control and computing, the
design and deployment of efficient large-scale traffic control systems remains
a significant objective. This is mainly due to the complexity and the strong
nonlinearities involved in the modelling of traffic flow processes. Practical control
design approaches are often based on simplified models for the system dynamics, as
the use of more complex models is virtually infeasible in most real-life applications.
As a result, although the derived regulators are theoretically optimal, they usually
exhibit suboptimal performance.

As the complexity of systems grows, the need to build into them the means to
manage and maintain themselves becomes necessary, particularly in the case of
large-scale, heterogeneous control systems. Systems need to be self-directing, self-
configuring, self-maintaining, self-protecting and self-optimizing. One consequence
of self-managing systems is that their interaction with people is set more at a
“service” level than a “command” level. As a result, a traffic control centre manager
will interface with future autonomic systems by communicating goals, priorities and
tasks which the systems will solve.

The ultimate performance of a designed or operational traffic control system (e.g.
urban signal control or ramp metering or variable speed limits) depends on two
main factors: (a) the exogenous influences, e.g. demand, weather conditions and
incidents, and (b) the values of some design parameters included in the control
strategy. Every time a new control algorithm is implemented in the real world,
there is a period of (sometimes tedious) fine-tuning activity that is needed in order
to elevate the control algorithm to its best achievable performance. Fine-tuning
concerns the selection of appropriate (or even optimal) values for a number of design
parameters included in the control strategy. Typically, this procedure is conducted
manually, via trial-and-error, relying on expertise and human judgement, without
the use of a systematic approach. Currently, a considerable amount of human effort
and time is spent by experienced engineers, practitioners and traffic operators on
tuning operational systems. In many cases, the result of this manual procedure does
not lead to a desirable outcome in terms of a measurable performance metric.

Some isolated examples of autonomic properties such as self-adaptation have
found their way into Intelligent Transportation Systems (ITS) and have already
proved beneficial. A recently developed methodology that combines the principles
of traffic engineering, automatic control, optimization and machine learning and
enables online self-tuning autonomicity for operational traffic systems is presented
in this chapter. This problem has been discussed in depth in [1] where the
algorithm AFT (adaptive fine-tuning), which was originally introduced in [2], is
analysed and tested in different simulation environments. This autonomic online
procedure is aiming at replacing the conventional manual optimization practice by
embedding self-tuning capabilities in control strategies. AFT can self-adjust the
tunable parameters of control systems, so that they reach the maximum (measurable)
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performance that is achievable with the utilized control strategy. The method can
also be used for automatic readjustment of “aged” systems.

Given the positive feedback from the simulation investigations for different
control problems, the algorithm is currently implemented in the field for energy-
efficient building control, as well as the urban traffic control of Chania, Greece.
Some preliminary results from the latter field implementation are also presented
here. The results demonstrate the applicability of the algorithm and its efficiency in
solving the tuning problem of real-life operational control systems.

2 Background

2.1 Problem Formulation

Consider a general discrete-time control system which is dictated by different
feedback-type regulators, and its underlying dynamics are described by the follow-
ing nonlinear first-order difference equation:

z.t C 1/ D F .z.t/; ui.t/; d.t/; t/ ; z.0/ D z0 (1)

where z.t/; ui.t/; d.t/ are the vectors of system states, control inputs and exogenous
(possibly measurable) signals, respectively, t D 0; 1; 2; : : : denotes the discrete time
index, i denotes the regulator index and F.�/ is a sufficiently smooth nonlinear vector
function. Note that the proposed methodology can be applied to a control system
even if the function F is unknown.

Consider also that one or more control laws are applied to the system (1), which
are described as follows:

ui.t/ D $i .�i; z.t// (2)

where $i.�/ are known smooth vector functions and �i is the vector of tunable
parameters for the ith regulator. Note that there is no restriction imposed neither on
the form of (2) nor on the number of regulators applied. Furthermore, the discrete
time index t may be different for each control law i.

The overall system performance is evaluated through the following objective
function (performance index):

J .� I z.0/; DT/ D �T.z.T// C
IX

iD1

T�1X

tD0

�i;t .z.t/; ui.t//

D �T.z.T// C
IX

iD1

T�1X

tD0

�i;t .z.t/; $ .�i; z.t/// (3)
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where � D vec .�1; �2; : : : ; �I/, �T and �i;t are known non-negative functions, I is
the number of regulators that needs to be tuned, T is the finite time horizon over
which the control laws (2) are applied and

DT
4D Œd.0/; d.1/; : : : ; d.T � 1/� (4)

denotes the time history of the exogenous signals over the optimization horizon T.
By defining x D vec .z.0/; DT/, Eq. (3) may be rewritten as

J .� I z.0/; DT/ D J .�; x/ : (5)

AFT is an iterative algorithm which can be applied every T and will update the
current system parameter vector � so as to achieve better performance. Equation (5)
indicates that the system performance depends on the vector of tunable parameters
� and the exogenous vector x. Assuming that the signal x is bounded (i.e. jx.t/j �
B; 8 t 2 Z for a finite value B > 0), it can be omitted from Eq. (5) as the objective
is to optimize the expected value E ŒJ.�/� given the variations in x. In [3] it has
been mathematically proven that the AFT algorithm asymptotically converges to
the optimal solution of this problem.

The requirement for convergence itself is not sufficient in most practical imple-
mentations. Another crucial issue is the safe and efficient behaviour of the system.
Algorithms similar to AFT, which enable systems with autonomic self-tuning prop-
erties, should also guarantee stable and sustainable system performance during the
field deployment. The violation of this requirement in a practical application may
cause serious problems (e.g. performance degradation, safety, etc.). For instance, in
the case of operational traffic control systems, this could lead to serious problems
(e.g. complaints, dangerous driving, etc.) that may force the traffic operators to
cancel the self-tuning process. This requirement has been addressed successfully
in [4] for the AFT algorithm.

2.2 Theoretical Foundations

The self-tuning problem discussed in the previous subsection is closely related to
the problem of dynamic parameter estimation that has been studied for decades by
many researchers. The problem of interest is to find the values of a vector �� 2 �

that minimize the expected value of a scalar-valued performance function E ŒJ.�/�

assuming that measurements of the function are available for different � . The vector
� represents a collection of tunable (or adjustable) parameters that need to be tuned.
The nonlinear function J.�/ is a scalar measure that summarizes the performance
of the system and is assumed to be continuous in �. The vector �� represents the
optimal solution, and the domain � reflects allowable values (constraints) on the
components of � and has to be a compact space.
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Many stochastic approximation algorithms have been developed for the solution
of this problem. Robbins and Monro [5] were the first to propose an adaptive
technique for dynamic parameter estimation. Important extensions of this algorithm
followed by Kiefer and Wolfowitz in [6], where the Finite Difference Stochastic
Approximation (FDSA) algorithm was introduced. FDSA has provided the basis for
many learning or parameter tuning algorithms in control engineering problems. An
extension of FDSA is the Random Directions Stochastic Approximation (RDSA)
algorithm, which was first introduced in [7] and makes use of many random
perturbations of � in order to come up with a good set of tunable parameters (based
on the measurements of the performance criterion J.�/).

Finally, Spall in [8] introduced the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm for stochastic optimization of multivariate
systems. This algorithm attempts to estimate the gradient @J.�/=@� in one discrete
time step by applying a random perturbation to the current vector � , and it has been
widely applied to parameter estimation problems. It is worth noting that SPSA does
not guarantee the requirement of safe and efficient performance during the tuning
process, mainly due to the use of random perturbations applied to the regulator
parameters.

The theoretical intuition of AFT lies in the area of the algorithms mentioned
above. However, its scope is to enable traffic control systems with autonomic
self-tuning capabilities. In this chapter we explore the efficiency of AFT through
simulation experiments. The problem of online self-tuning of the urban signal
control strategy Traffic-responsive Urban Control (TUC) [9, 10] is investigated. A
microsimulation environment of traffic flow is used for evaluating the performance
of the algorithm.

3 The Self-tuning Algorithm

Figure 1 illustrates the working principle, while Table 1 denotes the variables used
by the AFT algorithm. The basic functioning procedure of the self-tuning process
may be summarized as follows:

– The traffic flow process (e.g. urban road network) is controlled in real time by a
control strategy (of any kind) which includes a number of tunable parameters.

– At the end of appropriately defined periods (e.g. at the end of each day), the
AFT algorithm receives the value of the real (measured) performance index
(e.g. average speed over space and time for traffic networks). Note that the
performance index J .�; x/ is a (generally unknown) function of the tunable
parameters � that need to be adjusted and the main external (measurable)
disturbances x (i.e. demand).

– Using the measured performance (the samples of which increase iteration by
iteration), AFT calculates new tunable parameter values to be applied at the next
period (e.g. the next day) in an attempt to improve the system performance.
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Fig. 1 Working principle of AFT for autonomic self-tuning of online traffic control systems

Table 1 Variables used within the AFT algorithm

k Iteration index

` Past performance measurements index

J` Performance value for the `th calibration experiment
OJ` An estimate of J` obtained at the `th iteration

�.k/ The vector of tunable parameters at the kth calibration experiment

��.k/ The best set of tunable parameters until the kth

experiment (according to the real measurements)

��.k/. j/ Zero-mean random sequences (e.g. Gaussian), j D 1; 2; : : : ; 2K

��.k/ The perturbation picked by the algorithm in iteration k

– This (iterative) procedure is continued over many periods (e.g. days) until
a maximum in performance is reached; then, AFT may remain active for
continuous adaptation or can be switched off and reactivated at a later stage (e.g.
after few months).

The main components used to develop the employed algorithm are summarized
as follows:

– A universal approximator bJ .�; x/ is used (e.g. a polynomial-like approximator or
a neural network) in order to obtain an approximation of the nonlinear mapping
J .�; x/.

– An online adaptive/learning mechanism is employed for training the above
approximator. Globally convergent learning algorithms (e.g. see [11]) are
required for such a purpose.

– At each algorithm iteration k, many randomly chosen candidate perturbations
��.k/. j/ of vector ��.k/ are generated (where ��.k/ is the best set of parameters
so far). The effect of each candidate set ��.k/ C ��.k/. j/ to the system
performance is estimated by using the approximator mentioned above. The
perturbation that corresponds to the best estimate (i.e. the one that leads to the
best value for bJ.��.k/C��.k/. j/; Ox.kC1//, where Ox is an estimate of the external
disturbances x) is selected to determine the new values for the tunable parameters
�.k C 1/ to be applied at the next period (e.g. the next day).
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3.1 The Universal Approximator OJ .�/

The universal approximator used in the simulation experiments in order to approxi-
mate the objective function J .�/ is a linear-in-the-weights polynomial-like approx-
imator with Lg regressor terms, which takes the form

bJ .�/ D #T� .�/ (6)

where # denotes the vector of the approximator parameter estimates and

� .�/ D �
�1 .�/ ; �2 .�/ ; : : : ; �Lg .�/

�T
: (7)

The nonlinear functions �i .�/ are given by

�i .�/ D Sd1 .�m1 /�Sd2.xm2 /; di 2 f0; 1g (8)

where di; mi are randomly chosen at each iteration of the AFT algorithm (with
m1; m2 2 f1; 2; : : : ; n� g, where n� is the number of components of vector �) and
S.�/ is a smooth monotone nonlinear function. In the neural network literature [12],
this function is usually chosen to be sigmoidal. In our simulations we choose

S.�/ D tanh .�1� C �2/ (9)

where �i are non-negative real numbers initially defined by the user; after 4–5
iterations of the algorithm, the values of �i are optimized so as to minimize

min
k�1X

`D1

�
J` � #T�

.k/

`

�2

: (10)

3.2 The AFT Algorithm Description

Below, we discuss in details the application steps of the algorithm. More precisely,
the steps that are executed at every iteration are as follows:

– Step 1: Calculate 2K random perturbations. In this step K random perturbations
are calculated (e.g. according to Gaussian distribution). The resulting 2K can-
didate vectors ��.k/ ˙ ��.k/. j/ are then projected in �, in order to satisfy the
problem constraints.

– Step 2: Calculate the number of approximator regressor terms. The number of
the approximator’s regressor terms Lg.k/ to be used in this iteration is calculated
by Lg.k/ D min

˚
2.k � 1/; Lg

�
with Lg a given upper bound.
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– Step 3: Calculate the number of past measurements. The algorithm keeps a
window of past measurements which moves along with the iterations. Th is the
upper bound of the number of past measurements AFT uses and it is defined by
the user. In this step the starting point of the window in the past is calculated. The
end point of the window is always k � 1.

– Step 4: Produce the polynomial-like approximator. After steps 2 and 3, the
structure of the universal approximator may be formed and applied for nonlinear
fitting to the data included in the window of the past measurements.

– Step 5: Calculate the optimal approximator parameter estimates. The optimal
values of the approximator’s parameters # are calculated according to the
solution of a least squares estimation method.

– Step 6: Apply the 2K random perturbations ˙��.k/. j/ to bJ.k/. The 2K candidate
vectors ��.k/ ˙ ��.k/. j/ are applied to the approximator bJ.k/ for evaluation.

– Step 7: Pick the best random perturbation (according to bJ.k/). The vector
�.k/ with the best estimated performance is selected for application in the next
simulation experiment.

It is worth noting that similarly to RDSA, the proposed algorithm introduces
random perturbations to the control design parameter vector � . Besides, the use
of random perturbations is crucial for the efficiency of the proposed algorithm as
it provides the so-called persistence of excitation property, which is a sufficient
and necessary condition for the neural approximator bJ.�/ to be able to efficiently
learn the unknown function J.�/. However, due to the use of Step 6, the proposed
methodology avoids poor performance or instability problems and guarantees
safe and efficient performance. As shown in [2, 3] using strict mathematical
arguments, the performance of the system can be, in the worst case, similar to
the system performance without the self-tuning property plus some random term.
The magnitude of this term is proportional to the magnitude and variance of the
exogenous inputs x.

3.3 Efficient Stochastic Stepsizes ˛k

The first step of the AFT algorithm makes use of an arithmetic sequence ˛.k/

which plays a critical role, often determining whether the algorithm converges or
diverges. These factors are sometimes referred to as stepsizes but also gains or
learning coefficients, depending on the field of application. The choice of the gain
sequence ˛.k/ is critical for the performance of stochastic approximation methods.
In many applications, a constant stepsize is used (instead of a decaying one) as
a way of avoiding gains that are too small for large k. On the other hand, there
is considerable appeal to the idea that the stepsize should depend on the actual
trajectory of the algorithm. When the stepsizes depend on the observations they
are called stochastic stepsizes. For large-scale problems, it is possible that we have
to estimate hundreds of parameters. It seems unlikely that all the parameters will
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approach their optimal value at the same time (wide variation in learning rates can
occur). Stochastic stepsizes try to adjust to the data in a way that keeps the stepsize
larger while the parameter being estimated is still changing quickly.

Conditions guaranteeing that the stochastic approximation iterate converges to
�� as k ! 1 are presented in many places (e.g. [13]). All the existing proofs
require three basic conditions about the applied stepsizes:

˛.k/ � 0; k D 0; 1; : : : ; (11)
1X

kD0

˛.k/ D 1; (12)

1X

kD0

˛.k/2 < 1: (13)

Equation (11) requires that the stepsizes must be non-negative. The most
important requirement is (12), which states that the infinite summation of stepsizes
must be infinite. If this condition is violated, the algorithm might stall very early
without reaching the optimal solution. Finally, condition (13) requires that the
infinite sum of the squares of the stepsizes is finite. A good intuitive justification
for this condition is that it guarantees that the variance of the estimate of the optimal
solution goes to zero in the limit. The three conditions mentioned above provide a
careful balance in having the gain ˛.k/ decay neither too fast nor too slow.

For our experiments, we introduce an adaptive technique for the calculation of
stepsize ˛i.k/ (where i refers to the ith component of vector �), at each iteration
of the AFT algorithm k. This technique is based on the signs (˙) of the product
of the differences ��i.k/, ��i.k � 1/ picked for the last two iterations. If there are
frequent sign changes, this is an indication that the iterate is near ��

i ; if the signs
are not changing, this is an indication that the iterate is far from ��

i . This forms the
basis for an adaptive choice of the gain ˛i.k/, where a larger gain is used if there are
no sign changes and a smaller gain is used if the signs change frequently.

Given the desirability for a gain sequence that balances algorithm stability in
the early iterations and non-negligible gains in the later iterations, the form used in
AFT is

˛i.k/ D ˛.0/

˛.0/ C Ki
; (14)

which satisfies the three conditions mentioned above.
Initially Ki D 1; 8i and then for every iteration k D 2; 3; : : :, we have

Ki D
(

Ki if ��i.k/��i.k � 1/ > 0

Ki C 1 if ��i.k/��i.k � 1/ < 0:
(15)
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This form is inspired by the famous learning method RPROP [14]. This formula
takes into account only the sign of ��i and acts independently on each �i. This
way, every component i of vector � converges with a different rate according to the
frequency of sign changes.

4 Simulation Experiments

In order to evaluate the efficiency of the self-tuning algorithm, extensive simulation
experiments have been carried out. The microscopic simulation environment Aim-
sun was used in order to replicate a real-world implementation of the algorithm.
In our experiments the TUC strategy [9, 10] is used to regulate the signals of the
city of Chania, Greece, in real time. The system autonomously self-tunes its design
parameters using the AFT algorithm. All the data utilized in Aimsun and TUC
(turning rates, lost times, staging, saturation flows) are provided by the operators of
the Traffic Control Centre of the city and correspond to the data of the real network.
This section presents the simulation results, comparing the performance of the TUC
strategy, when AFT is used for autonomic self-tuning of a predefined set of design
parameters, with the base case (no AFT case). In the base case, the aforementioned
parameters of the original TUC system have been manually fine-tuned to virtual
perfection by the system operators [15].

4.1 Network and Simulation Setup

Chania, located at the north-western part of Crete, is the capital of the prefecture
of Chania and covers 12:5 km2. Figure 2 exhibits a satellite view of the trial urban
road network (red bullets correspond to the controlled junctions), which has a total
length of approximately 8 km and consists of 16 controlled junctions.

Figure 3 represents the model of the network developed for the simulation
investigations. It consists of 16 signalized junctions (nodes) and 60 links (arrows).
Each network link corresponds to a particular junction phase. Typical loop-detector
locations within the Chania urban network links are either around the middle of the
link or some 40 m upstream of the stop line. Split, cycle and offset control modules
of the TUC strategy are applied to the network for all simulation investigations. For
the implementation of the AFT algorithm, the following design values were used:
Th D 90, NLg D 150, K D 100 and initial values to �i according to �1 D 100,
�2 D 0. Finally, a simulation step of 0.25 s is considered for the microscopic
simulation model.
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Fig. 2 Satellite view of the Chania urban road network

4 5

6

8 9

11

6

12

13

14

21

19

26

25

24

29

28

30

15

17
18

16

27

10

2

3

7

5

4

32
31

34

33

8

9

7

20

1

1

2

3

10

22

23

11

41

42

44
43

46

47

4839
37

38

36

50

49

51

53

55

57
58

56 59

54

52

35

40

60
12 13

14 15

1645

...

...

Urban junction

Controlled link
Non-controlled link

Fig. 3 Simulation model of the urban road network of Chania

4.2 Demand Scenarios and Integration with Aimsun

In order to investigate the performance of AFT under different traffic conditions,
two basic traffic demand scenarios (time history of vehicles entering the network in
the network origins during the day) were designed based on actual measurements,
each with a simulation horizon of 4 h. Scenario 1 comprises medium demand in all
network origins, while scenario 2 comprises high demand and the network faces
serious congestion for some 2 h, with some link queues spilling back into upstream
links. For simplicity, we assume that a demand scenario with a time horizon of
4 h corresponds to a day. Each day (iteration of the AFT algorithm) a randomly
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perturbed 5 % width version of the basic demand scenarios is produced and the
assessment criterion is gathered from the Aimsun simulator. Then, the design
parameters of the TUC strategy are updated by AFT according to the calculated
assessment criterion.

The overall closed-loop scheme consists of two main control loops as inner and
outer loops. The inner loop is used by the TUC strategy to produce the traffic signal
settings. More specifically at each control cycle, Aimsun delivers the (emulated)
occupancy measurements at the locations where detectors are placed (as in real
conditions). These measurements are used by the control modules of the TUC
strategy to produce the traffic signal settings (splits, cycle and offsets). The signal
settings are then forwarded to the microsimulator for application. The outer loop is
used by AFT to update the design parameters of TUC. More specifically, at each
day, Aimsun delivers the mean speed for the whole urban road network (this is the
measurement of the performance index J.�/). The mean speed is used by the AFT
algorithm in order to produce the new values for the design parameters of split,
cycle and offset control modules of TUC (the vector �). The new set of the design
parameters is then forwarded to TUC for application and so forth.

4.3 Results from the Simulation Experiments

Table 2 presents the average results for a series of replications for the simulation
of the two demand scenarios. The self-tunable system exhibits an improvement of
around 17 % and 36 %, respectively. The diagrams in Fig. 4 compare the network-
wide mean speed of the original TUC system (blue line) versus TUC system
combined with the self-tuning algorithm (red line) for the network described above
and two different demand scenarios. Scenario 1 (Fig. 4a) reflects medium demand
in all network origins, while scenario 2 (Fig. 4b) reflects high demand whereby the
network faces serious congestion with some link queues spilling back into upstream
links. In both diagrams, it can be seen that the application of the AFT algorithm
leads to better performance compared to the original TUC system. More precisely,
the AFT algorithm aims to optimize the overall system performance within a few
days (iteration number in x-axis), by efficiently self-tuning the design parameters
for all TUC’s control modules (89 parameters in total). The combined system first
increases and then maintains the daily mean speed of the network at higher levels

Table 2 Comparison of the 50 days’ average space-time speed (ASTS) for many simulation
experiments

No AFT AFT ASTS
Demand ASTS St. deviation ASTS St. deviation improvement
scenario (km/h) (km/h) (km/h) (km/h) (%)

1 16:29 0.71 19.13 0.86 17.46

2 9:67 1.63 13.19 0.82 36.33
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Fig. 4 Daily mean speed trajectories with and without the use of the AFT algorithm: (a) scenario
1, (b) scenario 2

than the initial day (which corresponds to the initial values of the parameters),
eventually leading to a local maximum value of performance.

5 Preliminary Field Results

During the write-up period of this chapter, a field implementation and testing of the
AFT algorithm took place in the city of Chania under the research project AGILE
(funded by the European Commission, FP7-ICT-5-3.5). The overall system outlined
in this chapter was implemented in the Traffic Control Centre of the city. More
specifically, TUC was controlling the traffic signals in real time, while AFT was
running in parallel, embedding self-tuning capabilities in the overall system.

Due to the fact that this is the first field experiment of the AFT algorithm to the
traffic domain, some choices had to be made so as to enable a careful and gradual
evaluation. The urban road network of Fig. 2 is considered for the field experiment,
albeit it is separated in two regions; Region 2 consists of junctions 15 and 16 in
Fig. 3, while Region 1 comprises all other junctions. Each region is controlled by its
own TUC algorithm, with independent cycle times. Also, two independent versions
of the AFT algorithm are running in parallel with TUC, embedding self-tuning
capabilities for each region. Thus, there are two distinct experiments running at
the same time. The main reason for clustering the junctions into two regions is that
Region 2 is remote from the rest of the network (no offsets apply among the regions),
and moreover its congestion patterns, and hence suitable cycle times, are different
than for the rest of the network. It should be mentioned that traffic in Region 1,
which comprises the city’s CBD, is more stochastic in its behaviour, mainly due
to uncertain but frequent illegal or double parking that may change the network
characteristics and junction capacities in an unpredictable way.
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In this first running experiment, we have chosen only four parameters for each
region to be automatically tuned by the respective AFT algorithms. The four
parameters determine the real-time specification of the cycle time and were found in
earlier simulation-based work to influence the performance of TUC. The criterion
that AFT tries to maximize is the overall mean speed. More specifically, the space-
time averaged network mean speed is calculated daily based on detector data in
each network link, for the period 8:00 a.m. to 2:00 p.m., which includes most of
the morning and early-afternoon traffic peaks. The algorithm receives also the daily
total demand (as the most important external factor for performance), which is the
sum of the time-averaged (8:00 a.m. to 2:00 p.m.) flows measured by detectors at the
network origins. Every day is an AFT iteration, while a total of 29 days of results
(no weekends) are presented.

Figure 5 shows trajectories of parameters under AFT tuning over iterations (blue
lines). The starting values of the parameters are those used in the operational system
and have been manually fine-tuned in the recent past. At the beginning, some
conservative bounds have been used for the parameters (red lines). The parameter of
Fig. 5a is seen to hit the upper bound several times; hence we decided to change it
(on the fly) as seen at iteration 15. This was also done with other parameters’ upper
or lower bounds.
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Fig. 5 Examples of trajectories of parameters (blue) over iterations (days) and their bounds (red)
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Fig. 6 Overall mean speed (red) and total demand (blue) vs. iterations: (a) Region 1; (b) Region 2

Figure 6 displays the overall mean speed and the total demand of the two
networks (Region 1 and Region 2) over the available iterations. A difficulty in
assessing these preliminary results is due to the fact that, in contrast to the simulation
investigations, the demand is changing daily without evidence for stationary average
or standard deviation. If everything else is constant, the mean speed is a decreasing
function of the demand; as a result it is not possible to judge on any possible
improvements by observing only the mean speed (as with the simulation results
of Fig. 6). In the following, we present two ways of addressing this difficulty.

The first way is to split the available days into two groups according to their
respective total demands. For Region 1, groups 1 and 2 comprise all days with
demand above and below 4650 veh/h, respectively, while for Region 2, groups 1
and 2 comprise all days with demand above and below 1725 veh/h, respectively.
Figure 7a, b presents the Region 1 results for the two groups, along with corre-
sponding regression lines. It can be seen that for lower demands, there is a very
slight average deterioration over iterations, while for higher demands, there is a
strong improvement of about 20 % over the iterations. AFT operates for all demands
and strives a total improvement. This does not exclude partial deteriorations for
subdomains of demand. Figure 7c, d presents the corresponding results for Region 2,
where a clear average improvement is visible for both demand groups.
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Fig. 7 (a) Mean speeds of Region 1 for iterations with demand lower than 4650 veh/h; (b) mean
speeds of Region 1 for iterations with demand higher than 4650 veh/h; (c) mean speeds of Region 2
for iterations with demand lower than 1725 veh/h; (d) mean speeds of Region 2 for iterations with
demand higher than 1725 veh/h

A second way to evaluate the results is by introducing a criterion which integrates
the demand and mean speed. Such an evaluation criterion, which is used regularly in
various studies (e.g. it is one of the three national performance criteria for Australia),
is the product of the daily overall mean speed and the corresponding total demand.
This is sometimes called “production” and expresses essentially the amount of
veh�km/h2 served by the traffic network. Figure 8 displays the evolution of this
criterion over iterations for the two regions, along with the corresponding regression
lines. This criterion clearly indicates that AFT achieves significant improvement to
the mean speed of the network over iterations.
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Fig. 8 Production over iterations: (a) Region 1 and (b) Region 2

6 Conclusions

This chapter investigated the efficiency of the AFT algorithm for the problem
of optimizing the design parameters of traffic control systems. This adaptive
optimization methodology aims at replacing the conventional manually based
optimization practice with an autonomic procedure. Simulation results have been
presented demonstrating that the self-tuning algorithm (AFT) leads to better
network performance (in terms of daily mean speed) compared to the original TUC
system. This underlines the superiority of the autonomic optimization procedure
over the case where the design parameters are manually fine-tuned by field experts.

Given the conclusion of the simulation investigation, it was decided to proceed
with a field implementation in the traffic network of Chania, Greece. In conclusion,
the available preliminary field results of AFT are very promising and encouraging.
The results confirm that despite the inhomogeneous demands, AFT evolves the
control parameters so as to lead to better network average performance over time.

More field investigations have been planned in order to study in more details
the impact of the strongly varying demand. One of the questions that need to be
answered is the following. How many and which parameters should be selected
for fine-tuning? A big set of parameters could give more degrees of freedom in
the problem, but it could also lead to over-parameterization. In conclusion, the
set of parameters that will be used should be the one with the highest impact
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on the problem to be solved and should take into account the control strategy
characteristics and of course some successful simulation results.
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