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a b s t r a c t 

Most feedback perimeter control approaches that are based on the Macroscopic Funda- 

mental Diagram (MFD) and are tested in detailed network structures restrict inflow from 

the external boundary of the network. Although such a measure is beneficial for the net- 

work performance, it creates virtual queues that do not interact with the rest of the traffic 

and assumes small unrestricted flow (i.e. almost zero disturbance). In reality, these queues 

can have a negative impact to traffic conditions upstream of the protected network that is 

not modelled. In this work an adaptive optimization scheme for perimeter control of het- 

erogeneous transportation networks is developed and the aforementioned boundary con- 

trol limitation is dropped. A nonlinear model is introduced that describes the evolution of 

the multi-region system over time, assuming the existence of well-defined MFDs. Multiple 

linear approximations of the model (for different set-points) are used for designing optimal 

multivariable integral feedback regulators. Since the resulting regulators are derived from 

approximations of the nonlinear dynamics, they are further enhanced in real-time with 

online learning/adaptive optimization, according to performance measurements. An itera- 

tive data-driven technique is integrated with the model-based design and its objective is to 

optimize the gain matrices and set-points of the multivariable perimeter controller based 

on real-time observations. The efficiency of the derived multi-boundary control scheme is 

tested in microsimulation for a large urban network with more than 1500 roads that is 

partitioned in multiple regions. The proposed control scheme is demonstrated to achieve 

a better distribution of congestion (by creating “artificial” inter-regional queues), thus pre- 

venting the network degradation and improving total delay and outflow. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Real-time traffic management is deemed to be an efficient and cost effective way to ameliorate traffic conditions and

prevent gridlock phenomena in cities. Although many methodologies have been developed for real-time signal control over

the last decades (see e.g. Papageorgiou et al., 2003 for a good review), the design of efficient control strategies for heteroge-

neous large-scale urban networks that can deal with oversaturated conditions (where queues spill back to upstream links)

remains a significant challenge. Local adaptive strategies that are widely used around the world are based on heuristic opti-

mization techniques and are not efficient when the network faces congestion propagation phenomena and queue spillbacks.
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Other traffic responsive strategies ( Gartner, 1983; Mirchandani and Head, 1998 ) use complex optimization methods, which

make their online application to large-scale urban networks difficult due to high computational requirements. 

More recently, a practicable network-wide control strategy (TUC) has been developed ( Diakaki et al., 20 03; 20 02 ) that

tries to deal with oversaturated conditions by minimizing the variance of relative occupancies of the network links; this

strategy has been tested in simulation but also in various field implementations (see e.g. Aboudolas et al., 2010; Kouvelas

et al., 2011b ). Another conception, which has been recently proposed for regulating urban traffic and is based on a de-

centralized approach of the problem, is the max-pressure controller ( Kouvelas et al., 2014; Varaiya, 2013 ). This distributed

control law, which was originally applied to production processes and communication networks and has lately gained a

lot of attention in traffic control, acts locally in coupled intersections and has been proven (under certain conditions) to

stabilize the queues of the network. In the same direction, Muralidharan et al. (2015) studied the network stability under

fixed-time control; this analysis provides useful insights about simple network traffic instances (i.e. the demand is assumed

to be “feasible” – can be accommodated by the signals) and can potentially lead to analytical derivations of performance

measures (i.e. total travel time, total delay). Note, however, that in the case of heterogeneous networks with multiple pock-

ets of congestion and heavily directional demand flows such an analysis is not straightforward (due to the lack of spillback

modelling and infeasible demand 

1 ) and this type of control (i.e. TUC, max-pressure) may not be optimal or the stabilization

of the system in a reasonable time period might not be feasible. 

An alternative approach for real-time network-wide control for heterogeneous urban networks that is steadily gaining

momentum is the perimeter flow control, which adds an additional layer of a more aggregated approach for modelling

and control. While a global optimization framework for all controllers in the city may sound impossible (due to both com-

putational burden and model uncertainty and unpredictability), identifying some critical intersections and regulating them

effectively can significantly alleviate the level of congestion (and even make more efficient the local strategies). The basic

concept of such an approach is to partition the heterogeneous network into a small number of homogeneous regions and

apply perimeter control to the inter-transferring flows along the boundaries between regions. The input flows to a region

(which are also output flows for the neighbouring regions) can be controlled at the intersections located at the borders of

the region, so as to maximize the total throughput of the system. Perimeter control (or gating) policies have been intro-

duced for single-region homogeneous networks ( Daganzo, 2007; Keyvan-Ekbatani et al., 2012 ) and multi-region heteroge-

neous networks ( Aboudolas and Geroliminis, 2013; Geroliminis et al., 2013 and many other works) using different control

methodologies. The key modelling tool that is used by all the aforementioned strategies is the Macroscopic Fundamental

Diagram (MFD), which provides a concave, low-scatter relationship between network vehicle accumulation (veh) or density

(veh/km) and network production (veh ·km) or circulating flow (veh/h). The concept of a network MFD was firstly intro-

duced in Godfrey (1969) , but the empirical verification of its existence with dynamic features is quite recent ( Geroliminis

and Daganzo, 2008 ). 

Evidently, the stability of the MFD shape faces two main challenges that are (a) the hysteresis phenomena that appear at

the onset or offset of congestion ( Buisson and Ladier, 2009; Gayah and Daganzo, 2011a; Geroliminis and Sun, 2011a; Saberi

and Mahmassani, 2012 ), and (b) the heterogeneity of traffic in urban networks ( Geroliminis and Sun, 2011b; Knoop et al.,

2012; Mazloumian et al., 2010 ). Essentially, heterogeneous networks do not exhibit a well-defined MFD, especially in the

congested regime. Partitioning such a network into homogeneous regions (i.e. areas with compact shape that have small

variance of link densities) can result in well-defined MFD as shown in Ji and Geroliminis (2012) . Nevertheless, the MFD

concept constitutes a useful tool for designing control policies, as it provides aggregated relationships between macroscopic

traffic variables and reduces the complexity of traffic flow dynamics (i.e., there is no need for tracking the state of each

individual link of the network). 

Despite the vast literature related to empirical observations, modelling and control with MFDs, there are still multiple

challenges in this growing field of research. In this work, we address 3 main challenges related to modelling, control and

applicability of methodologies in real situations. First, (a) we reformulate the system dynamics developed in previous works

in a way that the derived controllers can be implemented with limited data from inductive loop detectors. Second, (b) in

the experimental studies all the controlled queues are internal to the simulated network and interact and influence the rest

of the traffic and (c) an online data-driven approach is utilized to optimize the controller parameters. 

With respect to (a) previous works have developed and described nonlinear dynamics of MFD systems with multiple

regions (see e.g. Ramezani et al., 2015 for a detailed description). Nevertheless, these equations include state variables for

vehicle accumulations n ij (where i is the current region of vehicles and j the destination region) and proper information

about OD demand d ij . If n ij and d ij can be measured with a decent level of accuracy, then the model predictive control

approach developed in these works can properly solve the problem. However, there are some difficulties in estimating these

variables without vehicle trajectories (i.e. only by using loop detector data). Thus, our current work does not contribute per

se in the modelling of MFD dynamics, but rather adjusts previous formulations in a way that is very useful for control pur-

poses without knowledge of n ij states. Regarding contributions (b) and (c) the work of Aboudolas and Geroliminis (2013) (for

multiple regions) and Keyvan-Ekbatani et al. (2012) (for single region) specify set points ˆ n i for each region i , which are in-

tegrated in the control framework. The specification of ˆ n i for monocentric networks with clear attractions of destinations
1 This is a demand where one can prove mathematically that no feasible control can prevent congestion. One pathway to deal with this is demand 

management strategies (e.g. congestion pricing), but if this is not the case one can try to manage congestion in an efficient way for the system. 
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is treated properly by Aboudolas and Geroliminis (2013) , while heterogeneous networks with multiple regions of attraction

would require a non-trivial choice of ˆ n i . Physically speaking, if a control approach can keep all regions below or close to

the critical accumulation of each MFD – n i that maximizes the regional outflow – then the problem is well resolved by

previous works (see Aboudolas and Geroliminis, 2013 for multiple regions and Keyvan-Ekbatani et al., 2012 for single region

problems). A challenge that we address in this work is the case where keeping all regions at the desired ˆ n i is not possible.

For example, if heavily directional flows from the periphery of a network pass through a small region to enter the centre,

the set point of the small region should be smaller than the set point of the periphery. The fact that we do not control the

external boundary of the network, makes such a consideration crucial, as keeping all regions uncongested or at the critical

accumulation might not be feasible. 

1.1. State of the art of perimeter control 

There are some recent works ( Aboudolas and Geroliminis, 2013; Geroliminis et al., 2013; Keyvan-Ekbatani et al., 2015 )

that deal with perimeter control for multi-region systems with MFD-based modelling. However, none of the above works

deals with parameter uncertainties or short-term and long-term variations in the system dynamics, i.e. all model parame-

ters are deterministic and the behaviour of the model does not change over time. 2 In Haddad et al. (2013) and Ramezani

et al. (2015) a model predictive control approach is proposed and a nonlinear MFD-based model is used to describe the

dynamics of the system. Although the controller is tested for different errors in the MFDs and the demand profiles, perfect

knowledge of the model parameters is assumed. In Aboudolas and Geroliminis (2013) a multivariable linear quadratic state

feedback regulator is studied for perimeter control and two versions of the optimization problem are tested (with (LQI) and

without (LQR) integral action). The LQI/LQR gain matrices are designed by linearizing the nominal nonlinear traffic dynamics

around a predefined set-point. Note that such nominal optimal control laws do no guarantee the robustness properties with

respect to uncertainties. In this case study the inflow from the external boundary of the network is restricted by the regu-

lator, creating virtual point queues that do not interact with traffic upstream of the protected regions. A more recent work

( Haddad and Mirkin, 2016 ) utilizes the context of model reference adaptive control in order to improve the performance

of feedback controllers under uncertainties. The derived controllers incorporate input delay and can deal with bounded ex-

ternal dependencies. Finally, a conventional pathway to address this problem is through robust control design and recently

there have been some notable efforts in this direction (see e.g. Haddad, 2015; Haddad and Shraiber, 2014 ). These approaches

can effectively deal with parameter uncertainties, but, on the other hand, the control actions may in some cases be quite

conservative (if many stochastic scenarios are generated). Finally, the studies in Gayah and Daganzo (2011a ), Haddad and

Geroliminis (2012) and Gayah et al. (2014) reveal some fruitful insights about the stability and robustness of MFD-based

systems under different adaptive signal approaches for systems with simplified dynamics and topologies. 

In this work we revisit and readjust previous formulations of MFD dynamics of multiple regions ( Ramezani et al., 2015 ),

to derive a generic MFD-model that can deal with limited data and simpler state description. Multiple linear approxima-

tions of the model (for different set-points) are exploited to derive optimal multivariable proportional integral (PI) feedback

regulators. These regulators are applied to the multi-region network and provide an initial set of observations of the system.

Then, the gain matrices and set-points of the PI controller are updated in real-time by an adaptive optimization algorithm

based on performance measurements. The set of observations that is obtained by the linearized model together with the

real measurements are inputs to the algorithm and provide some initial samples for the online learning procedure. Mi-

crosimulation experiments demonstrate the versatility and real-time applicability of the approach. 

A novelty of this case study is that the queues created due to control actions are inside the microsimulaton model.

Note, that all the perimeter or gating control strategies that utilize MFD modelling and have been tested in microsimula-

tion environment (e.g. Aboudolas and Geroliminis, 2013; Keyvan-Ekbatani et al., 2012; 2015 ), apply control in the external

boundary of the network and as a consequence queued vehicles create point queues that do not interact or constrain other

movements. This is similar to applying ramp-metering control on a motorway and assume infinite storage capacity on the

on-ramps, which might be problematic if queues spillback in the urban network. In reality, movements outside the pro-

tected zones might be influenced by these queues and this is not modelled in microsimulation. In this work, the protected

zones/boundaries are internal to the network and interactions are taken into consideration. This approach significantly chal-

lenges the performance of the feedback regulator, as (a) the disturbance in the system due to uncontrolled inflow is higher

compared to systems that restrict the flow at the external boundaries of the network and (b) queues at the boundaries

between regions can affect other movements (e.g. perpendicular to the boundary) due to spillbacks. 

Another issue that is investigated is the optimal selection of MFD set-points for antagonistic regions. The specification of

set-points for monocentric networks ( Keyvan-Ekbatani et al., 2015 ) with well-defined destination attractions is straightfor-

ward, as the objective is to operate the protected regions around the critical accumulation that maximizes flow. In this case

study, we show that the aforementioned strategies might not succeed in bringing the system to the desired states. Never-

theless, heterogeneous networks with multiple regions of attraction would require a non-trivial choice of set-points (which

are related to the level of congestion in each region). Physically speaking, if a control approach can keep all regions below or
2 As a consequence, a defect of some field implementations is that they do not consider the adaptation of the system to external disturbances that 

can affect the dynamics (e.g. seasonal effects, changes in driving behaviour and/or infrastructure characteristics). In many cases the utilized models are 

calibrated once and are not re-calibrated in a regular basis. 
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Fig. 1. A network modelled as a multi-region MFDs system: (a) production MFDs; (b) sending flows MFDs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

close to the critical accumulation of each MFD, then the problem is well resolved (see e.g. Aboudolas and Geroliminis, 2013 ).

However, in the case of excessive demand where not all regions can be uncongested, one region could be favoured against

another one (through the set-points selection) if this is beneficiary for the overall system. In cases of high demand/supply

ratios that congestion can provably not be avoided the objective is to optimally distribute the congestion across the regions.

One may select to “protect” a region that attracts many trips (master) and let another region be congested (slave) if it is

not crucial for the system delay, in order to maximize system throughput. A challenge, which is investigated here, is the

optimal choice of set-points that can lead heterogeneous systems in desired states with minimum congestion by utilizing

the master-slave concept. While model predictive approaches (see e.g. Ramezani et al., 2015 ) can identify close-to-optimal

control policies that minimize system-wide delays, unreliable predictions might harden the procedure. 

In this work we try to overcome all the aforementioned difficulties by combining model-based optimal control design

with data-driven online tuning of the regulator. An automatic fine-tuning algorithm (building on Kouvelas et al., 2011a )

is integrated to identify optimal values for the set-points (and gains) in an online adaptive mode. Adaptive Fine-Tuning

(AFT) is an iterative algorithm that receives a scalar performance index (e.g. total delay) for different sets of controller

parameters (gain matrices and set-points) and tries to learn the nonlinear mapping between these parameters and the

regulator performance. In each iteration AFT uses this knowledge in order to update the values of the parameters aiming at

better performance. The control inputs consist of the ratios of inter-transferring flows between neighbouring regions and the

actuators correspond to the traffic lights of these areas (e.g. inter-regional boundaries). The overall control scheme is tested

in microsimulation for the urban network of Barcelona, Spain, which includes more than 600 intersections and the impact

of the applied perimeter control is evaluated via the corresponding MFDs and other performance measures. The fixed-time

policy of the city is compared to the final controller that is obtained after the convergence of AFT. 

The remainder of the paper is organized as follows: Section 2 presents the modelling of aggregated dynamics for an

urban network partitioned in N regions. In Section 3 , a linear optimal control methodology is described that can be applied

to different linear approximations of the model. The designed control is enhanced in real-time by a data-driven adaptive

optimization algorithm, which is described in details in Section 4 . Finally, the integrated control scheme is applied to the

network of Barcelona in microsimulation and the obtained results are presented in Section 5 . The main conclusions are

summarized in Section 6 . 

2. Modelling of a multi-region MFD-based system 

Consider an urban network partitioned in N homogeneous regions ( Fig. 1 (a)). The index i ∈ N = { 1 , 2 , . . . , N } denotes the

region of the system and n i ( t ) the total accumulation (number of vehicles) in region i at a given time t . Let N i be the set of

all regions that are directly reachable from the borders of region i (i.e. adjacent regions to region i ) and q i , in (t), q i , out (t) the

inflow and outflow of region i at time t , respectively. Also, let d i ( t ) denote the total uncontrolled traffic demand (disturbance)

in region i at time t . Note that d i ( t ) includes both the internal generated demand (vehicles entering the network from on-

street and off-street parking areas) and the external uncontrollable inflows. The conservation equation for each region i of

the system reads (as in most of the aforementioned papers dealing with MFD and perimeter control) 

dn i (t) = q i, in (t) − q i, out (t) + d i (t) (1)

dt 
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For every region i it is assumed that there exists a production MFD relating the accumulation n i ( t ) to the total production

P i ( n i ( t )) and describes the performance of the sub-system in an aggregated way. This MFD can be easily estimated using

measurements from loop detectors and/or GPS trajectories. The total outflow O i of region i (number of vehicles exiting

the region per unit time, either because they finished their trip or because they move to a neighbouring region) can be

estimated by O i (n i (t)) = P i (n i (t)) /L i , where L i is the average trip length for region i , which is assumed to be independent

of time and destination, internal or external, in i . Furthermore, let M ij ( n i ( t )), ( i � = j ) denote the sending flow from region i to

region j at time t . This variable can also be related to the accumulation n i ( t ) by using an MFD (as demonstrated later) and

estimated by using the measurements of all the detectors located in the borders between regions i and j ( Fig. 1 (b)). Finally,

M ii ( n i ( t )) denotes the internal trip completion rate in region i (vehicles finishing their trip inside the region) and is given by

M ii (n i (t)) = O i (n i (t)) −
∑ 

j∈N i 
M i j (n i (t)) (2) 

2.1. Outflow model discrepancy 

The model O i (n i (t)) = P i (n i (t)) /L i mentioned above approximates the outflow of a region under certain assumptions and

has been used in various works in the literature. It is an adequate model for control design as it derives simplified system

dynamics without delays, i.e., it considers that the outflow is always given by the ratio of production over trip length (and

trip length is assumed constant). While there are empirical verifications about the validity of this model with aggregated

data (e.g. Geroliminis and Daganzo, 2008 ) it should not be considered a universal law. Strong fluctuations in the demand

that create fast evolving transient states, spatial heterogeneity of congestion or route choice effects can influence the trip

length distribution of vehicles in a region at a specific time and P i over L i approximation of outflow might experience some

errors. While we consider this a valid assumption for a range of cases, further research both in the theoretical and empirical

side would be useful to investigate this limitation, but this is out of the scope of the present work. Here, it is used only for

calculating M ii ( n i ( t )) for every region i , as it is not straightforward to measure this quantity in reality without probe vehicle

data. 

Note also, that the transfer flow can be lower than the sending flow M ij , as it can be restricted by control actions u ij ∈ [0,

1]; the actual transfer flow is equal to u ij M ij . Nevertheless, Eq. (2) should not include any control variable u ij , as this would

mean that if the sending flow is restricted, then the internal trip completion rate M ii could increase (consider the extreme

case where u i j = 0 , ∀ j ∈ N i ; then still M ii < O i ( ni ( t )) should hold in Eq. (2) ). Previous works with model predictive control

( Geroliminis et al., 2013; Ramezani et al., 2015 ) estimate the flows M ij by utilizing more detailed description of the system

states, i.e. M i j (n i j (t ) , n i (t )) = min 

{
n i j (t ) /n i (t ) · O i (n i (t)) , C j (n j (t)) 

}
, where n ij describes the number of vehicles in region i

with j as the next destination and C j ( n j ( t )) the receiving capacity of region j , which is a piecewise function of n j ( t ) with

two pieces, one constant value and a decreasing curve. As it is difficult to estimate the variables n ij without probe vehicle

information and the current work mainly utilizes loop detector data to estimate the system states, the functions of sending

flows M ij are directly estimated by the measurements of the fixed-time control scenario. 

The description of system states that embeds constraints in the outflow based on the receiving region has been discussed

in previous publications (first in Geroliminis and Daganzo, 2007 , also in Haddad et al., 2013; Knoop and Hoogendoorn, 2014;

Ramezani et al., 2015 ). Indeed, the most comprehensive dynamic equations are the ones presented in Ramezani et al. (2015) ,

where the sending flow M ij is a function of n ij , n i , but also n j and the spatial heterogeneity of link density in region i . It is

clear that our approximation simplifies the dynamics of the network, but the feedback control design is able to treat this

assumption properly. Note also (as it has been discussed in the aforementioned paper), that the receiving (or boundary)

capacity constraint can be omitted during the optimization process without introducing stability issues, as (a) boundary

capacity decreases for accumulations much larger than the critical accumulation (see Geroliminis and Daganzo, 2007 – we

have also estimated the boundary capacity of the network of Barcelona and this conclusion is valid for our experiments),

(b) the control inputs will not allow the system to get close to gridlock, and (c) feedback can contribute in these effects

(with some delay of course). The model still provides a decent description of system dynamics even under adaptive control

conditions. 

2.2. Aggregated system dynamics 

The inflow to region i is the summation of the transferring flows from all its neighbouring regions and is given by 

q i, in (t) = 

∑ 

j∈N i 
u ji (t) M ji (n j (t)) (3) 

where the control variables u ji ( t ), ∀ j ∈ N i , i ∈ N denote the fraction of the flow that is allowed to transfer from region j to

region i at time t , to be calculated by the perimeter controller. Equivalently, the outflow of region i is the summation of the

transferring flows to all its neighbouring regions plus the trip completion rate in region i and is given by 

q i, out (t) = M ii (n i (t)) + 

∑ 

j∈N i 
u i j (t) M i j (n i (t)) (4) 
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The values of the control variables u ij are constrained by physical or operational constraints as follows 

0 < u i j, min ≤ u i j (t) ≤ u i j, max < 1 , ∀ i ∈ N , j ∈ N i (5)

where u ij , min , u ij , max are the minimum and maximum permissible transferring rates of flows, respectively. Also, each region

i has a maximum accumulation n i , max , i.e. 0 ≤ n i ( t ) ≤ n i , max , ∀ i ∈ N , and if n i (t) = n i, max then the region reaches gridlock

and all the inflows along the periphery are restricted. Invoking (3) –(4) and (1) the following non-linear state equation is

obtained 

dn i (t) 

dt 
= 

∑ 

j∈N i 
u ji (t) M ji (n j (t)) − M ii (n i (t)) −

∑ 

j∈N i 
u i j (t) M i j (n i (t)) + d i (t) (6)

Note that (6) is a more accurate representation of system dynamics compared to Aboudolas and Geroliminis (2013) , i.e. the

outflows of the regions are controlled since the exiting (sending) flows from region i, M ij , are multiplied with the control

variables u ij , which is necessary as there are some uncontrolled boundaries that create larger disturbance to the system. 

This nonlinear model may be linearized around some set-point ( ̂  n i , ˆ n j , ˆ u i j , ˆ u ji , ˆ d i ), j ∈ N i . The selection of ˆ n i is closely

related to the existence of MFDs O i ( n i ( t )), M ij ( n i ( t )), which are approximated by third degree polynomial functions of n i ( t )

and provide a critical accumulation at which the performance of the region is optimized. The desired set-point should satisfy

the steady-state version of (6) that reads 

0 = 

∑ 

j∈N i 
ˆ u ji M ji ( ̂  n j ) − M ii ( ̂  n i ) −

∑ 

j∈N i 
ˆ u i j M i j ( ̂  n i ) + 

ˆ d i (7)

The solution of the linear system of equations (i.e. steady-state for every region i ) for given ˆ n i , ˆ d i , provides the nominal

control actions ˆ u i j , ∀ i ∈ N i , j ∈ N that stabilize the system around the equilibrium point. Note that this system of linear

equations may have multiple feasible solutions (depending on the layout of the network). By denoting �x = x − ˆ x analo-

gously for all variables the linearization of (6) around the selected set-point yields 

� ˙ n i (t) = 

∑ 

j∈N i 
�u ji (t) M ji ( ̂  n j (t)) + 

∑ 

j∈N i 
ˆ u ji (t )�n j (t ) M 

′ 
ji ( ̂  n j (t )) 

− �n i (t) M 

′ 
ii ( ̂  n i (t)) −

∑ 

j∈N i 
�u i j (t) M i j ( ̂  n i (t)) 

−
∑ 

j∈N i 
ˆ u i j (t)�n i (t)(t) M 

′ 
i j ( ̂  n i (t)) + �d i (t) (8)

By applying the linear Eq. (8) to an urban network partitioned in N regions, the following state equation is obtained (in

compact vector form) that describes the evolution of the system in time: 

� ˙ n (t) = Ā �n + B̄ �u + C̄ �d (9)

where �n ∈ R 

N is the state deviations vector �n i = n i − ˆ n i , ∀ i ∈ N ; �u ∈ R 

M is the control deviations vector �u i j = u i j − ˆ u i j ,

∀ i ∈ N , j ∈ N i ; �d ∈ R 

N is the demand deviations vector �d i = d i − ˆ d i , ∀ i ∈ N ; Ā ∈ R 

N×N , B̄ ∈ R 

N×M are the appropriate state

and control matrices, that are derived by application of (8) , ∀ i ∈ N , j ∈ N i ; C̄ = I N×N is the identity matrix. 

The continuous time linear state system (9) of the multi-region system may be directly translated in discrete time (with

sample time T ) by use of standard formulas (e.g. zero-order hold method Brown and Hwang, 1997 ). The resulting discrete

time system in vector form reads 

�n (k + 1) = A �n (k ) + B �u (k ) + �d (k ) (10)

where k = 0 , 1 , . . . , K − 1 is the discrete time index and A ∈ R 

N×N , B ∈ R 

N×M are the corresponding discrete time state and

control matrices. 

3. Model-based design of multivariable PI feedback regulators 

The discrete time linear system (10) approximates the original non-linear system around the set-point and can be used

for application of efficient methodologies from linear multiple-input-multiple-output (MIMO) optimal control theory. The

approach of Linear-Quadratic-Integral (LQI) control is employed here. 

3.1. The linear-quadratic-integral methodology 

In this approach the state of system (10) is augmented by additional state variables that integrate the error signal �n ,

which is then used as a feedback term to provide zero steady-state error. The new state variables are given by 

�y (k + 1) = �y (k ) + C �n (k ) (11)

where �y ∈ R 

Z is the integral vector and C ∈ R 

Z×N is typically a binary matrix (i.e. its entries are 0 or 1), such that Z

components (or linear combinations of components) of the system state are integrated in (10) . Note that N + Z ≤ M must
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hold in order for the system to be fully controllable. The augmented discrete time system (10) and (11) can be written in

compact form as 

�˜ n (k + 1) = 

˜ A �˜ n (k ) + ̃

 B �u (k ) + ̃

 C �d (k ) (12)

where ˜ n (k ) = 

[
�n (k ) �y (k ) 

]ᵀ 
is the augmented state vector and 

˜ A , ˜ B , ˜ C are the augmented state, control, and de-

mand matrices, respectively, which are given by 

˜ A = 

[
A 0 

C I 

]
, ˜ B = 

[
B 

0 

]
, ˜ C = 

[
C̄ 

0 

]
(13) 

Finally, for formulating the LQI optimal control problem the following quadratic objective criterion is defined: 

min 

u 
J (u ) = 

1 

2 

K ∑ 

k =0 

(
�n T

 (k ) Q �n (k ) + �u T

 (k ) R �u (k ) + �y T  (k ) S �y (k ) 
)

(14)

where Q ∈ R 

N×N , R ∈ R 

M×M and S ∈ R 

Z×Z are user-defined diagonal weighting matrices that can influence the magnitude of

each term of the objective criterion and are usually defined via trial-and-error. The optimal closed-loop solution of (14) sub-

ject to (12) for an infinite time horizon (i.e. K = ∞ ), and assuming �d (k ) = 0 , leads to the following multivariable PI feed-

back regulator (see Papageorgiou et al., 2012 for details) 

u (k ) = u (k − 1) − K P [ n (k ) − n (k − 1) ] − K I 

[
n (k ) − ˆ n 

]
(15) 

where K P , K I ∈ R 

M×N are the proportional and integral gains of the regulator, which are computed by the solution of the

corresponding discrete-time Riccati equation and depend only on the matrices ˜ A , ˜ B , Q, R and S defined above. In case that

future demand flow predictions are available (i.e. �d ( k ) � = 0 , in (12) ), simple feedforward control techniques can be used to

integrate the disturbance predictions to the problem solution ( Papageorgiou et al., 2012 ). It should be noted that the number

of control variables M depends on the network partition and the sets N i , i ∈ N , yet for any arbitrary formation of the N -

region system N ≤ M always holds. Finally, it should be emphasized that a well-known property of the PI regulator (15) is

that it provides zero steady-state error (due to the existence of the integral term), i.e. n (k ) = ˆ n under stationary conditions.

Nevertheless, the traffic conditions are rarely stationary and the controller in (15) can be further improved through the

automatic fine tuning method presented later. 

3.2. Implementation aspects 

The state feedback regulator (15) is activated in real-time at each control interval T and only within specific time win- 

dows based on the current accumulations n ( k ) (i.e. by use of two thresholds n i , start and n i , stop 
3 and real-time measure-

ments). The required real-time information of the vehicle accumulations n ( k ) can be directly estimated via loop detector

time-occupancy measurements. Furthermore, in cases where only sparse measurements are available, different approaches 

to estimate MFD related state variables with real data are described in Leclercq et al. (2014) , Ortigosa et al. (2014) and

Ampountolas and Kouvelas (2015) . 

Eq. (15) calculates the fraction of flows u ( k ) to be allowed to transfer between neighbouring regions. It should be em-

phasized that the solution of LQI methodology does not take into consideration any type of constraints for the state or

control variables. In case the ordered values u ij ( k ) violate the constraints (5) they should be adjusted to become feasible, i.e.

truncated to [ u ij , min , u ij , max ]. Moreover, the values of u (k − 1) used on the right-hand side of (15) , should be the bounded

values of the previous time step (i.e. after the application of the constraints) in order to avoid possible wind-up phenomena

in the PI regulator. The obtained u ij ( k ) values are then used to derive the green time durations for the stages of the signal-

ized intersections located at the inter-regional boundaries. For a given pair of sending and receiving regions, i, j , respectively,

the ordered transferring flow by the controller is u ij ( k ) M ij ( n i ( k )) vehicles per time unit. This flow is distributed to the cor-

responding intersections proportionally to the saturation flows of the controlled links (i.e., typically, links with more lanes

are anticipated to accommodate more flow). To this end, every link z is required to transfer u ij ( k ) M ij ( n i ( k )) S z / S ij flow, where

S z is the saturation flow of the link and S ij the summation of all saturation flows related to the i → j movement. The green

stage duration g z is given by g z (k ) = u i j (k ) M i j (n i (k )) C i j /S i j , where C ij defines the cycle time; without loss of generality C ij
is assumed to be equal for all intersections included in the i → j movement (i.e. the equation can be readily modified if

this assumption does not hold). Note that the real transferring flows may be different than the ordered ones for different

reasons (e.g. low demand, spillback from downstream links); however, the regulator is robust to these occurrences due to

its feedback structure (i.e. the differences will be integrated into the measurements of the following control cycles). 

The structure of the controller (15) is similar to the one used in Aboudolas and Geroliminis (2013) although derived by a

more accurate model. Moreover, here there are no control variables at the external borders of the network, but only at the

inter-regional borders. As a consequence, there are no vehicles kept outside of the network in order to protect the conges-

tion of the regions (which is also the case for most of the gated intersections in Keyvan-Ekbatani et al., 2012 ) and all the
3 In practical applications usually n i , stop < n i , start is selected in order to avoid frequent activations/deactivations of the controller. 
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Fig. 2. The integrated closed-loop adaptive system (multivariable PI regulator and AFT algorithm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

queues created by the controller are internal to the network and thus affecting other movements. More importantly, in the

current work the gain matrices K P , K I and set-points ˆ n of the controller are optimized in real-time by a learning/adaptive al-

gorithm based on real performance measurements, ensuing a more realistic set-up of the problem. The closed-loop adaptive

optimization scheme that constantly updates the parameters of the controller is presented in the next section. Our analysis

shows that due to the additional complexities related to uncontrolled external boundaries, previous PI-type strategies are

not capable to perform at the desired states (see Section 5.4 ) without a proper framework of adaptation, which is described

in the next section. 

4. Adaptive optimization algorithm description 

The parameters K P , K I , ˆ n of the regulator (15) are updated in real-time based on measurements of an objective function,

so as to optimize the performance of the controller. The Adaptive Fine-Tuning (AFT) algorithm is used for that purpose. AFT

is a recently developed algorithm (see Kosmatopoulos and Kouvelas, 2009; Kouvelas et al., 2011a for details) for tuning the

parameters (in the specific case the gain matrices and set-points) of controller in an optimal way. It is an iterative algorithm

that is based on machine learning techniques and adaptive optimization principles and adjusts the control gains and set-

points to uncertainties and variations of the process under control. The working principle of the integrated closed-loop

system (PI regulator and AFT) is presented in Fig. 2 and may be summarized as follows: 

• The N -region MFDs system is controlled in real-time by the multivariable PI regulator (15) that includes a number of

tunable parameters θ � vec 
(
K P , K I , ̂  n 

)
, where θ is a vector with size 2 × ( M × N ) + N and its elements are the entries of

K P , K I , ̂  n taken column-wise. 

• At the end of appropriately defined periods T c (e.g. at the end of each day), AFT algorithm receives the value of the real

(measured) performance index J (e.g. total delay of the system), as well as the values of the most significant measurable

external disturbances x (e.g. aggregated demand). Note that the scalar performance index J ( θ, x ) is a (generally unknown)

function of the external factors x and the tunable parameters θ. 

• Using the measured quantities (the samples of which increase iteration by iteration), AFT calculates new values for the

tunable parameters to be applied at the next period (e.g. the next day) in an attempt to improve the system performance.

• This (iterative) procedure is continued over many periods (e.g. days) until the algorithm converges and an optimal per-

formance is reached; then, AFT algorithm may remain active for continuous adaptation or can be switched off and re-

activated at a later stage. 

The main component of the employed algorithm is a universal approximator ˆ J 
(
θ, x 

)
(e.g., a polynomial-like approxima-

tor or a neural network) that is used in order to obtain an approximation of the nonlinear mapping J ( θ, x ), based on all
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Algorithm 1: AFT algorithm for iteration k c (originally proposed in Kouvelas et al., 2011a ). 

Data : α0 , L g , max , θmin , θmax , all available measurements of vectors θ, x and scalar J up to iteration k c . 

Result : Calculate the new set of tunable parameters θ(k c + 1) to be applied at the next period k c + 1 . 

1: Set L g = min { 2 ( k c − 1 ) , L g , max } . 
2: Produce a new polynomial approximator with L g regressor terms, which has the following structure 

ˆ J (k c ) 
(
θ, x 

)
= ϑ T

 

(k c ) φ
(k c ) 

(
θ, x 

)
(16) 

where ϑ (k c ) ∈ R 

L g are the weights of the approximator for iteration k c (equivalent to the synaptic connections in 

neural networks) and φ(k c ) 
(
θ, x 

)
is a vector with L g sigmoidal functions of polynomials constructed using the 

elements of vectors θ, x (nonlinear activation functions or neurons). 

3: Obtain the weights ϑ (k c ) by the solution of the following optimization problem 

ϑ (k c ) = arg min ϑ (k c ) 
1 
2 

∑ k c 
� =1 

(
J � − ϑ (k c ) T  φ

(k c ) 
� 

)2 

(17) 

4: Generate � random perturbations 

�θ
(p) 

(k c ) = α(k c ) δ
(p) 

(k c ) , p ∈ { 1 , 2 , . . . , �} (18) 

where α(k c ) = α0 / ( α0 + k c ) is a time-decaying stepsize and δ
(p) 

(k c ) are zero-mean Gaussian random vectors. 

5: Produce 2� new candidate vectors of parameters 

θ
(±p) 

(k c + 1) = θ
∗
(k c ) ± �θ

(p) 
(k c ) (19) 

where θ
∗
(k c ) is the “best” set of tunable parameters until the k c -th experiment, i.e. the one with the best 

performance so far. 

6: Project all the candidate vectors θ
(±p) 

(k c + 1) to the permissible domain � = 

[
θmin , θmax 

]
. 

7: Evaluate the effect of each candidate vector to the system performance by using the approximator ˆ J (k c ) , i.e. 

ˆ J (k c ) 
(±p) 

= ϑ (k c ) T  φ
(k c ) 

(
θ

(±p) 
(k c + 1) , ̄x (k c + 1) 

)
(20) 

where x̄ (k c + 1) is an estimate of the external disturbances x for the next experiment k c + 1 . 

8: Pick the vector that corresponds to the best estimate, i.e. 

θ(k c + 1) = arg min 

θ
(±p) 

(k c +1) 
ˆ J (k c ) 

(
θ

(±p) 
(k c + 1) , ̄x (k c + 1) 

)
(21) 

to determine the set of parameters θ(k c + 1) to be applied at the next period k c + 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous samples. At each iteration k c , the algorithm uses all the collected data for the sets of parameters applied at itera-

tions 1 , 2 , . . . , k c and performs the steps described in Algorithm 1 in order to determine the new set of parameters for the

next period (e.g. next day). A shortcoming of AFT approach (as for most data-driven learning algorithms) is that the first

iterations might create controllers with poor performance and unacceptable behaviour (as shown later), due to the lack of

information. While the performance of the designed controller will improve after some iterations, real life implementation

would be problematic as the first trials might create very congested conditions in the system. In our approach, we per-

form the first iterations based on different mulrivariable PI regulators, that are obtained by solving the Riccati equation (see

problem formulation (12) and (14) ) for different desired states. This allows for good quality initial solutions that overcome

the discrepancies of first AFT iterations and provide data samples for the learning procedure. The combination of the of-

fline model-based control design presented in Section 3.1 and the online data-driven adaptation with AFT provides a robust

approach for dealing with the perimeter control problem, as it will be demonstrated in the next section. 

5. Application of the perimeter control scheme to a large network 

The efficiency of the adaptive flow control scheme described in the previous sections is tested in microsimulation ex-

periments. The Aimsun microscopic environment (Version 8.0.8) is used and the real-time implementation of the control

scheme is replicated through the simulator API. Only loop detector data is utilized to estimate the state of the system,

highlighting the feasibility and applicability of the developed framework in a real life conditions. 
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Fig. 3. The test site of Barcelona, Spain: (a) Map of the studied area (source: https://maps.here.com/ ); (b) results of the clustering algorithm and choice of 

controlled intersections; blue circles correspond to intersections belonging to u 14 , red to u 24 , green to u 34 and black to u 4 j , j = 1 , 2 , 3 ; (c) Aimsun model of 

the network (blue lines connect the centroids to origins and green to destinations); (d) representation of the simulation model partitioned in four regions 

and the control variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Network description 

The urban network of Barcelona, Spain is used as the test site (see Fig. 3 (a) for a representation of the studied area on the

map). The network covers an area of 12 square kilometres with about 600 intersections and 1500 links of various lengths

and is modelled and calibrated in Aimsun ( Fig. 3 (c)). The number of lanes for through traffic varies from 2 to 5 and the free

flow speed is 45 km per hour. Traffic lights at signalized intersections are operating on multi-phase fixed-time plans with

constant (but not equal) cycle lengths. 4 For the simulation experiments, typical loop-detectors have been installed around

the middle of each network link. The OD-based demand that is used for the simulations consists of 123 origin centroids and

132 destination centroids and provides a good replication of real life conditions as it generates realistic traffic congestion

patterns in the network. The duration of the simulation is 5 hours including a 15 minutes warm-up period. In the no control

case (where a set of the real fixed-time plans of the city are applied to the intersections) the network faces some serious

congestion problems, with queues spilling back to upstream intersections. Note, that drivers adapt to the traffic conditions

through a C-Logit route choice model (standard module of the simulator) that is activated every 3 minutes, therefore the

distribution of demand into the network is more realistic. Previous works ( Gayah and Daganzo, 2011b; Mahmassani et al.,

2013; Yildirimoglu et al., 2015 ) have shown for different models and network configurations that driver adaptivity increases
4 Intersections that are considered for perimeter flow control have different constant cycle durations; these durations are not affected here (i.e. only the 

durations of green phases are changed) in order to maintain the coordination. 

https://maps.here.com/
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the performance of large-scale networks and decreases hysteresis loops in the MFDs, which is closer to real-life observations.

Note that the developed controller does not utilize any information related to OD; only loop detector data is required. 

5.2. Network partitioning and macroscopic fundamental diagrams 

Traffic congestion in the city of Barcelona is unevenly distributed, creating multiple pockets of congestion in different ar-

eas of the network. As MFD depends on the distribution of link densities (occupancies, speeds), partitioning heterogeneously

loaded cities with uneven distribution of congestion into homogeneous regions is a possible solution to take advantage of

well-defined MFDs. In fact, the outflow of the network is a function of both average and variance of link densities. Since

traffic conditions are spatially correlated in adjacent roads and congestion propagates from adjacent links, describing the

main pockets of congestion in a city with a small number of clusters without the need for detailed information in every

link of the network is conceivable. By partitioning, we aim to group spatially-connected links with close density values

within a cluster, which increases the network flow for the same average density. Spatial connectivity is a necessary con-

dition that makes feasible the application of perimeter control strategies. The partitioning algorithm used in this study is

an optimization framework called “Snake” algorithm ( Saeedmanesh and Geroliminis, 2016 ), which considers heterogeneity

index as a main objective function and contiguity is forced explicitly by imposing constraints. This approach requires the

desired number of clusters as a predefined input and it obtains the optimal number of clusters by evaluating heterogeneity

metric for different number of clusters. By applying this algorithm, the network of Barcelona is partitioned into 4 homoge-

neous regions that are shown in Fig. 3 (d). This partitioning simplifies the network dynamics as there is no need for routing

information/decisions (i.e. due to the configuration of the regions there is only one choice to move from one region to an-

other). Note, however, that the methodological control approach proposed in the previous sections can be applied to any

arbitrary partitioning outcome. 

The simulation is first executed with the fixed-time signal plans of the city to obtain the data needed for the control

design. Fig. 4 (a) presents the production MFD for the whole network for the first two hours of the simulation (onset of

congestion) and ten different replications, each one with a different random seed that affects the stochastic parameters of

the microsimulator. Each point corresponds to the aggregated measurements of all the detectors and the time interval is

90 s (i.e. equal to the control interval T ). The network MFD has low scatter and reaches the congested regime (production

reduces from 4500 to 20 0 0 veh ·km/ T ). The production of each region separately for all replications (again for the first two

hours) is displayed in Fig. 4 (b). Note that region 2 is the only region that does not get congested, whereas the rest of

the regions get states with increased accumulations and decreased productions. Region 4 is the only one that has common

boundaries with all other regions. Fig. 4 (c) and (d) demonstrate the MFDs for the transfer flows u NC 
41 

M 41 , u 
NC 
42 

M 42 , u 
NC 
43 

M 43 and

the trip completion rate M 44 as third degree polynomial functions of the region accumulation n 4 . The variable u NC 
ij 

denotes

the fixed-time control applied to the network of Barcelona between region i and j . It is computed by summing the g z S z / C ij S ij 
factors for all the signalized boundary links z of the i → j movement. This derives a constant term for each movement, i.e.

u NC 
ij 

, which is then used to scale the transferring MFDs and get the sending flows M ij that are used in the model. The data for

the first three transfer flows of the figures is extracted from the same 10 replications by analysing all vehicle trajectories, but

can be also obtained (in simulation and real life) from the flow measurements of all the loop detectors along the boundaries

between any two regions. Finally, the trip completion rate M 44 is computed for all the measurement points by Eq. (2) . 

The MFDs have relatively low scatter and the fitted functions are utilized by the model in order to derive the LQI mul-

tivariable regulator. This model-based control design phase assumes that these functions do not depend on the control

decisions (simulation data before and after control validates this assumption) and are only a function of the accumulation

of the sending region (something that is demonstrated by the simulation data in Fig. 4 (c) and (d)). The feedback nature of

the regulator and the online tuning/optimization by AFT can correct possible discrepancies between modelling assumptions

and real world (or microsimulation in this case study). 

5.3. Simulation set-up and offline design of LQI 

The network partitioning presented in the previous section derives M = 6 control and N = 4 state variables (i.e. u =[
u 14 u 24 u 34 u 41 u 42 u 43 

]ᵀ 
and n = 

[
n 1 n 2 n 3 n 4 

]ᵀ 
). The duration of the simulation is 5 hours, 

where the first 2 hours represent the onset of congestion and the rest 3 hours (offset of congestion) are used to

make sure that the network is empty of vehicles at the end of the simulation period and the evaluation met-

rics are comparable. The simulation step is set to 0.5 sec and the multivariable PI regulator is applied every T =
90 sec. The control decisions (after modified to satisfy the operational constraints) are forwarded for application to

28 signalized intersections (out of 600 in the network) which are all across the boundaries of region 4. As shown

in Fig. 3 (b), there are 8 intersections for applying u 14 (blue circles), 4 for u 24 (red circles), 5 for u 34 (green cir-

cles), 5 for u 41 , 3 for u 42 and 3 for u 43 . All the intersections that control the outflow of region 4 are indicated in

Fig. 3 (b) with black circles although they correspond to different control variables. Their location at the borders of re-

gion 4 indicates the control variable in which they belong. The signal plans of the aforementioned intersections, and

more precisely their operational constraints (e.g. minimum time allocated for pedestrian phases), determine the cor-

responding minimum and maximum permissible rates for the control variables u (constraint (5) ). The derived u min ,

u max applied at the simulation are given by u min = 

[
0 . 069 0 . 077 0 . 061 0 . 068 0 . 077 0 . 077 

]ᵀ 
and u max = 
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Fig. 4. (a) Production MFD for the whole network; (b) production MFD for each region of the network; (c) transfer flows u NC 
41 M 41 (n 4 ) , u 

NC 
42 M 42 (n 4 ) MFDs 

for region 4; (d) transfer flow u NC 
43 M 43 (n 4 ) and internal trip completion M 44 ( n 4 ) MFDs for region 4. 

 

 

 

 

 

 

 

 

 

 

 

 

[
0 . 827 0 . 695 0 . 604 0 . 824 0 . 81 0 . 76 

]ᵀ 
, which are computed by using the minimum and maximum green

phases duration of the 28 intersections. 

For the LQI methodology different linearization set-points ˆ n are investigated, which lead to different gain matrices that

influence the performance of the regulator. The selection of appropriate set-points ˆ n for a multi-region system is not

straightforward, as at a given time the states of neighbouring regions may be at different regimes of the MFD (i.e. con-

gested or uncongested); hence the linear approximations of the model may not be reliable. Here, many different vectors

are used for ˆ n (spanning various region states 5 ) and the results of the simulations provide observations that can be used

as initial samples for the learning procedure of AFT algorithm. The matrix C that provides the state errors and contributes

to the integral part of the regulator is set equal to C = 

[
1 0 0 0 

0 0 0 1 

]
, which means that only errors measured for

regions 1 and 4 are considered. Since these two regions are more important (masters) the objective criterion minimizes the

integral of their state error n i (k ) − ˆ n i , i = 1 , 4 . The regions 2 and 3 are not included in the integral part, which means that

this design does not guarantee zero steady-state error for these regions (slaves). Nevertheless, this configuration renders the

dynamical system fully controllable. Finally, the diagonal weighting matrices Q ∈ R 

4 ×4 , R ∈ R 

6 ×6 and S ∈ R 

2 ×2 are chosen af-
5 Different levels of congestion are considered for each region (e.g. 0.8 n cr , 0.9 n cr , 1.1 n cr , 1.2 n cr , where n cr is the critical accumulation of the region) and 

many combinations of the states are used to produce the set-points ˆ n and derive linearizations of the corresponding MFDs. 
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ter trial-and-error experiments by studying the behaviour of the controller. Physically speaking, these weights depend upon

the order of magnitude of each variable and also the weight of each term on the objective criterion. To this end, many dif-

ferent sets were tested until achieving a satisfactory control behaviour. Specifically, the diagonal elements of Q are chosen

according to the maximum accumulation of each region (albeit with different weights), i.e. Q ii = 1 /n i, max for i = 1 , 4 and

Q ii = 5 /n i, max for i = 2 , 3 ; the diagonal elements of R, S are chosen R ii = 500 , S ii = 10 −6 for i = 1 , 2 , 3 , 4 . 

5.4. Control scenarios 

Different control scenarios are investigated. The base case is the no control (NC) scenario where one set of the real well-

tuned fixed-time plans of the city is applied to the network. The performance of different control approaches is evaluated

according to the improvement that they can accomplish compared to the base case. One option is to apply AFT alone starting

from a fixed-time controller and trying to converge to parameters that will improve the performance (pure data-driven

approach). Another alternative is to use the model-based PI controller that is derived from LQI optimization methodology

for different linearization points. Finally, the two aforementioned approaches can be combined into one by using LQI for the

first iterations (days) and then switch to the online adaptation of the parameters by exploiting the knowledge of the first

iterations (LQI/AFT). As demonstrated later a combination of LQI for the first iterations with online adaptation provides the

best performance for the network. 

Another scenario that is tested is to protect only one region of the network. The simulation results reveal that a single

region perimeter control, even if it is carefully designed, is unable to bring the system to a desired state and congestion is

high. This significantly highlights the importance of careful integration of concepts consistent with the physics of traffic in

the methodological and control framework. Region 4 has been selected to be protected (as it attracts the highest demand

from the origins compared to the other regions) and the total inflow and outflow to this region is regulated in the perimeter

by a simple I-type regulator which has the following form: 

u 4 (k ) = u 4 (k − 1) − K 4 

[
n 4 (k ) − ˆ n 4 

]
(22) 

where u 4 ∈ R 

2 ×1 contains the two decision variables that regulate the inflow and outflow respectively and there is only one

state variable n 4 , i.e. the accumulation of region 4. Similarly to (15) , the vector K 

2 ×1 
4 

comprises the gains of the regulator

(with K 4 (1) ∈ R 

+ and K 4 (2) ∈ R 

− the gains for inflow and outflow, respectively). This single region (SR) control scenario

utilizes the same 28 intersections displayed in Fig. 3 (b) at the boundary of region 4 and its objective is to operate the

accumulation around the desired point in order to prevent congested states for this region. In principle, this feedback reg-

ulator increases/decreases the inflow/outflow of the region based on the difference between the current accumulation and

the desired one (when inflow is decreased because of high accumulation n 4 ( k ), outflow increases as K 4 (1) and K 4 (2) have

different signs). It is activated/deactivated whenever the state n 4 ( k ) is higher/lower than 0 . 8 ̂  n 4 . 
6 As demonstrated later, such

a controller is not successful in decreasing congestion and bringing region 4 and the overall network in better states. The

main reasoning about this is related to spillbacks to the other regions combined with high uncontrolled inflow in region 4.

The results of all different control approaches are discussed in the next section. 

5.5. Simulation results 

This section presents the results obtained by the simulation experiments. First, AFT is applied online without any prior

knowledge of the system and tries to optimize the regulator parameters. This is a pure data-driven approach and no model

is utilized for the controller. AFT runs for 100 iterations starting from an initial point where K P = K I = 0 6 ×4 . For these values

the regulator (15) operates as a fixed-time policy and this point is equivalent to the NC case (i.e. the actual fixed-time plans

of the city are applied). The initial values for the set points ˆ n are obtained from the production MFDs of the NC case

( Fig. 4 (b)) and are equal to ˆ n = [ 360 0 , 140 0 , 20 0 0 , 60 0 0 ] T
 . The performance index of AFT (i.e. the objective function J that

tries to minimize) is selected to be the total delay of the system. In each iteration the whole simulation of 5 h runs with the

same parameters and the multivariable regulator is activated/deactivated according to the predefined thresholds n i , start and

n i , stop . 
7 At the end of the simulation AFT is called to calculate the new values of K P , K I , ̂  n to be used in the next iteration. 

Fig. 5 (a) presents the evolution of the average system delay (measured in s/km) over the iterations of the algorithm. For

the first iterations the system performance is extremely ineffective, leading to values of delay three times higher than the

NC case. This “spiky” behaviour of the algorithm (also reported in Kouvelas et al., 2015 ) occurs due to the fact that in the

first iterations there are not many samples (i.e. no prior knowledge of system performance for different controllers) and the

approximator cannot learn from previous experiments. As the number of iterations increases the learning process becomes

better and the objective function exhibits a convergent behaviour, leading to results that improve the initial fixed-time

controller (red dashed line in Fig. 5 (a)). Nevertheless, such an approach might be difficult to be tested in a real framework

as the first few days the control will be catastrophic for the system. 
6 This value has been found after a manual trial-and-error procedure; AFT has been also used to optimize this parameter but the performance could not 

be improved any further. 
7 The thresholds are selected according to the critical accumulations of each region and n i, stop = n i, start = 0 . 8 n i, cr . 
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Fig. 5. (a) Evolution of network delay for the 100 iterations of AFT; (b) AFT convergence after running the algorithm with 13 initial points from LQI. (For 

interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

Table 1 

Performance index of different approaches; (b) evaluation criteria for NC and BC simulations. 

NC SR LQI AFT LQI/AFT Units 

Delay 425.57 411.19 395.79 378.01 331.64 s/km 

Criterion (14) 1.1984 0.6348 0.8144 0.6822 0.4556 veh × 10 3 

Improvement – 3.38 7 11.18 22.07 % 

– 47.04 32.05 43.08 61.99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To overcome this “spiky” behaviour, AFT is combined with the regulators that are derived by application of LQI method-

ology to the linearized model. More specifically, different LQI regulators are generated (for different linearization set-points)

and are simulated to the network for the first iterations. Then, AFT is applied for online optimization, exploiting the knowl-

edge of all the conducted simulations (samples of performance J for different values of K P , K I , ̂  n ). The results are presented

in Fig. 5 (b). In the first 13 iterations different multivariable PI regulators are applied that are all obtained by the solution of

LQI. The figure displays the average value of the performance index (average delay) for these 13 iterations with a magenta

dashed line. The blue solid line presents the evolution of delay over AFT iterations, while the red dashed line indicates the

delay of NC case. The algorithm applies different perturbations of the parameters until it converges. Note by comparing

Fig. 5 (a) and (b) (vertical axes have different range of values for visibility purposes) that the high values of delays in the

first iterations are avoided in Fig. 5 (b), which allows for a potential real life implementation of the approach (compared to

the first problematic iterations of the classical AFT). Note also, that applying AFT with some good initial iterations (coming

from LQI methodology) facilitates the convergence of the system to better and smoother solutions, 378 s/km vs. 331 s/km

(compare Fig. 5 (a) and (b) after iteration 70). In previous applications of AFT algorithm (see e.g. Kouvelas et al., 2011a ) a

fairly good initial point was provided for the tuneable parameters (i.e. predefined values based on particular problems ex-

perience) and as a consequence there was no need to generate some “good” initial iterations. Another technique that has

been used is to apply relatively small stepsizes α0 in Step 4 (see Algorithm 1 ) in order to prevent the “spiky” behaviour of

the first iterations (especially in field implementations), but this has the shortcoming that the algorithm may stack in local

minima and not improve the performance. 

Table 1 presents some quantitative results about the simulations. First, the performance index of AFT (average delay 8 )

for all different approaches is reported. Taking NC as the base case, the delay decreases by about 3.4% when the SR control

is applied. In this scenario, region 4 is protected by the controller, but due to the excessive demand and the propagation of

congestion to other regions the relative improvement is insignificant. Clearly, protecting the region with the higher attraction

of destinations is not enough for the overall network performance. When the multivariable LQI regulator is applied to control

all the regions the improvement rises to 7%. It should be emphasized that this is the average delay of the 13 points obtained

for different linearization set-points and this approach deserves further investigation (i.e. how one could choose proper ˆ n i
without a fine-tuning method similar to AFT). In the case that AFT is applied without any prior knowledge the improvement
8 Since the network is empty at the end of the simulation period (i.e. all simulations serve the same number of vehicles), average and total delay 

represent the same metric. 
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Fig. 6. (a) Evolution of accumulation of region 4 for NC and SR cases and set-point of single region controller; (b) control decisions in the boundaries of 

region 4 for SR case (regulated inflow and outflow); (c) evolution of accumulations for the other 3 regions of the network for NC and SR cases; (d) total 

vehicles waiting to enter region 4 from region 1 and 2 ( w 14 and w 24 respectively) over time for NC and SR cases. 

 

 

 

 

 

 

 

 

 

 

 

is about 11.2% (for the best run); furthermore this approach has the “spiky” behaviour during the first iterations, and also,

even after convergence the performance for different runs is not stable (see Fig. 5 (a)). By using the LQI points for the first

iterations and then applying AFT we obtain a stable convergent behaviour and an improvement of some 22.1%. Then, the

value of criterion (14) is reported for all control approaches. It should be noted that only the first and third terms of the

quadratic criterion are computed, as the second term (i.e. variations form nominal control values) cannot be defined for

some of the scenarios (e.g. NC case). The value of the objective function is calculated for a time window that most of the

controllers are active, i.e. from time t = 1800 s until t = 10800 s. 9 According to this criterion SR outperforms LQI and AFT

approaches while BC is again the most effective. 

As a matter of fact the single region (SR) control does not manage to alleviate congestion, even if it has been designed

properly. This highlights that a method that controls only the external boundary of a network and estimates the delays

outside this boundary with a virtual queue approach, might disregard significant traffic phenomena related to delays and

spillbacks, especially if some of these movements carry substantial portions of the traffic demand. Fig. 6 provides some
9 Note that the compared controllers are not all deactivated at the same time, as this is done based on measurements from the simulation and the 

evolution of congestion is not the same. Here, a window of 100 control cycles has been chosen because most of the controllers are active during all this 

period. Finally, the ˆ n vector of Section 5.5 is used in the calculations for all the scenarios (for the sake of comparison), although the controllers are designed 

for different set-points (or tuned with AFT). 
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more insights about the performance of SR controller. The goal of the feedback regulator (22) is quite straightforward (i.e.

it tries to keep region 4 around the desired point and does not take into consideration the states of the other regions)

and its behaviour (e.g. aggressive or conservative actions, oscillations) depends on the gains K 4 . Several experiments were

carried out for the SR regulator and according to the simulations results the gains K 4 = 

[
0 . 008 −0 . 008 

]ᵀ 
were found to

have a satisfactory performance (e.g. non oscillatory behaviour, empty network at the end of the simulation). It should be

noted that there are many values of these gains for which the network faces severe spillbacks (mostly between regions

1 and 4) that take a lot of time to be resolved. For the simulation of the aforementioned gains (which has a total delay

improvement of 3.38%), Fig. 6 (a) presents the evolution of accumulation in region 4. Note the small improvement over the

NC case even if the regulator does not achieve the target point due to excessive internal demand, operational constraints on

the control variables and spillbacks that affect the ordered flows. Nevertheless, the total delay for region 4 (area between the

two trajectories) is reduced significantly. Fig. 6 (b) displays the control actions of the regulator which is activated at minute

30 and deactivated at minute 145.5. As expected, the inflow decreases gradually to the minimum value (and the outflow

increases to maximum) because accumulation in region 4 is higher than the target for a long period. This is beneficial for

region 4 but also does not cause many problems to the other regions (see accumulations in Fig. 6 (c)). Region 1 is also

improved compared to NC for most of the simulation time, whereas regions 2 and 3 experience some longer delays. 

By comparing the accumulations of regions 1 and 4 for SR and NC after time 200 min ( Fig. 6 (a) and (c)) we observe

that the SR case experiences higher delays. This is a result of local spillbacks in an area that spans these two regions and

can be also noticed in Fig. 6 (d). This figure presents the total number of vehicles inside the links that are controlled in the

boundary between regions 1 and 4 ( w 14 ) and 2 and 4 ( w 24 ) over time, i.e. vehicles that are waiting to enter region 4 from

regions 1 and 2, respectively. It is the stripe of links around the boundary (31 roads). In the boundary between 1 and 4

the SR controller has about the same inflow with NC until the time that the controller is deactivated. This is achieved with

much smaller green duration because in the NC case there are spillbacks in region 4 that prevent vehicles from entering.

Once the controller is deactivated (i.e. both cases have the same fixed-time plan but the accumulation in region 4 is much

lower in SR) many more vehicles can enter region 4 and w 14 decreases dramatically. However, this has a negative effect

later in time as there is a blocking that delays vehicles in w 14 (which also exists in the NC case but for fewer vehicles and

shorter time period; see Fig. 6 (d) after time 200 min). In the boundary between regions 2 and 4 things are more clear, with

w 24 being higher for SR when the controller is active (due to reduced green duration) and no blocking occurrence after the

deactivation of the controller actions. The number of vehicles in the boundary between 3 and 4 (not presented here) has

a similar pattern to w 24 . In conclusion, it should be emphasized that this is the best SR controller (of this type) that we

obtained after a tedious trial-and-error procedure. It is clear that by only protecting region 4 there are not many actions

that someone could do to improve the total network delay. 

The qualitative characteristics of the best controller (BC) that is obtained after AFT convergence are further investigated

in an attempt to interpret its behaviour. Fig. 7 (a) illustrates the time series of accumulations for all regions and for NC (solid

lines), BC (dashed lines), respectively. The controller achieves to maintain the system in better states, i.e. the accumulations

of regions 1 and 4 are substantially improved while regions 2 and 3 are slightly deteriorated, as they try to support regions

1 and 4 that have a higher attraction of trips. The integral of the areas between the solid and dashed lines corresponds

to the improvement/deterioration of the total delay. The space-mean speed of each region (i.e. νi (k ) = P i (k ) /n i (k ) ) over the

simulation time is illustrated in Fig. 7 (b) from t = 20 min to t = 220 min. Note that speed increases for regions 1 and 4

shortly after the controller is activated and less number of vehicles observed in these regions, while regions 2 and 3 are

holding more vehicles due to perimeter control restrictions. Fig. 7 (c) displays the trajectories of the control variables for

the BC case. The controller is activated after 30 minutes and stays active for 2 h and 12 min. It is clear from the figure

that the antagonistic control variables u 14 and u 41 or u 34 and u 43 exhibit some kind of inverse variation (i.e. when the one

increases the other decreases and vice versa) and this is more clear when region 4 gets congested (after minute 80). This

also happens for variables u 24 and u 42 but to a smaller extend. Fig. 7 (d) presents the cumulative number of trip endings (i.e.

vehicles reaching their destination) during the simulation for every region. It is clear that BC improves the throughput of

regions 1 and 4 (masters) while regions 2 and 3 have less throughput (slaves). In total, BC manages to serve more vehicles

than NC for the same simulation time, and, as a result, the dissipation of network congestion happens much earlier in the

BC case. Note that while speed is higher and accumulation is lower after t = 30 min for region 4, trip endings increase

compared to NC case only after t = 150 min. The main reason is that during this period there is a large number of trips

with external destinations to region 4 that passes through this region (especially with destination in region 1). The transfer

flows are significantly higher (see also pattern for u 41 ) and more trip endings occur earlier in region 1. 

Finally, in order to account for the stochasticity of the simulator, 10 replications were carried out (with different random

seeds). These replications provide a statistical analysis of NC and BC cases for different variations of the stochastic parame-

ters of the software. They can be considered – in an analogy to a real case – as different variations among congested days

with similar but not identical demand profiles. Table 2 presents some average quantitative results of the simulation experi-

ments, where NC and BC are compared for different metrics obtained by the simulator (the average performance of the 10

replications is presented here). BC outperforms NC in all evaluation criteria as the applied controller manages to distribute

congestion in a better way. More precisely, the improvement of the delay is about 20% on average, the space-mean speed

of the network is increased by about 22.5% and the time that a vehicle is stopped (because of congestion or traffic lights) is

also 22% less. The statistics of the queues are also reported in order to demonstrate the improvement of the applied control

regarding the virtual queues. Interestingly, the average value of all the network virtual queues over time is reduced by al-
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Fig. 7. (a) Time series of regions accumulations for NC and BC; (b) time series of regions space-mean speeds for NC and BC; (c) control decisions over 

simulation time for the BC case; (d) cumulative trip endings over simulation time for NC and BC. 

Table 2 

Evaluation criteria for no control (NC) and best controller (BC) simulations (average of 10 replications). 

Evaluation criteria NC BC (%) Units 

Delay 514.17 410.93 −20.08 s/km 

Space-mean speed 6.26 7.67 22.62 km/h 

Stop time 426.82 333.41 −21.89 s/km 

Mean queue 8519.4 6358.39 −25.37 veh 

Mean virtual queue 8619.75 7856.77 −8.85 veh 

Total travel time 70150.94 54371.89 −22.49 h 

Total travelled distance 419779.67 401040.89 −4.46 km 

Vehicles served 201,810 201,810 0 veh 

 

 

 

 

 

most 9% (i.e., drops from 8619.75 to 7856.77 vehicles). The control actions (which are all internal to the network) alleviate

traffic congestion – this can be also seen by the 25% improvement of the mean queue, which corresponds to all the stopped

vehicles inside the network over time – and as a consequence they implicitly also reduce the boundary virtual queues (in

contrary to previous approaches that significantly increase the boundary queues). In addition, the total travel time is de-

creased by 22.5% on average. Note that in both cases all the vehicles are served (as the network is empty at the end of the
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simulation), though the total travelled distance (production) of NC case is slightly higher (4.46%). This happens because of

the applied driver adaptivity module which makes the vehicles choose longer routes (but with shorter travel times) since

the network is heavily congested. 

6. Conclusions and discussion 

A new macroscopic MFD-based model that describes the aggregated dynamics of multi-region systems is introduced.

Linear approximations of the model are used to derive optimal multivariable PI feedback regulators (LQI) for perimeter flow

control. Furthermore, the performance of the regulator is enriched in real-time by an online adaptive optimization algo-

rithm (AFT). The efficiency of the integrated adaptive control scheme was tested in microsimulation. The studied problem

is quite difficult from a control viewpoint, since the boundaries of the network are not controlled and all the inflows com-

ing from the origin links are considered disturbance for the system. As a consequence, it is difficult to regulate the system

around the set-point by only controlling the inter-transferring flows between the regions (because of the high disturbances).

Nevertheless, it is shown that by considering the spatial and temporal heterogeneity between the regions and integrating a

partitioning approach, one can improve the distribution of congestion in the network through perimeter control actions. The

simulation results indicate that the integrated control scheme (LQI/AFT) can substantially improve the network performance

compared to fixed-time signal plans and previous adaptive type controllers. 

As illustrated here, the online application of AFT algorithm without any prior observations of the system performance

for different control parameters is cumbersome, because of its “spiky” behaviour during the first iterations (e.g. days)

of application. To overcome this difficulty, measurements of the system performance can be collected for different con-

trollers that are designed offline by applying the LQI methodology. Then, AFT algorithm is applied to fine-tune the param-

eters of the multivariable controller (gain matrices and set-points) so as to achieve a desirable performance. The proposed

methodology is applicable in real life as it is computationally efficient and it only requires loop detector real-time mea-

surements. Future research directions will deal with investigations about the activation/deactivation time of the controllers

for multi-region systems, as well as the possibility of integrating time-dependent parameters (i.e., different gains and set-

points in the onset and offset of congestion). These are mutually related problems that can be possibly solved together in

real-time. 

It should be noted, that strong fluctuations in the demand that create fast evolving transient states, spatial heterogeneity

of congestion or route choice effects can influence the trip length distribution of vehicles in the network (and the space-

mean trip length); as a result, the ratio of production over outflow (utilized by Eq. (2) ) might exhibit some variations

( Mahmassani et al., 2013; Yildirimoglu and Geroliminis, 2014 ). If conditions change rapidly however, the outflow-MFD might

not provide a good approximation as it is “memoryless”, i.e. it ignores the history of the system. If, for instance, there is a

discontinuity in the inflow in the uncongested regime, the accumulation increases instantaneously and the outflow predicted

by the outflow-MFD increases as well. Intuition suggests that the outflow should only increase after a delay corresponding

to the shortest trip duration. While such a model is described in Lamotte and Geroliminis (2016) , its complexity makes the

integration in a control framework infeasible. As also pointed by Arnott (2013) , such a model has an endogenous delay term,

which makes its analytical solution very challenging. Also, one of the reviewers of the paper mentioned that in the extreme

case that demand patterns follow a Dirac function (with a zero value everywhere except of a single point with value infinity)

then the model of Eq. (2) will produce infinite speeds for some vehicles. Nevertheless, this assumption pushes the model in

extreme situations that probably will never occur in real transport networks. An important aspect is that further research is

needed to better identify the demand conditions under which the outflow-MFD model might experience significant errors

that deteriorate the control efficiency. Nevertheless, we have to point out that the perimeter controllers developed here

rely on feedback, and thus some discrepancies in the model are not considered to be crucial when feedback frequency (i.e.

prediction horizon) is not long. 

Another challenging topic is the theoretical analysis of the multi-region nonlinear system with time varying delays, in or-

der to develop a controller that takes into account the state-dependent delays and compare it with the one presented here.

This is going to shed more light on the importance of these delays under various demand variations. Designing controllers

for state-dependent nonlinear delayed systems is a complex and tedious procedure (see Bekiaris-Liberis and Krstic, 2013 for

more details). One approach to deal with such systems, is to design a nominal regulator that stabilizes the delay-free sys-

tem and then apply it to the original delayed system and explore its feasibility and efficiency under different conditions

(such designs are presented in Bekiaris-Liberis and Krstic, 2013 ). This is a modelling simplification that we make for the

model-based design of the controller and further investigations are needed in order to assess the theoretical and practical

limitations of this assumption. Future research is going to deal with a detailed study of the delayed system and explore

more advanced control designs (e.g. feedback law dependent on the delays, predictor feedback control law). 

Estimation of n ij states by combining loop detector data and vehicle trajectories (probes), as well as efficient tech-

niques for optimal distribution of the queued vehicles on the controlled links at the boundaries or regions should also

be research priorities. Finally, a field implementation of the proposed approach and evaluation in real life conditions

could provide further insights about its benefits. Such a case study is under development in the city of Geneva in

Switzerland. 
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