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We Do Not Choose 
Mathematics as Our 
Profession, It Chooses Us: 
Interview with Yuri Manin
Mikhail Gelfand

Gelfand: Has the style of mathematical research 
changed in the past fifty years?

Manin: Individual or societal?
Gelfand: Either.
Manin: I think that people engaged in research 

in mathematics today are doing so the same way 
it was done 200 years ago. This is partly because 
we don’t choose mathematics as our profession, 
but rather it chooses us. And it chooses a certain 
type of person, of which there are no more than 
several thousand in each generation, worldwide. 
And they all carry the stamp of those sorts of 
people mathematics has chosen.

The social style has changed, in the sense that 
social institutions have changed within which 
one studies mathematics. This evolution was not 
unusual. There was the period of Newton, later 
of Lagrange and so forth, when academies and 
universities were being formed, when individual 
mathematical amateurs, who once studied alchemy 
or astrology in the same way, by exchanging letters, 
started forming social structures. (I omit the period 

of antiquity, whose natural development was inter-
rupted in Europe during the first thousand years 
of Christianity.) Then came the scientific journals. 
This all was put in place 300 years ago. In the last 
half of the twentieth century, computers have 
contributed to this development.

Gelfand: But between Newton and Lagrange, 
and the second half of the twentieth century, noth-
ing significant changed?

Manin: No. This social system was consolidated, 
academies plus universities plus journals. These 
developed bit by bit and assumed the form in 
which we now know them. Take for example the 
first volume of Crelle’s Journal (Journal of Pure and 
Applied Mathematics), which came out in 1826—
well, it doesn’t differ at all from a contemporary 
journal. Abel’s article appeared there, on the un-
solvability in radicals of the general equation of 
degree higher than four. A wonderful article! As 
a member of the editorial board of Crelle, I would 
accept it even today with great pleasure.

In the last few decades, the interface between 
society and professional mathematicians has 
changed. This interface now embraces computer 
folks and people around them, including various 
PR people whom we need because of new methods 
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of financing our work, related to proposals, grants, 
and things like that. In mathematics this looks 
odd—you must first write just what it is you are 
doing that is so great, then later give an accounting 
of what you’ve accomplished.

Gelfand: A student of Kantorovich1 used to tell 
how in a midyear report Kantorovich wrote, with a 
straight face, “The theorem is 50 percent proven.”

Manin: In the Mathematics Institute in Moscow 
there was a clear-cut system: I would write that I 
was planning to prove the theorems that in fact 
were proven in the past year. Then I had a whole 
year to continue my work.

But these are all trifles. So long as mathematics 
chooses us, and so long as there are people such 
as Grigory Perelman and Alexander Grothendieck, 
we will remember our ideals.

Gelfand: Yes, grants in mathematics are some-
thing very odd. On the other hand, if we don’t have 
grants, what other mechanisms might there be?

Manin: Well, what do we need? Salaries for 
people and a budget for the institution. I was lucky, 
I worked for a salary and on a budget, not just in 
Moscow, but in Bonn for fifteen years. I don’t see 
anything bad in that.

But the fact that the organizations that provide 
these salaries and budgets have decided to adopt 
the marketplace language is another thing entirely. 
The marketplace debases three areas: health care, 
education, and culture. Roger Bacon keenly spoke 
about the “idols of the marketplace” fallacy. Math-
ematics is a part of culture, in the broad sense of 
that term, and not part of industry or services or 
something of that sort.

Gelfand: But won’t market-free methods lead to 
stagnation, so that there will be no progress?

Manin: Up to now there has been no stagnation.
Gelfand: What you talk about is possible for 

mathematics, because mathematics is an inexpen-
sive science.

Manin: Exactly. I always say, “Why should we 
put ourselves on the market? We (a) don’t cost 
anything, and (b) don’t use up natural resources 
and don’t spoil the environment.” Give us salaries, 
and leave us in peace. I don’t wish to generalize at 
all: I speak only of mathematics.

Gelfand: You mentioned computers. What has 
changed in mathematics since their appearance?

Manin: What has changed in pure mathematics? 
The unique possibility of doing large-scale physi-
cal experiments in mental reality arose. We can 
try the most improbable things. More exactly, not 
the most improbable things, but things that Euler 
could do even without a computer. Gauss could 
also do them. But now, what Euler and Gauss could 
do, any mathematician can do, sitting at his desk. 
So if he doesn’t have the imagination to distin-
guish some features of this Platonic reality, he can

experiment. If some 
bright idea occurs to him 
that something is equal 
to something else, he can 
sit and sit and compute 
a value, a second value, 
a third, a millionth. Not 
only that. People have 
now emerged who have 
mathematical minds, but 
are computer oriented. 
More precisely, these 
sorts of people were 
around earlier, but, with-
out computers, somehow 
something was missing. 
In a sense, Euler was like 
that, to the extent that 
he was just a mathemati-
cian—he was much more 
than just a mathemati-
cian—but Euler the math-
ematician would have taken to computers passion-
ately. And also Ramanujan, a person who didn’t 
even really know mathematics. Or, for instance, my 
colleague here at the institute, Don Zagier. He has 
a natural and great mathematical mind, which is at 
the same time ideally suited to work with comput-
ers. Computers help him study this Platonic reality, 
and, I might add, quite effectively.

I myself am not this sort of person at all, but I 
understand what this is about and would be glad 
to have collaborators who might help me in this. 
So this is what computers have done for pure 
mathematics.

Gelfand: What about the relationship between 
mathematics and theoretical physics? How is that 
structured?

Manin: This relationship has changed during 
my own lifetime.

It is important to note that in the time of New-
ton, Euler, Lagrange, Gauss, the relationship was 
so close that the same people did research in both 
mathematics and theoretical physics. They might 
have considered themselves more as mathemati-
cians or more as physicists, but they were exactly 
the same people. This lasted until about the end 
of the nineteenth century. The twentieth century 
revealed significant differences. The story of the 
development of the general theory of relativity 
is a striking example. Not only did Einstein not 
know the mathematics he needed, but he didn’t 
even know that such mathematics existed when 
he started understanding the general theory of 
relativity in 1907 in his own brilliantly intuitive lan-
guage. After several years dedicated to the study 
of quanta, he returned to gravitation and in 1912 
wrote to his friend Marcel Grossmann: “You’ve got 
to help me, or I will go out of my mind!” Their first 
article was called “A sketch of a theory of general 

1 L. V. Kantorovich (1912–1986), Soviet mathematician 
and economist, Nobel Prize in Economics 1975.

Yuri Manin, Cinque Terre, Italy, 
1994.
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relativity and a theory of grav-
ity: I. Physics Part by Albert 
Einstein; II. Mathematics Part by 
Marcel Grossmann.”

This attempt was half suc-
cessful. They found the right 
language but had not yet found 
the right equations. In 1915 
the right equations were found 
by Einstein and David Hilbert. 
Hilbert derived them by find-
ing the right Lagrangian den-
sity—the importance of this 
problem, it seems, for some 
time eluded Einstein as well. It 
was a great collaboration of two 
great minds that unfortunately 
prompted historians to start 
silly fights about priorities. The 
creators themselves have been 
grateful and generous in rec-
ognizing each other’s insights.

For me, this story marks the 
period in which mathematics and physics parted 
ways. This divergence continued until about the 
1950s. The physicists dreamed up quantum me-
chanics, in which they found a need for Hilbert 
space, Schrödinger’s equations, the quantum of 
action, the uncertainty principle, the delta func-
tion. This was a completely new type of physics 
and a completely new type of philosophy. What-
ever pieces of mathematics were necessary—they 
developed them themselves.

Meanwhile, the mathematicians did analysis, 
geometry, started creating topology and functional 
analysis. The important thing at the beginning of 
the century was the pressure by philosophers and 
logicians, trying to clarify and “purify” the insights 
of Cantor, Zermelo, Whitehead, et al., about sets 
and infinity. Somewhat paradoxically, this line of 
thought generated both what came to be known 
as the “crisis in foundations” and, somewhat later, 
computer science. The paradox of a finite language 
that can give us information about infinite things—
is this possible? Formal languages, models and 
truth, consistency, (in)completeness—very impor-
tant things were developed, but quite disjoint from 
physicists’ preoccupations of that time.

And Alan Turing appeared, to tell us: “The 
model of a mathematical deduction is a machine, 
not a text.” A machine! Brilliant. In ten years, we 
had von Neumann machines and the principle of 
separation of programs (software) and hardware. 
Twenty years more—and everything was ready.

During the first third of the century, except for 
particular minds—von Neumann was undoubtedly 
both a physicist and a mathematician, and I know 
of no other person with a mind on that scale in 
the twentieth century—mathematics and physics 

developed in parallel and after 
a while stopped taking notice of 
each other. In the 1940s Feyn-
man wrote about his wonderful 
path integral, a new means of 
quantifying things, and worked 
on it in a startlingly mathemati-
cal way—imagine something 
like the Eiffel Tower, hanging 
in the air with no foundation, 
from a mathematical point of 
view. So it exists and works just 
right, but standing on nothing 
we know of. This situation con-
tinues to this very day. Then, 
in the 1950s the quantum field 
theory of nuclear forces started 
to appear, and it turned out that 
mathematically the respective 
classical fields are connection 
forms. The classical equation 
of stationary action for them 
was known in differential ge-

ometry. The equation of Yang-Mills entered the 
scene, mathematicians began to look askance at 
the physicists, and the physicists at the mathema-
ticians. It turned out, paradoxically—and for me 
pleasantly—that we began to learn more from the 
physicists than they learned from us. It turned out 
that with the help of quantum field theory and the 
apparatus of the Feynman integral they developed 
cognitive tools that allowed them to discover one 
mathematical fact after another. These weren’t 
proofs, just discoveries. Later the mathematicians 
sat themselves down, scratched their heads, and 
reshaped some of these discoveries in the form of 
theorems and began trying to prove them in our 
honest manner. This shows that what the physi-
cists do is indeed mathematically meaningful. And 
the physicists say, “We always knew that, but of 
course, thanks for your attention.” But in general, 
as a result, we learned from the physicists what 
questions to ask, and what answers we might pre-
suppose—as a rule, they turn out to be correct. The 
renowned physicist and mathematician Freeman 
Dyson in his Gibbs lectures “Missed opportunities” 
(1972) has beautifully described many cases when 
“mathematicians and physicists lost chances of 
making discoveries by neglecting to talk to each 
other.” Especially striking for me was his revela-
tion that he himself “missed the opportunity of 
discovering a deeper connection between modular 
forms and Lie algebras, just because the number 
theorist Dyson and the physicist Dyson were not 
speaking to each other.”

Then Witten appeared, with his unique gift for 
the production of glorious mathematics from this 
very Eiffel Tower that hangs in the air. I looked in 
Wikipedia: before getting his Ph.D. in physics in 
1976, when he was twenty-five, he was planning to 

Manin, in front of the panorama of 
Rome from the gallery of

San Pietro, 1998.
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engage in political journalism, then economics…
until he finally heard the call of mathematics and 
physics.

He is the master of such astonishing mental 
equipment, which produces mathematics of un-
likely strength and force, but arising from physical 
insights. And the starting point of his insights is 
not the physical world, as it is described by experi-
mental physics, but the mental machinery devel-
oped for the explanation of this world by Feynman, 
Dyson, Schwinger, Tomonaga, and many other 
physicists—machinery that is entirely mathemati-
cal but that has very weak mathematical founda-
tion. It is such an earthshaking heuristic principle, 
not at all some triviality, but, I must say again, an 
enormous structure without a foundation, at least 
of the kind we have gotten accustomed to.

Gelfand: So has everyone grown used to the fact 
that there is no foundation, and lived with it, or are 
they trying to build a foundation?

Manin: None of the attempts that have been 
made have succeeded in sufficient generality. 
Mathematicians have developed a few approxi-
mations to what we might call the Feynman 
integral; for example, Wiener integration, which 
was invented as early as the 1920s. It was used to 
study Brownian motion, where there is a rigorous 
mathematical theory. There are also some interest-
ing variants, but the theory is much more narrow 
than is required to cover all varied applications of 
the Feynman integral. You see, as a mathematical 
theory it’s small—in strength or power it is not 
comparable to the machinery that now produces 
really great mathematics.

I don’t know what will happen with the ma-
chinery when Witten stops working on it, but I 
very much hope that it will soon permeate the 
mathematical world. A small industry has arisen 
whose goal is to prove the theorems that Witten 
guessed, in particular, in the so-called Topological 
Quantum Field Theory (TQFT), and its output is 
ample and well known.

Actually, homotopical topology and TQFT have 
grown so close that I have started thinking that 
they are turning into the language of new founda-
tions.

Such things have already occurred. Cantor’s 
theory of the infinite had no basis in the older 
mathematics. You can argue about this as you 
like, but this was a new mathematics, a new way 
to think about mathematics, a new way to produce 
mathematics. In the final analysis, despite the 
arguments, the contradictions, Cantor’s universe 
was accepted by Bourbaki without apology. They 
created “pragmatic foundations”, adopted for 
many decades by all working mathematicians, as 
opposed to “normative foundations” that logicists 
or constructivists tried to impose upon us.

Gelfand: It seems that mathematicians writing 
about Bourbaki in Russian have different points 

of view. There are rather harsh critics of all this 
set-theoretic foundational work, who criticize Bour-
baki’s isolation from the physicists and the wonder-
ful possibilities they can open for us.

Manin: There is nothing special in this. The fact 
that they curse at Bourbaki shows that they don’t 
know how things are now done. What Bourbaki 
did was to take a historical step, just as what Can-
tor himself did. But this step, while it played an 
enormous role, is very simple—it was not creating 
the philosophical foundations of mathematics, but 
rather developing a universal common mathemati-
cal language, which could be used for discussion 
by probabilists, topologists, specialists in graph 
theory or in functional analysis or in algebraic 
geometry, and by logicians as well.

You start with a few common elementary 
words, “set, element, subset…”, then you build up 
definitions of the basic structures that you study, 
“group, topological space, formal language… ”.
Their names form the second layer of your own 
terminology. There might come the third, fourth, 
or fifth layer, but basic construction rules are 
common, and getting together, people could talk 
to each other with complete understanding: “For-
mal language is a set of letters, plus a subset of 
well-formed words—terms, plus connectives and 
quantifiers, plus deduction rules… .” From this 
perspective, Gödel’s incompleteness theorem, for 
example, loses any sort of mystery. The theorem 
acquires its mystery when you start examining 
it philosophically, but actually, it is simply a 
theorem stating that a certain structure does not 
have finitely many generators. Oh, my God! Such 
structures are a penny a pound, but just think, 
here is one more. The profundity appears when 
we add to this a particular self-referential seman-
tics. Then it enters the philosophical foundation 
of mathematics.

So Bourbaki in fact did something completely 
different from what these guys think. (I omit here 
any discussion of Bourbaki’s influence on math-
ematics education in France: as with all sociological 
questions, this may arouse a chorus of controversy 
in any audience.)

Gelfand: What is the status of hypotheses in 
mathematics? For example, Fermat’s Last Theo-
rem—in recent years no one has been trying to find 
a counterexample: everyone understood that it was 
correct and that one must try to prove it. And there 
are many such well-known propositions, especially 
in number theory.

Manin: Here I take a position that sets me apart 
from many good colleagues. I’ve heard many argu-
ments against me on this subject. I must explain to 
you how I imagine mathematics. I am an emotional 
Platonist (not a rational one: there are no rational 
arguments in favor of Platonism). Somehow or 
other, for me mathematical research is a discov-
ery, not an invention. I imagine for myself a great 
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Gelfand: That is, instead of a single distinct de-
tail, you vaguely see a whole building.

Manin: Yes. And so you begin to blow away 
the mists, to find appropriate telescopes, seek 
analogies with edifices that have been discovered 
before, create a language for the things that you 
see so vaguely, and so on. This is what I would call, 
tentatively, a program.

Cantor’s theory of the infinite was such a pro-
gram. It was a rare event: it was at once a program 
and a discovery, that there were orders of infinity. 
And, say, the continuum hypothesis—whether 
there is something between the countable infinity 
and the continuum—is a question that has turned 
out to be less important than many other ques-
tions, but very stimulating. If Cantor had asked 
only about this—it would have been bad. Its sig-
nificance would have been discovered only in the 
future. But he did considerably more right away; 
he started a whole program of investigation.

Weil’s hypothesis, about how many solutions 
there are to an equation modulo p , is such a pro-
gram, which became well known during my life-
time. He immediately saw a striking analogy: in the 
areas where he was looking, there was a gap, but 
in other places there was an entire theory, (co)ho-
mology theory, implying the Lefschetz theorem on 
fixed points of maps. Half of Grothendieck’s life, 
and of several people around him including Pierre 
Deligne, was devoted to filling this gap. They filled 
the gap, the analogy became precise, and modern 
algebraic geometry was born. And much more has 
happened as a result: set theory as the language of 
contemporary mathematics started to recede, and 
categories, with all subsequent superstructures, 
started to replace sets in their old function.

In logic, there was Hilbert’s program, except 
that he formulated it too optimistically. He wanted 
to prove that everything true was provable. He 
saw the contours of the edifice inaccurately, but 
the program developed anyway. Gödel, Turing, 
Church, von Neumann, computers, and computer 
science—to a great degree this originated with 
Hilbert.

The four-color problem is for me an example 
of a bad problem which didn’t lead to a program. 
It was proved with the aid of computers so that 
to this day swords are crossed over it. But that’s 
not so important as the fact that until now no one 
has incorporated it into any sort of sufficiently 
rich context. So it is simply a means of training 
the mind.

For these reasons, I generally don’t like prob-
lems as such. But when a problem arises within a 
program—that’s when it can be a good one, when 
we know in advance to what edifice this detail be-
longs. The Riemann Hypothesis, without a doubt, 
is a problem that Riemann originated within a 
program, although during the course of a century 
and a half, the narrow number theorists continued 

castle, or something like that, and you gradually 
start seeing its contours through the deep mist, 
and begin to investigate something. How you 
formulate what it is you’ve seen depends on your 
type of thinking and on the scale of what you have 
seen, and on the social circumstances around you, 
and so on.

What you have seen can be formulated as 
the presence or absence of something. Look at 
x2 + y 2  =  z 2. It is wonderful that we can write 
down all the integral solutions in one formula—in 
a certain sense this was known to Diophantus. 
When you’ve done this, it raises a question: Fine, 
but what about cubes? You search and search, and 
there are none. Hmm. How strange. And if we ask 
about fourth powers? Hmm. Again nothing. Well, 
can it be that there is never anything further? And 
so you discover a difference between the second 
power and the third, fourth, and so on. This history 
of Fermat’s Last Theorem, well, it is that sort of 
history. But when you pose a problem, that this-
and-this is equal to that-and-that, or that such-and-
such never happens, you never know in advance if 
you have a good problem or a bad one—not until 
it is solved or almost solved.

Problems have qualities. In number theory, 
there are many problems that can be formulated 
in elementary terms, and we know that Fermat’s 
Last Theorem was a wonderful problem. We know 
this because, throughout its history, from its state-
ment to its solution, it turned out to be connected 
to a host of things that were not connected to each 
other a priori. And for its solution, it was neces-
sary to investigate these fundamental things. The 
problem turned out to be a detail in an enormous 
edifice.

But we can take other problems, say those con-
cerning perfect numbers or twin primes. Are there 
infinitely many perfect numbers, that is, numbers 
that are equal to the sum of their divisors? Or infi-
nitely many pairs of primes whose difference is 2? 
To this day, no one has built any interesting theory 
around these problems, although their statements 
look no worse than that of Fermat’s Last Theorem.

Gelfand: Are these properties of the problems 
themselves, or is it just that no one is actively inves-
tigating them, for some social reason?

Manin: As a Platonist, I know that this is a 
property of the problems themselves, but it is a 
property that one cannot recognize at the moment 
of formulating the problem. It reveals itself in the 
process of historical development.

Partly for this reason, I am not partial to prob-
lems. Solving a problem requires the skill of 
finding a detail, but you don’t know what it is a 
detail of. As a Platonist, I am partial to complete 
programs. A program arises when a great math-
ematical mind sees something as a whole, or not 
as a whole, but as something more than a single 
detail. But it is seen at first only vaguely.
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to look at it as a very important isolated challenge. 
I’m somewhat apprehensive that its first solution 
might be a proof using blunt analytic methods. 
It will receive every imaginable prize, the solu-
tion will be acclaimed in every newspaper in the 
world, and all of this will be misleading because 
the “right” solution should be given in a wider 
context, which we already know. We even know 
several approaches to a solution. Nevertheless, it 
is quite possible that the first solution will be a 
poor and uninteresting one.

Gelfand: Are there hypotheses that everyone 
had grown used to and assumed to be obviously 
correct, but then counterexamples were found?

Manin: I don’t think I know of any long-standing 
hypotheses that people believed, but then found 
counterexamples.

Gefand: If someone found a counterexample to 
Fermat’s Last Theorem, rather than a proof, would 
this be a great earthshaking event? Or would it 
simply mean that the problem was not a good one?

The problem would still have been a good 
one, because it stimulated the development of a 
context. And then someone solves it within this 
context. The answer could be positive or nega-
tive—this second question is less significant. The 
significance of the question is that it helped to 
establish an important context.

If a counterexample had been found before 
the 1960s, everyone would have been scratching 
their heads. If a counterexample had been found 
somewhere in the 1970s, it would have been very 
interesting and somewhat shattering, because by 
that time it had become clear that Fermat’s Last 
Theorem could be deduced from several other 
conjectures that are far from simple and that had 
a more far-reaching character, related to the Lang-
lands program. By then it was known that if these 
things were true, then so was Fermat’s Last Theo-
rem. Of course if a counterexample to Fermat’s 
Last Theorem had been found, then these things 
would have to be false. And this would have meant 
the destruction of a much more fundamental and 
complex system of belief. It would have evoked 
enormous interest and attempts at understanding 
what was amiss, we would have to rebuild a lot of 
the edifice, and so on. All that would have followed 
from the discovery of a counterexample.

Gelfand: Have there been such strong counter-
examples in history? Perhaps Gödel’s Theorem? 
Before that it was supposed that one could prove 
everything that is true.

Manin: Hilbert believed this, and I don’t know 
how many others believed it. But this shows that 
you must view this program correctly. Its first 
important outcome was the construction of a 
mathematical context in which one could formu-
late questions about truth and provability in math-
ematics as precise mathematical problems rather 
than vague philosophical ones. By the nature of 

this quest, one has to introduce self-referentiality, 
and the rest becomes the matter of inventiveness, 
brilliantly demonstrated by Tarski and Gödel.

At the start of the formulation of the program, 
people made wrong guesses about what it would 
lead to, and the counterexamples showed that 
these were in fact errors.

Gelfand: Were there other interesting wrong 
perceptions?

Manin: There were some showing a lack of 
human imagination. In the history of mathemat-
ics, such things are not usually called counter-
examples, but paradoxes. Take for instance the 
theorem of Banach-Tarski. You start with a ball, 
and it turns out that you can cut it into five pieces, 
rearrange them, put them back together, and you 
obtain two balls of the same size as the initial one. 
This construction tells us a lot. For example, to the 
critics of the set-theoretic approach in general, it 
means that if this view leads one to such an as-
sertion, then it is not mathematics, but some sort 
of wild nonsense. For logicians it is an example of 
a paradoxical application of the axiom of choice 
of Zermelo and so an argument against accept-
ing it. And aside from all this, it is very beautiful 
geometry. Once I was asked to deliver a lecture 
for the general public in an art museum, and I 
decided that the Banach-Tarski paradox is a great 
subject for the presentation “The Abstract Art of 
Mathematics”. The key point was that we must 
not imagine “pieces” as solid material objects, but 
rather clouds of points. We must imagine that a 
ball consists of indivisible points. You are allowed 
to call a “piece” any subset of these points, you can 
move it and turn it around, but only as a whole, 
moving it as a single object, so that the pairwise 
distances between points remain the same. So you 
split the sphere not into solid pieces, but into five 
clouds. And these clouds can mutually penetrate 
each other; in fact, there’s nothing solid about 
them. They have no volume, no weight, they are 
wonderful objects of a highly trained imagination.

Why is there no obvious contradiction? Isn’t it 
true that two balls contain more points than each 
one? No, the infinite number of points is exactly 
the same, that’s easy to prove. I explained this to 
my grandson, that there are as many points in a 
sheet of paper as there are on the wall of the room. 
“Take the sheet of paper, and hold it so that it 
blocks your view of the wall completely. The paper 
hides the wall from your sight. Now if a beam of 
light comes out of every point on the wall and 
lands in your eye, it must pass through the sheet 
of paper. Each point on the wall corresponds to a 
point on the sheet of paper, so there must be the 
same number of each.”

The message here is that if you make a dust of 
individual points out of your initial ball, there will 
be enough points to fill two, or three, or even an 
infinity of balls of arbitrary sizes. The difficulty 
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one was called this-and-this; so I apply slightly 
different axioms, and I will call it such-and-such. 
When you start talking, you start with this. That 
is, at first we start with the discrete sets of Can-
tor, upon which we impose something more in the 
style of Bourbaki.

But fundamental psychological changes also 
occur. Nowadays these changes take the form of 
complicated theories and theorems, through which 
it turns out that the place of old forms and struc-
tures, for example, the natural numbers, is taken 
by some geometric, right-brain objects.

Instead of sets, clouds of discrete elements, we 
envisage some sorts of vague spaces, which can be 
very severely deformed, mapped one to another, 
and all the while the specific space is not impor-
tant, but only the space up to deformation. If we 
really want to return to discrete objects, we see 
continuous components, the pieces whose form or 
even dimension does not matter. Earlier, all these 
spaces were thought of as Cantor sets with topol-
ogy, their maps were Cantor maps, some of them 
were homotopies that should have been factored 
out, and so on.

I am pretty strongly convinced that there is an 
ongoing reversal in the collective consciousness of 
mathematicians: the right hemispherical and ho-
motopical picture of the world becomes the basic 
intuition, and if you want to get a discrete set, then 
you pass to the set of connected components of a 
space defined only up to homotopy.

That is, the Cantor points become continuous 
components, or attractors, and so on—almost from 
the start. Cantor’s problems of the infinite recede 
to the background: from the very start, our images 
are so infinite that if you want to make something 
finite out of them, you must divide them by an-
other infinity.

This is parallel to the way we envisage a Feyn-
man integral. At first it is just a hieroglyph charged 
with an interpretational challenge. The first two, 
three, four steps of interpretation are all ad hoc, 
appealing to various analogies with other cases 
where the mathematics is clean (“toy models”). At 
a certain stage you may get a formal series that 
doesn’t just diverge, but consists of terms that are 
themselves divergent (although finite-dimensional) 
integrals. Then you artificially regularize each 
term, making it finite. But the series, in general, 
still diverges. So you invent an interpretation of 
the series. And finally, having forced your way 
through a crowd of infinities, you obtain a finite 
answer. As a bonus, you get a series of marvelous 
mathematical theorems. I see in this an analogy 
with a rebuilding of pragmatic foundations in 
terms of category theory and homotopic topology.

arises when you try to define clouds of points that 
you will have to move and turn and rearrange into 
two balls leaving no gaps. This is mathematical 
trickery, very beautiful, but if you want to explain 
it well, you need much more time.

So it’s not a counterexample, but a paradox baf-
fling an untrained imagination.

Several such paradoxes were discovered during 
the time of transition between classical mathemat-
ics and set theoretic mathematics. There was the 
theorem that a curve could fill the square. There 
were many such things, and they taught us a lot.

Many people thought that this was pure fantasy, 
but the newly trained imagination allowed one to 
recognize “paradoxical” behavior of Fourier series, 
to understand Brownian motion, then to invent 
wavelets, and it turned out that these were not 
at all fantasies but almost applied mathematics.

Gelfand: So what will happen in the next twenty 
years?

Manin: I don’t foresee any revolutionary 
changes, because in my view there have been none 
in the last 300 years. Every time new and powerful 
intuitions arose, mathematics retained its charac-
ter, in some strange way. This is also a theme of a 
lecture, one I’ve not given. I would like to show the 
development of the idea of the integers from the 
most remote times to Kolmogorov complexity, and 
all this can be done almost without appealing to 
new mathematics. One and the same idea persists. 
It changes a bit in one era or another, its verbal 
casing changes. But all the same it stays completely 
invariant and so lives on. Nothing is forgotten.

And so I don’t foresee anything extraordinary 
in the next twenty years. Probably, a rebuilding of 
what I call the “pragmatic foundations of math-
ematics” will continue. By this I mean simply a 
codification of efficient new intuitive tools, such 
as Feynman path integrals, higher categories, the 
“brave new algebra” of homotopy theorists, as 
well as emerging new value systems and accepted 
forms of presenting results that exist in the minds 
and research papers of working mathematicians 
here and now, at each particular time.

When “pragmatic foundations” of mathematics 
are made explicit, usually in several variants, the 
advocates of different versions may start quarrel-
ing, but to the extent that it all exists in the brains 
of the working generation of mathematicians, 
there is always something they have in common. 
So, after Cantor and Bourbaki, no matter what 
we say, set theoretic mathematics resides in our 
brains. When I first start talking about something, 
I explain it in terms of Bourbaki-like structures: 
topological spaces, linear spaces, the field of real 
numbers, finite algebraic extensions, fundamental 
groups. I cannot do otherwise. If I’m thinking of 
something completely new, I say that it is a set 
with such-and-such a structure; there was one like 
this before, called this-and-that; another similar 
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