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ABSTRACT

An adaptive scheme for perimeter control of heterogeneous transportation networks is pre-1

sented. The proposed methodology utilizes the concept of the Macroscopic Fundamental Diagram2

(MFD) integrated with an adaptive optimization technique. First, a new MFD-based macroscopic3

model is introduced to describe the dynamics of heterogeneous urban networks that can be parti-4

tioned in a small number of homogeneous regions. The non-linear model describes the evolution5

of the multi-region system over time assuming the existence of well-defined MFDs. Many linear6

approximations of the model (for different set-points) are used for designing optimal multivariable7

integral feedback regulators. Since the resulting regulators are derived from approximations of8

the non-linear model, they are further enhanced in real-time based on performance measurements9

and online learning/adaptive optimization. The recently proposed Adaptive Fine-Tuning (AFT), an10

iterative data-driven algorithm is used for that purpose and its objective is to optimize the gain ma-11

trices and set-points of the multivariable perimeter controller based on real-time observations. The12

derived control scheme is tested in micro-simulation and different evaluation criteria are studied.13

The urban network of Barcelona, Spain is partitioned in four homogeneous regions and perimeter14

flow control is applied in the common boundaries between regions. The simulation results show15

that the total delay in the network decreases significantly by only controlling a small number of16

intersections. It is worth noting, that since the boundaries of the network are not controlled (only17

internal intersections are considered) the controller achieves a better distribution of congestion18

between the regions, thus preventing the network degradation and improving total outflow.19

Keywords: Real-time urban perimeter control; macroscopic fundamental diagram; linear feedback20

regulators; online learning; adaptive optimization.21
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INTRODUCTION

Traffic congestion in urban environments and modern metropolitan areas is persistently1

growing over the years, resulting in significant degradation of the infrastructure and excessive2

commuting delays during the peak hours. Real-time traffic management is deemed to be an ef-3

ficient and cost effective way to ameliorate traffic conditions and prevent gridlock phenomena in4

cities. Although many methodologies have been developed for real-time signal control over the5

last decades (see e.g. (1) for a good review), the design of efficient control strategies for heteroge-6

neous large-scale urban networks that can deal with oversaturated conditions (where queues spill7

back to upstream links) remains a significant challenge. Strategies that are widely used around the8

world like SCOOT (2) and SCATS (3) are based on heuristic optimization techniques and are not9

efficient when the network faces propagation phenomena and queue spillbacks. Other traffic re-10

sponsive strategies (4, 5, 6) use complex optimization methods which make their online application11

to large-scale urban networks difficult due to high computational requirements. TUC (7, 8) (see12

also (9, 10)) is a practicable network-wide control strategy which tries to deal with oversaturated13

conditions by minimizing and balancing the relative occupancies of the network links. Another14

decentralized approach that was recently proposed is the max-pressure controller (11, 12), which15

acts locally in coupled intersections and has been proven (under certain conditions) to stabilize the16

queues of the network. However, in the case of heterogeneous networks with multiple pockets of17

congestion and heavily directional demand flows this type of control (i.e. TUC, max-pressure) may18

not be optimal.19

An alternative approach for real-time network-wide control for heterogeneous urban net-20

works that has recently gained a lot of interest is the perimeter control. The basic concept of such21

an approach is to partition the heterogeneous network into a small number of homogeneous regions22

and apply perimeter control to the inter-transferring flows along the boundaries between regions.23

The input flows to a region (which are also output flows for the neighbouring regions) can be con-24

trolled at the intersections located at the borders of the region, so as to maximize the total through-25

put of the system. Perimeter control (or gating) policies have been introduced for single-region26

homogeneous networks (13, 14) and multi-region heterogeneous networks (15, 16) using different27

control methodologies. The key modelling tool that is used by all the aforementioned strategies28

is the Macroscopic Fundamental Diagram (MFD), which provides a concave, low-scatter relation-29

ship between network vehicle accumulations [veh] or density [veh/km] and network circulating30

flow [veh/h]. The concept of a network MFD was firstly introduced in (17), but the empirical veri-31

fication of its existence with dynamic features is recent (18). The stability of the MFD shape faces32

two main challenges, which are (a) the hysteresis phenomena that appear at the onset or offset of33

congestion and (b) the heterogeneity of traffic in urban networks. Heterogeneous networks do not34

have a well-defined MFD, especially in the congested regime. Partitioning such a network into35

homogeneous regions (i.e. areas with compact shape that have small variance of link densities)36

can result in well-defined MFD as shown in (19). The MFD concept is a useful tool for designing37

control policies, as it provides aggregated relationships between traffic variables and reduces the38

complexity of traffic flow dynamics (there is no need for tracking the state of each individual link39

of the network).40

There are a couple of works (15, 16) that deal with perimeter control for multi-region sys-41

tems with MFD-based modelling. However, none of this works deals with parameter uncertainties42

in the model or short-term and long-term variations in the dynamics of the system. In (15, 20) a43
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model predictive control approach is proposed and a nonlinear MFD-based model is used to de-1

scribe the dynamics of the system. Although the controller is tested for different errors in the MFDs2

and the demand profiles, perfect knowledge of the model parameters is assumed. In (16) a Linear-3

Quadratic state feedback Regulator (LQR) and two versions of the optimization problem (with and4

without integral action) are studied. The LQR/LQI gain matrices are designed by linearizing the5

nominal nonlinear traffic dynamics around the set-points. Note that such nominal optimal control6

laws do no guarantee the robustness properties with respect to uncertainties. Some more recent7

works (21, 22) try to deal with adaptive schemes in order to improve the performance of the con-8

troller. Finally, the stability and robustness of MFD-based systems is studied in (23, 24, 25) under9

different adaptive approaches.10

In this work a new generic MFD-based model is introduced to describe the aggregated dy-11

namics of multi-region systems. Many linear approximations of the model (for different set-points)12

are employed to derive optimal multivariable proportional integral (PI) feedback regulators. These13

regulators are applied to the multi-region system and provide an initial set of observations. Then,14

the gain matrices and set-points of the PI controller are updated in real-time based on performance15

measurements by an adaptive optimization algorithm. The initial set of observations that are ob-16

tained by linearizing the model are used to enhance the online learning of the algorithm. The over-17

all control scheme is tested in micro-simulation for the urban network of Barcelona, Spain, which18

includes more than 600 intersections and the impact of the applied perimeter control is evaluated19

via the corresponding MFDs and other performance measures. Note, that most of the perimeter20

or gating control strategies utilizing MFD modeling and tested in micro-simulation environment,21

apply control in the external boundary of the network and as a result queued vehicles create point22

queues that do not interact or constrain other movements. In reality, movements outside the pro-23

tected zones might be influenced by these queues. In this work, the protected zones/boundaries24

are internal to the network and interactions are taken into consideration. This approach signifi-25

cantly challenges the performance of feedback controllers, as the disturbance in the system due to26

uncontrolled inflow is higher than in systems that control the external boundaries of the network.27

The specification of set-points for monocentric networks with well-defined destination at-28

tractions is straightforward as the objective is to operate the protected regions at the critical ac-29

cumulation that maximizes flow. Nevertheless, heterogeneous networks with multiple regions of30

attraction would require a non-trivial choice of set-points (which are related to the level of conges-31

tion in each region). Physically speaking, if a control approach can keep all regions below or close32

to the critical accumulation of each MFD, then the problem is well resolved (see for example (16)).33

A challenge, which is investigated here, is the optimal choice of set-points that can lead hetero-34

geneous systems in desired states with minimum congestion. While model predictive approaches35

(see for example (20)) can identify close-to-optimal control policies, unreliable predictions might36

harden the procedure. In this work we try to overcome these difficulties by identifying values for37

set-points (and gains) through an automatic fine-tuning algorithm (building on (26)). AFT (Adap-38

tive Fine-Tuning) is an iterative data-driven algorithm that receives a scalar performance index39

(e.g. total delay) for different sets of controller parameters (gain matrices ans set-points) and tries40

to learn how these parameters affect the regulator performance. In each iteration AFT updates the41

values of the parameters aiming at better performance. The control variables consist of the ratios of42

inter-transferring flows between neighbourhood regions and the actuators correspond to the traffic43

lights of these areas (e.g. boundaries between regions). The performance of a fixed-time policy is44

compared to the final controller that is obtained after the convergence of AFT.45
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The remainder of the paper is organized as follows: next section presents the modeling of1

aggregated dynamics for an urban network partitioned in N regions. Then, a linear optimal control2

methodology is applied to different linear approximations of the model. The designed control3

is enhanced in real-time by a data-driven adaptive optimization algorithm, which is described in4

details. Finally, the integrated control scheme is applied to the network of Barcelona in micro-5

simulation and the obtained results are presented.6

AGGREGATED DYNAMICS FOR MULTI-REGION SYSTEM BASED ON MFDS

Consider an urban network partitioned inN homogeneous regions (Figure 1(a)). The index7

i ∈ N = {1, 2, . . . , N} denotes the region of the system and ni(t) the total accumulation (number8

of vehicles) in region i at a given time t. Let Ni be the set of all regions that are directly reachable9

from the borders of region i, i.e. adjacent regions to region i and qi,in(t), qi,out(t) the inflow and10

outflow of region i at time t, respectively. Also, let di(t) denote the total uncontrolled traffic11

demand (disturbance) in region i at time t. Note that di(t) includes both the internal generated12

demand (vehicles entering the network from on-street and off-street parking areas) and the external13

uncontrollable inflows. The conservation equation for each region i of the system reads14

dni(t)

dt
= qi,in(t)− qi,out(t) + di(t) (1)

For every region i it is assumed that there exists a production MFD relating the accumulation ni(t)15

to the total production Pi(ni(t)) and describes the performance of the sub-system in an aggregated16

way. This MFD can be easily estimated using measurements from loop detectors and/or GPS17

trajectories. The total outflow Oi of region i (number of vehicles exiting the region per unit time18

either because they finished their trip or because they move to a neighbouring region) can be19

estimated by Oi(ni(t)) = Pi(ni(t))/Li, where Li is the average trip length for region i, which20

is assumed to be independent of time and destination, internal or external, in i. Furthermore,21

let Mij(ni(t)), (i 6= j) denote the total transfer flow from region i to region j at time t. This22

variable can also be related to the accumulation ni(t) by using an MFD (as demonstrated later) and23

estimated from the measurements of all the detectors located in the borders between regions i and24

j (Figure 1(b)). Finally, Mii(ni(t)) denotes the internal trip completion rate in region i (vehicles25

finishing their trip inside the region) and is given by26

Mii(ni(t)) = Oi(ni(t))−
∑
j∈Ni

Mij(ni(t)) (2)

Previous works with model predictive control (15, 20) estimate the flows Mij by utilizing27

more detailed description of the system state, i.e. Mij(ni(t)) = nij(t)/ni(t) · Oi(ni(t)), where nij28

describes the number of vehicles in region i with j as the next destination. As the current work29

mainly utilizes data from loop detectors to estimate the system states, nij variables are difficult to30

be estimated without probe vehicle information. The model still provides a decent description of31

system dynamics even under adaptive control conditions. To this end, the inflow to region i is the32

summation of the transferring flows from all its neighbouring regions and is given by33

qi,in(t) =
∑
j∈Ni

uji(t)Mji(nj(t)) (3)
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FIGURE 1 A network modeled as a multi-region MFDs system: (a) production MFDs; (b)
transfer flows MFDs.

where the control variables uij(t), ∀i ∈ N , h ∈ Ni denote the fraction of the flow that is allowed1

to transfer from region j to region i at time t, to be calculated by the perimeter controller. Equiv-2

alently, the outflow of region i is the summation of the transferring flows to all its neighbouring3

regions plus the trip completion rate in region i and is given by4

qi,out(t) = Mii(ni(t)) +
∑
j∈Ni

uij(t)Mij(ni(t)) (4)

The values of the control variables uij are constrained by physical or operational constraints as5

follows6

0 < uij,min ≤ uij(t) ≤ uij,max < 1, ∀i ∈ N , j ∈ Ni (5)

where uij,min, uij,max are the minimum and maximum permissible transferring rates of flows, re-7

spectively. Also, each region i has a maximum accumulation ni,max8

0 ≤ ni(t) ≤ ni,max, ∀i ∈ N (6)

and if ni(t) = ni,max then the region reaches gridlock and all the inflows along the periphery are9

restricted. Invoking (3)-(4) and (1) the following non-linear state equation is obtained10

dni(t)

dt
=
∑
j∈Ni

uji(t)Mji(nj(t))−Mii(ni(t))−
∑
j∈Ni

uij(t)Mij(ni(t)) + di(t) (7)

This non-linear model may be linearized around some set-point (n̂i, n̂j, ûij, ûji, d̂i), j ∈ Ni.11

The selection of n̂i is closely related to the existence of MFDs Oi(ni(t)), Mij(ni(t)), which are12

approximated by third degree polynomial functions of ni(t) and provide a critical accumulation at13

which the performance of the region is optimized. The desired set-point should satisfy the steady-14

state version of (7) which reads15

0 =
∑
j∈Ni

ûji(t)Mji(n̂j(t))−Mii(n̂i(t))−
∑
j∈Ni

ûij(t)Mij(n̂i(t)) + d̂i(t) (8)
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By denoting ∆x = x− x̂ analogously for all variables the linearization of (7) around the selected1

set-point yields2

∆ṅi(t) =
∑
j∈Ni

∆uji(t)Mji(n̂j(t)) +
∑
j∈Ni

ûji(t)∆nj(t)M
′
ji(n̂j(t))−∆ni(t)M

′
ii(n̂i(t))

−
∑
j∈Ni

∆uij(t)Mij(n̂i(t))−
∑
j∈Ni

ûij(t)∆ni(t)(t)M
′
ij(n̂i(t)) + ∆di(t) (9)

Applying the linear equation (9) to an urban network partitioned in N regions the following state3

equation (in vector compact form) describes the evolution of the system in time4

∆ṅ(t) = Ā∆n + B̄∆u + C̄∆d (10)

where ∆n ∈ RN is the state deviations vector ∆ni = ni − n̂i, ∀i ∈ N ; ∆u ∈ RM is the control5

deviations vector ∆uij = uij − ûij , ∀i ∈ N , j ∈ Ni; ∆d ∈ RN is the demand deviations vector6

∆di = di − d̂i, ∀i ∈ N ; Ā ∈ RN×N , B̄ ∈ RN×M are the appropriate state and control matrices,7

that are derived by application of (9), ∀i ∈ N , j ∈ Ni; C̄ = IN×N is the identity matrix.8

The continuous time linear state system (10) of the multi-region system may be directly9

translated in discrete time (with sample time T ) by use of standard formulas (e.g. zero-order hold10

method of Matlab Simulink). The resulting discrete time system in vector form reads11

∆n(k + 1) = A∆n(k) + B∆u(k) + ∆d(k) (11)

where k = 0, 1, . . . , K − 1 is the discrete time index and A ∈ RN×N , B ∈ RN×M are the12

corresponding discrete time state and control matrices.13

DESIGN OF MULTIVARIABLE PI FEEDBACK REGULATORS

The discrete time linear system (11) approximates the original non-linear system around14

the set-point and can be used for application of efficient methodologies from linear MIMO optimal15

control theory. The approach of Linear-Quadratic-Integral (LQI) control is employed here. In this16

approach the state of the system (11) is augmented by additional state variables that integrate the17

error signal ∆n, which is then used as a feedback term to provide zero steady-state error. The new18

state variables are given by19

∆y(k + 1) = ∆y(k) + C∆n(k) (12)

where ∆y ∈ RZ is the integral vector and C ∈ RZ×N is a matrix that typically consists of 0 and 120

such that Z components (or linear combinations of components) of the system state are integrated21

in (11). Note that N + Z ≤ M must hold in order for the system to be fully controllable. The22

augmented discrete time system (11)–(12) can be written in compact form as23

∆ñ(k + 1) = Ã∆ñ(k) + B̃∆u(k) + C̃∆d(k) (13)

where ñ(k) =
[
∆n(k) ∆y(k)

]ᵀ is the augmented state vector and Ã, B̃, C̃ are the augmented24

state, control, and demand matrices, respectively, which are given by25

Ã =

[
A 0
C I

]
, B̃ =

[
B
0

]
, C̃ =

[
C̄
0

]
(14)
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Finally, for formulating the LQI optimal control problem the following quadratic objective criterion1

is defined2

min
u
J (u) =

1

2

K∑
k=0

(
∆nᵀ(k)Q∆n(k) + ∆uᵀ(k)R∆u(k) + ∆yᵀ(k)S∆y(k)

)
(15)

where Q ∈ RN×N , R ∈ RM×M and S ∈ RZ×Z are user-defined diagonal weighting matrices3

that can influence the magnitude of each term of the objective criterion and are usually defined4

via trial-and-error. The optimal closed-loop solution of (15) subject to (13) for an infinite time5

horizon (i.e. K =∞), and assuming ∆d(k) = 0, leads to the following multivariable PI feedback6

regulator (see (27) for details)7

u(k) = u(k − 1)−KP [n(k)− n(k − 1)]−KI [n(k)− n̂] (16)

where KP,KI ∈ RM×N are the proportional and integral gains of the regulator, which are com-8

puted by the solution of the corresponding discrete-time Riccati equation and depend only on the9

matrices Ã, B̃, Q, R and S defined above. In case that future demand flow predictions are avail-10

able (i.e. ∆d(k) 6= 0, in (13)), simple feedforward control techniques can be used to integrate the11

disturbance predictions to the problem solution (27). It should be noted that the number of con-12

trol variables M depends on the network partition and the sets Ni, i ∈ N , albeit for any arbitrary13

formation of the N -region system N ≤ M always holds. Finally, it should be emphasized that a14

well-known property of the PI regulator (16) is that it provides zero steady-state error (due to the15

existence of the integral term), i.e. n(k) = n̂ under stationary conditions.16

The state feedback regulator (16) is activated in real-time at each control interval T and17

only within specific time windows based on the current accumulations n(k) (i.e. by use of two18

thresholds ni,start and ni,stop and real-time measurements). The required real-time information19

of the vehicle accumulations n(k) can be directly estimated via loop detector time-occupancy20

measurements. Different approaches to estimate MFD related state variables with real data are21

described in (28). Equation (16) calculates the fraction of flows u(k) to be allowed to transfer22

between neighborhood regions. In case the ordered values uij(k) violate the constraints (5) they23

should be adjusted to become feasible, i.e. truncated to [uij,min, uij,max]. Moreover, the values of24

u(k − 1) used on the right-hand side of (16), should be the bounded values of the previous time25

step (i.e. after the application of the constraints) in order to avoid possible wind-up phenomena in26

the PI regulator. The obtained uij(k) values are then used to derive the green time durations for27

the stages of the signalized intersections located at the boundaries of neighborhood regions. The28

ordered transferring flows are equally distributed to the corresponding intersections and converted29

to a transfer link green stage duration, with respect to the saturation flow of the link and the cycle30

time of the intersections.31

The structure of the controller (16) is similar to the one used in (16) although derived by32

a more accurate model. Moreover, here there are no control variables at the external borders of33

the network but only at the borders between regions. As a consequence, there are no vehicles34

kept outside of the network in order to protect the congestion of the regions (which is also the35

case in (14)) and all the (gating) queues created by the controllers are internal to the network and36

thus affecting other movements. Furthermore, the gain matrices KP,KI and set-points n̂ of the37

controller are optimized in real-time by the use of a learning/adaptive algorithm and based on38

real performance measurements. The closed-loop adaptive optimization scheme that constantly39
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updates the parameters of the controller is presented in the next section. Our analysis shows that1

due to the additional complexities related to uncontrolled external boundaries, previous PI-type2

strategies are not capable to perform at the desired states.3

ADAPTIVE OPTIMIZATION ALGORITHM DESCRIPTION

The parameters KP, KI, n̂ of the regulator (16) are updated in real-time based on measure-4

ments of an objective function, so as to optimize the performance of the controller. The Adaptive5

Fine-Tuning (AFT) algorithm is used for that purpose. AFT is a recently developed algorithm (see6

(26, 29) for details) for tuning the parameters (in the specific case the gain matrices and set-points)7

of controllers in an optimal way. It is an iterative algorithm that is based on machine learning8

techniques and adaptive optimization principles and adjusts the control gains and set-points to the9

variations of the process under control. The working principle of the integrated closed-loop system10

(PI regulator and AFT) is presented in Figure 2 and may be summarized as follows:11

• TheN -region MFDs system is controlled in real-time by the multivariable PI regulator ((16))12

which includes a number of tunable parameters θ , vec (KP,KI, n̂), where θ is a vector13

with size 2× (M ×N) +N and its elements are the entries of KP,KI, n̂ taken row-wise.14

• At the end of appropriately defined periods Tc (e.g. at the end of each day), AFT algorithm15

receives the value of the real (measured) performance index J (e.g. total delay of the system),16

as well as the values of the most significant measurable external disturbances x (e.g. aggre-17

gated demand). Note that the scalar performance index J (θ,x) is a (generally unknown)18

function of the external factors x and the tunable parameters θ.19

• Using the measured quantities (the samples of which increase iteration by iteration), AFT20

calculates new tunable parameter values to be applied at the next period (e.g. the next day)21

in an attempt to improve the system performance.22

• This (iterative) procedure is continued over many periods (e.g. days) until the algorithm23

converges and an optimal performance is reached; then, AFT algorithm may remain active24

for continuous adaptation or can be switched off and re-activated at a later stage.25

The main component of the employed algorithm is a universal approximator Ĵ (θ,x) (e.g.,26

a polynomial-like approximator or a neural network) that is used in order to obtain an approx-27

imation of the nonlinear mapping J (θ,x), based on all previous samples. At each algorithm28

iteration kc, the algorithm uses all the collected data for the sets of parameters applied at iterations29

1, 2, . . . , kc and performs the steps described in Algorithm 1 to determine the new set of param-30

eters for the next period (e.g. next day). A shortcoming of AFT approach (as most data-driven31

learning algorithms) is that the first iterations might create controllers that are much worse than32

the no control case, due to the lack of information. While the designed controller will be improved33

after some iterations, real life implementation would be problematic as the first trials might create34

very congested conditions in the system. In our approach, we choose the first iterations based on35

the mulrivariable PI regulator obtained by solving the Riccati equation (see problem formulation36

(13)–(15)), for different desired states. This allows for good quality initial solutions that overcome37

the discrepancies of first AFT iterations.38
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FIGURE 2 The integrated closed-loop adaptive system (multivariable PI regulator and AFT
algorithm).

APPLICATION OF THE PERIMETER CONTROL SCHEME TO MICRO-SIMULATION

The efficiency of the adaptive flow control scheme described in the previous sections is1

tested in microsimulation experiments. The Aimsun microscopic environment is used and the2

real-time implementation of the control scheme is replicated through the simulator API. Only3

loop detectors data is utilized to estimate the state of the system, highlighting the feasibility and4

applicability of the developed framework in a real life conditions.5

Network description6

The urban network of Barcelona, Spain is used as the test site, which is modeled and7

calibrated in AIMSUN (Figure 3(a)). The network covers an area of 15 square kilometers with8

about 600 intersections and 1500 links of various lengths. The number of lanes for through traffic9

varies from 2 to 5 and the free flow speed is 45 kilometers per hour. Traffic lights at signalized10

intersections are operating on multi-phase fixed-time plans with constant (but not equal) cycle11

lengths. For the simulation experiments, typical loop-detectors have been installed around the12

middle of each network link. The OD-based demand that is used for the simulations consist of 12313

origin centroids and 132 destination centroids and provides a good replication of real life conditions14

as it generates realistic traffic congestion patterns in the network. The duration of the simulation15

is 6 hours including a 15 minutes warm-up period. In the no control case (where the real fixed-16
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Algorithm 1: AFT algorithm for iteration kc (originally proposed in (26)).
Data: α0, Lg,max, θmin, θmax, x̄(kc + 1), all available measurements of vectors θ, x and

scalar J up to iteration kc.
Result: Calculate the new set of tunable parameters θ(kc + 1) to be applied at the next

period kc + 1.
1 Set Lg = min {2 (kc − 1) , Lg,max}.
2 Produce a new polynomial approximator with Lg regressor terms, which has the following

structure

Ĵ (kc) (θ,x) = ϑᵀ(kc)φ
(kc) (θ,x) (17)

where ϑ(kc) ∈ RLg are the weights of the approximator for iteration kc (equivalent to the
synaptic connections in neural networks) and φ(kc) (θ,x) is a vector with Lg sigmoidal
functions of polynomials constructed using the elements of vectors θ,x (nonlinear
activation functions or neurons).

3 Obtain the weights ϑ(kc) by the solution of the following optimization problem

ϑ(kc) = arg min
ϑ(kc)

1

2

kc∑
`=1

(
J` − ϑ(kc)

ᵀφ
(kc)
`

)2
(18)

4 Generate Λ random perturbations ∆θ(p)(kc) = α(kc)δ
(p)(kc), p ∈ {1, 2, . . . ,Λ}, where

α(kc) = α0/ (α0 + kc) is a time-decaying stepsize and δ(p)(kc) are zero-mean Gaussian
random vectors.

5 Produce 2Λ new candidate vectors of parameters θ(±p)(kc + 1) = θ∗(kc)±∆θ(p)(kc),
where θ∗(kc) is the “best” set of tunable parameters until the kc-th experiment, i.e. the one
with the best performance so far.

6 Project all the new vectors to the permissible domain Θ = [θmin,θmax].
7 Evaluate the effect of each candidate vector to the system performance by using the

approximator Ĵ (kc), i.e.

Ĵ
(
θ(±p)(kc + 1), x̄(kc + 1)

)
= ϑ(kc)

ᵀφ(kc)
(
θ(±p)(kc + 1), x̄(kc + 1)

)
(19)

where x̄(kc + 1) is an estimate of the external disturbances x for the next experiment kc + 1.
8 Pick the vector that corresponds to the best estimate, i.e.

θ(kc + 1) = arg min
θ(±p)(kc+1)

Ĵ
(
θ(±p)(kc + 1), x̄(kc + 1)

)
(20)

to determine the set of parameters θ(kc + 1) to be applied at the next period kc + 1.

time plans are applied to the intersections) the network faces some serious congestion problems,1

with queues spilling back to upstream intersections. Note, that the real-time Dynamic Traffic2

Assignment (DTA) module of the simulator (C-Logit route choice model) is activated every 33

minutes, therefore the drivers adapt to the traffic conditions and the distribution of demand into the4
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FIGURE 3 The test site of Barcelona, Spain: (a) simulation model with four regions; (b)
results of the clustering algorithm and controlled intersections. Blue circles correspond to
intersections belonging to u14, red to u24, green to u34 and black to u4j, j = 1, 2, 3.

network is more realistic. Previous works (30, 31, 32) have shown that driver adaptivity increases1

the performance of large-scale networks. Note that the developed controller does not utilize any2

information related to OD, only loop detectors data.3

Traffic congestion in the city of Barcelona is unevenly distributed, creating multiple pockets4

of congestion in different areas of the network. As MFD depends on the distribution of link den-5

sities (occupancies, speeds), partitioning heterogeneously loaded cities with uneven distribution6

of congestion into homogeneous regions is a possible solution to take advantage of well-defined7

MFDs. In fact, the outflow of the network is a function of both average and variance of link den-8

sities. Since traffic conditions are spatially correlated in adjacent roads and congestion propagates9
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from adjacent links, describing the main pockets of congestion in a city with a small number of1

clusters without the need for detailed information in every link of the network is conceivable. By2

partitioning, we aim to group spatially-connected links with close density values within a cluster,3

which increases the network flow for the same average density. Spatial connectivity is a neces-4

sary condition that makes feasible the application of perimeter control strategies. The partitioning5

algorithm used in this study is an optimization framework called “Snake” (33), which considers6

heterogeneity index as a main objective function and contiguity is forced explicitly by imposing7

constraints. This approach needs desired number of clusters as a predefined input and it obtains8

optimal number of clusters by evaluating heterogeneity metric for different number of clusters. By9

use of this algorithm, the network of Barcelona is partitioned into 4 homogeneous regions that are10

shown in Figure 3(b).11

The simulation is first executed with the fixed-time signal plans of the city to obtain the12

data needed for the control design. Figure 4(a) presents the production MFD for the whole net-13

work for the first two hours of the simulation (onset of congestion). Each point corresponds to the14

aggregated measurements of all the detectors and the time interval is 90sec (equal to the control in-15

terval T ). The network MFD has low scatter and reaches the congested regime (production reduces16

from 4500 to 2500 veh·km/T ). The production of each region separately (again for the first two17

hours) is displayed in Figure 4(b). Note that region 2 is the only region that does not get congested,18

whereas the rest of the regions get states with increased accumulations and decreased productions.19

Region 4 is the only one that has common boundaries with all other regions. Figures 4(c) and 4(d)20

demonstrate the MFDs for the transfer flows M41,M42,M43 and the trip completion rate M44 as21

third degree polynomial functions of the region accumulation n4. These functions are assumed not22

to depend on the control decisions (assumption that has been verified by simulation data not pre-23

sented here) and are utilized by the model described earlier in order to derive the LQI multivariable24

regulator.25

Simulation set-up and offline design of LQI26

The network partitioning presented in the previous section derives M = 6 control and27

N = 4 state variables (i.e. u =
[
u14 u24 u34 u41 u42 u43

]ᵀ and n =
[
n1 n2 n3 n4

]ᵀ).28

The duration of the simulation is 6 hours, where the first two hours represent the onset of conges-29

tion and the rest 4 hours (offset of congestion) are used to make sure that the network is empty30

of vehicles and the evaluation metrics are comparable. The simulation step is set to 0.5sec and31

the multivariable PI regulator is applied every T = 90sec. The control decisions (after modified32

to satisfy the operational constraints) are forwarded for application to 28 signalized intersections33

(out of 600 in the network) which are all across the boundaries of region 4. As shown in Fig-34

ure 3(b), there are 8 intersections for applying u14 (blue circles), 4 for u24 (red circles), 5 for35

u34 (green circles), 5 for u41, 3 for u42 and 3 for u43. All the intersections that control the out-36

flow of region 4 are indicated in Figure 3(b) with black circles although they correspond to dif-37

ferent control variables. Their location at the borders of region 4 indicates the control variable38

in which they belong. The signal plans of the aforementioned intersections, and more precisely39

their operational constraints (e.g. pedestrian phases), determine the corresponding minimum and40

maximum permissible rates for the control variables u (constraint (5)). The derived umin,umax41

applied at the simulation are given by umin =
[
0.069 0.077 0.061 0.068 0.077 0.077

]ᵀ and42

umax =
[
0.827 0.695 0.604 0.824 0.81 0.76

]ᵀ, which are computed by using the minimum43
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FIGURE 4 (a) Production MFD for the whole network; (b) production MFD for each region
of the network; (c) transfer flow M41(n4) and internal outflow M44(n4) MFDs for region 4;
(d) transfer flows M42(n4),M43(n4) MFDs for region 4.

and maximum green phase durations of the 28 intersections.1

For the LQI methodology different linearization set-points n̂ are investigated, which lead to2

different gain matrices that influence the performance of the regulator. The selection of appropriate3

set-points n̂ for a multi-region system is not straightforward, as at a given time the states of neigh-4

bouring regions may be at different regimes of the MFD (congested or uncongested). Here, many5

different vectors are used for n̂ and provide observations that can be used as initial samples for the6

learning procedure of AFT algorithm. The matrix C that provides the state errors and contributes7

to the integral part of the regulator is set equal to C =

[
1 0 0 0
0 0 0 1

]
, which means that only errors8

measured for regions 1 and 4 are considered. Since these two regions are more important (masters)9

the objective criterion minimizes the integral of their state error ni(k)− n̂i. The regions 2 and 3 are10

not included in the integral part, which means that this design does not guarantee zero steady-state11

error for these regions (slaves). Finally, the diagonal weighting matrices Q ∈ R4×4, R ∈ R6×6
12

and S ∈ R2×2 are chosen after trial-and-error experiments by studying the behavior of the con-13

troller. Physically speaking, these weights depend upon the order of magnitude of each variable14

and also the weight of each term on the objective criterion. To this end, many different sets were15

tested until achieving a satisfactory control behavior. Specifically, the diagonal elements of Q are16
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chosen according to the maximum accumulation of each region (albeit with different weights), i.e.1

Qii = 1/ni,max for i = 1, 4 and Qii = 5/ni,max for i = 2, 3; the diagonal elements of R, S are2

chosen Rii = 500, Sii = 10−6 for i = 1, 2, 3, 4.3

Preliminary simulation results4

This section presents the results obtained by the simulation experiments. First, AFT is5

applied online without any prior knowledge of the system and tries to optimize the regulator pa-6

rameters. AFT runs for 100 iterations starting from an initial point where KP = KI = 06×4. For7

these values the regulator (16) operates as a fixed-time policy and this point is equivalent to the8

no control (NC) case (i.e. the actual fixed-time plans of the city are applied). The initial values9

for the set points n̂ are obtained from the production MFDs of the NC case (Figure 4(b)) and are10

equal to n̂ = [4400, 1300, 1800, 5600]ᵀ. The performance index of AFT (i.e. the objective func-11

tion J that tries to minimize) is selected to be the total delay of the system, which is available12

after the end of the simulation. In each iteration the whole simulation of 6 hours is run with the13

same parameters and the multivariable regulator is activated/deactivated according to the prede-14

fined thresholds ni,start and ni,stop. At the end of the simulation AFT is called to calculate the new15

values of KP,KI, n̂ to be used in the next iteration.16

Figure 5(a) presents the evolution of the average system delay (measured in sec/km) over17

the iterations of the algorithm with blue solid line and the initial point with red dashed line (this18

point corresponds to the fixed-time plan with all the transferring flows distributed equally to the19

controlled intersections). For the first iterations the system performance is extremely deficient,20

leading to values of delay three times higher than the NC case. This “spiky” behavior of the al-21

gorithm (also reported in (34)) occurs because of the fact that in the first iterations there are not22

many samples (no knowledge of system performance for different controllers) and the approxima-23

tor cannot learn from the previous experiments. As the number of iterations increases the learning24

process becomes better and the objective function exhibits a convergent behavior. To overcome25

this “spiky” behavior, AFT is combined with the regulators that are derived by applying the LQI26

methodology to the linearized model. More specifically, different LQI regulators are generated27

(for different linearization set-points) and are applied to the network for the first iterations. Then,28

AFT is applied for online optimization, assimilating the knowledge of all the conducted simula-29

tions (samples of performance J for different values of KP,KI, n̂). The results are presented in30

Figure 5(b). In the first 13 iterations different multivariable PI regulators are applied that are all31

obtained by the solution of LQI. The figure displays the average value of the performance index32

(delay) for these 13 iterations with a magenta dashed line. The blue solid line presents the evolu-33

tion of delay over AFT iterations, while the red dashed line indicates the delay of NC case. The34

algorithm applies different perturbations of the parameters until it converges. Note by comparing35

Figures 5(a) and 5(b) that the high values of delays in the first iterations are avoided in 5(b), which36

allows for a potential real life implementation of the approach (compared to the first problematic37

iterations of the classical AFT). Note also, that applying AFT with some good initial iterations38

(coming from LQI methodology) facilitates the convergence of the system to better and smoother39

solutions (compare Figures 5(a) and 5(b) after iteration 70).40

The qualitative characteristics of the best controller (BC) that is obtained after AFT conver-41

gence are further investigated in an attempt to interpret its behavior. Figure 5(c) illustrates the time42

series of accumulations for all regions and for NC (solid lines), BC (dashed lines), respectively.43
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FIGURE 5 (a) Evolution of network delay for the 100 iterations of AFT; (b) AFT conver-
gence after running the algorithm with 13 initial points from LQI; (c) time series of regions
accumulations for NC and BC; (d) control decisions over simulation time for the BC case.

The controller achieves to maintain the system in better states, i.e. the accumulations of regions1

1 and 4 are significantly improved while regions 2 and 3 are slightly deteriorated, as they try to2

support regions 1 and 4 that have a higher attraction of trips. The BC serves the same number3

of vehicles in a shorter time than NC (the network empties earlier). The integral of the areas be-4

tween the solid and dashed lines corresponds to the improvement/deterioration of the total delay.5

Figure 5(d) displays the trajectories of the control variables for the BC case. The controller is6

activated after t = 30 minutes and stays active for 2 hours and 12 minutes (t = 162 minutes). It is7

clear from the figure that the antagonistic control variables u14 and u41 or u34 and u43 exhibit some8

kind of inverse variation (i.e. when the one increases the other decreases and vice versa) when9

region 4 gets congested. This also happens for variables u24 and u42 but to a smaller extend.10

Table 1 presents some quantitative results of the simulation experiments. In Table 1(a) the11

performance index (delay) of the different approaches is reported. Taking NC as the base case, the12

delay decreases by 7% when the LQI methodology is applied. It should be emphasized that this is13

the average delay of the 13 points obtained for different linearization set-points and this approach14

deserves further investigation. When AFT is applied without any prior knowledge the improvement15

is about 11% (for the best run); however this approach has the “spiky” behavior during the first16
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TABLE 1 (a) Performance of different approaches; (b) evaluation criteria for NC and BC
simulations.

(a)
NC LQI AFT LQI/AFT

Delay (sec/km) 425.57 395.79 378.01 331.64
Improvement – 7% 11.18% 22.07%

(b)

Evaluation criteria NC BC (%) Units

Delay 425.57 331.64 -22.07 sec/km
Space-mean Speed 7.34 9.09 23.84 km/h
Stop Time 345.7 260.36 -24.69 sec/km
Total Travel Time 56742.25 43328.37 -23.64 h
Total Travelled Distance 404251.06 391076.29 -3.26 km
Vehicles Served 202428 202428 0 veh

iterations and also even after convergence the performance for different runs is not stable (see1

Figure 5(a)). By using the LQI points for the first iterations and then applying AFT we obtain a2

stable convergent behavior and an improvement of some 22%. Table 1(b) compares NC and BC3

for different metrics obtained by the simulator. BC outperforms NC in all evaluation criteria (22–4

25% improvement) as the applied controller distributes congestion in a better way. Note that in5

both cases all the vehicles are served (as the network is empty at the end of the simulation), albeit6

the total travelled distance (production) of NC case is slightly higher. This happens because of the7

applied DTA which makes the vehicles choose longer routes (but with shorter travel times) since8

the network is heavily congested.9

CONCLUSIONS

A new macroscopic MFD-based model that describes the aggregated dynamics of multi-10

region systems is introduced. Linear approximations of the model are used to derive optimal mul-11

tivariable PI feedback regulators (LQI) for perimeter flow control. Furthermore, the performance12

of the regulator is enhanced in real-time by an online adaptive optimization algorithm (AFT). The13

efficiency of the integrated adaptive control scheme was tested in micro-simulation. The studied14

problem is quite difficult from a control point of view, since the boundaries of the network are not15

controlled and all the inflows coming from the boundaries are considered disturbance for the sys-16

tem. As a consequence, it is difficult to regulate the system around the set-point by only controlling17

the internal transferring flows between the regions (because of the high disturbances). Neverthe-18

less, the simulation results indicate that the integrated control scheme (LQI/AFT) can significantly19

improve the network performance compared to fixed-time signal plans and previous adaptive type20

controllers.21

As illustrated here, the online application of AFT algorithm without any prior observations22

of the system performance for different control parameters is cumbersome, because of its “spiky”23

behavior during the first iterations (e.g. days) of application. To overcome this difficulty, measure-24

ments of the system performance can be collected for different controllers that are obtained by25
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applying the LQI methodology. Then, AFT algorithm is applied to fine-tune the parameters of the1

multivariable controller (gain matrices and set-points) so as to achieve a desirable performance.2

The proposed methodology is applicable in real life as it is computationally efficient and it only3

requires loop detectors real-time measurements. Future research directions will deal with investi-4

gations about the liearization points of the model (set-points) as well as the activation time of the5

controllers. This is a mutual problem that can be possibly solved in real-time.6
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