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INTRODUCTION.

T'HE Report of the Mathematical Board annually calls the
attention of the Mathematical Students of this University to
the importance of the Examples appended to the book-work
gquestions in the Senate-House Examination Papers. The
Board conceives that these Examples, or Riders, to use the
more familiar term, afford a searching test of the merits of the
candidates, and are peculiarly adapted to call forth an exhibition
of style, which it must be allowed indicates the mathematician
far more than a mere knowledge of books; and so high does it
estimate their importance, that it has repeatedly recommended
a diminution of the book-work questions in the Senate-House
papers, in order to allow the admission of a larger number of
Riders.

“To obtain,” it observes, “a surer test of the acquaintance
of the candidates with the subjects of their reading, examples
and deductions have been attached to many of the propositions
from books. The Board, however, having had before them an
analysis of the answers to the questions propesed in 1846, 1847,
1848, and 1849, find that the number of answers to the examples
and deductions has fallen below the amount which it is desirable
to secure. They are of opinion that such a result may in a
great measure be prevented by diminishing the number of
questions, and they have agreed to recommend, that the papers
containing the questions from books be shortened, in order to
enable the candidates to give more time to Examples and
Deductions.”— Report of Mathematical Board for 1849.
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The Report for 1850, with the same object in view, recom-
mended a still further curtailment of the papers. The Report
of the present year, while it again draws attention to the defect
complained of in the former ones, acquaints us with the opinion
of the Moderators aud Examiners, that the shortening of the
papers has not had the desired effect. “1It is obvious,” it goes
on to state, ‘‘that the only remedy lies in the previous practice
and exercise of those who are to be examined,” and in the
students themselves “ giving increased attention to the practical
application of their reading. It is unnecessary to say anything
in proof of the great importance of this portion of a mathe-
matical examination, testing as it does very effectually the
degree in which a student has really made himself master of
the subjects which he professes to have read; and it is almost
equally unnecessary to state, that a corresponding weight is
attributed to it by the Moderators and Examiners, in estimating
the relative merits of Candidates for Honours.”

A few observations therefore on the principles of the solution
of this class of questions, exemplified by the solution of those
actually proposed in the Senate-House, will not, it is hoped,
be altogether useless to those who may feel the want of direc-
tion in a branch of their studies which forms so essential a
preparation for the Kxamination for Honours.

Riders we define to be original questions arising either
directly or indirectly out of the propositions to which they are
appended. For distinctness’ sake, we may divide them into the
three following classes :—

(1). The first and simplest kind are direct examples of a
certain class of propositions; such, for instance, as investigate
general rules for the various operations in different subjects.
Examples of this kind are merely particular applications of the
general rule which the proposition establishes, and must be
answered by rigidly following out the method investigated in
the foregoing book-work. It cannot be too carefully borne in
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mind by the student, that the value of his solution of an example

of this class is in exact proportion to the strictness with which
it corresponds with the proposition.

(2). Another kind consists of those questions in which some

fact or property enunciated in a theorem immediately preceding
has to be applied; e.g.

Prop. “If a quantity vary directly as («) when (b) is invari-
able, and inversely as (6) when (a) is invariable, prove that it
a
b |

Ex. If 5 men and 7 boys can reap a field of corn of 125
acres in 15 days; in how many days will 10 men and 8 boys
reap a field of corn of 75 acres, each boy’s work being 4 of
aman’s? (p. 24).

will vary as -, when both () and (5) are variable.

Under this head must be placed also all direct applications
of formulee. 'The point to be kept in mind is, that any solution
independent of the formula or of the property enunciated in the
proposition, however elegant in itself, and however excellent
a solution of the question regarded as a problem, is altogether
valueless as a solution of the rider.

(3). The third class consists of all those questions which are
suggested by the proposition to which they are appended, or
arise out of some particular part of the book-work investigation.
This kind partakes more of the problematical character than the
two former; but still we may in this case also apply the general
observation, that the leading idea of the proposition or the
method of its investigation should be the chief guide in the
solution of the rider, and afford a pattern for its style.

It has been the aim of the following pages to follow out as
closely as possible these principles. In all cases, the proposition
has been given to which the question solved is a rider; and
in several, a few observations have been made upon the pro-
position, which appeared necessary in order to connect it with
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the question appended. At the end of the book will be found
a short collection of Kxamples for practice.® |

We will conclude with a word of practical advice to the
student. Let him not consider any proposition, or piece of
book-work, to have been thoroughly mastered till he has dili-
gently practised examples connected with it, so as to be able,
when called upon in an Examination, to apply it readily to any
required purpose. In this way his knowledge of mathematics
will become sound and practical, and the science itself will
become interesting and attractive. To commit to memory a
number of theorems, and then to reproduce them in examination
without the power of exemplifying their use, is a process no less
dry than useless; but he who makes himself, in the true sense
of the word, familiar with them by an intelligent observation
of their different uses and applications, and by acquiring a
readiness in illustrating their utility, receives the full benefit
from the wise system according to which this University ap-
points mathematics as the basis of her training—requiring of
her members to study this branch of science, not so much for
the purpose of acquiring the knowledge of it, as of disciplining

their own minds by smastering it.

* Jt will be perceived that no Examples are solved under the head of
Astronomy ; the reason being, that this subject, as treated in the earlier part
of the Examination, consists almost entirely of popular explanations, and not
of propositions which can be applied to Examples.
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EUCLID.
1849.  (4). Describe an cquilateral triangle upon a given
finite straight line. (Huc. I. 1.)

(B). By a method similar to that used in this problem,
describe on a given finite straight line an isosceles tri-
angle, the sides of which shall be each equal to twice
the base.

Let AB (fig. 1) be the given finite straight line.

With centre A and radius equal to 2AB describe a circle
CDF; and with centre B and radius equal to 2AB describe
a circle CEF. Let the circles intersect in C. Join AC, BC.
Then AC, BC being radii of the two circles are each equal to
2AB; and therefore ABC is the triangle required.

1850. (4). The opposite sides and angles of parallelograms

are equal to one another; and the diameter bisects them.
(Euc. 1. 34.)

(B). If the opposite sides or the opposite angles of any
quadrilateral figure be equal, or it its diagonals bisect one
another, the quadrilateral is a parallelogram.®

1848. (C). If the two diameters be drawn, shew that a paral-
lelogram will be divided into four equal parts.

* This question must be considered as belonging to the third class of
‘Riders.” (See Introduction.)

B
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Let ABCD be a quadrilateral. Join AC, BD (fig. 2).

1. Let AB = DC, and AD = BC. Since, then, in the two
triangles ABD, CDB, two sides in one are equal to two sides in
the other, each to each, and the third side BD is common to
both, the triangles are equal, and therefore the angles, each to
each.

Therefore ZABD = 2CDB h AB || DC,

and ZADB = LCBD} WREnee {AD I BC.

Hence ABCD is a parallelogram.

2. Let LABC = £ADC, and £BAD = £BCD.
The three angles of triangle ABD = two right-angles = three
angles of triangle CDB.

But LBAD = £BCD;
. LABD + £4ADB = /BDC + 2DBC.
Also LABD + +DBC = «BDC + /ADB.

Adding these equals,
2.ABD + £ADB + 2DBC = 2.BDC + 2ADB + 2DBC.
Taking away the common angles ADB, DBC, we get

immediately

LABD = £BDC,
whence also (tDBC = £BDA.
Hence AB || DC,
and AD || BC.

And therefore ABCD is a parallelogram.

3. Let AE = EC and DE = EB.
Since also LAED = £CEB,
therefore the triangles ADE, CBE are equal, and
LtADE = 1CBE;
whence AD || BC.

Treating triangles AEB, CED in exactly the same manner
as the triangles ADE, CBE, we obtain that

AB || DC.
Hence ABCD is a parallelogram.
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Solution of (C). By the latter part of (4) we have
AADC = § parallelogram,
= rDAB.
But the triangle AED is common ; therefore
s1DEC = aBEA.
By exactly similar reasoning,
sAED = rCEB.

Again, in the triangles AEB, CED, two angles are equal
and AB = DC, therefore
EB = ED.

Therefore the triangles BCE, ECD, being upon equal bases and

between the same parallels,* are equal to one another,

Hence AECD = aABCE = ABEA = 2AED.

1851.  (A4). Triangles upon equal bases and between the same
parallels are equal to one another. (I. 38.)

(B). Let ABC, ABD be two equal triangles upon the
same base AB, and on opposite sides of it: join CD
meeting AB in E; shew that CE is equal to ED.

Make £ABD’ = £ABD and BD' = BD (fig. 3). Join CD,
AD', ED'. By construction,
sABD = AABD,
= aABC, by hypothesis.
By applying the proposition as in Fuclid 1. 39 and 40, we
obtain that D'C || AB.

Hence, because triangles CEB, D'EB are on the same base
and between the same parallels,

sCEB = 2aD'EB,
= sDEB, by the construction of the figure.

Now the triangles CEB, DEB being equal and between the
same parallels, must be on equal bases. For if not, let CE=EF.

¥ See Note, p. 5.
B2
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Then triangles CEB, FEB, being on equal bases and between
the same parallels, are by (4) equal to one another. Hence
~rFEB = 2DEB; that is, the less equals the greater, which is
absurd. Therefore CE = ED.

1851.  (4). In any right-angled triangle, the square described
upon the side subtending the right angle is equal to the
squares described on the sides which contain the right
angle. (1. 47.)

(B). If ABC be a triangle whose angle A is a right
angle, and BE, CF be drawn bisecting the opposite sides
respectively ; shew that four times the sum of the squares
of BE and CF is equal to five times the square of BC.

4BE® = 4 (AB*+ AE?) by (4) (fig. 4),
4CF* = 4 (AC* + AT
oo 4(BE' + CF") = 4 (AB*+ ACY) 4 4AE® + 4AT
=4BC* + AB® + A,
= 4BC* 4+ BCY
= 5BC"

1849. (4). Divide a given straight line into two parts, so
that the rectangle contained by the whole and one of the
parts shall be equal to the square of the other part.
(1. 11.)

(D). Shew that in Euclid’s figure, four other lines,
beside the given line, are divided in the required
manner.

It is at once manifest that CD (fig. 5) is divided in the
required manner in K.

Also in the investigation of (4) it is shewn that
CF.FA = AB* = AC~

Thus CF is so divided in A, as is also therefore KG in the
point H.
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Moreover, since the triangles BHL, BAE, are similar,
BE, BA are divided, similarly in the points L, K.*

Hence the lines CF, KG, CD, EB are divided in the same
manner as the line AB.

1850.  (4). Describe a square which shall be equal to a given
rectangle. (11, 14.)

(B). Given a square, and one side of a rectangle which
is equal to the square ; find the other side.

If, in (4), AC (fig. 6) be the given rectangle, the proof of
the proposition involves this construction. Produce AB to D,
making BD =BC. On AD describe semi-circle AHD. Pro-
duce CB to H. It is then proved that

square on BII = rectangle AC.
We thus have suggested the following solution of (B):

Let AB be the given side of the rectangle: draw BH at
right angles to AB, equal to a side of the given square. Join
AH; make ZAHE = £ EAH; and with centre E and radius
EA or EH describe the circle AHD. Then,

.+ AD is bisected in E,
rect. of AB, BD + sq. on EB = sq. on ED
= sq. on EH
= sq. on EB + sq. on BH,
and ... rect. of AB, BD = sq. on BH,
i e. = given square.
Hence BD is the other side required.

1848.  (4). Equal straight lines in a ecircle are equally distant
from the centre; and, conversely, those which are equally
distant from the centre are equal to one another. (111.14.)

(B). Shew that all equal straight lines in a circle will
be touched by another circle.

#* In cases like the above it is not unallowable to assume the result of a well-
known property, which in Fuclid is proved subsequent to the proposition under
consideration.
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The proposition tells us that the perpendiculars from the
centre of a circle on all equal straight lines in the circle are
equal to one another. Therefore a circle may be described
through the extremities of all these perpendiculars, having its
centre at the centre of the given circle: and since each of the
equal straight lines is thus drawn through the extremity of a

diameter at right angles to it, each will be a tangent to the
second circle.

1848. (4). The angle at the centre of a circle is double of
the angle at the circumference upon the same base; that
is, upon the same part of the circumference. (II1. 20.)

(B). If two straight lines AEB, CED, in a circle,
intersect in K, the angles subtended by AC and BD at
the centre are together double of the angle AEC.

Join BC (fig. 7).
Then, angle subtended by AC at the centre
= £AOC,
= 2,.ABC, by (4).
The angle subtended by BD at the centre

= ¢+ BOD,
= 2, BCD.
Therefore 2AOC + £BOD = 2.EBC + 22 ECB,
= 2, AEC.

1851.  (4). The opposite angles of any quadrilateral figure
inscribed in a circle are together equal to two right
angles. (111 22.)

(B). If a polygon of an even number of sides be
inscribed in a circle, the sum of the alternate angles,
together with two right angles, is equal to as many right
angles as the figure has sides.

If the polygon is a quadrilateral, we have immediately
from (4),

sum of alternate angles + 2 right angles = 4 right angles.
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If the polygon have six or more sides, from any angular
point A draw lines A A, AA_ (fig.8) to the third angular
point on each side of A, cutting off quadrilaterals.¥ Since the
number of remaining sides between A, A is even, a certain
number of quadrilaterals may be formed by joining every second

angular point from A, with A .
All these quadrilaterals are inscribed in the circle; hence,
by the proposition,

LAAA +LAAA =2 right angles,

1772
LAAA +2LAAA =2 right angles,
LAAA +LAAA =2 right angles,
LAAA +2AA A =2 right angles.

Adding,

sam of alternate angles A, A, A, &c. = twice as many right
angles as there are quadrilaterals

= 2 (r — 1) right angles,
if 2r is the number of sides of the polygon ;

.. sum of alternate angles + 2 right angles = 2» right angles
= as many right angles as there are sides.

1850. (4). In a circle, the angle in a semicircle is a right
angle. (111 31.)

(B). The greatest rectangle that can be inscribed in
a circle is a square.

Here (B) is a direct application of the fact asserted in (4).

Let ABCD (fig. 9) be any rectangle inscribed in a circle.
Join AC. By the proposition, . 2ABC is a right angle,
ABC is a semicircle.

Draw BE perpendicular to AC, and take F' the centre.

* If the polygon has six sides, the lines 4,4,, 4,4, will coincide.
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Then rectangle ABCD = 2 triangle ABC
= rectangle on base AC, and between
same parallels as the triangle ABC
= AC.BE.

Now AC, being the diameter of the circle, is constant;
therefore the area of the rectangle is proportional to BE, and
is greatest when BE is greatest, 7. e. when it coincides with GF.

Hence the greatest rectangle inscribed in the circle is

AGCH, which is evidently a square.

1850.  (4). Cut off a segment from a given circle which shall
contain an angle equal to a given rectilineal angle.

(B). Divide a circle into two segments, such that the
angle in one of them shall be five times the angle in
the other.

We may consider (4) as a direct application of the pro-
position that, “if from a point in a circle two lines be drawn,
one touching and the other cutting the circle, the angle between
them is equal to the angle in the alternate segment of the
circle.” (B) may be regarded as a direct application of the
same proposition to a slightly different problem.

Draw AB touching the circle (fig. 10). Take any point B
in the tangent; and on AB describe an equilateral triangle

ABC. Bisect the angle BAC by the line AD.
Then LtDAB =1,CAB.
But LCAB =} of 2 right angles;
. tDAB =} of 2 right angles;
. LDAG =% of 2 right angles:
whence tDAG =5 ,DAB.

But tDAG = £ in segment AFD,
and LDAB = 7 in segment AED ;

. £ in segment AFD = 5 £ in segment AED.

Hence the cirele is divided as required by the line AD.
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1851.  (4). Inscribe an equilateral and equiangular quinde-
cagon in a given circle. (Iv. 16.)

(B). In a given circle inscribe a triangle, whose angles
are as the numbers 2, 5, and 8.

Let A,A, ... A, be an equilateral and equiangular quin-
decagon inscribed in the given circle. Draw the lines A A,
A, A, A A, cutting off arcs which are to one another as 2, 5, 8.
The angles AAA, AAA, AAA, which stand upon these

3771778 83"
arcs, will also be in this ratio; and therefore A A A  will

be the triangle required.

1850.  (A4). Describe an isosceles triangle, having each of the
angles at the base double of the third angle. (1v. 10.)

(B). Shew that the base of the triangle is equal to
the side of a regular pentagon inscribed in the smaller
circle of the figure.

In the investigation of (4) it is shewn that BD = DC
(fig. 11).
If O is the centre of the small circle,
£COD =2 £LCAD.

But by (4), the angles ABD, ADB are each double of BAD;

therefore the sum of these 3 angles, or 2 right angles,

=5/BAD;
. £BAD =} (2 right angles),
and £COD =2 2BAD

= 1 (4 right angles).

Hence CD, to which BD is equal, is the side of a regular
pentagon inscribed in the circle ACD.

1851. (4). If the angle of a triangle be divided into two
equal angles by a straight line, which also cuts the base,
the segments of the base have the same ratio which the
other sides of the triangle have to one another. (VL 3.)
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(B). If A, B, C, be three points in a straight line,
and D a point at which AB and BC subtend equal

angles, shew that the locus of the point D is a circle.

Produce AB to a point O, such that OB = OD* (fig. 12).

Then £ODB = £0BD
= ,0AD + £ADB
= L0OAD + .CDB;
. £0DC = 2£0AD.

Also the angle AOD is common to the two triangles OCD,
ODA. Hence these triangles are similar;

. OD:0C:: AD : DC:: AB : BC by the proposition ;
or, since OD = OB,
OB:0C:: AB: BC;
which shews that O is a fixed point.

Hence the locus of D is a circle whose centre is O.

1849. (4). The sides about the equal angles of equiangular
triangles are proportionals, and those sides which are
opposite to the equal angles are homologous. (V1. 4.)

(B). Apply this proposition to prove that the rectangle
contained by the segments of any chord passing through
a given point within a circle is constant.

Let AB, CD (fig. 18) be any two chords of a circle inter-
secting in O. Join BC, AD.

Since the angles in the same segment of a circle are equal,
LABC = £ADC, and £BCD = 2BAD.
Hence the triangles BOC, DOA are equiangular. Therefore
by (4), AO: DO :: OC: OB.
Therefore  rect. of AO, OB = rect. of DO, OC.

* From the middle point of BD draw aline at right angles to it, cutting
AB produced in O.
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1850.  (4). Find a third proportional to two given straight
lines. (vI1. 11.)

(B). AB is a diameter, and P any point in the cir-
cumference of a circle; AP and BP are joined and pro-
duced if necessary: if from any point C of AB a per-
pendicular be drawn to AB, meeting AP and BP in
points D and E respectively, and the circumference of
the circle in a point I, shew that CD is a third propor-
tional to CE and CF.*

Draw PM perpendicular to AB, (fig. 14). From similar tri-
angles CELB, MPB,
CE:MP:: CB: MB;
and from similar triangles CDA, MPA,
CD:MP:: AC: AM.
Compounding these ratios,
CE.CD : MP*:: AC.CB : AM.MB.
But AM.MB = MP? (1. 85);
. CE.CD = AC.CB
= CF,
or CE:CFK:: CF:CD.

1851.  (A). If two straight lines be parallel, and one of them
be at right angles to a plane, the other is at right angles
to the same plane. (XI. 8.)
(B). From a point E draw EC, ED perpendicular to
two planes CAB, DA B, which intersect in AB, and from
D draw DF perpendicular to the plane CADB, meeting it
in F; shew that the line joining the points C and F,
produced if necessary, is perpendicular to AB.

Since EC, DI are perpendicular to the same plane, they
are parallel (X1. 6), and therefore the points E, C, D, F, lie in
one plane.

* This can only be considered as one of the third class of riders,
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Let CF, or CF produced, meet AB in G. Draw GH parallel
to EC or DF. Then, by (4), GH is at right angles to the
plane CAB; and therefore £ AGH is a right angle. Similarly,
a line GH' drawn parallel to ED will lie in the plane of ECD,
and will be at right angles to the plane DAB. Therefore
£AGH' is a right angle. Hence AB will be at right angles
to the plane in which GH, GH' lie, (x1. 4), and therefore at
right angles with the line CFG, which also lies in that plane.

1849. (4). Draw a straight line perpendicular to a plane
from a given point without it. (XI. 11.)

(B). Prove that equal right lines drawn from a given
point to a given plane are equally inclined to the plane.

Let P be the given point; PA, PA’, two equal straight lines
drawn from P to meet the plane. As in (4) draw a perpen-
dicular PN to the plane. Join NA, NA'.

By the definition of a perpendicular to a plane, PN makes
right angles with every line in the plane drawn from N, and

therefore with NA, NA'. Hence in the right-angled triangles
PAN, PAN, pa = PA’, and PN is common ;

therefore NA = NA', (1. 47),
and the triangles are equal.
Hence LPAN = £PA'N,

or the lines PA, PA’ are equally inclined to the plane.
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1848. (4). Assuming the tangent at any point P of a parabola
to make equal angles with the focal distance SP and the
diameter at that point, prove that SY, the perpendicular
upon it from the focus, meets it in the tangent at the
vertex.

(B). If PM be the ordinate at P, and 7 the intersection
of the tangent at P with the axis, T7P.7Y = TM.T8.
Since, by (4), SYT (fig.15) is a right angle, the triangles
S8TY, PTM are similar.

Hence TY:TS:: TM: TP,
therefore TP.TY = TM.TS.
Or thus:

Since SYP, SMP are right angles, a circle can be described
about SYPM. Therefore

TP.TY = TM.TS.

1851. (4). Assuming that the sum of the focal distances of
a point in the ellipse is equal to a given line, shew that
the axis-major is equal to the same line.

(B). Shew that the axis-major is greater than any
other diameter.

Let POP' (fig. 16) be any diameter, Join P and P with

the foci.
Then, since two sides of a triangle are greater than the third,

SP+ SP > PP,
and P+ HP > PP';
o SP+ HP + SP' +~ HP > 2PP'.
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But, by (4), SP+ HP = SP' + HP
=44,

Therefore 244" > 2PP,

and therefore A4 > PP'.

1848. (4). If one of the focal distances SP of a point P be
produced to L, a straight line 27" which bisects the ex-
terior angle [ PL is the tangent to the curve at P.

(B). For what position of P is the angle SPH greatest ?
By (4), (tig. 17),
LSPH + 2/ SPT = 2 right angles.

Therefore 2 SPH is greatest when £ SPT is least.

Now as P moves from 4 to B, 2 8PT decreases from a right
angle to SBt (where B¢t || OT); and as P moves from B to 4/,
£ SPT increases from SDB¢ to a right angle.

Thus £ SPT is least, and therefore 2 SPH is greatest, when P
is at B.

1851.  (4). In the ellipse if PU be a tangent at P, meeting
the minor axis produced in U, and PN be drawn perpen-
dicular to the minor axis, then

ON:CB::0B: CU.

(B). If a series of ellipses be described having the same
major axis, the tangents at the extremities of their latera-
recta will all meet the minor axis in the same point.

Let SL (fig. 18) be the semi-latus-rectum of one of the
ellipses, U the point where the tangent at L meets the minor

axis. By (4),
CU:CB:: CB: SL.

But OB: SL:: CA: OB;
therefore CU:(0B::CA4: 0B,
and therefore OU = (U4,

which is constant, since all the ellipses have the same major

axis.
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1850. (4). The perpendiculars from the foci on the tangent
of an ellipse intersect the tangent in the circumference
of a circle having the axis-major as diameter.

(B.) Employ this proposition to find the locus of the
intersection of a pair of tangents at right angles to each
other.

1849. (C). Deduce from the proposition an analogous one
for the parabola.

(B). Let 8Y, HZ (fig. 19) be the perpendiculars from the foci
on the tangents; Y, Z being by (4) points in circumference of
the circle whose diameter i1s 44"

If we produce Y to Z, and join HHZ, we obtain from the
triangles CSY, CHZ, that HZ = SY, that HZ is in the same
straight line with Z/1, and therefore that

SYHZ=7ZHHZ=AHHA= BC*

Let the tangent at P meet the tangent which is at right
angles to it in (), which latter tangent suppose intersects the
circle n Y', Z'. Join SY', HZ'.

By (4), S8Y', HZ" are perpendicular to ¢Z"; and therefore

QY =8Y, Q7 =HZ

Hence, drawing QKXK' through the centre C,

QK.QK' = QY'.QZ'
= SY.HZ
= B(C".

Therefore the distance of ¢ from Cis constant, and the locus

of ) is a circle whose centre is C.

(C). The ellipse will become a parabola if C moves off
to an infinite distance, while the vertex 4’ and the focus
H remain fixed. For, if ¢ and therefore § move off to
an infinite distance, PS will become parallel to A'4.
Hence the tangent ZPY, which always makes equal
angles with HP and PS, will in this case make equal
angles with /P and a line through P parallel to 4'4;
and the curve will therefore be a parabola.
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Now the locus of Z in the ellipse is a circle whose diameter
is A'4; and when C moves off to an infinite distance, the
radius of this circle becomes infinite, and the circle coincides
with its tangent at the point 4.

Consequently, in the parabola, the locus of the intersection
of the tangent with the perpendicular upon it from the focus is
the tangent at the vertex.

1848. (4). In an ellipse the sum of the squares of any two
conjugate diameters is invariable.

(B). When is the square of their sum least?
(CP+ 0Dy = CP*+ CD*+ 2CP.CD, (fig. 20)
= AC* + BC* +20P.CD, by (4).
Therefore (CP+ COD)* will be least when OP.CD is least.

But OD.PF = AC.BC;
y cpP
CP.CD = AC.BC. YO

therefore CP.CD is least when %;, is least ; ¢.e. when PF'= CP,

or when OP, CD are at right angles. Hence (CP 4+ CD)* is
least when CP, CD coincide with C4, CB.

1848. (4). Prove that all parallelograms whose sides touch
an ellipse at the ends of conjugate diameters are equal.

(B). Prove that such parallelograms have the least
area of all which circumscribe the ellipse.

Let T,7,T,T, (fig. 21) be a parallelogram circumscribing an
ellipse at the extremities of conjugate diameters CP, CD; ttt¢t,
another parallelogram circumscribing the ellipse.

Draw PI" perpendicular to DCD'.
Then area of )71, 1. T, = 2PF. DD,
area of ¢t ¢t = 2PF.dd.

172°374
Now DI is the least possible value of dd'; therefore area of
tttt, is always greater than that of 77,7, 7.

1727374
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But by (4), in whatever position the conjugate diameters
CP, 0D are drawn, the area T.7.7.T, is constant. Con-

4
sequently of the areas of all parallelograms circumscribing the

ellipse, this constant area is the least.

1850.  (4). In the hyperbola the rectangle under the lines
intercepted between the centre and the intersections of
the axis with the ordinate and tangent respectively, is
equal to the square of the semi-axis major.

(ON.OT = AC").

(B). Through N draw N@Q, parallel to AP, to meet
CPin ¢; prove that 4@ is parallel to the tangent at P.

Since ON.CT = AC* (fig. 22);
S AC:ON o CT: AC.
Now, since N is parallel to AP,
CP: CQ:: C4A: ON,
10 OT: C4;
therefore 4 ¢ is parallel to 7'P.

1849.  (4). Prove that the area of the triangle contained by
the tangent and the asymptotes is constant.

(B). If SVs, TVt be two tangents cutting one asymp-
tote in the points .S, 7, and the other in s, ¢; prove that

V8: Vs Vi: VT.
The proposition gives us
s80s =nTCt (fig. 23).

Take away the common part SCTV;
therefore sSVT = 8tV8,
and LTVS = L8V
therefore, by Euc. vI. 15,

VS: Vs Vt: VT.
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1849. (4). The section of a right cone by a plane parallel
to a line in its surface, and perpendicular to the plane
containing that line and the axis, is a parabola.

(B). The foci of all parabolic sections which can be cut
from a given right cone lie upon the surface of another
cone.

In the investigation of (4) we obtain
AL?

PN*=2C AN, (fig. 24).

See Goodwin’s Course, Conics, Parabola, prop. X.
This shews that the latus-rectum of the parabolic section
4z
BL’
_ar
~ BL*
_ o
 BC*
This proves that for all sections parallel to /AP, A4S is pro-
portional to AB; and therefore BS must be a fixed lme.

148 =
AB,

AD.

Similarly, the foci of all sections parallel to other lines in
the surface of the cone beside BC lie in lines through B inclined
at a constant angle to the axis of the cone. Therefore all these
foci lie on the surface of a cone.

1851.  (A4). If a right cone be cut by a plane which meets
the cone on both sides of the vertex, the section is a
hyperbola.

(B). Shew how to cut from a given cone a hyperbola
whose asymptotes shall contain the greatest possible
angle.

In the investigation of (4), in order to shew that the section

PAR (fig. 25) is an hyperbola, we prove that
AN.NM: PN* .. BF*: I'll?,
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which is the property of an hyperbola, the major axis of which
is AM, and the minor axis is to AM as FH: BF. (Goodwin’s
Course, Conic Sections, Hyperbola, prop. xii.)

Hence the ratio FH : BF is the tangent of the semi-angle
between the asymptotes.* Dut the same ratio is the tangent
of the angle FBH.

Therefore the angle between the asymptotes = £ G'BH.

Now .G'BH is greatest when it equals the vertical angle of
the cone; that is, when BF'is perpendicular to DE.

Hence the angle between the asymptotes will be greatest
when the cutting plane PAR is parallel to the axis of the

cone, and that angle will be equal to the vertical angle of the
cone.

1851,  (A4). In the parabola, at any point P, the chord of cur-
vature parallel to the axis and that through the focus are
severally equal to 45P.

(B). If the circle of curvature at the point P intersect
the parabola in another point R, and £ ¢), drawn parallel
to the axis, meet the circle in @, shew that @ is the
chord of curvature through the focus.

Draw PT (fig. 26), the tangent to the parabola or the circle
of curvature, meeting R ¢ produced in 7. Then

TQ.TE = TP by property of the circle,
TP* = 45P.TR by property of the parabola.
TQ.TE = 48P. TR,

TQ = 48P

From this it follows that PQ = TQ. For if not, make 2 TP¢)
— £QTP. Then P will pass through the focus, and by (4)
its length will = 48P = T'Q.

* Sce Goodwin, as above, prop. vil.,, where it is proved that the asymp-
totes are the diagonals of a rectangle whose sides are the major and minor
axes.

(3

o e
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But PY =10,
therefore 7¢ =10,
which is impossible unless @' coincide with Q.
Hence PQ = Q7T,
“ LQPT = LQTP,

which shews that P() passes through the focus.*

1850. (A4). Find the diameter of curvature at any point of
an ellipse.

(B). If an ellipse, a parabola, and a hyperbola have
a common tangent and the same curvature at the vertex,
the ellipse will lie entirely within the parabola, and the
parabola entirely within the hyperbola.

In the ellipse, diameter of curvature at P=2 % .
BC*
Hence  .ooiiiiiiiiiiiininnna, atd=2—— 0"

Let S (fig. 27) be the focus of the parabola, 4 CM, BC the
major and minor axes of the ellipse; 4C"M', B'C' similar lines
for the hyperbola.

Now, diameter of curvature at 4 in parabola =448,

BI Olz
and ..ooveiinininn e hyperbola = 2 ——- 0
BC* BCc*
and by hypothesis, 448 =2—— 0 =2 0

In the parabola we have, if NP'PP" be a common ordinate,
PN* =448 .4N;

in the ellipse, P N? = jgz AN.NM

248
= S AN NI

#* The Author is indebted for this solution to the kindness of Mr. Gaskin.
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in the hyperbola, P"N*= b g’ﬁ AN.NM

248 ,
— S AN.N.

But, since 240 > NM,

248
-0 AN.NM < 448. AN,
or P'N < PN.

And since 240" < NM',

248 , .
0 AN.NM' > 448. AN,

or P"N > PN.
Hence the ellipse lies wholly within the parabola, and the

parabola wholly within the hyperbola.



ALGEDBRA.

i851. (4). Prove the rule for finding the greatest common
measure of two quantities.

(B). Shew that the greatest common measure of the
two numbers is equal to the greatest common measure
of any divisor made use of in the process and the cor-
responding dividend.

Let the usual process for finding @.c.M. of @ and b, be pur-
sued, C,, O, 0, ... being the successive remainders, p,, p,, Py, .-
the successive quotients. One step in the process will be

01') Q'—] (277‘+1
Pus O,
C

r+1

B 09‘-—1 = Prna 07- = Cr+17 and Or—1 = P Or + 07

from which it follows that C, contains the whole system of
factors common to C,_ and C, and that C_, contains all those
common to C, and C

r+1°
Hence, 6.c.M. of
C. and C, =6.c.M. of C_ and C,
= (by the same reasoning), ¢.¢.M. of C_, and C _|
=@M of 0_,and C_,
&e.
= G.C.M. of @ and b.

+17

-1

1850. (4). Shew how to find the least whole number which
is accurately divisible by cach of two given whole num-
bers.
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(B). Find the least number of ounces of standard
gold that can be coined into an exact number of half-
sovereigns; standard gold being coined at the rate of
£3 17s. 104d. to an ounce.

In (4), if a,b be the two given numbers, ¢ their greatest
common divisor, the number required, 7.e. their least common
ab
7

In (B), if we find the number of shillings in the value of an
ouuce of gold and in half-a-sovereign, the least common multiple
of these numbers divided by the number of shillings in the value
of an ounce will give the least number of ounces that can be
coined into an exact number of half-sovereigns.

Now £3 17s. 104d. = 77s. 103d. = 77s. 10°5d.

16:5
= 77 155 = 77-875s.,

multiple, =

and we have to find the least common multiple of 10 and 77-875.
By (4), the least common multiple of 10000 and 77875 is

10000 x 77875

their ¢. ¢. M.
But 10000 = 2%.5%
and 77875 = 5°.623;

therefore their ¢. C. M. = 5°,

. . 24‘ 4 3‘
and their least common multiple = 2.5 % 5.623

5° ?
= 6230000.
Hence the least common multiple of 10 and 77:875 is 6230, and
. 6230
the number required = T7g75 = 8O-

1848. (4). Prove the rules for finding the greatest common
measure and least common multiple of two integers.

(B). Yind the least number of pounds which can be
paid in either half-crowns or guineas.
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Here (B) is an example of finding the least common multiple
of three numbers.

Reducing pounds, half-crowns, and guineas to sixpences, we
have to find the least common multiple of 40, 5, and 42.

Now L. ¢. M. of 5 and 42 = 5 x 42 = 210, and L. . M. of 40,
5, and 42 = L. ¢. M. of 40 and 210

3 40 x 210
G, C. M. of 40 and 210"
40 x 210
- 10
= 840,
. 840
Therefore least number of pounds required = 0~ 21.

1850. (4). If a quantity vary directly as o when 5 is invari-

able, and inversely as b when a is invariable ; prove that

it will vary as % when both @ and b are variable.

b

(B). If 5 men and 7 boys can reap a field of corn of
125 acres in 15 days, in how many days will 10 men and
8 boys reap a field of corn of 75 acres, each boy’s work
being % of a man’s ?

Since each boy’s work is 4 of a man’s, therefore 5 men and
7 boys are equivalent to (5 +3) men, or £ men; and 10 men
and 3 boys are equivalent to (10 + 1) men, or 11 men.

Again, since a given number of men will do more work in
proportion as the time is increased; and a given piece of work
will require more men to do it in proportion as the time allowed
them is diminished ; therefore

days oc acres, men given,
da 1 T I
S &« —— , acres given:
y men’ & !

(5]

' _ac
therefore, by (4), days « men

, where men and acres both vary.
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But the question gives that when the days = 15 and acres
= 125, the men = %; and we have to find the days when
acres = 75 and men = 11.

75
Hence 927 required _ 11 22 x75 _ 2
15 T 125 3x11x125 5
22
3

Therefore days required = 6.

1848. (4). If Ao B when C is constant, and 4 o« (' when B
is constant ; prove that 4 «« BC, when B and C both vary.

(B). Given that the area of an ellipse varies as either
axis when the other is constant, and that the area of a
circle of radius unity = 3-14..., find the area of the ellipse
whose axes are 3 and 5.

Let a, b be the semi-axes of the ellipse. Then, if 4 be the

area of the ellipse,
A o« a, b constant,

and A « b, a constant,
therefote, by (4), A o« ab, a, b, both variable,
= p.ab, suppose.

Let @ = b = 1; then 4 becomes the area of a circle whose
radius is unity ;

.34 =py
A= (314...) ab.
Now a=3 b=3
Therefore A= (814...) ¥,
= 1177

1851. (4). Find the sum of a series of quantities in arith-
metical progression.

(B). The square of the arithmetic mean of two quan-

tities is equal to the arithmetic mean of the arithmetic and

geometric means of the squares of the same two quantities.
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We find from (4), if @ be first term of the series, ¢ the last,
and » number of terms,

sum = $n (o + c).
Let there be three terms a, b, ¢ of the progression. Then
a+b+c=3%a+c),

a+c
2 bl

therefore b=3a+c)—(a+c)=

1w

0= EHd + ¢+ 2a0),
N (662 +c

% %

= arithmetic mean between , Na'd’y t.e. between the

arithmetic and geometric means of ¢*, ¢*.

1850. (4). Find the sum of a series of quantities in geometri-
cal progression.

(B). Apply the result to find a common fraction equi-
valent to a recurring decimal fraction.

(C). Tf a be the first and ! the last of a series of n
quantities in geometrical progression, prove that the con-
tinued product of the terms of the series is (al)*.

(B). Let "PPP... be the recurring decimal, where P, the
recurring part, contains p digits. The decimal may be written

P P P e
T Toet o T in infinitum.
Now we have from (4), if @ be the first term, and » the common
ratio of the series,
7 —1
r—1"

sum of » terms = a
and if 7 1s indefinitely great and » <1,

4/
the sum becomes =
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Hence we have

P

P
ppp. =P
R I

102

(C). The series may be written in the two following ways:

/ ,/12 In_l
a, ar, ar'y ... ar’?,
{ l {
and Z - ~5 4 serssse g e
A P

Multiplying all these 2 terms into one another, the result is
(al) . (al) . (al) ...... to n terms
= (al)".
Hence the product of the « terms of the series,

= square root of the above result,
= (al)?".

1848. (4). Find the sum to n terms of a geometric series.
What is meant by the sum of an infinite series ?

(B). If P be the sum of the series formed by taking the
1°t and every p' term of an infinite geometric series whose
first term is 1, and whose common ratio is <1, ¢ the sum
of the series formed by taking the 1° and every ¢ term;
prove that

P (Q—1) = @r.(P—1).

If » be the common ratio of an infinite geometric series, then,

provided r < 1, the series has a sum = T
—7r

Hence, by the conditions of (B), » being the common ratio
of the series there mentioned,
P=1+4+r 4"+ ... in inf.
1

L—7?
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Q=147+ + ... in inf.
1 -
T 1=
therefore P = %—)1 :
r? = _____QjQ— 1 ;
whence @_Q__;X) — P — £ Z';;l_)_q ’
or P (Q—1p = Q. (P—1)

1851. (4). In every geometrical series continued to infinity,
each term bears a constant ratio to the sum of all that

follow.
(B). Find a series in which each term is » times the
sum of all that follow it.

From (4) we obtain that, if » be the common ratio, any

1
term : sum of all that follow = o 1.

In (B) we have to find » when the ratio of any term to the
sum of all the succeeding terms = », or

1

T 1=,
, 777
1
therefore ~=n+l
1
and r = .
n+1

Therefore the series required is

a a a
n+1’ (n+1)"’ (7@—}-1)3’

@y ——= 3 TRy TR e in infinitum,

where @ may have any value we please.
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1849. (4). Sum the series 1° +2°+ 3%+ ...... + .
(B). Prove that when = is indefinitely increased, the
1P+ 22 ...

fraction 1 approaches to ! 7 38 its limit.
Let 17422+ 32+ ...+ =An+ Ap*+.. 4+ AP+ 4, 2™+
1P 420484 w4 (n+l) =4, (n+ 1)+ A, (n+1)"+ ...

. o + A,(n+1)2 4+ 4, (n+1)"" + ..
Subtracting :

(n+1)2=A4{n+1)—n} + A, {(n+1)"—n"} + ......
+ A, {(n+ 1" =2 + L
=4 +A4,2n+1)+...+ 4, {{(p+1).07+. J+...

Equating coefficients of # and its powers:
1=4 +4,+...... + A, + e

These equations will manifestly be satisfied by supposing
4,.,4.., &e. ... each = 0.

P27 p+37
Hence 1=(p+1)4,,;
1
. Al’+1 =m .

‘We then have

P+ 4+ +n A A A
i R
.. 12490 p
and therefore limit ( _;1 ki > Ay,

p+1'
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1849. (4). Find the pumber of combinations of » things
taken » together.
(B). There are n points in a plane, no three of which
are in the same straight line, with the exception of p,
which are in the same straight line; find the number of
lines which result from joining them.

If no three of the points were in the same straight line, the
number of lines formed by joining them would be the number
of combinations of = things taken » together, 7.e.

n.(n—1)
1.2
Similarly, considering the p points only, and supposing no threc
of them in the same straight line, the number of lines formed by
joining them would be

y by (4).

p-(p—1)
1.2 )

But, since all the p points are in the same straight line, all these
rlp=1

~{2 lines are merged into one only.

Hence, if « is the number required,
N p.(p—l)_n.(n—_l)
S - R
n(n—1) p.(p—1)
1.2 1.2
(n—p) (n+p=1)

= 5 + 1.

Therefore X = + 1,

1850. (4). Find an expression for the amount of a given sum
of money which has accumulated during a given number
of years at a given rate of compound interest.

(B). If a sum of money, at a given rate of compound
interest, accumulate to p-fold its original value in » years,
and to p'-fold its original value in #’ years; prove that

n' = n.log,p.
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The result of (4) is M = PR", where I = £1, togcther with
the interest on £1 for 1 year.

By the first condition of (B) we have

pP=PR",
or p=R (1).
By second condition, p'P= PR,
or Ppr=RY v, (2).
From (1), 1 =nlog, R,
from (2), log, p' = n'.log, It ;
therefore % = log, p,
or n' = nlog,p.

1851. (4). If interest be payable every instant, and the
interest for one year be an m™ part of the principal,
find the amount for any number of years.

(B). If a quantity change continuously in value from «
to b in a given time 7, the increase at any time bearing

a constant ratio to its value at that time, prove that its
¢

. . b\~
value at any time ¢ will be (é)‘l .
If in (4) P be the principal, M the amount, » the number

of years,

M=P (1 + l) .

m
The problem (4) involves a principle which need not be
restricted to the idea of interest. We may regard a sum of
money put out at compound interest, which is due every instant,
as the type of a varying quantity which increases continuously
from one value to another. Now in () all the conditions are
satisfied for the varying quantity, which hold for the sum of
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money in (A) which is put out to interest. Therefore the above
result must hold for the varying quantity in (B).

Here P = a; and M = b, when n = ¢, the unit of time being

. . 1
arbitrary ; and the constant ratio = —— .
m + 1
1\%
Therefore b=a <1 + ;z> ...................... (1),

and if z is the required value at the time ¢,

r=a <1 + —;%)t ...................... (2).

From (1), 1+ ;71‘2 = (%)tla
b K
therefore z=a (5>’1 .

1850. (4). Express the number of numbers less than a given
number which are prime to it, in terms of the given
number and its prime factors.

(B). Shew that the sum of these numbers is equal to

half the product of the number of them into the given
number.

From (4) we find that the number of numbers prime to and

less than N = N (a - 1> . (b — 1) ...... where @, b, ...... are the

a b
prime factors of V.

(1). Let N=«". Then the numbers < N and not prime to
it are
@, 2a, 3a, ...... a . a,

m~1

the sum of which = &

(@ + a"),

_N(N+a)
- 2a
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therefore sum of numbers < NV and prime to N
N(N+1) N(N+a)

2 2a
N
N a—1
=§N<a>
N
=3 X number of numbers less than N and

prime to it.
(2). Let N = d"0",
then, the numbers divisible by ¢ and < N are
a, 2a, 3a, ...... a" b,
those divisible by b are
b, 2b, 3b, ...... a"b"b,
those divisible by ab are
ab, 2ab, 3ab, ...... a7 ab.

Hence, observing that each of the two former sets include
the latter, the sum of all numbers less than N and not prime
to it, is

2ty + L 0t — T (ab o ana
_N{N+a) 4 NN+b)  N(N+ab)
2a ’ 20 2ab

=27 {(N{a+b)— N+ ab};

therefore sum of the numbers < N and prime to it

N(N+1) N
= 5 ~ 527 {N(a+0b)— N+ ab}
__N“ ab —a—0+1
T2 ab

-2 () (),

and so on for more factors.



TRIGONOMETRY.

1851.  (4). Compare the magnitudes of two angles which
contain the same number of French and English degrees
respectively.

(B). Divide an angle which contains n degrees into
two parts, one of which contains as many English minutes
as the other does French.

From (4) we get, that if 4 and B be two angles of which
the former contains as many English degrees as the latter does

French grades
| 4 _ 10
B9
If A contained as many English minutes as B contains
French, the above formula would have to be modified into

4_10 10050
B9 " 60 21"
Let now 4, B be the two required parts of the given angle,
expressed in English degrees. Then we have

A+ B= n;
therefore A (14 2%) = n;
therefore 4 = 39n,
and B = %77_%

1849.  (A4). Define the cosine of an angle; and trace its
changes in sign and magnitude as the angle increases
from 135° to 405°.

(B) Construct the angle whose tangent is 3 — /2.
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In the investigation of (4), we prove that

o 1
cos845 = —

V2©
Take any finite straight line 4B (fig. 28). Draw BC at
right angles to 4B and = 345.

Make BD =.AB and join AD. Cut off from OB, OF = AD,
and join AK., BAL shall be the angle required.

For, since BD = AB, the £ BAD = 45°;

therefore j—g = c0845’ = ;—}% ;
therefore AD = /2 AB.
Hence BE = DBC ~ OF
= BC — AD
= 8AB ~ A/2.4B;
therefore tan BAY = % =3 — w2}

or BAE is the angle required.

1851.  (4)., Prove that sin(4 + B) =sinA4 cos B+ cos4 sin B

?
and deduce a similar expression for cos(4 + B).

(B). If atand + btanB = (¢4 ) tan 4+ B,
&
@ cosd
shew that Z‘ = m .
From the given equation

a (tan_A — tan 4 :; B) = b (ta.u {L;;lj — tan.B) 3

a

" cos d

) A+ B }
<sm A cos A%— — cos 4 sin

A+B>

2

b . A+EB A+B .
o (sm 5 cos B~ cos’ 5 — smB> .

D2
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But by (4),
sin.d cos —cosd s111A+B=sin <A— i‘1:'_—5)-——sinA;B7
and sin cos B—cos B sin B=sin (é—;———@ — B) =sin A;Bi
a b

therefore vy iy T
o a _cosd

r b cosB’
1848.  (4). Express sin24 in terms of tan 4.

).
(B). Given tan{d = 2 — /3, find sin 4, and thence 4.

From (4), we have

. 2tan 4
sin24 = an

1+ tan* 4 )
. 2tantAd
therefore sind = m
_ 2(2-v3)
T14T7—443
_2(2—-43)
4(2—4/3)
= 1.
29

therefore A4 = 30°,

1850. (4). If 4+ B+ C = 180", prove that
tan 4 + tan B + tan(C = tan 4 tan B tan C.
(B). If a, B, «y, denote the distances from the angular

points of a triangle, to the points of contact of the in-
scribed circle, shew that the radius of the inscribed circle

- (o)
at+B+y/’
Here (B) is a direct application of the formula proved in (4).
If O (fig. 29) is the centre of an inscribed circle, the lines
04, 0B, OC, bisect angles 4, B, C.
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Hence the LB'OC =2.804
= 24’ suppose,

L0'04' =28,
L AOB =2C'.
Now 2B OC 4+ 004"+ £ 40B" = 360°;
therefore A + B' + (' = 180°.
Let OA'=r =08 =0C.
We have also
AB' = 40" = a,
BC' = B4' =B,
CA'= 0B =y,

and the geomctry of the figure gives
a=rtand, B=rtanB’, vy =rtan(’;
therefore aBy = »*tan 4’ tan B’ tan (',
a+ B+ v=ritand +tanB + tan ('}
=rtand’ tan B’ tanC’,
since 4', B', (', fulfil the condition of (4);

therefore 7’ = ;f—gl_’-_—&—,
. __zBLf
and "= <oc +B+v/"

1848.  (A4). Prove that the sines of the angles of a triangle
are proportional to the opposite sides.

(B). Hence deduce the expression for the cosine of an
angle in terms of the sides.

sind snB smC
a b

therefore sind = ar, sinB="br, sinC=cr,

and cosd =n(1—d*"), cosB=y{1-0"), cosC=n(1—c%".

From (4)

= r, suppose ;
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Now in every triangle,

A+ B+ (=180
therefore sin (4 + B) = sin(180° —C) = sinC,
or sind cos B + cosd sinB = sinC.

Substituting for sin 4, cos B, &e.,
ar o/ (1 =0"") + br o/(1 — a™*) = cr,

or an(1=07") =c—by@1—a").
Squaring, o — a0 = ¢ + U* ~ &"0"" — 2bc A/ (1 —a™")
therefore =+ b — 2bc /(1 —a'r¥),
therefore cos A = /(1 — a™r")
_v+d-d
20c

1850,  (4). If a, b, ¢, be the sides of a triangle, prove that its
area is equal to

IV (20 +2c%" + 2a°0" — a* — b — ).
(B). Apply this expression to find the area when the
angle opposite to ¢ is a right angle.

‘When the angle opposite to ¢ is a right angle,
02 — a‘z + b‘z;

2 + 2¢°a + 2a°D° — ot - B — ¢ = 2¢* + 207D — of — Bt — CF

= ¢ — (a2_b2)2
— {a2+b'1)2 _ (a,2~ Z)z)z
= 4a°b";

hence area required = {ab.

1850.  (A). Shew that in general it will be possible to de-
termine two triangles in which two sides and the angle
opposite to the less are of given magnitudes.

(B). If a, b, B, be given, and a be > 4, and if ¢, ¢’ be
the two values found for the third side of the triangle,

then _
¢t — 2¢c cos2B + ¢f = 4b% cost BB,
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¢, ¢ are the two roots of the equation

b =’ + ¢ — 2ac cos B,

or ¢t — 2accos B+ o — b* = 0.
Hence od = a* — b,
¢ + ¢ = 2a cosB;
therefore & + 2¢c + ¢* = 4a° cos’ B

= 4(cc' +b*) cos’ BB,
or observing that ~ 2cos”B — 1 = cos2B,
¢* — 2¢c' cos2B + ¢* = 41" cos” B.

1849. (4). Two sides and the included angle of a triangle

being given, shew how to find the remaining angles.

(B). The ratio of two sides of a triangle is 9:7,
and the included angle is 47°.25"; find the other angles.

Given log2 = 3010300,
L tan66°.17.30" = 10:3573942,
L tan15°.53' = 94541479 ; diff. 1" = 4797,
Let C, a, b, be the given parts. Then the equations

A+ B . C
5 = T3

A—-B a-b  C

and tan — —a+bcot-2—

A+ B A—B

determine 5 and 5 and therefore
A+B A-B
A= 5 T g
B A+B A-B
T2 2
are known.
oo @ 9
Here we have C =472, 3=4;
B o o ' 17
therefore A+8_ 90° — 23°.42".30

= 66°.17'.30",
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and a—b_9—7__2___1‘
a+b 94+7 16 8’
4—-B 1
therefore tan T =& c0t23°.42'.30"
1 [o] ’ H.
= o5 tan66°.17'.30";
» A - B o ' "
therefore L tan = L tan66°.17".30" — 3 log2

2
= 10°3573942 — 9030900
= 94543042
= L tan(15°.58" + &") suppose.

Now the rule of proportional parts gives (if consecutive
angles in the tables differ by 1')

6 Ltan(15°.53'+8") — L tan15°.53’

60  Ltanlbs%.54 — Ltanls .53
= 1543,
therefore 0 = 20.1283 = 19".5.
4~ B

Hence = 15°.53".19".5;

2
therefore 4 = 66°.17".30" + 15°.53".19".5 = 82°.10".49".5,
B =66°.17".30" — 15°.53'.19".5 = 50°.24'.10".5.

1848,  (4). Express the area of a triangle in terms (1) of
two sides and the contained angle (2) of one side and the
adjacent angles.

(B). Two sides of a triangle are equal to 8 and 12
respectively, and the contained angle is equal to 30°:
find the hypothenuse of an equal right-angled isosceles

triangle.
The area of a triangle 4ABC
=JobsinC....cooooiiiiiiiinninnnnn, (1),
and = ¢ w ................... (2).

2" sin( 4+ D)
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In the first-mentioned triangle of (B), we have

a=3, b=12, C=30;

therefore its area = 1.3.12 sin30°
= 3.6.}
= g,
In the right-angled isosceles triangle, we have
A =B =45,
62
therefore its area = g sin”45
¢
— § 3
62
=7
But the areas of the two triangles are to be equal, therefore
2
¢
1=
or ¢ = 6.

1849.  (A4). Shew how to find the height of an object above
a horizontal plane from observations made at two given
stations in the plane.

(B). The angular elevation of a tower at a place 4
due south of it is 30°, and at a place B, due west of 4,
and at a distance « from it the elevation is 18”: shew that
the height of the tower is

V(24/5+2)°

If in (4), OC (fig. 30) be the tower, 4, B the two stations,
the angles 04, OBC will be khown from observation, and the
distance 4B and the angle CAB will be known because the
stations are known.

CA, OB can each be expressed in terms of OC from the
triangles 40C, BOC; and therefore a relation can be found
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between U4 and CB. Another relation between them is given
by the triangle ABC. We thus are able to find C4 or OB,
and thence OC.

In (B) we have given that
L0AC =30, £0BC=18, L0AB=90°, and 4B = a.

Let 0C=w, OUd=y, CB=y,
then x = y tan30°,
and x =y tan18°;
therefore 9 tan18” = y tan30°........ceenveneninn. (1).
Also from the right-angled triangle 4B,
Y=g i, (2);
therefore Y (E—*iﬁiigz — 1> = a’,
or atan1§’

Y= J(tan’30° — tan®18) ’
a tan18° tan 80°
A/ (tan”30°—tan®18°)
[2/
= V(cot'18 — cot’30%) °

therefore T =

o = o V{2(5+W5)}
Now cot30° = 4/3, cot18’ = =i

54+ /5
3 — /5
4(x/5—1)

3 — 5
_8(W5—1)
T (Wh—1)"
_2(/5—1)(w5+1)
Vb —1

= 24/3 + 2;

therefore cot®18° — cot’30° = —3

: o
therefore g om e

NCWEET)R
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1848.  (4). Shew how to determine the height of a mountain
by observations at two stations in the same horizontal
plane, the distance between the stations being known.

(B). If the stations are in the same vertical plane
passing through the summit, and the summit (S) is ob-
served from the further station, but a lower point (S is
observed by mistake from the nearer, shew that the
height determined by the process lies between the heights
of § and §'.

The process of finding the height of the mountain would in
this case be to observe the angle NAS (fig. 31) from the further
station 4, and the 2 N'BS' from the nearer station, and,
knowing the distance AB, to determine the height () from
the triangles 4SN, BS'N' on the supposition that SN, S8'N’
were each = x; the result obtained would correspond to the
height S”N" of the point where BS’ produced meets 4S; and
since § is supposed to be invisible at B, 8" must be lower than
S but higher than §'.
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1848.  (4). If two forces, acting on a particle, be represented
by two adjacent sides of a parallelogram, prove that their
resultant will act in the direction of the corresponding
diagonal.

(B). Explain how the force of the current may be
taken advantage of to urge a ferry-boat across a river, the
centre of the boat being attached, by means of a long rope,
to a mooring in the middle of a stream.

Let the boat be kept in a position inclined to the direction of
the stream at an angle of about 45°, its foremost end pointing up
the stream. The current will produce upon the boat a pressure
consisting of two parts, one perpendicular to the side of the boat,
the other in the direction of its length. The latter is incon-
siderable compared with the former, because the surface offered
to the perpendicular resistance is much greater than that which
the longitudinal pressure acts upon. Considering the rope (since
it is long) as nearly parallel to the direction of the stream, we
shall have two forces, viz. the tension of the rope and the
pressure of the water perpendicular to the side of the boat, the
resultant of which, by the proposition, acts between them, and
therefore tends to propel the boat towards the bank, to which
the foremost end of the boat is directed.

1849. (4). Assuming the parallelogram of forces, so far as
the direction of the resultant is concerned, shew that the
diagonal of the parallelogram represents the magnitude of
the resultant.

(B). The resultant of two forces is 10 lbs., one of them
is equal to 81bs., and the direction of the other is in-
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clined to the resultant at an angle of 36°: find the other
force, and the angle between the two.

Let 04, OB, (fig. 32) represent the two forces; then, by (4),

OC, the diagonal of the parallelogram 04 CB, represents their
resultant.

We have given 04 proportional to 8, OC to 10, and

OB to x (the number of Ibs. in the required force); and
LBOC = 36°.

From the triangle 04 C,

0A* = 0C* + AC* —200.40 cos0CA;

therefore 8% = 10" + o' — 2.10 z cos36°,
or 64 = 100 + 2" — 2.10.x “/5: = ;
therefore = 5(b+1)x + 36 =0,
which gives . '
Also, sind OB =sin04C

= fg—g sin0C4

= 10 gin36°

= 2 8in36°,

which gives the angle 4 OB.

1850.

(4). If three forces which act in a plane keep a rigid
body at rest, prove that their lines of' action are either
parallel or pass through a point; and in both cases, shew
that any two of the forces are inversely proportional
to the perpendiculars drawn on their respective lines of
action from any point in the line of action of the third.

(B). An uniform heavy rod of given length is to be
supported in a given position with its upper end resting
at a given point against a smooth vertical wall, by means
of a fine string attached to the lower end of the rod and
to a point in the wall. Find by geometrical construction
the point in the wall to which the string must be
attached.
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Let 4B (fig. 33) be the rod, @ (its middle point) its centre
of gravity ; the forces which keep it at rest are

its weight acting along G W,
tension of string along BP,
and reaction of wall along AR | NP.

Now the principle of which (A4) is the enunciation tells us
that these three forces must meet in a point (because they are
not parallel) in order that there may be equilibrium. We must
therefore suppose the string BP placed in such a position that
it shall pass through O the intersection of AR and W& pro-
duced. When this is done, all the statical conditions have been
brought in, and the problem of finding the position of equi-
librium is solely a geometrical one.

We have then from the geometry of the figure,
AP: AN :: PO : 0B :: AG: G'B.

But AG =GDB;
therefore AP = AN.

Since the position and length of 4B is given, 4N is known,
and therefore the point P where the string is to be tied, is
determined by taking AP = AN,

1848.  (4). When a body is kept in equilibrium by three
forces acting in one plane, either their directions are
parallel, and one force is equal to the sum or difference
of the other two; or their directions meet in a point, and
each force is as the sine of the angle between the other
two,

(B). 4B is a rod capable of turning freely about its
extremity 4, which is fixed; €D is another rod equal to
24 B, and attached at its middle point to the extremity B3
of the former, so as to turn freely about this point; a
given force acts at ¢ in the direction O4: find the force
which must be applied at D in order to produce equi-
librium,
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Let F be the given force acting along CA4 (fig. 84), the
pressure () at the hinge B or the rod D must act along 45}
for if it does not, the equal reaction upon the rod AB would
make it revolve about 4, and equilibrium would not exist. We
have now the rigid body CD acted on by two forces I and R,
whose directions pass through 4 ; the force (P) therefore which,
acting at D, is to preserve the equilibrium, must, by (4), also
pass through 4.

The proposition further tells us that the magnitude of each
of the forces P, F, IR, is proportional to the sine of the angle
between the other two. Hence

P:F:R:sinBAC:sinBAD : sinCAD;

therefore L sin BAC .
F smBAD
But since AB = BC = BD,
sin BAC = cos}ABC,
and sin BAD = sin}{ABC;
therefore = F%‘ﬁ%ijgg
= Fcot{ABC.

1848.  (4). Assuming the principle of the straight lever for
two forces, find the condition of equilibrium of a rigid
body moveable about a fixed axis, and acted on by any
number of forces in a plane perpendicular to the axis.

(B). If a set of forces, acting at the angular points
of a plane polygon, be represented by the sides, taken in
order, shew that their tendency to turn a body about an
axis perpendicular to the plane of the polygon is the same
through whatever point of the plane the axis passes.

The result obtained in (4) is that the sum of the moments
about the fixed axis of all the forces which tend to turn the body
one way round must be equal to the sum of the moments of all
the forces which tend to turn it the opposite way round. This



48 SOLUTIONS OF SENATE-HOUSE ‘ RIDERS’.

condition expresses nothing more than the fact, that the moment
of any force about the fixed axis is a proper measure of its
tendency to turn the body round the axis.

Let now ABDF (fig. 85) be a polygon whose sides represent
in magnitude and direction a series of forces tending to turn
a body round an axis through O perpendicular to the plane of
the polygon. The tendency of the force represented by 4B to
turn the body round O will be, from above, proportional to its
moment about O, e to AB.ON (ON being | 4B), and
therefore proportional to the area of the triangle 40B. Hence
if, as in fig. 85, O be within the polygon, the whole tendency
of the forces to turn the body round O will be proportional
to the area of the polygon, and therefore the same wherever
within the polygon O may be.

If O be without the polygon (fig. 86), we observe that those
forces DE, EF, I'4, the triangles corresponding to which lie
entirely outside the polygon, tend to turn the body in the
opposite direction to that in which the forces such as 4B, BO,...
tend to turn it. In forming therefore the algebraical sum of the
moments, the triangles corresponding to the former forces will
have to be subtracted, so that the whole tendency of the forces
to turn the body round O will still be proportional to the area of
the polygon, and will therefore be the same whatever be the
position of O.

1849.  (4). State and explain the conditions necessary and
sufficient for the equilibrium of a body which has one or
more points in contact with a smooth plane, and is acted
on by any forces.

(B). A triangular board of given weight rests in equi-
librium with its base on a horizontal plane sufficiently
rough to prevent all sliding. A force acts upon it in its
own plane and in a given line drawn through the vertex
and without the triangle: find by a geometrical construc-
tion, or otherwise, the limits between which the magnitude
of the force must lie if the equilibrium is preserved.
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If one point only of a body be in contact with a smooth
plane, the forces acting on the body (excluding the reaction
of the plane) must admit of a resultant passing through the
point of contact and perpendicular to the plane. If two points
are in contact with the plane, the resultant must pass through
the line joining them ; and, generally, if there be more than two
points of contact, it must meet the plane in a point within the
polygon formed by joining the points of contact; the direction
of the resultant being in all cases perpendicular to the plane, in
order that the body may not slide.

In (B), since the plane is sufficiently rough to prevent
sliding, the last condition is not necessary; the only condition
therefore that in this case is necessary is, that the direction of
the resultant of the weight of the triangle and the force which
acts at the vertex shall cut the base of the triangle.

Let the vertical through the centre of gravity G (fig. 37)
of the triangle meet the given line through 4 in O, and the
base of the triangle in M. Then, in the limiting case of equi-
librium, OB must be the direction of the resultant of the weight
(W) of the triangle and the force (#) which is to act at 4.

Draw MN || OF. Since the two forces F, W, and their
resultant reversed of course balance, the sides of the triangle
OMN, which are in the direction of these forces, must be pro-
portional to their magnitudes. Hence, OM representing the
weight of the triangle, MN will represent the greatest value
of the force F.

Similarly, if F acts in the direction 4 O, MN" would represent
the greatest possible value of ¥, where N’ is the point of inter-
section of OC produced and N/ prodnced.

If we wish to put this result into an analytical form, we may
assume the angle which OF makes with CB=a, LO0BM = 0.

F MN snmMON  cosf
W~ OM sin ONM ~ sin(0+a)
Now 0 is known from the geometry. For

OM OM sn(0+a)
OB ¢ “sin(B+a)’

Then,

sin f =

E
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using the usual notation for the sides and angles of the triangle

ABC.  Also
OM = AD — MD .tan a,
=AD - 2EM.tana,

=c.cos B — 1(a—2c.cos B) . tana,

= p, suppose.

Making the necessary substitutions, we obtain
w
= - {c.coseco — p . cota . cosec (B + a)}.

(B) might also be solved by observing that the moment of #’
about B must always be not greater than the moment of W
about the same point; and in the limiting case these moments
must be equal, which consideration immediately gives a value

for F.

1849. (4). Explain the nature of the action and reaction of
smooth surfaces in contact.

(B). Two equal circular disks with smooth edges,
placed on their flat sides in the corner between two
smooth vertical planes inclined at a given angle, touch
each other in the line bisecting the angle. Find the
radius of the least disk which may be pressed between
them without causing them to separate.

The mutual pressure of two smooth surfaces in contact acts
along the common normal to the surfaces at the point of contact.

Let O,, O, (fig. 38) be the centres of the two disks, N, N,
the points where they touch the walls. Let the radius of either
disk = r, and the angle between the walls = 4a.

Produce N, 0, N,0, to meet in 0. O will be the centre of
the required disk. For if the centre of this third disk be at all
nearer to 4, 7.e. if the disk be at all smaller, the lines joining
its centre with O, and O, will meet AN, and AN, produced ;
and therefore the pressures (which act in these lines) exerted on
the two given disks, will tend to push them away from 4, and
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therefore to separate from one another. To find the radius (R)
of the third disk, we have

= ON, — mN,
= AN, .tan 20 — 27,
= r.cot a.tan 2a — 27,

27 . tan’a
T 1— tan’a’

=7 ,.tan a. tan 2aq.

1849. (4). Find the centre of gravity of a triangle.

(B). One corner of a triangle, equal to ;lith part of its

area, 1s cut off by a line parallel to its base; find the
centre of gravity of the remainder.

Let ABC (fig. 39) be the given triangle; Abc = 71; of its arca,

be being || BC.

From (4) we know that if 40 be drawn to the middle point
of BC, and take D¢ = LDA, G is the centre of gravity of the
triangle. Moreover it is proved in the investigation of (4), that
AD bisects every line parallel to BC; thus d is the middle point
of be, and therefore if dg = 1dA4, g is the centre of gravity of
triangle Abc. Let G' be that of becCB.

Since the centre of gravity of a body is that point at which
its weight may be supposed to act, G may be considered as the

point of application of the resultant of the weights of the portions
Abe, beCB. Hence

GG : Gg it weight of Abc : weight of beCDB,
:: area Abc : area be UD,

lin—1;
therefore GG = _E.?__ .
n—1
Now GG = GD - G'D,
= 14D — G'D.

T2
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Also, since n: 1 :: area ABC : area Abc i3 AD*: Ad’,

therefore Ad = 4D ,
An
and we get Gg = AG — Ag,
= 2 (4D — 4d),
1

Therefore, substituting in the above relation,
— An—1
1AD—- G'D=24D. SV (n=1)"’
_ 24D
C3Wn(Wn+1)
, 24D
Therefore G'D = 314D — RO

n 4+ An—2
- 3a/n. (Wn+1) AD.

1848.  (A4). When a weight is supported on a smooth inclined
plane by a force along the plane, the force is to the weight
as the height of the plane is to its length.

(B). If the roughness of a plane, which is inclined to
the horizon at a known angle, be such that a body will
just rest supported on it, find the least force along the
plane requisite to drag the body up.

In this case we have an cxtension of the problem (4) to the
case where the plane is rough, the roughness being given by
the fact that a body would just rest on the plane. This fact
shews at once that, if ¢ be the inclination of the plane to the
horizon, the reaction (which must balance the weight of the
body) acts at angle ¢ to the normal to the plane in the opposite
direction to that in which the body is on the point of sliding.

Hence, if the body be on the point of sliding up the plane
under the action of a force (P) along the plane, the reaction (£2)
will act as in fig. 40, where 2 NOR between its direction and the
normal = e.
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Let ML (fig. 40) drawn parallel to OP meet RO produced
in L. Then the sides of the triangle OLM, being parallel to
the directions of the three forces P, W, R, which keep O at rest,
will be proportional to their magnitudes; .e.

P:W:R::ML:0OM: OL.
P _ ML
W oM’
_sin MOL
" sin OLM?

Therefore

sin 2&

cosg ’

= 2 gine,

Therefore P=2W.sne.

1850. (4). Find the ratio of the power to the weight neces-
sary for equilibrium on an inclined plane, when the power
acts along the plane.

(B). If the inclined plane be the upper surface of a
wedge whose under surface rests on a smooth horizontal
table, find the horizontal force which must act on the
wedge to keep it at rest.

From the equilibrium of the particle O (fig. 41) we have, by
the same method as is pursued in (4),

B=W.costt.veereineiiiniininnnnn. (1).

From the equilibrium of the wedge, observing that the effect of
the particle resting on the wedge is to impress upon it a force B
perpendicular to the slant side, we have, by equating horizontal

forces, R.sima=F..........ooovvvvnnnnnn. (2);

therefore F= W.sina.cosqa,

= —, 8in 2a.
B) n zu
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(4). Find the ratio of the power to the weight neces-
sary for equilibrium on the wheel and axle.

(B). If the axis about which the machine turns coincide
with that of the axle, but not with the axis of the wheel,
find the greatest and least ratios of the power and weight
necessary for equilibrium, neglecting the weight of the
machine.

Let O (fig. 42) be the axis of the axle, O’ of the wheel.

0A=a, OB=b, 00 =c

If Pbe hung at B, W at 4/,

P 04 a

W= 0B - b—2¢ greatest value of L.

W7

and if P be hung at B, W at 4,

1849.

£—jS— “ least valu 0f£
W= 0B bxe 7

(4). Find the relation between P and W in the system
of pullies in which the same string passes round all the
pullies.

(B). A triangular plane ABC is kept in equilibrium
by three systems of pullies of the above kind, each having
one block fastened to a fixed external point and the other
attached to an angular point of the triangle by a string
whose direction bisects the angle. The same string passes
round all the pullies and is solicited by a certain force.
Shew that the numbers of the strings between the pullies
are as cos $4 ¢ cos 1B : cos 1 C.

If » be the number of the parallel strings in (4),

w
— =

P

Let n,, n, n,, be the numbers of strings between the blocks of
the pullies at 4, B, O, respectively. Then, by the above
formula, the tensions at 4, B, C, which keep the triangle at
rest, will be n P, n,P, n,P; P being the force which acts upon
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the string passing round all the pullies. The directions of these
three tensions, by hypothesis, bisect the angles of the triangle,
and therefore meet in a point. Let them meet in O (fig. 48).
Then, supposing O to be a point rigidly connected with the
triangular plane, we may regard the tensions as acting upon it;
and we have

nP:nP:nP::sinBOC:sindA0C: sin 40B,
wsin($B+3C) i sin(34 +10) : sin(34 + 1B),

. . . . 1 . 1R .
o1 n i n,:n i coshd i cosyBcosLCl
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DYNAMICS.

1851.  (A4). Write down the laws of motion; giving any
illustrations you please for the sake of explanation.

(B). If a weight of 101bs. be placed upon a plane
which is made to descend with a uniform acceleration of
10 feet per second, what is the pressure upon the planc?

Let R be the pressure on the plane. The moving force upon
the given weight
= 10 lbs. — R,
= (mass) X (acceleration per second), by the
third law of motion,

1
19 1o,

g
100
T 322"

I

Ibs.;

_ loo
322"
2:22
3:22"7
= 6895 lbs.

therefore B =10

= 10

1850.  (4). Explain clearly on what conventions with respect
to units the equation P = Mf is true, where f expresses
the accelerating effect of a force whose statical measure
is P.

(B). A body weighing 10 lbs. is moved by a constant
force which generates in a second a velocity of 1 foot per
second ; find what weight the force would support.
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Here (B) is a numerical exemplification of the meaning of
the equation P = Mf, or moving force = the product of mass
into accelerating force. The question is simply this: Given the
mass of body and the accelerating force, find the moving force.

Let M be mass, f accelerating force. Therefore

Mg = 101bs., where g = 32°2 feet,
and f = 1foot.
Therefore moving force required, or in other words, the weight
which it would support,
= Mf,

= 10. f Ibs.,
g

1
. 3—2.—2 lbs.)

= 3105 lbs.

= 10

1848. (A4). A body whose mass is m, is projected with a
velocity 7, and acted on by a constant pressure P in the
line of projection: find the velocity of the body at any

time.
(B). A train of connected bodies, whose weights are
Wy W are moving together in a straight line, being

acted on by the retarding pressures P, F,, ... respectively ;
find the conditions in order that the bodies may continue
to move with equal velocities when the connexion between
them is severed.

In (4) we have

. . P
velocity at time ¢ = V +

pon L
Similarly, in (B), if V be the velocity of the whole train at the
instant when the bodies are separated,

velocity of T, at time # from the separation

Z)l [
. massof W, "~

=] — —%—.gt,

1
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velocity of W, at time ¢ =V — -I%— . gt

2
and so on.

If then the bodies, after being severed, are to move always with
the same velocities,

P, L &
——'W;gf—V——W;.gt &C oey
or —ﬂ:%:&c.. ,

the conditions required.

1850.  (4) Shew that in uniformly accelerated motion s=17%

(B) A body falling in vacuo, under the action of
gravity, is observed to fall through 1449 ft. and 177-1 ft.
in two successive seconds; determine the accelerating
force of gravity, and the time from the beginning of the
motion.

Let s, s, s" be the spaces (in feet) through which a body

would fall from rest in ¢—1, ¢, and ¢+ 1 seconds respectively.
Then, by (4),

s =4g(e—1),

s = Lgt’,

§' = 49 (t+ 1))
we have 192t—1)=¢§ - s =144'9 ............... (1),
and g 2t4+1)=8"—'=1TT"1...covvininn. (2),

from which two equations we can find ¢ and ¢.
Subtracting (1) from (2),

g = 32.2,

2t+1 177°1
Also Qti 17 1449
_ 1771 4+ 1449 322
1771 — 1449  32-2
therefore t=5 and ¢t + 1 =6,

and therefore 2t

10;
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1849. (4). If a body be projected with a velocity wu, and
acted on by a uniform force f in the direction of motion,
shew that the space passed over in the time ¢ will be
ut + L.

(B). A particle moves over 7 feet in the first second
of the time during which it is observed, and over 11 and
17 feet in the third and sixth seconds respectively. Is
this consistent with the supposition of its being subject to
the action of a uniform force ?

Let the velocity with which the particle is moving when first
observed be . Then, if it is acted on by a uniform force (f),
and s be the space passed over in ¢’, we have, by (4),

s = ut + Lft".
Hence, space described in the first second, (s,)
=u+ L
= 7, by hypothesis.
So sy = (Bu+ 18 — (2u+ 1£2),
—ut i

= 11, by hypothesis.
‘We now have two equations, from which we find
f =2 feet,
u = 6 feet;
therefore s. = (6u+ 31.6°) — (bu + L f.5%),
=u+ Y.f
=6 + 11,
= 17.

Therefore the assumption that the particle is under the action
of a uniform force is consistent with the data.

1850.  (4). Prove that if a heavy body fall down a smooth
curve, the velocity at any point will be that due to the
vertical height through which it has fallen.
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(B). Shew how to place a plane of given length in
order that a body may acquire a given velocity by falling
down it.

Let a (fig. 44) be the given length of the plane, v the given
velocity. Take a vertical line 4B = % . With centre 4 and
radius = a, describe in a vertical plane a circle cutting the
horizontal line through B in C.

A G will be the position required.

For, by (4),
velocity at C = velocity duc to 45,
= V(29.4B),

= .

1848.  (4). Prove that a body projected obliquely and acted
on by gravity will describe a parabola.

(B). Find the velocity and direction of projection in
order that the projectile may pass horizontally through a
given point.

Since the proposition teaches us that the path of a projectile
1s a parabola whose axis is vertical, it is clear that the given
point 4 (fig. 45) must be the vertex of the parabola. Let P be
the point of projection; PB=4h, BA =%k We may deduce
from (4), exactly as in Goodwin’s Course (Dynamics, Art. 39,
3rd edit.),

72

h= 35" sin 2a,
|
k= —.sin’a.
29
. k  sin’a
Hence, 5 e i tana;

. . (2k
therefore o = tan™ (77> 7
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and V2= 2gh
sin2a ’

1 + tan‘a

= gh.
gr tan o

b

_9 2
_%.(lz+47c).

1850. (4). Find the curve described by a body projected in
vacuo with a given velocity and in a given direction,
explaining the application of the second law of motion to
the problem.

(B). A smooth tube of uniform bore is bent into the
form of a circular arc greater than a semicircle, and placed
in a vertical plane with its open ends upwards and in the
same horizontal line. Find the velocity with which a ball
that fits the tube must be projected along the interior from
the lowest point, in order that it may pass out at one end
and re-enter at the other.

The result of (4) is (see Goodwin’s Course, p. 269, 3rd edit.)
that if V" (fig. 46) be the velocity of projection from P in direc-

tion P7T,
ey

g
and therefore the path is a parabola.

Let now PCP' (fig. 47) be the tube mentioned in (B).
OP =a, ON =c¢, LPOP = 2q,

v = velocity of projection from C,

QV*

.Y,

v' = velocity with which the ball emerges from P or P'.

By (4) it will describe a parabola; and the given conditions
shew that PT, P'TXare tangents to this parabola, whose vertex
therefore will be at 4, the middle point of N7.

Also, by (4), we have

2"

PT? = .AT.
g
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But PT = a.tana,
AT = INT = L{a.seca —¢),
= }(a.seca — a.cosa).

Ch
Therefore @' tan’a = — . a (seca — cosa),

g

, s 1 — cos’a
or ag . tan’o = v* STy
cos o

therefore v* = ag .seca.

Now the velocity at C is same as if the ball had been pro-
jected downwards with velocity ' from NNV therefore

v* =" 4 2¢9.CN,
= ag.seca + 2¢. (¢ + ¢),
= qag.(2 + 2 cosa + seca).

1849.  (4). The velocity of a projectile at any point of its
parabolic path is that which would be acquired by a body
falling freely from the directrix to that point.

(B). If a body be projected with a given velocity so
as to pass through a given point, construct the direction
of projection.

We learn immediately from (4) that, if a body be projected
with a given velocity, the distance of the point (/) of projection
from the directrix is known, and consequently the position of
the directrix. The body has also to pass through a given point
(@) ; so that (B) is eqnivalent to the geometrical problem: to
draw through P a tangent to the parabola which passes through
the given points P, ¢, and whose directrix is known.

Draw PM, QN (fig. 48) perpendicular to the directrix. With
centres P and ), and with radii PM, QN respectively, describe
two circles, cutting one another in S, §. Join PS, PS', OS, @5".
Then, since PM =P8, QN =6, and also PM =P8, QN= (5,
it is clear that each of the points S, §" will be the focus of
a parabola which answers the given conditions. Hence there
are two solutions; and both the line P7 bisecting the angle
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SPM, and the line P7T" bisecting the angle §'PM, will be the
direction in which the body must be projected with the given
velocity so as to pass through Q.

1850. (4). Given the velocities of two bodies of which the
masses are M, M', and the elasticity ¢; find the velocity
of each body after a direct collision.

(B). Three equal balls are moving in the same direc-
tion with velocities which are proportional to 3, 2, 1; and
the distances between them were at a given time the
same : shew that after impact the velocities will continue
to be in arithmetical progression.

(B) is not a direct application of (4), because it involves
a double impact; it is rather a question of similar character,
and must be solved in the same style as (4).

Let m (fig. 49) = mass of each ball; 3v, 2v, v, the velocities
of the balls, beginning with the hindermost, before impact;
v,, U,y ¥, velocities after impact.

The ratios of the velocities of the balls before impact shew
that, since they are at the same distance at a given time, they
will be equidistant always, and therefore will impinge on one
another at the same instant.

Now observing that 2v — v or v is the relative velocity of 4,
and A, before impact, and v, — v, after impact, and also 3v —2v
or v the relative velocity of 4, A, before, and v, — v, after
impact, we get

v, — v, = e,
v, — U, = e}
which proves that v, v,, v, are in arithmetical progression.

Had (B) been a problem, disjoined from any proposition, it
might readily have been solved thus:

Impress on all three bodies a velocity = — 2v; then 4, is
brought to rest, the velocitics of 4, 4, are v and —v respec-
tively ; 7.c. they impinge (at the same moment) on 4, at rest
with equal velocity (v). Therefore 4, still remains at rest,
while 4., 4, bound back with equal velocities — ev, ev. Impress
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on the whole system the velocity 20. Then the velocities of
4., A2, 4, are
2v — ev, 2v, and 2v + ev,

which are in arithmetical progression.

1849.  (4). A heavy particle slides down an inclined plane of
given height under the action of gravity ; find the time of
descent and the velocity acquired.

(B). If at the bottom of the inclined plane it rebound
from a hard horizontal plane, what must be the inclination
of the former that the range on the latter may be the
greatest possible ?

If 7 be the given height of the plane, V the velocity acquired
at the bottom of it,
V?* = 2gh.
Let now 6 be the inclination of the plane to the horizon;
e the modulus of elasticity between the particle and the hori-
zontal plane; » the velocity with which, and ¢ the angle to the
horizon at which, the particle rebounds. We have

2
the range on the horizontal plane = % .sin 26,

2
=7 (cos®@ + ¢". sin"0) . sin 20'.
Also tanf' = e.tan0.

2 tan @' e.sin20

Therefore  sin2¢' = 1+ tan®0 ~ cos'0 + & s’

2
therefore the range = 7 .e.sin20,

= 2k . ¢ sin20.
This (since 4 is given) will be greatest when

sin20 =1, or 20 = 90°, or 6 = 45°.
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1850. (4). If a particle oscillate in a cycloid, the time of an
oscillation will be independent of the arc of vibration.

(B). A seconds pendulum was too long on a given day
by a small quantity a; it was then over-corrected so as to
be too short by o during the next day: shew that the

2
number of minutes gained in the two days was 1080 Ll

LZ
nearly, if L be the length of the seconds pendulum.
The result of the investigation in (4) is that
time of oscillation = 7 «/ é,

where 7= 2 diameter of generating circle,

= radius of curvature at vertex of cycloid.

If a pendulum of length [ make small oscillations about one
extremity, we may consider the other extremity as moving very

nearly in a cycloid the radius of whose generating circle is ‘—QZ—;

and therefore
time of oscillation = 7 /\/ ;~

Hence we can apply this formula to (B).
Since L is the length of the seconds pendulum,

- Let ¢, be the time of an oscillation (in seconds) on the first
day when the length of the pendulum is L + a; ¢, on the second
day, when the length of the pendulum is L — a; y, the number
of oscillations made on the first day; y, on the second day.
N the number of seconds in a day. Then

t1=7r\/<L;‘a> .......... Ceeerieens 2),
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N

tl = 3}: ........................... (4),
N

t2 — g; ........................... (5)7

and number of seconds lost or gained = (y, +y,) ~ 2N.

Now y, +y, = i—\-f-}— ?—7 from (4) and (5),

1 2

- {1«/<Lil]—a> + %V(Lﬁa» N, from (2) and (3),
%\/ L { (1 - %)é} o

{ 1——»Z> }N, from (1),
a 3 o 1l &« 38 o
{ I g F~'.'>+(1+§.Z+§.Z§+.“>}N;

2

3 . a-
= (2 +7 L") N, neglecting fourth &c. powers of 7

Therefore number of seconds gained

.
_3 %3 24 x 60 x 60,
117 i I?

therefore number of minutes gained

3 o’
2
4 ‘T 4 x 60,

2

=1080.%2.

1851. (4). If a body move from rest under the action of
a uniform accelerating force, prove that the space moved

over varies as the square of the time of motion.

(B). If a body fall down an inclined plane, and another
be projected from the starting-point horizontally along the
plane ; find the distance between the two bodies when the

first has descended through a given space.
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Since the second body is projected horizontally along the
plane, it will, by the second law of motion, be affected by the
action of gravity exactly in the same degree as the first body ;
that is, the bodies will always be in the same horizontal line.
Let then either body descend through the given space (s) in the
time ¢; and let 7 be the velocity of projection of the second body.

The distance between the bodies at the time ¢ = V# But,
by (4), .

s = %g.sin a.t’,

a being the inclination of the plane to the horizon. Therefore

2s
t=\/< : )
gsina

and therefore the distance between the bodies = V. «/ < 2s ) .

g sina

1851.  (4). A ball impinges directly with a given velocity
upon another ball at rest; find the velocity of each after
impact, their common elasticity being e.

(B). If the vis viva before impact be n times the vis
viva after impact, find their common elasticity.

The formulee arrived at in the investigation of (A4), (with
the usual notation), are
M’

v = V— (1+6).m

.V,
M
v
From these we obtain the two following relations :
Mo+ MV = MV,

¢ = (1+e¢)

v—2 =—e¢eVl.
Therefore (Mv + M) = M*V?,
and MM' (v — ') = MM'E V>

Adding,
(M + M) (Me* + M) = (M + &M'). MV,
-

(V]
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Now, by hypothesis,
(M + M'v*) = MV

Therefore M+ M =nM+e M,
(M= (n—1).M\?
therefore e = { " Ta } .

1848. (4). If two imperfectly elastic balls, moving with
given velocities in a straight line, impinge directly, find
their velocities after impact.

(B). If the first 4, of three perfectly elastic balls
placed in a line, impinge directly with a given velocity
on the second B, so that 5 in turn impinges on the
third €, find the mass of B in order that the velocity
given to U may be the greatest possible, the masses of 4
and C being known.

The formule investigated in (4) are (see Goodwin’s Dy-

namics, Art. 50),
M’

v o= V—(1+6).m.(V_ VI),
’ ’ M '
U=V+(1+8).m.(V—V).

Let M, M', M" be the masses of the three bodies 4, B, C;
V the velocity of A4 before impact. Then, since B is supposed
to be at rest before 4 impinges on it, and also, the bodies being
perfectly elastic, ¢ = 1, we have, for the velocity of B after
impact,
, 2M
CEMy M

Now B impinges on C at rest with the velocity +'; hence, if "
be the velocity of C after impact,
e
M+ M
AMM'

T (MM (MM V-

T

v
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We have to find what value of 3/’ will make v" the greatest
possible, having given V, M, and M".
v will be the greatest when M+ M) (M + M) is least;

M‘l

"

7. e. when M+ M"+M + = is least,

12

M" .
——— 18 least.

or when M + T

Let this quantity = w. Therefore
M’Z—M.M,-*-jw ”:O‘
Whence M = qu + %V(,bﬁ_ 4:MM”)7

from which we see that the least value which » can possibly take
is given by »* = 4MM"; and we then have

M =%u= (MM

1849. (4). How may a pendulum be made to oscillate in
a cycloid ?

(B). A pendulum which oscillates seconds at one place
is carried to a place where it gains two minutes a-day ;
compare the force of gravity at the latter place with that
at the former. ’

When a body oscillates in a cycloid, the time of an oscillation

18 7 \/ g , { being the length of the pendulum.

If the pendulum oscillates seconds at a place where the force

of gravity is g,
1= ,\/ —Z- .
g

If at a place where the force of gravity is ¢’ it gains two

. . —_— . N :
minutes, the time of an oscillation will be N1 130" N being the-

number of seconds in a day.
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§ N l
Therefore Nii30 = iy «/ E
q N+ 120\*
Hence é = (%N—> ,

1851.  (A4). Define a cycloid, and prove that the arc measured
from the vertex to any point is equal to twice that chord

of the generating circle which touches the curve at that
point.

(B). Hence deduce the radius of curvature at the
vertex, and shew that the time of oscillation in a small

arc of the generating circle will be half the time of
oscillation in the cycloid.

The radius of curvature at C, (fig. 50),
2

Pn’

= 4 limit

. ., (2PR)*
=13 hmlt-(—Pn—) , by (4),

o . pC?
= 2 TimitZ o

= 20D.

Again, by means of the property enunciated in (4), it is
proved that the time of oscillation in the cycloid

_ W\/<233> 7

o /\/ (radius of curvature at C )
7 .

Hence, the time of a small oscillation in the generaﬁng circle
CpB, which is the same as the time of oscillation in a cycloid
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of which CpB is the circle of curvature, is

/(5
ie /2,

= }time of oscillation in the original cycloid.

71



HYDROSTATICS.

1850. (4). Find the pressure referred to a unit of area at

any depth below the surface of a heavy incompressible
fluid.

(B). If from every point in the vertical side of a rect-
angular vessel containing fluid a horizontal line be drawn
proportional to the pressure at that point; find the locus
of the extremities of such lines; and thence deduce the
amount of the whole pressure upon one of the vertical
sides of a cube filled with fluid, and the point of applica-
tion of the resultant of the pressures.

We obtain from (4) that
pressure at any point of a fluid = oz,

where o = specific gravity of fluid, # = depth of the point below
the surface.

Let ABCD (fig. 51) be a vertical section of the rectangular
vessel.

If from a point P in AB, a line P@ be drawn proportional
to the pressure at P, I’Q) must, by the proposition, be propor-
tional to AP. Therefore

g% (= tan PA Q) is constant;

and therefore the locus of ) is the straight line 4Q; and there-

fore the locus required is a plane making a constant angle QA4.D
with the surface of the fluid.

Let now the vessel be a cube of which 4B = ¢ is one vertical

adge.
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Since ¢ is a numerical quantity, we may take
PQ = cAP,

in which case P will represent the pressure at P. Hence the
whole pressure on the line 4B is equal to the sum of all the
lines similar to P which lie between A4 and BR, 7.e. = area
ABR. Therefore whole pressure on a vertical side of the cube

= volume of the solid of which 4BR is a vertical section,

= }volume of rectangular box 4ABEL,
= 3+ AB". BR,

Again, to determine the point of application of the fluid
pressures on 4B is nothing more than to determine the point
of application of a system of parallel forces proportional to lines
such as PQ; which problem is exactly the same as that of find-
ing in which of the lines parallel to BR, of which the triangle
ABR is made up, the centre of gravity of the triangle ABR lies.
We know that it lies in that line which is at a distance 34B
from A ; the point therefore (in the vertical line bisecting the
side of the cube) which is at a distance 2a below the surface of
the fluid, is the point of application of the resultant of the fluid
pressures upon the side.

1849.  (4). Determine the whole pressure on a surface im-
mersed in a heavy fluid of uniform density.

(B). What must be the vertical angle of a conical
vessel, in order that when it is placed with its vertex
upwards, and filled with heavy fluid through a hole at the
vertex, the pressure on the curved surface may be to the
pressure on the base as 4 to 3 ?

Prove that the ratio above mentioned cannot for any
cone be less than 2 : 3.

The whole pressure on a surface whose area is S, which is
immersed in a fluid of specific gravity o, and whose centre of
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gravity is at depth z below the surface of the fluid, is
oz 8. |
If 4, ¢, 7 are respectively the height of the cone in (B), the
length of the slant side, and the radius of the base,
area of curved surface = mre,
and depth of its centre of gravity = 24;
therefore whole pressure on curved surface (P) = %a.mwrch.
Again, area of base = 7%
and depth of its centre of gravity = 2,

therefore whole pressure on the base (P,) = omr’h.

Therefore ; ; = % = % , by hypothesis,
2
therefore rol
c 2

But if 6 be the semi-vertical angle of the cone,

© =siné.

¢
therefore sin @ = %,
or 0 = 30°;

and therefore the vertical angle = 60°.

) . P
Since the ratio =2 =

P

2

; and since for no cone can ¢ he less

RS
N s e

than », it appears that =} can never be less than 2.

P

2
1849. (4). Determine the conditions of equilibrium of a
floating body.
(B). A cylindrical vessel, the radius of the base of
which is one foot, contains water: if a cubic foot of cork
(sp. gr. = -24) be allowed to float in the water, find the

additional pressure sustained by the curved surface, and
by the base, respectively.
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That a body may float, its weight must be equal to the
weight of the fluid displaced, and the centres of gravity of the
body and of the fluid displaced must lie in the same vertical
line.

The latter condition shews that the cubic foot of cork men-
tioned in (B) will float in stable equilibrium with a side hori-
zontal ; and then the former condition gives us (if « is the
depth to which the cork will sink, expressed as a fraction of
a foot),

(sp. gr. of water) x (1 sq. ft.). = (sp. gr. of cork). (1 cub. ft.),
or x = *24.

Again, if y be the height through which the water rises when
the cork is put in, the fact that the volume of the water remains
the same gives

y (area of base of cylinder) = volume of cork immersed,
or y.r = ‘24 (*. radius of the base of the cylinder = 1),
_
==

Y

Now the increased pressure on the curved surface will clearly
be equal to the pressure on a strip of the cylinder of length y
supposed added on to the bottom of the cylinder; d.e. (if % is the
original height of the water)

= 2m.y. (h + %y), sp. gr. of water being 1,
=24 <2k + .—2—%> .
T

The increase of pressure on the base
=m.(h+y) — m.h,
= 7,
= 24,

Obs. These numerical results give the ratios of the pressures
to the weight of a unit of volume of water.
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1849. (4). Define specific gravity.

(B). The specific gravity of coal is about 112, that of
water being 1, and a cubic foot of water weighs 1000 oz.;
find the edge of a cubical block of coal which weighs 2000
tons.

The specific gravity of a substance is the ratio of the weight
of any portion of its volume to that of an equal volume of some
standard substance whose specific gravity is taken as unity.
Hence, water being taken as the standard substance,

__ specific gravity of coal

112

therefore weight of a cubic foot of coal = 1°12 x 1000 oz.
= 1120 oz.
— *3-1'2‘ tOll ;
therefore weight of 2000 x 32 cubic feet of coal = 2000 tons.

Thus the volume of the block of coal is 64000 cubic feet, and
the edge is therefore 40 feet.

1850.  (A4). Define specific gravity. Given weights of sub-
stances of known specific gravity are compounded ; find
the specific gravity of the compound.

(B). Eleven ounces of gold (sp. gr. 19.3) are mixed
with one ounce of copper (sp. gr. 8.8), find the specific
gravity of the compound, supposing its volume to be the
sum of the volumes of the two metals.

The result of the investigation in (4) is

., W+ W

oW+ W

assuming that the volume of the compound is the sum of the
volumes of the components.

sp. gr. of compound = oo
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In(B), 0=193, ¢'=88, W=110z, W'=1oz

Therefore specific gravity of compound

11 + 1
= (19.3).(8.8).
(19.3).(8.8) 19.3 x 1 + 8.8 x 11
12
= (19.3). (8.8) . 1727 »
4
= (19.3). (8.8). 5=,
_679.36
88,77
= 17.5054.

1848.  (d4). Describe the experiment which shews that the
pressure of air is proportional to its density while the
temperature remains constant.

(B). A straight vertical tube is closed at its lower end ;
how much of a given liquid can be poured into it, the air
which originally filled it being compressed at the bottom
of the tube ?

Let a be the length of the tube, « the length of that portion
which is filled with fluid (specific gravity o), IT the pressure of
the atmosphere, P the pressure of the air when compressed in
the tube.

Since by (A4) the pressure of air varies as its density, and
therefore inversely as the volume it occupies,

P o«
I ao—-z°
But P supports the weight of a column of fluid whose height

is z, together with the pressure IT on the surface of the fluid;
therefore

P=ocuwx+1l,
=0 (x + ),
if % is the height of a column of fluid whose weight is equal to
the pressure of the atmosphere.
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w—l—k_f_ a

Therefore

h I a-2’
therefore (@ —h) z — 2" =0,
and x=a—bh,

gives the length of the column of fluid in the tube.

1850.  (4). Give the experiment from which it is inferred that
the pressure of air at a given temperature varies inversely
as the space it occupies.

If the temperature vary, what relation exists between
the pressure, the volume, and the temperature ?

(B). A given quantity of air under the pressure of m
pounds to the square inch, occupies n cubic inches when
the temperature is ¢; find how many cubic inches it will
occupy under the pressure of m' pounds to the square inch
when the temperature is ¢

The answer to the second part of (4) is

1+ at

M=~

, where ¢ is temperature and » volume.

The first condition in (B) gives IT = m lbs., v = n cubic inches,
corresponding to temperature . Therefore

1 ¢
m=B % e, (1).

n

The second condition gives IT = m'lbs., v = « cubic inches, the
required volume for temperature t. Therefore

, 1+ at
S e i 2).
m = = (2)
T m x 14+ at
Eliminating 8, por Rl R
m 1+ at
therefore r=mn_ Trat’

where « is the expansion of a cubic inch of air for 1° of increase
of temperature.
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1850.  (A). Shew how to graduate a thermometer, and to
compare the scales of two differently graduated ther-
mometers.

(B). The number which expresses a certain tempera-
ture on the centigrade scale is equal to the sum of the
numbers which express the same temperature on Fahren-
heit’s and Reaumur’s respectively ; find the numbers.

From (4) we have, if @, @, be the graduations of the boiling
point; b, &', of freezing point; and z, «/, of any given tempera-
ture in the two thermometers,

x—b o =10

a—b d—=10b"
In the centigrade scale a =100, b= 0.
In Fahrenheit’s a =212, b=232.
In Reaumur’s a=80, b=0.

Therefore @, «/, ', being numbers which represent a certain
temperature in the three scales respectively,

11

x _w’—32_§_
100 180 80’

_m’——32 !

x
9 4

— xl + mu.

or

8 ou&

Also, by hypothesis,

From these three equations we have to determine z, ', .

We have x= 2w+ 32 + 4,
or — S = 32.
Therefore x = — 20° Centigrade.
Therefore x =%z + 32,
— — 36 + 32,

= — 4° Fahrenheit.

x' = tw,

= — 16° Reaumur.
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1851.  (4). Describe the Common Barometer.

(). If there be a small quantity of air in the tube
above the column of mercury, what will be the effect on
the indications of the barometer ?

(C). A faulty barometer indicated 29:2 and 30 inches
when the indications of a correct instrument were 294
and 303 respectively, find the length of tube which the air
in the tube would fill under the pressure of 30 inches.

Let %, x, be respectively the true and false readings of the
barometer; ¢ the length of tube occupied by a small quantity
of air in the upper part of the tube when under the pressure
indicated by the reading (%); @ the whole height of the tube
above the lower surface of the mercury; o the density of the
mercury. Then

pressure of external air = wt. of column of mercury of height z
+ pressure of air in upper part of the tube,

or oh = ow + oh. —° ,
a—x

therefore hia—a) =z (a—x)+ he.

Whence h= 2l

a—c—a’
which gives the #rue reading.
The error produced = % — «,
o
a—c—wx
In (C) we have to apply this result to a numerical example.
When the faulty barometer indicates 29:2 (= x), we have by

the true one, & = 29'4 inches; and therefore the error produced
is *2 inches. Also let ¢ = ¢,; therefore

9 — c,.292
a—c, — 292’
therefore a—c, — 292 = 146¢,

therefore a—292=147c, ocoiriiiiiiiiiinn.n. (1).
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Again, when the faulty barometer indicates 30 inches, the
error is '3, and ¢ = ¢,, suppose;

.30
therefore g = %% ,
a— ¢, — 30

therefore @ — 30 =101¢, vcovvirininiannnnnnnen, (2).
Eliminating o from (1) and (2),
147¢, — 101c, = 8.

Also, since the mass of air in the tube is the same, the vo-
lumes it successively occupies are proportional to the pressures

c, 303 101
t 6 _ o0 191
erefore ¢, 294~ 98
1
Hence 3.—2—1—02 — 101¢, = 8,
101¢, = 16,
or _ 16
%= 101

Let ¢’ be the length of tube which the air in the tube would
fill under the pressure of 30 inches, so that

c, 0
. . 16
therefore ¢ =1 Ol.m

= 016 of an inch.

1850.  (A4). Describe Nicholson’s Hydrometer.

(B). Given two weights which cause the instrument
to sink to a certain depth in two fluids, find the weight
which will make it sink to the same depth in a mixture
of known volumes of the two fluids.

Let w = weight of the instrument,

» = volume of fluid displaced,
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W,, W, the weights which sink the hydrometer in two fluids
whose specific gravities are o, o, respectively.

Then WA W, =00, (1),

Let now W be the weight necessary to sink the instrument

to the same depth, in a fluid compounded of volumes V,V, of

the above fluids. Then, observing that the specific gravity of

. . . o, Vl -+ o, V2
the mixture will be H—_‘Vl .
oV + o, V2 ’
w + Wz_———_—V—}—V Vi, (8);
o, Vl + o V2

therefore W—Ww = <—————————~Vl T VZ — o-1>.v
_(o,—0).V, :
= T .

Also, from (1) and (2),
(0-2—0-1> v = T/V2 - I/Vl;
|4
therefore W=W, + —I—,l—_:—V;(W’Q—— W)

_VwW VW,
VT,

1849.  (4). Describe Smeaton’s Air-pump, and find the den-

sity of air in the receiver after any number of ascents of
the piston.

(B). If instead of the receiver we use a cylindrical
vessel of ten times the capacity of the barrel, and cover
the upper extremity with a diaphragm capable of sustain-
ing only half the pressure of the atmosphere, find after

how many ascents of the piston the diaphragm will burst.
Given
log,,2 = 0.3010300,

log, 11 = 1.0413927.
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Generally, if 4, B be the capacities of the receiver and barrel
respéctively, p the density of atmospheric air, p, the density of
air in the pump after » ascents of the piston,

_ < A k22
Pu=P\4 ¥ B) '
Here 4 = 10B; and if » is the number of ascents of the

piston just before the diaphragm bursts, p. = % p, since it is only
capable of sustaining half the pressure of the atmosphere ;

. 10 n
therefore = (ﬁ) 5

therefore n (log 11 —log, 10) = log, 2,

Y log, 2
log, 11 — 1

_*3010300
T 0418927

= T2...

or

Hence the diaphragm will burst during the 8" ascent,

o
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1849. (4). When rays diverging from a point are incident
on a plane mirror, prove that the reflected rays diverge
accurately from a point.

(B). Within what space must the eye be situated to
sce a given point by reflection at the mirror; and within
what space must a point be situated to be seen by the
eye in a given position ?

Let 4B be the mirror; P (fig. 52) a given point. Its image
will by (4), be a fixed point p equally distant from the mirror
on the opposite side. Join B4, pB, and produce these lines
to @, B. Then will QpR be the reflected pencil, and conse-
quently QABRE the space within which an eye must be situated
in order to see p.

Again, let F (fig. 53) be the eye in a given position. Draw
the lines #Ag, KBr. Then the image of the point must lie
in the space ¢4Br; and therefore, drawing 4@, BR at the
same inclination to AB as Ag, Br respectively, the point, in
order to be seen by the eye at F, must lie within the space
QABR.

1851.  (4). A luminous point is placed between two parallel
plane mirrors, find the position of the successive images.

(B). When the luminous point moves uniformly in a
straight line, shew that all the images will move uniformly
in two sets of parallel straight lines which are equally
inclined to the mirrors.
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Let @ (fig. 54) be the luminous point. Then if we consider
the rays which fall first upon the mirror 4, an image @, is
formed, then an image @), of @, by the mirror B, then an image
Q, of @, by the mirror 4, and so on. And a similar set of
images will be formed by the rays which fall first on the mirror
B.

Now if @ move along a line QP, @, will by the nature
of reflection move along Q. P. Let QP, produced meet the
mirror B in P ; then @, will move along Q,FP,. So ¢, will
move along @.P,; and so on.

Thus the alternate images will move along two sets of lines
respectively parallel to @ P, QP,; lines which are equally in-
clined to either mirror.

Tt is clear that the same holds also for the images formed by
rays falling first upon the mirror B.

1851. (4). Two rays are incident at any point of a spherical
mirror whose centre is Z, the one parallel to the axis of
the mirror, the other proceeding from a point ¢ in the
axis, and the reflected rays cut the axis in &' and ¢ re-
spectively ; shew that G'Q).Gq = GE".

(B). If the axis AFE of the spherical mirror meet the
surface produced in £, shew that a ray proceeding from R
and making an angle of 30° with the axis, will be reflected
to the principal focus of the mirror.

Let the ray RP (fig. 55) incident at P make an angle of
30° with RA4. Join PA4; and let Pg be the reflected ray.

It is clear that the triangle APEK is equiangular and there-
fore equilateral. IMence a ray incident at P parallel to B4
will be reflected in P4. Applying therefore the formula of (4),

Aq. AR = Al = AP*;
which shews that Py is perpendicular to Ag;
and therefore Aq = ql;

or ¢ is the principal focus.
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1851.  (4). If parallel rays be incident directly upon a
spherical refracting surface, the distance of the geome-
trical focus of refracted rays from the surface is to its
distance from the centre as the index of refraction to
unity.

(B). A pencil of parallel rays is incident directly upon
a spherical refracting surface, and after refraction con-
verges to a point at a distance from the surface equal to
three times the radius; find the index of refraction, (1)
when the surface is concave, (2) when it is convex.

By (4), if O (figs. 56, 57) be the centre of the refractor,
F the geometrical focus of rays parallel to the axis,

AF :OF :: p: 1.
In (B), AF =304,
and, whether the refractor be concave or convex,
OF = AF — 04 =204,
therefore, in both cases,

_AE_,
kF=0oF~*

1849. (4). When divergent rays are incident nearly per-
pendicularly upon a spherical refracting surface, the dis-
tance of the focus of incident rays from the principal focus
of rays coming in a contrary direction, is to its distance
from the centre of the refractor as its distance from the
surface to its distance . from the geometrical focus of
refracted rays.

(B). If the conjugate foci are each at a distance from
the surface equal to twice the radius, what is the index
of refraction?

In (B), since the conjugate foci (@), ¢) (fig. 58) are on opposite
sides of the surface, the refractor is convex. Let O be its centre,
F the principal focus of rays coming in a contrary direction.
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By (4), QF: Q0 :: Q4 : Qq.
But by hypothesis, AQ = A4g=204;

therefore Q0 =304, Qq=2QA.
Hence, substituting @QF:304 ::1: 2,
or QF =304;
therefore AF =A4Q - QF =104,
and OF = 04 + AF =40A.
But AF: OF :: p: 1,

(Goodwin’s Course, Optics, Art. 39, 3rd edit.)
therefore M= %%

—1

1848.  (A). The image of a straight line formed by a plane
refracting surface is a straight line. 'Why does a straight
rod appear bent when partly immersed in water?

(B). What must be its inclination to the horizon when
its apparent portions are inclined to each other at the
greatest angle?

Let ABQ (fig. 59) be a rod partly immersed in water, ¢ any
point of the rod under water, ¢Ba the direction after refraction of
the ray from ¢ which falls in the direction ¢B. Then to a
first approximation, ¢ will be the image of @, and ¢B will be,
by (4), the apparent position of the portion 5¢) of the rod.

Now the angle between the apparent portions of the rod,
viz. the £QBg, is also the deviation of the ray @B. But the
deviation increases as the angle of incidence increases; the
angle therefore between the apparent portions of the rod will
be greatest when the angle of incidence of the ray QB is great-
est, 7.e. when it equals the critical angle for water = 48° 30', or
when the inclination of the rod to the horizon is 41° 30",
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1850. (4). Point out the distinction between a real and
virtual image.

(B). A plane mirror is placed perpendicular to the
axis of a concave spherical reflector, nearer to the prin-
cipal focus than to the face, and between them; rays
from a very distant object fall directly upon the spherical
mirror: trace the pencil by which an eye will see the
image formed after two reflexions at each mirror.

Let O (fig. 60) be the centre of the spherical mirror, #' the
principal focus half-way between O and the mirror, aCb the
plane mirror, CF being less than C4, E the position of the
eye.
Take Cq = CF; then ¢, will lie on the right of the mirror.
The focus conjugate to ¢, will be at a point ¢,, such that

11 2
T dg, T dg, T 40

Again, take Cg, = (g,; join Fg,, meeting the plane mirror
in B, — R g, meeting the spherical mirror in B, — R g, meet-
ing, when produced, ab in B, — FE, meeting, when produced,
the spherical mirror in £,; and lastly, draw R ,Q parallel
to 40.

Then will QR R R R E be clearly the course of the axis
of the pencil by which the eye at £ sees the distant object
after two reflexions at each of the mirrors.

The image seen will be at ¢,, which, since the rays do not
actually pass through it, is a wirtual one.

1850. (A4). A ray of light is refracted through a prism in
a plane perpendicular to its edge; find the deviation
produced by the refraction.

(B). A speck is situated just within a glass sphere;
shew how much of the surface of the sphere must be
covered in order that the speck may be invisible at all
points outside the sphere on a line drawn from the speck
through the centre.
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If ¢, 4, be the angles of incidence and emergence of a ray
which passes through a cone whose vertical angle is 4, the
deviation = ¢ + J — <.

Let now A (fig. 61) be a speck just within a glass sphere
ADB. Let AD be a ray which, after refraction, is parallel to
BC; this will clearly be the ray which makes the greatest
angle with AB of all those which enter an eye situated in
BC. Draw the two tangent planes to the sphere at D and A4,
meeting in F. Then, (since it is immaterial whether we con-
sider it as just inside or just outside the surface,) ADF may
be regarded as the course of a ray refracted through the prism
AED; and our object is to find how this prism must be
situated in order that the emergent ray may be parallel to BC.

We have ¢ =204D.

In order that the emergent ray may be parallel to BC, the
deviation must = £DA0 = ¢

therefore b =¢+ -7,
or = 1.
Also 20 =L DOB =1¢=;
therefore sinyr = p.sing

= po.siny;
or 2 cosiYr = u,
therefore A = 2cos” Fu

=/.DOB.

Hence the portion of the sphere which must be covered is
that which subtends an angle DOD' = 2. D 0B = 4 cos ' §u.

1851.  (4). Shew how to find by experiment the focal length
of a lens.

(B). The least distance between an object and its
image formed by a plano-convex lens of glass is 12
inches; the index of refraction being 3, find the radius
of the spherical surface.
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The focal length of a convex lens may be found experi-
mentally by observing the least distance between an object
in the axis of the lens and its image formed by the lens. For
let @ (fig. 62) be the object, ¢ its image, AQ = u, Ag =7,
S focal length of lens.

Then 1% — -ld = — };

therefore Qr=—-—v+u

S

= v

w—f

= &, Suppose ;
therefore ' — qu = — fr,
or u =g+ vz (@—4f)},

which shews (since » must be a possible quantity) that the least
value of x = 4f.

Thus f'= 1 of least distance between ¢ and its image. If
the lens be concave, the focal length may be determined by
the same experiment, by placing it in contact with a convex
lens. (See Griffin’s Optics, 2nd edit., Art. 167).

In (B) we have given that the least distance between an
object and its image is 12 inches ;

therefore J = 12 = 3 inches.

But if » be the radius of the curved surface,

‘]1.5 = (u—1). %, disregarding the sign,

1
={#-1).
— 1 °
2
therefore r=1

= §in.
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1848.  (4). Describe the Astronomical Telescope; trace the
course of a pencil of rays from any point of a distant
object, and find the magnifying power.

(B). If the focal lengths of the lenses be 12 inches
and 1 inch, how far must the eye-glass be moved for
viewing an object at a distance of 40 feet from the
object-glass ?

Let 4, a (fig. 63) be the object and eye glasses of an Astro-
nomical Telescope, p the image of an object 40 feet distant
from 4.

Then, since 4 is a convex lens of 12 inches focal length,

1
Ap 480 127
1 13
therefore ;= " 160’
160 .
therefore Ap = — 43 .
4 .
= — (12 + —1—§> m.

And since ap = 1inch; therefore da = 13 + % inches.

Now when the instrument is in adjustment for viewing a
distant object, Aa = 13 inches. Hence the eye-glass has to be
pulled out % of an inch.



NEWTON,

1850.  (4). Enunciate and prove Newton’s second Lemma.

(B). Hence shew that two quantities may vanish in
an infinite ratio to each other.

Taking the figure as constructed in the Lemma, we have
it proved by the Lemma that the sum of the parallelograms
ab, be, cd,* &c. vanishes in the limit; and & fortior? the paral-
lelogram @b vanishes. But in the limit the number of these
parallelograms is infinite, and therefore the above-mentioned
sum is infinitely greater than the parallelogram ab. Xence two
quantities may vanish in an infinite ratio to each other.

1849. (4). Enunciate and prove Newton’s fourth Lemma.

(B). In Lemma X., if the velocity vary as the square
of the time, shew that the space will vary as the cube of
the time.

In Lemma X. the time is divided into equal intervals re-
presented by the lines AB, BC, CD, ... (fig. 64); the velocities
being represented by lines perpendicular to these, Bb, Cec, Dd.

It is hence shewn that if A% be the curve passing through
all the points b, ¢, d, &c., when brought indefinitely near to one
another,

space in time A0 : space in time AK :: area ADd : area AKE.

Let the time AK be divided into the same number of equal
parts as 4D is divided into.

Then, since the velocity varies as the square of the time
in which it is generated, the parallelogram A4b is proportional
to AB? Bc to BC.AC* or 2°.4B° CD to 3°4B°; and

% See the figure in Goedwin’s Newtor, Lemma 11.
tel ]
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so on. Similarly, if 4B, B'C’, &ec. are the intervals into
which AK is divided, 43" will be proportional to A4B",
B'd to 2°.4B"% C'd to 3".4B"% and so on. Thus the ratio
of each one of the former series of parallelograms to the corre-
sponding one of the latter series is AB®: AB", or (since the
number of intervals in 4D, AK is the same), 4D° : AK®.

But by Lemma 1v. the curvilinear areas 4.Dd, 4Kk will be
in the same ratio.
Therefore, from above,

space in time 4D : space in time 4K :: AD’: AK?,

or the spaces are proportional to the cubes of the times.

1851.  (4). Enunciate and prove Newton’s fourth Lemma.

(B). Apply this Lemma to prove that the area included
between a hyperbola and the tangents at the vertices of
the conjugate hyperbola is equal to the area included
between the conjugate hyperbola and the tangents at the
vertices of the hyperbola.

Let the semiaxes C4, CB, (fig. 65) of the hyperbola be
divided each into the same number (n) of small equal parts.
Let mm' be the (r+1)™ part of B, counting from C; so that

mm’:—B—q, and PN=Om=%.BO.

n
; , ay ACE ,
Now ONz—AC’z:ANl\/M-——-B—OZ.PN‘*
== 7—'5 A C%
" 2
therefore ON = 4C. \/ (1+5).
Hence the area of the small parallelogram in P is
mm' . P

n

_ BO;ZAO.\/@_}_%’;) ‘
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Now the conjugate hyperbola is a concentric hyperbola
having A M for its transverse axis. Hence, if we dividle BOAK
into n parallelograms of equal breadth parallel to BC, we shall
find the area of the (» + 1)® parallelogram from C'

AC.BC 7
- 4% .\/<1+?>,

by the formula already proved.
We therefore have

area of Pm/ _
area of corresponding parallelogram in fig. CK —

Thus we have divided the figs. BOAK, BCAL into the same
number of parallelograms, each of which in one figure has
ultimately to the corresponding one in the other a ratio of
equality. Hence, by the Lemma, the figures themselves have
to one another a ratio of equality; and therefore the figures
KK', LL', which are four times the former figures, are equal
to one another.

1.

1849.  (4). Define similar curves.
(B). Shew that all parabolas are similar to each other.

(C). Describe an instrument which is adapted for
drawing curves similar to given curves.

Two curves are said to be similar, when there can be drawn
in them two distances from two points similarly situated, such
that if any two other distances be drawn equally inclined to
the former, the four are proportional. (Evans’s N ewton, Cor.
to Lem. v.)

Let P (fig. 66) be any point in a parabola. Draw the
tangent P7" and the perpendicular PY upon it from the focus.

By the property of the parabola,

SY* = 84.8P;

heref sp Sy
theretore G4~ SI
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Let A', §', Y', be points in any other parabola corresponding
to 4, 8, Y; P’ a point in this new parabola, such that
| L AS'P =1 ASP.
SI_PI Sl Y’Z
Then, as above, TA T TA"
Now since the 2.A4'S'P'=2 ASP, therefore the £ A4'S'Y'=,£ASY.
Hence the triangles A'S'Y’, ASY are similar, and therefore

8'Y SY.
sS4 847
S'P SP

therefore m = m )

which, in accordance with the above definition, proves the
parabolas to be similar.

Again, let it be required to draw a curve similar to a given
curve 4 PB.

Let BC, be (fig. 67) be two equal parallel rulers joined
together by two equal parallel rulers Bb, Cc on hinges at
B, b, 0, c. APp a rod moveable about a hinge at 4.

If now we suppose BC, bc, and APp to have each a longi-
tudinal slit, then, by making a pin passing through both rods
APp, BC at P to move along the curve BPA4, a pencil passing
through the intersection of 4Pp, be will trace out the curve bpA
similar to BPA. For, since BP is parallel to p, therefore

AP: Ap :: AB: Ab.

1851.  (4). The spaces described from rest by a body under
. the action of any finite force are in the beginning of the
motion as the squares of the times in which they are

described.

(B). If the force vary as the time from rest, prove
that the velocity will vary as the square of the time.

Let the same system be pursued in (B) as is adopted in the
Lemma; d.e. let AB, BC, OD, &e. represent equal intervals into
which the whole time AK is divided.
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Let the lines Bb, Ce, Dd, (fig. 68) at right angles to AK
represent the magnitudes of the force at the end of the times
AB, AC, AD, &c.... Since, by hypothesis, the force varies as
the time from rest, the points b, ¢, d, &c. will all lie in a straight
line through 4.

If we complete the rectangles Ab, Be, Cd, &e., these will
represent the velocities generated in the intervals 4B, BC, CD,...
on the supposition that the force remains the same during any
interval as it is at the end of such interval. Hence, by reasoning
similar to that in the Lemma, the limit of the sum of all the
rectangles, ¢.e. the triangle AK%, will represent the whole
velocity actually generated in the time AK.

Thus we get

velocity in time 4K : velocity in time 4D :: area A Kl : area ADd
it AK® 2 AR

i.e. the velocity o square of the time.

1850. (4). If a body move in free space under the action
of a central force, the velocity at any point of the orbit
varies inversely as the perpendicular let fall from the
centre upon the tangent.

(B). If lines proportional to the Earth’s velocity, and
always parallel to the direction of its motion, be drawn
from a fixed point, shew that the extremities of these
lines will trace out a circle.

Let the lines be drawn from the focus, and let p' be the
length of any one of them. Then, since p' is by hypothesis
proportional to the Earth’s velocity, and by (4), the Earth’s
velocity is inversely proportional to the perpendicular (p) from
the focus on the direction of the Earth’s motion, .e. the tangent

o 4 . 1
to the orbit, ' must be proportional to 2 therefore

pp' is constant.

We have then two lines always at right angles to one
another, such that their lengths are symmetrically related; .e.
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so that there is nothing to distinguish one from the other. Now
the extremity of p traces out a circle by the property of the
ellipse ; therefore also the extremity of p’ will trace out a circle.

It is clear that the fact stated in (B) having been proved
true for lines drawn from the focus, will be true for lines
similarly drawn from any fixed point.

1851.  (A4). If several bodies revolve round a common centre,
and the centripetal force vary inversely as the square of
the distance, the welocities of the bodies are in a ratio
compounded of the ratio of the perpendiculars inversely,
and the subduplicate ratio of the latera-recta directly.

(B). The velocity of a body revolving in any conic
section is to the velocity of a body revolving in a circle
at the distance of half the latus-rectum as that distance
is to the perpendicular from the focus upon the tangent.

From (A4) we obtain that in any conic section described
round a centre of force in the focus varying as —~——
\ ymg (distance)*’

L

v —,
p
where p is the perpendicular on the tangent from the focus, and
L the semi-latus-rectum.
If u is the velocity of a body moving about the centre of force
in a circle whose radius is Z, we have p = L, and therefore

I3
U «C ‘Z—;
1
therefore A L .
L

1848.  (4). The centripetal forces of bodies which describe
different circles with uniform velocities tend to the centres
of the circles, and are to each other directly as the squares
of the arcs described in the same time, and inversely as
the radii of the circles.

H
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(B). How much must the length of the day be short-
ened, in order that the rotation of the Farth may be
sufficiently rapid to destroy the weight of bodies at the
equator ?

Let @ be the angular velocity of the Farth about its axis,
or the angle through which it revolves in one second; » the
equatoreal radius.

The velocity of any point in the equator = wr, and therefore,
by (4), the centrifugal force on such point due to the Earth’s

2
. w7 ‘ .
rotation =( r_ w’r. Hence, if f be the force on the same
”

point arising from the attraction of the mass of the Earth,

= o'r=g%*
Let now o' be the angular velocity of the Earth when bodies

have no weight. Then
|- w'’r = 0,

therefore (0" — ") r = g,

- te0).

Now é%- = ZLV’ if N = number of seconds in a day

= 86400 ;
2
therefore 0= WW ;
and, if ¢ be the length of the day (in seconds) in the supposed
case, o 1
g = 1
2
therefore ' = ——Z—r ;
27 g Ar
therefore - = \/ (; + l—\77> ,

* QObserve, it is necessary that « be the angle described in one second,
because the expression g=232.2 feet assumes one second to be the unit of time.
It must also be noted that » is expressed in feet.
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P N\
therefore b= QWN/\/(Fgﬂm) y
and the number of seconds by which the day must be shortened
=Nt

L

N{] _27—\/((/1\ :—471' 7)}

1851.  (4). The centripetal forces of hodies which describe
different circles with uniform velocities, tend to the centres
of the circles, and are to each other as the squares of the
arcs described in the same time divided by the radii.

(B). Give a formula for finding the height of a body
which moves under the attraction of the Earth in such
a way as always to be vertically above a point in the
equator, stating the numerical values of the quantities
appearing in the result.

Let @ be the equatoreal radius of the Earth; o the Earth’s
angular velocity about its axis; ¢ the force of gravity at the
equator; 4 the height above +he Earth’s surface of a particle
which always remains over a point of the equator.

In order that the body may move in the proposed manner,

z.e. in order that it may describe a circle of radius 4+« W’lth

2
. : arc
angular velocity o, the centripetal force must o —(—1~—

radius
(velocity)? _ (o (h+a))
veloaty) 1@ 23 I (h+a)
radius h+a )

; in fact
must =

But the force acting on the body = ¢ P

(A4 @)

1

since the attraction of the earth o¢ ———..
(distance)

Equating therefore the two expressions for the centripetal
force,

0/2

w2.(}z+a) ='q.(m;
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2

o rap = 22
2\ 1
therefore h = (q—ci>§ — a.
(O]

In this expression, the numerical value of g in 32:18 feet

nearly, of a, 20921665, (because, g being expressed in feet, @
2

£ @ 5% 60 % 60
-00007272233, (since a second 1s assumed to be the unit of time
in the expression for g).

or

must also be expressed in feet), and o

1849. (4). A body describes a parabola under the action of
a force parallel to the axis; determine the law of force.

(B). Find the velocity at any point, and the time of
moving from the vertex to the extremity of the latus-
rectum.

2%

o
(the centre of force) is a point in the axis of the parabola so
remote from 4, that it may be considered at the same distance
from any point of the parabola as from 4. Hence the force

is constant; let it equal f.
Then, if the velocity at P =V,

V? = § f.(chord of curvature parallel to the axis),
= 3 1.48P,
= 2f. SP.

Again, let ¢ be the time of moving from the vertex to the
extremity of the latus-rectum ; and V"' the velocity at the vertex.

Since the force acts parallel to the axis, it is clear that ¢
will be the time in which a body would describe the semi-latus-
rectum with a uniform velocity V7,

therefore 1L =T't,

From (4) we obtain that the force = ﬁ@" where C
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or 248 = t.a/(2f. AS),
therefore t = \/ (—Qij,é) .

1848. (4). Find the law of force tending to the focus of a
parabola.

(B). If the latus-rectum of a parabola is 24 feet, and
the velocity of a body revolving in it at the vertex is 2
yards per minute, find the time in which the body moves
from the vertex to one end of the latus-rectum.

From (4), the force at any point P (fig. 69) of the parabola

s
SP*
2h*

where B=7 L being the latus-rectum ;

we hence obtain, velocity = \/ (—Z—%) .

Let ¢ be the number of seconds the body takes to move from
A to B. Then % being 2 sectorial area described in 17,

t——2 area ASB 4 AS.SB_ 1 _l_}_e

h 3 A 6" A’
1 1 I
T 3V2 W (L) 8y2 W

2 .
But «/ (Z%) = velocity at 4 ;

8 . . .
or «/ (ﬁ) = {4, (since 2 yards per minute is 5 of a foot

per second),

20 L* 20 20
therefore ¢ = T3 5 24 =160 seconds,

&~
it
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1849. (A4). Find the law of force under the action of which
a body may describe an ellipse, one of the foci being the
centre of force.

(B). If v, o' be the velocities at the extremities of any
focal chord, and w that at the extremity of the latus-
rectum, then will +*, «*, v, be in arithmetical progression.

. =P
By (4) force to the focus = TP

The velocity at any point of the ellipse is that due to § of
the chord of curvature through the focus;

: g, BV
therefore v —Q.sz. T
_ k0D
- SPr 40!
_ _p SP.HP
TSP A0
_p 24C- SP
—SpPT 4C
_ 2 P
SP AC’

Similarly, if »' be the velocity at the other extremity of the
focal chord PSP,
v 2R K
8P ACT
In the same manner, if » is the velocity at the extremity of
the latus-rectum and Z the semi-length of the latus-rectum,

) 1 1
Hence, v — =2 (_S_-' - z) )
\
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But by a well-known property of the ellipse,

1 1 _ 2
sptsP =1’
1 1 1 1
therefore P -L=TI " P
therefore o2 — =t —

or v*, w*, v, are in arithmetical progression.
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EUCLID.

(4).  Book 1. prop. 26.

(B). The sides 4B, AC of a right-angled triangle, in which
A is the right angle, are produced; if the lines bisecting
the exterior angles meet in O, and perpendiculars be drawn
to the sides produced, shew that the figure OMAN is a
square.

(4).  Book 1. prop. 32.

(B). A semicircle ABDC is trisected by the straight lines
OB, OD drawn from the centre O; shew that the line
joining B, C bisects OD.

(4).  Book I. prop. 34.

(B). Shew that any straight line passing through the middle
point of the diameter of a parallelogram bisects the paral-
lelogram.

(4).  Book 1. prop. 39.

(B). Two straight lines 4 C, BD, cut in E. If the triangle
ABE equal the triangle CED, and the triangle 4AED equal
the triangle BEC, the figure ABCD is a parallelogram.

(4).  Book 111. prop. 11.

(B). If two circles touch each other internally, and any
circle be described touching both, prove that the sum of
the distances of its centre from the centres of the two
given circles will be invariable.
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(4).  Book 111 prop. 22.

(B). If all the angles of a quadrilateral inscribed in a circle
are bisected by the diagonals, it must be a square.

(C). If circles be described about the four triangles formed
by the intersection of four straight lines, shew that these
circles all pass through one point.

(4).  Book 11I. prop. 26.

(B). If a circle be described about a triangle 480, and per-
pendiculars be let fall from the points 4, B, C on the
opposite sides of the triangle, and be produced to meet
the circle in D, E, F, respectively; shew that the arcs
EF, FD, DE are bisected in 4, B, C.

(4).  Book 111. prop. 31.

(B). Two equal circles cut one another in 4 and B; if the
diameters 40, AD be drawn in the two circles, shew that
OB, BD are in the same straight line. Also, if the dia-
meter DA of one centre be produced to meet the other
in K, shew that & is a point in the circle described with
centre 53 and radius BD.

(4).  Book 111. prop. 32.

(B). A point 4 is taken in a circle such that, if the tangents
AB, AC be drawn to an equal circle, and be produced
backwards to meet the former circle in D and Z, the chord
DE = B(C. Shew that the triangle 4BC is equilateral.

(4).  Book 111. prop. 36.

(B). ABCD is a quadrilateral inscribed in a circle, such that
the sides AB, DC produced, and the sides 4D, BC pro-
duced, meet respectively in two points £, F' of a concentric
circle. Shew that EF cannot be parallel to BD unless
each of the angles ABC, ADC are right angles.

(C). If two circles cut one another, then the common chord
produced bisects their common tangent.
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Book 1v. prop. 15.

Six equal circles pass through one point, so as by their
mutual intersections to determine the angular points of two
regular. hexagons. Shew that of the two circles circum-
scribing these hexagons, one is equal to any one of the
given circles, and the area of the other is three times the
area of any one of them.

GEOMETRICAL CONIC SECTIONS.

The tangent at any point of a parabola makes equal
angles with the axis and with the line joining the point
with the focus.

1f the diameter at the point P in a parabola be produced
to meet the directrix in M, and MS be drawn to the focus
S, then the perpendicular from P on MS will be a tangent
at P.

Draw a pair of tangents to a parabola from a given

point in the directrix.

If from the focus (8) of a parabola whose vertex is 4,
SY be drawn perpendicular to the tangent P7, prove that
AY is the tangent at the vertex.

In SP a point A4’ is taken so that S4' = S4; shew that

SA'.AP=AY"

Define an ellipse.

Supposing no bodies to exist in space but the sun and
a small plane mirror which moves so as always to be a
tangent to its path, find the locus of the sun’s image.

The rectangle under the abscissee of the axis-major of
an ellipse is to the square of the semi-ordinate as the
square of the axis-major to the square of the axis-minor
(AN.NM : PN*:: AC*: BC).

Produce NP to meet the auxiliary circle in @; draw
PR parallel to QC, meeting the axis-major in E. Shew
that PR = BC.
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In the ellipse CP* + CD* = AC* + BC™
If on AB as diameter a circle be described, and 4

drawn to the circumference be equal to any semi-diameter
of the ellipse, shew that BQ will be equal to the semi-
diameter conjugate to it.

Define an hyperbola.

In a triangle with given base a circle is inscribed
touching the base in a fixed point; prove that the locus
of the vertex is an hyperbola.

The locus of a point whose distances from two given
points is constant is a circle.

Given the directrix and two points of a conic section,
shew that the locus of the focus is a circle.

ALGEBRA.

Divide 1 — " by 1 — .
Expand (1+a).(L+) (1 +29) (L+2) ... (1+27) n

ascending powers of z.

If a, b, represent the sides of a rectangle, explain in
what sense the area is represented by ab.

The length of a rectangular field exceeds the breadth
by one yard, and the area is three acres; find the length
of the sides.

x* + o is always > 2xy.
Shew that

Vi) /) /()

1s never < Aa + Vb + 4e.



108 SOLUTIONS OF SENATE-HOUSE ‘ RIDERS.

a ¢ a+te
(4). Ifz-= - prove that it a

(B).  Eliminate @ from the equations

is equal to either.

@ _ 2y _ 4z
a2+w2‘—az_l_y2—az+z2'

(4). Find the sum of an arithmetic series.

(B).  m arithmetic series have the same common difference 1,
their first terms are 1, », #%...#™, and the numbers of their
terms are » — 1, » (r — 1), ¥*(r —1),...7" 7 (r — 1).  Find the

sum of all the series.

(4). Find the sum of an infinite geometric series, whose
common ratio is < 1.

(B).  The sides of a square are divided in order in the ratio
of m :1 — m; the square formed by joining the points of
division is treated in the same manner, and so on. Shew

that the sum of the areas of all the squares to infinity is
az

am (1 —m) ; @ being a side of the original square.

(4). Investigate the number of combinations of n things »
together.

(B). If  C, represent the number, shew that

n — 1

WO, +nC_ +mn. 5

Oy +o=,.0C

on 7 rt

(4).  Write down the general term of (1 + z)™.
(B). If A, represent the coefficient of a”, shew that
mAz + -mAl’mAa + mA As Foo= 2 A4

2°m m” T mA2°

(4).  Prove that the discount on a sum of money is half the
harmonic mean between the principal and interest.

(B).  The interest on a certain sum of money is £180, and the
discount on the same sum for the same time and at the
same rate of interest is £150; find the sum.
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TRIGONOMETRY.

Trisect an angle whose cosine is given.
If B be any angle,

27_8+cos§+cos27+'8=0.

COos 3 3 3

Express the tangent of an angle of a triangle in terms
of the sides.

Prove the formula,

B 2¢
1— tan-2—.tan—2— = m.

Express the cosine of half an angle of a triangle in terms
of the sides.

If 4') B', C' be the angles which the sides of a triangle
subtend at the centre of the inscribed circle, then will

sind'.sinB'.sinC’ = sind + sinB + sinC.

Find the area of a triangle, (1) in terms of a side and
the perpendicular upon the opposite angle, (2) in terms of
two sides and the included angle.

If (@) be the side of a regular polygon of n sides, and
if perpendiculars (p) be drawn from any point in the
polygon to the sides, shew that

2 in
a = %.E(p).tan;{.

Express the area of a triangle in terms of the sides.

Required the sides of a triangle whose area is 24 square
feet, and sides in the ratio 3:4: 5.

Find the sum of the sines of a series of angles in
arithmetical progression.

If 2n lines of length (@) be drawn from a point, so that
every adjacent two include the same angle, shew that the

sum of all the triangles of different magnitude which can be
2

formed by joining the extremities of the lines is % .cot % .
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(4). If @ be the circular measure of an angle, the limiting
sin ¢
0

(B).  If the unit of angular measurement be an angle of 607,

shew that the limit of % when 8 = 0, will be 1-04719....

value to which

approaches when @ approaches 0, is 1.

STATICS.

(4).  Distinguish between a particle and a rigid body. What
kind of motion is each capable of?

(B). A particle is attached to a fixed point, (1) by means of
a string, (2) by means of a rigid rod; what will be the
conditions of equilibrium in the two cases, when given
forces act in the direction of the string or rod, and perpen-
dicular to 1t ?

(4).  Equilibrium takes place on a straight lever when the
arms are inversely as the forces.

(B).  Compare the weights of a sphere of given radius, when
weighed by suspending it from one end of a balance, (1) by
a string, (2) by a rod without weight which is glued to the
sphere.

(4).  Prove the parallelogram of forces.

(B). Every point of the rim of a hemispherical bowl repels
with a force varying as the distance; shew that a particle
will rest at any point of the inner surface of the bowl.

Explain the nature of the reaction of smooth surfaces.

5k

A tube in the form of a parabola is placed with its axis
vertical, the curve lying above the tangent at its vertex.
A heavy particle i1s placed in the tube, and a repulsive force
acts along the ordinate upon the particle: find the law of
force in order that it may sustain the particle in any
position.
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Any number of forces act in the same plane on a point:
find the conditions of equilibrium.

A particle is placed on a smooth square table (whose
side is @) at distances ¢, ¢, Cyy C from the corners, and to
it are attached strings passing over smooth pulleys at
the corners and supporting weights P, P, P, P, ; shew
that if there is equilibrium,

]

G Cy Cq Cy « 3 1

If three forces keep a rigid body at rest, their directions
are either parallel or meet in a point.

A square lamina is suspended by two stxings of given
length fastened to a fixed point, and to two given points
in the sides of the square: find the position in which it will
hang.

A wheel, whose centre of gravity is not in its centre, is
kept at rest on a perfectly rough inclined plane by a given
horizontal force applied at the centre: find the amount of
friction.

Find the centre of gravity of a plane triangle.

If the sides of the triangle be bisected, and the triangle,
formed by joining these points, be removed; shew that the
centre of gravity of the remainder will coincide with that
of the whole triangle.

How does it appear from mechanical considerations that
the lines joining the angular points of a triangle with the
bisections of the opposite sides intersect in the same point ?

Find ?T/Z in the wheel and axle.

What weight suspended from the axle can be supported

by 141bs. suspended from the wheel, if the radius of the

axle is 1} feet and the radius of the wheel is 3% feet?
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Find —;—/ in the system of pullies where the same string

passes round all the pullies.

Two weights W, W, are attached to two such systems,
having n,, n, parallel strings respectively; find the ratio
W, : W, (1) when the weights are hung from the lower
blocks, the same string passing round both systems; (2)
when hung from the upper block, the lower blocks being

connected by a string passing under a smooth fixed pulley.

Find the resultant of two couples acting in different
planes.

Three couples of equal moment (m) tend to make a rigid
body revolve about three lines drawn from a point, the
middle one making equal angles (a) with the other two;
shew that the moment of the resultant couple is

m (142 cosa).

DYNAMICS.

How is velocity measured ?

If 1" is the unit of time, and 1 foot unit of length,
what will be the numerical expression for the velocity
of a carriage, one of whose wheels, of 18 inches radius,
makes two revolutions in a minute ?

What is the connexion between angular and linear
velocity ?

A train moves from one station to another along a curve,
and appears to an observer equidistant from each station
to move uniformly from one to the other in a given time:
find the velocity of the train when nearest to the observer.
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Explain what is meant by resolved velocities.

A man in a train moving at the rate of m miles an hour
throws a stone at the rate of » miles an hour perpen-
dicularly to the direction of the train, so as to hit a post
¢ yards distant from the railway. Shew that his distance
from the post at the instant of throwing the stone is

2 2\3
TR ards,
n

The velocity acquired by a body in falling down a curve

is that due to the same vertical height.

A body begins to move from the highest point of a
vertical circular tube. Find the velocity when it has fallen
through a length (s) of the tube.

ADB is the vertical diameter of a sphere; a chord is
drawn from 4 meeting the surface in P, and the tangent
plane at B in @; shew that the time down P() varies as
B@, and the velocity acquired varies as BF.

The velocity at any point of the parabolic path of a
projectile is that due to the distance of that point from the
directrix.

If 7 be the velocity at any point F, and v the velocity
attained by a body falling down SP as an inclined plane;
shew that 7* —+* is constant and = ¢ (latus-rectum).

The least velocity which is sufficient to project a body
over a cube standing on the horizontal plane through the
point of projection and whose edge is 2a, is that due to the

C e o 1 .
height 3a, the angle of projection is cos™ NS and the point
2%
of projection is at a distance a (45— 1) from one of the
sides of the cube.
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HYDROSTATICS.

Given the specific gravities of two fluids, given volumes
of which are mixed: find the specific gravity of the com-
pound.

What weight of water must be added to a pound of
a fluid whose specific gravity is &, in order that the specific
gravity of the mixture may be £7?

Shew that the pressure on any horizontal area below
the surface of a fluid depends only on its depth below the
surface, and not at all on the form of the vessel in which
it 1s contained.

The same quantity of fluid which will just fill a hollow
cone, is poured into a cylinder whose base is equal to that
of the cone: compare the pressures on the bases.

The surface of a heavy fluid at rest is a horizontal plane.

If beside gravity a constant accelerating force (f) acted
in a horizontal direction on every particle of the fluid, what
would be the form of the surface ?

How is it shewn that the pressure of air under a con-
stant temperature varies as the density ?

A piston fits closely in a cylinder, of which a length «
below the piston contains atmospheric air: compare the
forces sufficient to draw out the piston through a distance 0,
with that sufficient to push it in through the same distance.

Investigate the conditions that a body may float.

A heavy body floats between two fluids; V,, V, are
the volumes immersed, F, F, the forces which would
keep it at rest when entirely immersed in the first and
second fluid respectively: prove that F,V, = F,V,.

OPTICS.
State the law of reflexion.

Given the position of two small mirrors, find the position
of an eye which sees itselt by reflection in both mirrors.
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(4).  Explain what is meant by the critical angle.

(B). An open cylinder is polished internally and filled with
water: shew that any ray which enters the water will
after a number of reflections emerge again at the surface
of the water.

(4.)  Determine the geometrical focus of a pencil of rays
which falls on a plane refracting surface.

(B). Find the depth of a pond which appears to be 6 feet
deep to a person looking directly down upon it. (u =4
for water.)

(4). Find the geometrical focus of a pencil of rays after
direct refraction at a spherical refracting surface.

(B). Rays are incident parallel to the axis on a glass cylinder
with hemispherical ends: find the geometrical focus.

(4).  Prove that if ' be the focal length of a lens, ‘
1 1 1
},_—-‘(/L—l).(;—E).

(B). If the refractive indices from air to glass and water
be respectively  and 4, in what proportion is the focal
length of a glass lens altered by being used under water ?

(4).  Describe Ramsden’s Eye-piece.

(B).  Construct one with glass (s = §) by which a magnifying
power of 200 may be obtained with an astronomical tele-
scope whose object-glass is of 6 feet focal-length.

NEWTON.

(4).  Prove Newton’s Fourth Lemma.
(B). Compare the areas of two ellipses which have their
minor axes equal.

(4.) In central orbits the velocity varies inversely as the
perpendicular from the centre of force upon the tangent.
(Sect. ii., Prop. 1., Cor.)
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If a body describe an ellipse round a centre of force
in the focus, shew that the sum of the reciprocals of the
squares of the velocities at the extremities of any chord
passing through the other focus is constant.®

A body moves in a parabola, find the law of force
tending to the focus.

If at any point the direction of its motion were changed
without altering its velocity, what curve would it describe ?

If a body describe the arc P@ of its orbit in 7™, and
QR be a subtense parallel to the direction of the force
at P, the force = 2 limit %—,7 .

Find the force towards the centre required to make
a body move in a circle whose radius is 5 feet, with such
a velocity as to complete a revolution in 5 seconds.

A body under the action of a central force varying
directly as the distance will describe an ellipse, with the
centre of force as centre. (Sect. il., Prop. x., Cor.)

A body (P) is suspended from a fixed point (4) by
an elastic string which passes through a smooth ring (5)
vertically under 4, so that the distance 4B equals the
natural length of the string. Assuming that the extension
of an elastic string is proportional to the force which
stretches it, determine, if P be set in motion, what curve
it will describe.

* See Ferrers and Jackson’s Solutions of Senate- House Problems, p. 51.

THE END.
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sewed, 10s.6d. Part II., 12s, 6d. The two Parts in one Vol.,

bds. £1 4s.

By J. E. COOPER, M.A.,
Fellow of St. John’s College, Cambridge.

A Geometrical Treatise on the Conic Sections;
With an Appendix, containing the first Nine and the Eleventh
of Newton’s Lemmas: intended chiefly as an Introduction to
the Geeometrical Doctrine of Limits. Preparing.



Cambridge.

The Clergy and the Commons:

Or the Right of the National Convocation to sit in Parliament
Vindicated. 8vo. 1s.

DEMOSTHENES.
1.
De Corona.
The Greek Text, with English Explanatory Notes. By
B. W. F. Draxs, M.A., Fellow of King’s College, Cambridge.
Crown 8vo. cloth, 5s.

% The Editor has diligently availed himself of the best modern
sources, and has in a brief space given such unformation as will
enable a student to read the original with comparative ease.
The Grammatical difficulties in the text are well explained, and
Srequent references are given, for the elucidation of the historical
and archeological subjects alluded to by the Orator.”

LiTERARY GAZETTE.
¢ Useful notes,”’—THE GUARDIAN,

“ A neat and useful Edition.”’—ATHENZEUM,

2.
The Oration on the Crown,
Literally Translated into English by the Rev. J. P. Norris,
M.A., Fellow of Trinity College, Cambridge, and one of Her
Majesty’s Inspectors of Schools. Crown 8vo. sewed, 3s.
“ The best translation that we remember to have seen.”’

LiTERARY GAZETTE,
“ Very accurate.””—THE GGUARDIAN.
Y

Edited by the Rev. Dr. DONALDSON,
Head-Master of King Edward’s School, Bury St. Edmund’s, and
formerly Fellow of Trinity College, Cambridge.
The Theatre of the Greeks.

A series of Papers relating to the History and Criticism of the
Greek Drama. With an original Introduction and Notes. Sixth
Edition revised, 8vo. cloth, 15s.

EUCLID.

Enunciations and Corollaries of the Propositions of the

first Six Books of Euclid, together with the Eleventh and
Twelfth. 24mo. sewed, Is,

By N. M. FERRERS, B.A., and J. 8. JACKSON, B.A,,
of Caius College, Cambridge.

Solutions of the Senate-House Problems from 1848 to 1851.
8vo. cloth, 15s. 6d,



Macmillan and Co.

By THOMAS FULLER.
The History of the University of Cambridge, since the

Conquest. A new Edition, with additional Notes, and a beau-
tiful Map. By the late Rev. M. Prickrrr, M.A., F.S.A., late
Chaplain of Trinity College; and THomas Wrient, Esq., M.A.,
F.8.A., of the same College. 8vo. cloth bds. 12s,

*“ Neat to Shakspeare”—S. T. COLERDGE,

“ His way of telling a story, for its eager liveliness, and perpetual
running commentary of the narrator happily blended with the
narration, is perhaps unrivalled.”—CHARLES LaME.

“ In him learning was but subsidiary to wit, and wit but secondary
to wisdom.”—RETROSPECTIVE REVIEW,

By the Rev. A. R. GRANT, M.A,,
Fellow of Trinity College, Cambridge.
Plane Astronomy.

Including Explanations of Celestial Phenomena and Deseriptions
of Astronomical Instruments. 8vo. bds. 6s.

By the Rev. W. N. GRIFFIN, M.A.,
late Fellow and Assistant Tutor of St. John’s College, Cambridge.

1.
The Theory of Double Refraction.

8vo. sewed, 2s.
2.

A Treatise on Optics.
8vo. bds. 8s.

By the Rev. J. HARRIS, M.A.,
of Catharine Hall, Cambridge.
Questions in Arithmetie.
With an Appendix, containing Problems in Mechanics and
Hydrostatics. Crown 8vo. 3s. 6d.

Br. HALLIFAX.
An Analysis of the Civil Law,

In which a Comparison is occasionally made between the Roman
Laws and those of England. A new Edition, with alterations
and additions, being the Heads of a Course of Lectures publicly
read in the University of Cambridge. By J. W. GELDART,
LL.D. 8vo. cloth bds. 8s. 6d. Interleaved, 10s. 6d. Double
interleaved, 12s. 6d.

By G. W. HEMMING, M.A.,
Fellow of St. John’s College, Cambridge.:

An Elementary Treatise on the Differential and Integral
Calculus, 8vo. bds. 9s,



MACMILLAN & CO.S PUBLICATIONS,

ARISTOPHANES.

A Commentary on the Works of Aristophanes.
By W. G. Crark, M.A., Fellow and Assistant Tutor of Trinity
College, Cambridge. In Preparation.

ARISTOTLE.

The Rhetoric of Aristotle;
The Greek Text : with English Notes, Critical and Explanatory.
Preparing.

ZLSCHYLUS.

A Translation into English Verse of the Prometheus Vinctus
of Aschylus. With an Introduction and Notes. By C. G.
Prowerr, M.A., Fellow of Caius College. 8vo. sewed, 3s. 6d.

By the Rev. CHURCHILL, BABINGTON, M.A.,
Fellow of St. John’s College, Cambridge.

Mr. Macaulay’s Character of the Clergy in the latter part
of the Seventeenth Century, considered. 8vo. bds. 4s. 6d.

“ Apart from its triumphant conclusion, a very finished piece of
Criticism.”—CHRISTIAN REMEMBRANCER.

THE BAKER MSS.

Index to the Manuscripts of Thomas Baker, (formerly Fellow
of St. John’s College, Cambridge,) which are preserved in the
British Museum and in the Library of the University of Cam-
bridge. 8vo. bds. 7s. 6d.

“ These Manuscripts consist of transcripts of original documents
various in kind, such as Charters, Statutes of Corporate Bodies,
Wills, Royal and other Letters, Monastic, College, and University
Registers, Historical and Biographical Notices of Authors and
their works, &c.; the whole selected with remarkable judgment,
s0 as to form an invaluable store of information otherwise wunat-
tainable.” —PREFACE.



Macmillan and Co.

By the Rev. E. H. BICKERSTETH, M.A.,,
of Trinity College, Cambridge.

Poems: including those which obtained the Chancellor’s Medal for
the Years 1844-45-46. In foolscap 8vo., cloth, €s.

By JOHN H. BOARDMAN, M.A,,
Fellow of Gonville and Caius College, Cambridge, and Mathematical
Master in the Grammar School, Manchester.

1.

Arithmetic: Rules and Reasons. 12mo. cloth, 2s. 6d.
2.

Arithmetical Examples. 12mo. cloth, 1s. 6d.

3.
Arithmetic; and Arithmetical Examples: being the above works
bound together. 12mo. cloth, 3s. 6d.

4.
Arithmetical Examples; and Key. 12mo. cloth, 2s. 6d.
5.
Arithmetic: Rules and Reasons; Arithmetical Examples: and
the Key. Bound in one volume, 12mo., cloth, 4s.

By Professor BOOLE.
The Mathematical Analysis of Logic.

Being an Essay towards a Calculus of Deductive Reasoning.
8vo. sewed, 5s.

Burney Prize Essay.

1.
FORBES, Rev. G, H., for 1847. 8vo. bds. 5s. 6d.
Subject—¢¢ The Goodness of God.”

2.
PRESCOTT, G.F. (B.A., Scholar of Trinity College, Cam-
bridge,) for 1850.
Subject—¢ The Unity of Design, which pervades the successive
dispensations of Religion recorded in the Scriptures; an argu-
ment for the Truth of Revelation,” Shortly.

Be. BUTLER.

Butler's Analogy, an Analysis of.
By the Rev. J. P. Parxinson, D.C.L., late Fellow of Magdalen
College, Oxford. Second Edition. 12mo. cloth, 2s.



Cambridge.
By the Rev. J. S. HENSLOW, M.A., Professor of Botany.

1.
Syllabus of a Course of Lectures on Botany,
Suggesting matter for a Pass-Examination at Cambridge in this
Subject. 8vo. sewed, 1s. 6d.

2.
Questions on the Subject-Matter of Sixteen Lectures in
Botany, required for a Pass-Examination. 8vo. sewed, 1s.

HIERURGIA ANGLICANA.

Documents and Extracts illustrative of the Ritual of the
Church of England after the Reformation. With Illustrations.
Edited by Members of the Cambridge Camden Society. 8vo.
cloth, 13s.

By the Rev. JOHN HIND, M.A,, F.C.P.S, F.R.A.S,,
late Fellow and Tutor of Sidney Sussex College, Cambridge.

1,
An Introduction to the Elements of Algebra.
Being a Sequel to the Principles and Practice of Arithmetic.
D(fsigned for the use of Students. Third Edition. 12mo, cloth
bds. 5s.

The Elements of Algebra.

Designed for the use of Students in the University. Fifth
Edition, 8vo. cloth bds. 12s. 6d.

2,

3.
The Principles and Practice of Arithmetic.
12mo. cloth bds. 4s. 6d.

“ Mr. Hind’s Arithmetic in the later editions appears to me to be
drawn up in such a manner as to be suited for use in Schools for
those who are intended to go to the University. It includes the
use of Logarithms, and the mensuration of various figures, (iri-
angles, circles, &c.) which I have spoken of as desirable appendages
to the parts of Arithmetic usually learnt in Schools.”

Dr. WHEWELL, Cambridge Studies, p. 228.
4,

The Solutions of the Questions attended with any difficulty
in the Principles and Practice of Arithmetic. With an Ap-
pendix containing Questions for Examination in all the Rules of
Arithmetic. Second Edition. Preparing.

5.
The Elements of Plane and Spherical Trigonometry ;
With the Nature and Properties of Logarithms, and the Con-
struction and the Use of Mathematical Tables. Designed for
the use of Students in the University. A New Edition.
Preparing.,



Macmallan and Co.

Hulsean Prize Essay.

1.
GRUGGEN, F.J.; for 1844, 8vo. sewed, 3s. 6d.
Subject—* The Lawfulness and Obligation of Oaths.”

2.
BABINGTON, CHURCHILL, for 1845. 8vo. bds. 5s.
Subject—*¢ The Influences of Christianity in promoting the Abo-
lition of Slavery in Europe.”

3.
WROTH, H. T., for 1848. 8vo. sewed, 3s.

Subject—¢¢ Mahommedanism considered in relation to Christian
Evidence.”

4.
MACKENZIE, H., for 1850.

Subject—¢ The beneficial influence of the Christian Clergy
during the first thousand years of the Christian Era.”” Preparing.

By the Rev. J. HYMERS, D.D.,
Fellow and Tutor of St. John’s College, Cambridge.
1.
A Treatise on Analytical Geometry of Three Dimensions.

Containing the Theory of Curve Surfaces. Third Edition. 8vo.
bds. 10s. 6d.

2.
Elements of the Theory of Astronomy.
Second Edition. 8vo. bds. 14s,
31
A Treatise on Conic Sections, and the Application of Algebra
to Geometry. Third Edition. 8vo. bds. 9s.

4,
A Treatise on the Theory of Algebraical Equations.
Sccond Edition. 8vo. bds. 9s. 6d.
5.
A Treatise on Differential Equations and on the Calculus
of Finite Differences. 8vo. bds. 10s.
6.
A Treatise on Plane and Spherical Trigonometry, and on
Trigonometrical Tables and Logarithms; together with a se-

lection of Problems, and their Solutions. Third Edition, altered
and enlarged. 8vo. bds. 8s. 6d.

7.
A Treatise on the Integral Calculus.
Containing the Integration of Explicit Functions of one Va-
riable; together with the Theory of Definite Integrals and of
Elliptic Functions, Third Edition, revised and enlarged. 8vo.
bds. 10s. 6d.



Cambridge.

HUME and SMOLLETT.

History of England.
10 vols. 8vo. cloth, (best Trade Edition,) £4.

HYPERIDES,

The Oration of, against Demosthenes, respecting the Trea-
sure of Harpalus. The fragments of the Greek Text, now first
edited from the Facsimile of the MS. discovered at Egyptian
Thebes in 1847; together with other fragments of the same
Oration, cited in ancient Greek writers, With a previous dis-
sertation and Notes, and Facsimile of a portion of the MS. By
CrurcHILL Bamineron, M.A,, Fellow of St, John’s College.
4to. sewed, 6s. 6d.

By F. J. JAMESON, B.A,,
of Caius College, Cambridge.

The Principles of the Solutions of the Senate-House ‘ Riders’
Exemplified in the Sclution of those proposed in the years 1848
to 1861, Just Ready.

By the Rev. LEONARD JENYNS, M.A.
A Manual of British Vertebrate Animals,
Or Descriptions of all the Animals belonging to the classes,
Mammalia, Aves, Reptilia, Amphibia, and Pisces, which have
hitherto been observed in the British Islands, Including the

Domesticated, Naturalized, and Extirpated Species : the whole
systematically arranged. 8vo. bds. 13s.

Br. JEWELL.
1

Apologia Ecclesize Anglicane.
Huic Novze Editioni accedit Epistola celeberrima ad Virum

Nobilem D. Scipionem, Patricium Venetum, de Concilio Tri-
dentino conscripta. Fecap. 8vo. bds. 4s. 6d.

2.
An Apology of the Church of England,

And an Epistle to Seignior Scipio concerning the Council of
Trent, translated from the original Latin, and illustrated with
Notes drawn chiefly from the Awuthor’s ¢ Defence of the

Apology.” By the Rev. A. T. Russerr, B.C.L. Fcap. 8vo.
bds. 8s.

This edition of the Apology supplies what has long been considered

desirable—a series of explanatory and historical Notes and an
Index.



Macmallan and Co.

JUSTIN MARTYR.
1.
8. Justini Philosophi et Martyris Apologia. Prima.

Edited, with a corrected Text and English Introduction, con-
taining a Life of the Author and explanatory Notes, by the
Rev. W. Trorrore, M.A., Pembroke College, Cambridge.
8vo. bds. 7s. 6d.

2.

Justin Martyr’s Dialogue with Trypho the Jew.

Translated from the Greek into the English, with Notes, chiefly
for the advantage of English Readers; a Preliminary Disser-
tation, and a short Analysis. By Henxry Browwn, M.A,
(Originally printed in 1745.) 8vo. bds. 9s.

JUVENAL.

Juvenal: chiefly from the Text of Jahn:

With English Notes for the use of Schools. By J. E. MAYoR,
M.A., Fellow of St. John’s College, Cambridge. Preparing.

By the Rev. H. L4 THAM, M.A.
Fellow and Tutor of Trinity Hall, Cambridge.
Geometrical Problems in the Properties of Conic Sections.
8vo. 3s. 6d.

WILLIAM ZAW, M.A.;
Edited by Professor A URICE.

Remarks on the Fable of the Bees.

With an Introduction. By the Rev. F. D, Maurice, M.A,,
Professor of Theology in King’s College, London. 12mo. bds.
48, 6d,

Le Bas Prize Egsay.
SCOTT, C. B., for 1849. 8vo. sewed, 2s. 6d.
Subject-—‘* The Greek Kingdoms of Bactria and its vicinity.”



Cambridge.

By the Rev. T. LUND, B.D,,
late Fellow of St. John’s College, Cambridge.

1

A Short and Easy Course of Algebra.

Chiefly designed for the use of the Junior Classes in Schools,
with a numerous collection of Original Easy Exercises, 12mo.
bound in cloth, 3s. 6d. A new Edition. Ready.

“ His definitions are admirable for their simplicity and clearness.”’
ATHENZEUM.

¢ In order to ascertain how far the Author’s performance comes
up to his design, we have paid particular attention to those
places where the learner is most likely to stumble upon acknow-
ledged difficulties. . . . In all these we have much reason
to admire the happy art of the Author in making crooked
things straight, and rough places smooth. The Student must
be hopelessly obtuse who does not, in following the guidance of
Myr. Lund, obtain increasing light and satisfaction in every step
of his way ; and such, too, is the strictly scientific as well as
stmple nature of the course pursued, that he who makes himself
master of t, will have laid a firm foundation for an extensive
and lofty superstructure of mathematical acquirement.” '
Tue EDUCATOR.

“ Admsirably planned. . ..very successful.””’—THE WELSHMAN.

2.

Wood’s Elements of Algebra.

Designed for the use of Students in the Universities. Carefully
Revised and enlarged with Notes, additional Propositions, and
Examples. Thirteenth Edition. 8vo. bds. 12s. 6d.

3.
A Companion to Wood’s Algebra.

Containing Solutions of various Questions and Problems in
Algebra, and forming a Key to the chief difficulties found in

the Collection of Examples appended to Wood’s Algebra.
Twelfth Edition. 8vo. sewed, 6s.

By HENRY MACKENZIE, B.A.,
Scholar of Trinity College, Cambridge.

“The Beneficial Influence of the Christian Clergy during the

first thousand years of the Christian Era,” being the Essay
which obtained the Hulsean Prize for 1860. In Preparation.
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By Professor M<COY.

Description of British Palaeozoic Fossils,

Added by Professor Sedgwick to the Woodwardian Collection,
and contained in the Geological Museum of the University of
Cambridge.

Fasciculus I., containing the Radiata and Articulata, With
11 Plates. 4to. sewed, 16s.

Fasciculus II., containing the Mollusca and Vertebrata.
In the Press.

By R. MOON, M.A,,
Fellow of Queens’ College, Cambridge.
1.
Fresnel and his Followers. A Criticism.
To which are appended Outlines of Theories of Diffraction and
Transversal Vibration. 8vo. bds. s,

2.
A Reply to the Calumnies of the ‘Athenzum.
8vo. sewed, 1s.
3

Professor Challis and Professor Tardy.
The New Equation in Hydrodynamics. 8vo. sewed, 1s.

SOAMES’ MOSHEIM.

Mosheim’s Institutes of Ecclesiastical History, Ancient and
Modern. A New Translation, by D. Murbock. Edited, with
additions, by HeENrY Soames, M.A. 4 vols. 8vo. cloth, £2 8s.

¢ Mr. Soames has added to this edition, matter amounting to about
one volume, chiefly connected with the English Church, on which

subject Mosheim’s otherwise admirable work is considered de-
Jicient.”’

By the Rev. W. NIND, M.A,,
Fellow of St. Peter’s College, Cambridge.

Klopstock’s Odes.
Translated from the German. Fcap. 8vo. cloth, 6s.

Edited by the Rev. J. P. NORRIS, M.A.,
Fellow of Trinity College, Cambridge, and one of Her Majesty’s
Inspectors of Schools.,

Ten School-Room Addresses. 18mo. sewed, 8d.



Cambridge.

Norrisian Prize-Essays.
JONES, J. H., for 1846, 8vo. sewed, 2s. 6d.
Subject—¢ If they hear not Moses and the Prophets, neither
will they be persuaded if one rose from the dead.”
KINGSBURY, T. L., for 1847. 8vo. sewed, 3s. 6d.
Subject—*On the Connexion between the Prophetic and the
other Evidences of Christianity.”
WHITTINGTON, R., for 1849. 8vo. bds. 4s. 6d.
Subject—* The internal Evidence afforded by the Historical
Books of the Old Testament, that the several Writers of them
were inspired by the Holy Ghost.”

HUGH JAMES ROSE’S PARKHURST.

Parkhurst’s Greek and English Lexicon to the New Testament,
with Additions, by Huer James Rosg, revised by J. R. MaJsor.
A New Edition. 8vo. cloth, £1 1s.
¢ MR. ROSE HAS ADDED AT LEAST ONE-THIRD OF NEW MATTER
TO THIS WORK.”— Horne.
 This is now admitted to be the best Lexicon to the Greek Testa-
ment. The Examples are so numerous as to give it almost all the
advantages of a Concordance : and its explanations may often save
reference to a Commentary.”’

By J. B. PHEAR, M.A,,
Fellow and Mathematical Lecturer of Clare Hall, Cambridge.

Elementary Mechanics,
Accompanied by numerous Examples solved Geometrically.
8vo. bds. 10s. 6d.
PLATO.

1.
Plato’s Republic:
A new Translation into English, with an Introduction and Notes.
By Two Ferrows of Trin. Coll., Cambridge. In Preparation.
2.
Plato’s Republic, Book L
Translated by the Rev. A. R. Grant, M.A., Fellow and As-
sistant Tutor of Trinity College. 12mo. sewed, 1s. 6d.

POPE.

The Works of Alexander Pope, including his Letters.

With a new Life of the Author and Notes on the Poems, by
WirLiam Roscoe. 8 vols. 8vo. cloth, (best trade Edition,)
¥£4 45,

By the Rev. J. H. PRATT, M.A,,

Fellow of Caius College, Cambridge.

The Mathematical Principles of Mechanical Philosophy, and
their Applications to Elementary Mechanics and Architecture,
but chiefly to the Theory of Universal Gravitation. Second
Edition, revised and improved. 8vo. bds. £1 1s.



Macmillan and Co.

By the Rev. C. PRITCHARD, M.A,,
late Fellow of St. John’s College, Cambridge.

A Treatise on the Theory of Statical Couples.
To which is added, a simple method of Investigating the Ellip-
ticity of the Earth considered as a Heterogeneous Spheroid.
Second Edition, with alterations and additions. 8vo. sewed, 4s.

QUINTILLIAN.
Quintiliani de Institutione Oratoria, Lib. X,
with a Literal English Translation. 12mo. sewed, 2s. 6d.

Dr. RUSSELL.
Russell’s History of Modern Europe,

‘With a Continuation to the Present Time, by Dr. KrigurLey,
New Edition in 4 vols. 8vo. cloth, £2 12s.

By J. C. SNOWBALL, M.A.,
Fellow of St. John’s College, Cambridge.
1.
The Elements-of Mechanics.
Second Edition. 8vo. bds. 8s. 6d.

2.
Cambridge Course of Elementary Natural Philosophy,
For the use of Colleges and Schools; being the Demonstrations of
the Propositions in Mechanics and Hydrostatics, in which those
persons who are not Candidates for Honors are examined for the
Degree of B.A. Fourth Kdition. To which are added nu-
merous Examples and Problems, with Hints for their Solution.
12mo. cloth, Js.
3.
Elementary Treatise on Trigonometry.
Second Edition. 8vo. sewed, 5s.
4,
The Elements of Plane and Spherical Trigonometry.
Seventh Edition. 8vo. bds. 10s. 6d.

By W. SIMPSON, M.A,,
of Queens’ College, Cambridge.

An Epitome of the History of the Christian Church during
the first Three Centuries and during the time of the Reformation.
Adapted for the use of Students in the Universities and in
Schools. With Examination Questions. Secoxp Ebprrion,
1MPROVED. Fcap. 8vo. cloth, 5s.

THEOCRITUS.

The Greek Text, with English Notes Critical and Explana-
tory, for the Use of Colleges and Schools. By the Rev. E.
Perowng, B.A., Fellow of Corpus Christi College, Crown 8vo.

Preparing.



Cambridge.

Br. JEREMY TAYLOR:
Edited by the Rev. CrarLes Pace Epen, M.A., Fellow of
Oriel College, Oxford.
Complete Works:
With Life by Bp. Herer. A new Edition, with the References
carefully verified, and a copious Index. To be completed in
10 vols. 8vo. cloth, 10s. 6d. each.
Vols. II. to IX. are already published.

Vol. 2, Life of Christ.—Vol. 3, Holy Living and Dying,—
Vol. 4, Sermons for all Sundays in the Year.—Vol. 5, Episco-
pacy, &c., and Minor Works.—Vol. 6, Real Presence of Christ,
&c.—Vol. 7, Repentance, Golden Grove, &c.—Vol. 8, Treatises
against Popery.—Vol. 9, Ductor Dubitantium,

By the Rev. E. THRING, M.A,,
Fellow of King’s College, Cambridge.
The Elements of Grammar taught in English.
18mo. bound in cloth, 2s.
““ A very able book it s, both in substance and form.”’—SPECTATOR.

“ We have no hesitation in saying that this is one of the cleverest
and happiest productions. The advantage of this vade mecum
is that the cold skeleton of the driest subject in the world s
clothed with plumpness and positive attraction....... It is tn
truth a most refreshing and admirable work—A GENUINE CON-
TRIBUTION TO THE WANTS OF THE AGE.”’—CHRIsTIAN TIMES.

“ A clever and scientific little book.””—GUARDIAN.

By the Rev. J. H. TITCOMB.
Bible Studies, or an Inquiry into the Progressive Develop-
ment of Divine Revelation, PartI. 8vo. cloth, 3s. 6d.

By I. TODHUNTER, M.A.,
Fellow of St. John’s College, Cambridge.

An Elementary Treatise on the Differential Calculus.
About Christmas.
This Work is intended for the use of Schools as well as for
Students in the Universities.

By the Rev. RICHARD CHENEVIX TREN CH, M.A,,
of Trinity College, Cambridge, Professor of Theology in King’s
College, London, and Author of «“Notes on the Parables.”
The Fitness of Holy Scripture for Unfolding the Spiritual
Life of Man: Christ the Desire of all Nations; or the Uncon-
scious Prophecies of Heathendom, Being the Hulsean Lectures
for the years 1845 and 1846, Second Edition. 8vo. bds. 7s. 6d.

By the Rev. JOHN WARREN,
late Fellow and Tutor of Jesus College, Cambridge.

A Treatise on the Geometrical Representation of the Square
Root of Negative Quantities. 8vo. bds. 8s.



Macmillan and Co., Cambridge.

By W. P. WILSON, M.A,,
Fellow of St. John’s College, Cambridge, and Professor of
Mathematics in Queen’s College, Belfast.

A Treatise on Dynamics. 8vo. bds. 9s. 6d.

By the Rev. Dr. WOOD,
late Master of St. John’s College, Cambridge.

The Elements of Algebra.

Designed for the use of Students in the University. Thirteenth
Edition, carefully revised and enlarged, with Notes, additional
Propositions and Examples. By Tuomas Lunp, B.D. 8vo.
bds. 12s, 6d.

By J. WRIGHT, M.A.,
of Trinity College, Cambridge, and Head-Master of Sutton Coldfield
Grammar School.

The History of Greece in Greek,
From the Invasion of Xerxes to the Peloponnesian War: as
related by Diodorus and Thucydides, with Explanatory Notes,
Critical and Historical, for the use of Schools. Preparing.

XENOPHON.

Memorabilia, Book IV.
Literally translated into English Prose, with a brief Memoir of
Socrates, and Notes. By Epwarp Brine, B.A., Scholar of
Queens’ College, Cambridge. 12mo. sewed, 2s. 6d.

By the Rev. BROOKE FOSS WESTCOTT, M.A,,
Fellow of Trinity College, Cambridge.

1.
The Elements of the Gospel Harmony ;
With a Catena on INSPIRATION, from the Writings of the
Ante-Nicene Fathers, Crown 8vo. cloth, 6s. 6d.

“ The production of a young Theclogian of great promise.”

T. K. ArNOLD.

“ The most remarkable and original part of the work is a long and
most carefully executed exposition of the Ante-Nicene Doctrine
of Inspiration, drawn directly from the writings of the Fathers
themselves : and a very interesting account of some of the heretical
Gospels and the little-known Clementines.”—THE GUARDIAN,

“ The Author argues very ably for the plenary inspiration of the
Gospels. . . . . A large amount of learning is brought to bear
on the subject.”—ENcLisH REVIEW.

¢ Admirably concetved, arranged, and expressed.’”’

FreEe CrHurRcH MAGAZINE.
2

The Elements of Apostolic Harmony ;
An attempt to determine the separate purposes and mutual
relations of the Canonical Epistles. Preparing.
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