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PREFACE.

It will, we believe, be universally admitted that there is

no easier means of becoming acquainted with any branch of

Mathematics, than the study of Examples illustrative of its

principles. It is also indispensably necessary that the ingenuity

of the Student be thoroughly exercised in attempting to dis-

cover for himself the solution of any problem which may be

put before him : it is by no means our object, in publishing

this book, to save him the trouble of doing so. But we believe

that if, after having done his best to master a problem for

himself, he is still unsuccessful, he will then derive great benefit

from referring to the solution obtained by another person. It

is for this pui'pose that we hope the present collection will be

foimd of service.

Of the intrinsic value of these Problems we could have no

doubt, even if we knew less of them, coming as they do from

such high authorities. We have as little doubt that they are

on all accounts the best problems that we could have chosen

for solution for the benefit of the Student, for their general

value, their variety, and because they shew what Senate-

house Problems are, and arc likely to be in coming years.
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IV PREFACE.

Part 1. contains the solutions of those proposed in tlic first

three days of examination : they are of a simpler kind than

those proposed in the remaining five days, the solutions of which

form Part II. llie solutions of many problems have been

kindly timiished by the Moderators by whom they were pro-

posed: we take this opportunity of returning om* acknowledg-

ments to them and others of our friends who have assisted

us in the progress of the work. We shall also feel much

obliged to any of our readers who will send us either correc-

tions of our solutions or improvements upon them.

Some difficulty, it will easily be understood, has been found

in bringing all the problems to appear m their right places:

any problems, however, which have been omitted in the body

of the work, will be found in the Appendix, The problems

on pp. 226, 241, should have been placed among the Trigo-

nometry of 1850, and the Geometry of Three Dimensions of

1851, respectively.



C O IS T E N T S.

PART I.

Euclid .

Algebra

Trigonometry

Conic Sections

Statics .

Dynamics

Newton

Hydrostatics

Optics .

Astronomv •

Page

1

9

19

25

32

37

48

53

59

64

PART II.

Euclid .

Algebra

Plane Trigonometry

Spherical Trigonometry

Theory of Equations

Geometry of Two Dimensions

Differential Calculus

Integral Calculus

69

74

98

107

112

110

171

183



i
CONTUNTS.

Page

Geometry oH Three Dimensions . . .
1*«^3

Ditferential Equations .... 222

Definite Integrals .... 233

Calculus of Finite Differences .... 240

Statics ..... 245

Dynamics of a Particle .... 2*37

Rigid Dynamics . . . . •
283

Hydrostatics ..... 323

Hydrodynamics ..... 333

Geometrical Optics ..... 339

Astronomy . . • • • 3J5

Disturbed Motion ..... 362

Attractions ..... 36j

Physical Ojjtics ..... 375

Calculus of Variations .... 380

Appendix ...... 384



PART I.





SOLUTIONS OF THE SENATE-HOUSE PROBLEMS.

EUCLID.

ERRATA.

I'AGK LINE
/. ; J ,.'

87, 5 from bottom, for p read n

.

95, 10, for (i,,.,n"p ^''^"'^ "7'---i + "^•

— 17, for ... t <v.,)-i Vi^ ''"'^^ ••^ "p Vi-
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215, 1, supply reference to figure (S8).

23l', !,>'• (tig- 08) 7-m(/ (tig. 89).

Figure 4f5, /b;- j> 2/
s »e'^t^ ~ i^ y-

Again, because EF is a diameter of the circle, therefore the

angle FCE is a right angle. But CE bisects the inght angle

ACB, therefore ACE is half a right angle, therefore also FCA
is half a right angle ; that is, FC bisects the supplement of the

right angle ACB.

2. A, B, C, (fig. 2) are three given points in the circum-

ference of a circle ; find a point P, such that if AP, BP, CP
meet the circumference in D, E, F, the arcs DE, EF, may be

equal to given arcs.

Join AB, and on it describe a segment of a circle, containing

an angle equal to the sum of those subtended at the circiim-





SOLUTIONS OF THE SENATE-HOUSE PROBLEMS.

EUCLTD.
1848.

1. If the hypotlienuse AB (fig. 1) of a right-angled triangle

ABC be bisected in D, and EDF drawn pei-pendicular to AB,
and DE, DF cut off each equal to DA, and CE, CF joined

;

prove that the last two lines will bisect the angle at C and its

supplement respectively.

Join CD, then shall CD be equal to half the hvpothenuse

AB, that is, to DE or DF ; therefore a circle described from

centre D, with radius DC, will pass through B, E, A, F. Let

this circle be described, then the angle ECB, at the circum-

ference, is equal to half the angle EDB at the centre, that is

to half a right angle, and therefore to half the angle ACB
;

that is, CE bisects the angle ACB.
Again, because EF is a diameter of the circle, therefore the

angle FCE is a right angle. But CE bisects the right angle

ACB, therefore ACE is half a right angle, therefore also FCA
is half a right angle 5 that is, FC bisects the supplement of the

right angle ACB.

2. A, B, C, (fig. 2) are three given points in the circum-

ference of a circle ; find a point P, such that if AP, BP, CP
meet the circmnference in D, E, F, the arcs DE, EF, may be

equal to given arcs.

Join AB, and on it describe a segment of a circle, containing

an angle equal to the sum of those subtended at the circum-

H



2 SOLUTION OF SENATE-HOUSE PHOBLEMS. [1849.

forence by the arcs AB and DE. Also join BC, and on it

describe a segment of a circle containing an angle equal to the

sum of those subtended at the circumference by the arcs BC
and EF. These segments shall intersect in the required point P.

For join AP, BP, CP, and produce them to meet the cir-

cumference in D, E, F, respectively. Join AE, then the angle

EAD is equal to the difference of the angles APB, AEP,
that is, to the angle required to be subtended by the arc DE.

Therefore DE is equal to the arc required. Similarly it may be

shewn that EF is equal to the arc required, and therefore P is

the required point.

1849.

1. Through a point C (fig. 3) in the eirciunference of a circle,

two straight lines ACB, DCE, are drawn, cutting the circle in

B and E
;
prove that the straight line which bisects the angles

ACE, DCB, meets the circle in a point equidistant from B
and E.

Let CP be the line bisecting the angles ACE, BCD ; P the

point in which it meets the circle. Join PB, PE, BE ; then

because the angles PBE, PCE are in the same segment, there-

fore they are equal to one another.

Again, because the angles BCP, BEP are opposite angles

of a quadrilateral inscribed in a circle, therefore they are

together equal to two right angles, that is to ACP and BCP.

Therefore, taking away the common angle BCP, ACP is equal

to BEP. But ACP is equal to ECP by constniction, therefore

from above ACP is equal to EBP : and it has been shewn to be

equal to BEP, therefore the angles EBP, BEP are equal to

one another, therefore PE is equal to PB. That is, the point P
in which the bisecting line CP meets the circle is equidistant

from B and E.

2. Two circles intersect in A and B (fig. 4). At A, the

tangents AC, AD are drawn to each circle and tenninated by

the circmnference of the other. If BC, BD be joined, shew

that AB, or AB produced if necessary, bisects the angle CBD.



1849.] EUCLID. 3

Produce CA, DA, to E, F. Then the angle CAF is equal

to the angle DAE : but the angle CAF is equal to the angle

ABC in the alternate segment, also the angle DAE is equal to

the angle ABD in the alternate segment. Therefore the angles

ABC, ABD are equal to one another, and AB, produced if

necessary, bisects the angle CBD.

3. Draw a line to touch one given circle, so that the part

of it contained by another given circle may be equal to a giveii

straight line, not greater than the diameter of this latter circle.

Let ABC, DEF (fig. 5) be two given circles ; it is required

to draw a straight line touching the circle ABC, so that the

part of it contained by DEF may be equal to a given straight

line, not greater than the diameter of DEF.
In the circle DEF place the straight line DE, equal to the

given straight line. Find G the centre of this circle, and with

G as centre describe a circle touching DE. Draw AFH a

common tangent to this latter circle and ABC, cutting DEF
in F, H, this shall be the line required.

For since FH, DE each touch a circle whose centre is G,
therefore they are equidistant from G, the centre of the circle

DEF. Therefore FH is equal to DE.
Hence AFH is drawn touching the cii-cle ABC, and the

part of it contained by DEF is equal to the given straight line.

4. A quadrilateral figure possesses the following property

:

any point being taken, and four triangles fonned by joining this

point with the angular points of the figure, the centres of

gravity of these triangles lie in the circumference of a circle

;

prove that the diagonals of this quadrilateral arc at right angles

to each other.

Let ABCD (fig. 6) be the quadrilateral, P any point within

it : E, F, H, K, the middle points of the sides. Join PE, PF,
PH, PK. And in them take PG„ PG,, PG„ PG,, respectively

equal to two-thirds of PE, PF, PH, PK. Gfi.jGjOc^ shall be

the centres of gravity of the triangles PAB, PBC, PCD, PDA.
Join EF, FH, HK, KE, these lines are evidently parallel to

b2



4 SOLUTIONS OF SENATE-HOUSE PROBLEMS. [1850.

^^.^\i C^^Gs, G3G,, G,G, ; and therefore E, F, H, K, lie in the

cireumference of the same circle. But EF, HK are each

parallel to the diagonal AC, therefore also to each other.

Similarly FH, EK arc parallel to each other, therefore EFHK
is a parallelogram. And since it is inscribable in a circle, each

of its angles is a right angle. Therefore also the diagonals

AC, BD, which are respectively parallel to the sides of the

parallelogram, are at right angles to each other.

1850.

1. If ABCD (fig. 7) be a parallelogram, and P, Q two

points in a line parallel to AB, and if PA, QB meet in E,

and PD, QC in S, prove that RS is parallel to AD.
Because CD is parallel to QP, therefore SD is to SP as CD

to PQ. And because AB is parallel to PQ, therefore RA is to

RP as AB to PQ. But AB is equal to CD, therefore RA is to

RP as SD to SP, therefore RP is to AP as SP to DP, there-

fore RS is parallel to AD.

2. Two sides of a triangle, whose perimeter is constant, are

given in position ; shew that the third side always touches a

certain circle.

Let ABC (fig. 8) represent the triangle ; AB, AC being the

sides given in position. Describe a circle DEF touching BC
and AB, AC produced. The side BC shall always touch the

circle DEF.
For since BD, BF both touch the same circle, therefore BD

is equal to BF. Hence AD is equal to AB, BF together.

Similarly AE is equal to AC, CF together.

Therefore AD, AE together are equal to AB, AC, BC
together ; that is, to the perimeter of the triangle ABC, which

is constant. But since AD, AE touch the same circle, therefore

AD is equal to AE, and their sum has been shewn to be con-

stant; therefore AD, AE are each constant, that is, the circle

touching BC, and AB, AC produced, touches AB, AC in fixed

points ; that is, it is a fixed circle. Therefore BC always

touches a fixed circle.
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1851.

1. In AB, the diameter of a circle, take two points C, D,

equally distant from the centre, and from any point E in the

circmnference draw EC, ED ; shew that

EC' + ED'' = AC + AD^

Take O (fig. 9) the centre of the circle, and join EO, and

di'aw EF pei'pendicular to AB.
Then because CD is bisected in O, and produced to A,

.-. AC' + AD' = 2 (AC + OC) [Em. ii. 10).

Again, because EC is opposite to an acute angle O of a triangle

ECO, therefore

EC + 20C.0F = EO' + OC [Euc. ii. 13).

And because ED is opposite to the obtuse angle O of a triangle

EOD, therefore

ED'' = EO' + OD' + 20D.0F [Euc. ii. 12),

= EO' + OC + 20C.0F

;

.-. EC^ + ED' = 2 (EC + OC),

= 2(A0' + 0C),

= AC 4- AD' from above.

2. If through the fixed points P, Q, (fig. 10) parallel lines be

drawn meetmg two fixed parallel lines in the points M, N

;

then the line through the points M, N, passes through a fixed

point.

Join PQ, and let it meet MN in O, and the given pair of

parallels in Ii, S, O shall be a fixed point.

For since QN is parallel to PM, therefore QO is to PQ as

ON to NM. And since NR is parallel to MS, therefore OR is

to RS as ON to NM. Therefore OR is to RS as OQ to QP,
or OR is to OQ as RS to QP ; that is, QR is divided in a con-

stant ratio in O, and therefore O is a fixed point.

3. In a given circle it is required to inscribe a triangle,

similar and similarly situated to a given triangle.
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Let ABC (rig. 11) be a given triangle, DEF a given circle;

it is required to inscribe in DEF a triangle, similar and similarly

situated to ABC.
At the point A in the straight line AB, make the angle

BAG equal to the angle ACB. Find H, the centre of the

circle DEF, and draw UK parallel to AG, HD pei*pcndicular

to HK. Through D draw DE, DF parallel respectively to

AB, AC, DEF shall be the triangle required.

For di'aw DL parallel to HK or AG, and therefore touching

the circle at D. Then the angle LDE is equal to the angle

GAB. But GAB is by constniction equal to ACB, and LDE
is equal to DFE in the alternate segment. Therefore the angle

DFE is equal to ACB. Similarly the angle DEF is equal to

the angle ABC. Therefore the remaining angle EDF is equal

to BAC, so that the triangles ABC, DEF are similar. And
since the sides DE, DF are parallel respectively to AB, AC,
therefore EF is parallel to BC, and they are similarly situated.

4. Describe a circle which shall pass through two points,

and cut off from a given straight line a chord of given

length.

Let A, B (fig. 12) be two given points, CX a given line,

it is required to describe a circle passing tlu'ough A, B, and

cutting off from CX a chord of given length.

Join BA, and produce it to meet CX in C. Bisect AB in E,

and draw EF perpendicular to AB. With A as centre, and

radius equal to half the required chord, describe a circle FGH,
cutting EF in F. With F as centre, and FA as radius, describe

a circle BAG. Join CF, and let it cut the circle BAG in K, L.

From CX cut off CM, equal to CK. The circle described

through A, B, ]\I shall be the circle required ; that is, if N be

the second point in which it meets CX, MN shall be equal to

the required chord.

For the rectangle CM.CN is equal to CA.CB by the pro-

perty of the circle ABM. And the rectangle CA.CB Is equal

to CK.CL by the property of the circle KAB. Therefore the

rectangle CK.CL is equal to CM.CN.



1851.] EUCLID. 7

But CK is equal to CM, therefore CL is equal to CN, and

therefore KL is equal to MN, and KL is equal to the required

chord, therefore MN is so, and the circle ABNM is the circle

required.

5. Give a constniction* for finding the common tangents of

two circles, and shew that if through the intersection O of two

of the common tangents which meet in the line joining the

centres of the two circles, there be drawn a transversal meeting

the circles in A, A', and B, B', respectively, then (the points

denoted by B, B' being properly chosen) OA.OB' = OA'.OB is

independent of the position of the transversal.

Let ABC, DEF (fig. 13) be two circles, whereof DEF is the

greater; find G, H, their centres, and with H as centre, and

radius equal to the differencef of the radii of the given circles,

describe a circle. Through G draw GK, a tangent to this

circle ; di-aw GA perpendicular to GK, and AD perpendicular

to GA, meeting DEF in D : AD shall be a common tangent.

Let C, D (fig. 14) be the points of contact of one of the

coimnon tangents. Then we easily see that

OA:OA' :: OB: OB',

.-. OA.OB' = OA'.OB
;

and also OA.OB' : OA.OA :: OB.OB' : OA'.OB,

or OA.OB' : OC^: OD^ : OA'.OB,

::0D^ OA.OB',

.-. OA.OB' = OA'.OB = OC.OD,

which is independent of the position of the transversal.

6. Shew that a triangle made to revolve in the same direc-

tion about its three angular points in a proper order through

angles double of the angles of the triangle at the same angular

points, will return to its original position.

* A demonstration of this construction is not required.

t We might also take a radius equal to the sum of the radii of the given

circles, in which case the common tangent would touch the two circles on

opposite sides of the line joining their centres.
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Let ABC (fig. 15) denote the triangle in its first position.

At the point A, in the straight line AB, make the angle BAG'
equal to the angle BAG, and make AG' equal to AG. Again,

make the angle GAB' equal to the angle BAG', and AB' equal

to AB. Join B'G' ; then in the triangles GAB, G'AB', the sides

GA, AB are respectively equal to G'A, AB', and the angle

GAB is equal to the angle G'AB' ; therefore the triangles are

equal in all respects. And the angle B'AB is double of the

angle GAB, therefore G'AB' is the position of the triangle after

revolving round A through an angle equal to 2.GAB.
Again, join BG' ; make the angle BG'A' equal to the angle

B'G'A or BGA, and G'A' equal to G'A. Join A'B ; then in the

triangles AG'B', A'G'B, the sides AG', G'B' are respectively

equal to A'G', G'B, and the angle AG'B' is equal to A'G'B.

Therefore the triangle A'BG' is equal in all respects to AB'G',

and therefore to ABG. And the angles BG'A', AG'B are

together double of B'G'A or BGA, therefore A'BG' is the posi-

tion of the triangle after revolving round the angles A, G.

Again, since the angles G'BA', G'BA, GBA, are all equal,

GBG' is double of A'BG' or ABG. Therefore the triangle, after

revolving romid its three angular points in succession, through

angles double of the angles of the triangle at those points,

returns to its initial position ABG.
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ALGEBRA.

1848.

1. A ship sails with a supply of biscuit for 60 days, at a

daily allowance of 1 lb. a-head : after being at sea 20 days she

encounters a storm, in which 5 men are washed overboard, and

damage sustained that will cause a delay of 24 days, and it is

found that each man's allowance must be reduced to f lb. Find

the original number of the crew.

Let X = the original number of the crew.

Then 60a; = number of lbs. of biscuit with which they started.

4:0a; = remaining after being at sea

20 days.

And the remainder of the crew = a; — 5, who have to remain at

sea for 64 days, under a daily allowance of f lb per man.

.-.
f 64 (a; - 5) = 40a;,

.-. 64a; - 320 = 56a;,

.-. 8a; = 320,

and X — 40,

the original number of the crew.

2. If a, i, and x be positive, and a > b, prove that

X + a X -\- b
> <

(a;" + a^)i {x' + h'

,,, , x -\- a X + bW e have t-^. ^. > <

yjTi , according as a- > < [ab)

[x' + ay (a;* + b'J
'

x^ + 2aa; + a" x^ + 2bx + h
as =

:,
— > <

X* + d' x^ + W '

2aa; ibx

x' + «' x' + /''
'
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a h . . ..
as -5 r. > < -5 Ti , Since x is positive,

as [a — h) x'' > < d'h — a//,

as (a — h) x^ > < ah [a — Z>),

as x^ > < ai, since a is greater than b,

or as X > < («&)*.

3. If a, ^, c, be in haiinonic progression, and ti be a positive

integer, shew that a" + c" > 25".

Suppose a, 5, c, all positive.* Then we have

-
, T 1

-
•) in aritlinietic progression,

a b c

2ac

but a + c > 2\/«c,

2ac ^ ,

.*. -^— > 2v«c,

or V^c > 5,

but a" + c" > 2a*"c*",

afortiori a' + c" > 2V.

1849.

1. Reduce to its simplest fonn the expression

(1 - gQ (1 - b'') (1 - <f) - (g + be) [b + cff) (c + a^)

1 - a' - ^*' - c' - 2abc

We have (l-a'') (1-Z*^) [l-c')

= 1 _ a^ _ ^,'^ _ c^ + J'-^c^ + c'-'a'-' + o;'// - d'bV

[a + be) [b + CO) (c + (ib)

= aba + ¥c' + 6'ci' + c^W + [c^ + 5^ + e') abc + d'V'c^
;

* If one of these three quantities were negative, the proposition enunciated

Avould not be necessarily true.
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... (1 _ a') (1 - h'') (1 - 6') -{a + he) [h + m) (c + ab)

= l-d'- ¥ - c' - abc - {a' + 1/ + 6') abc - 2dVc'

= [\-ci'- h' - c' - 2abc) (1 + abc),

(1 _ d^) (1 - i;^) (1 _ c') -{a + be) [b + m) (c + ah)
'

'

i-ce-h''- & - 2abc ~ ^ + ''^''•

2. Find a whole number which is greater than three times

tlie integral part of its square root by miity. Shew that there

are two solutions of the problem, and no more.

Let X be the integral part of the square root,

x^ + y the whole number.

Then, by the conditions of the problem,

a;^ + y = 3a; + 1,

.•. a;'' — 3a; = 1 — ?/,

.-. x' _ 3aj + f
= 1,3 _

y^

Now y is essentially positive, and in order that x may be

real it is necessary that y be less than 5'. Also, in order that x
may be an integer, i}^ — y)^ must be of the form |-(2?/i+l),

m being some integer, such that [2m + l)'"* is less than 13.

Therefore the only admissible values of m are and 1. Hence

a; = i + ^ori + i,

= 2 or 3.

Therefore 3a; + 1 = 7 or 10,

and 7 and 10 are the only solutions of the problem.

1850.

1. A number of persons were engaged to do a piece of work

which would have occupied them m hours if they had com-

menced at the same time; but instead of doing so, they com-

menced at equal intervals, and then continued to work till the

whole was finished, the payment being proportional to the work

done by each ; the first comer received r times as much as the

last : find the time occupied.
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Let X be the number of persons employed, y the nmnber of

hours the last worked, z the interval, in hours, between the first

and second person commencing work, which is also that between

the second and third, and so on. Then, by tlie conditions of the

problem,

y + [x-l) z = ry (1).

Also, if W be the work done in an hour,

[?/+ {y-\-z) + {y+^z) + ... + {?/+ [x—\) zW W= whole work done,

•*• y + (i/+^) + (y+2s) 4- ... + {y + (a;-l) s} = mx,

or [2y + (a? — 1) z] \x = mx^

.'. 2y -\- {x — l)z = 2m,

and, by (1), y + {x-l) z = ry,

.'. y = 2m — ry,

Therefore whole time occupied = time from the first person

begiiming to work till the completion of the work

= y + {x-l)z,

= ry by (1),

2mr , , . ,= hours by 2).
r + 1 -^ ^

^

2. Shew that the product of the terms of an arithmetical

progression is greater than [alf" ; and that the sum of the terms

of a geometrical progression is less than (a+?)^«; where in

both cases a, /, and n denote the first and last terms, and the

number of terms respectively.

(a) Let h be the common difference in the arithmetical

progression, P the product of its terms, then

P=a{a + b) {a + 2h) ... {a + {n-l)b},

and I = a + [n — 1) b.

Now (a + mb) [a -f- {n- )ti—l) b} = a^ + (n — 1) ab + (n—m— 1) mh^.
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This will be least when m = 0, negative values of m being

excluded; but in that ease

{a + mh) [a -\- (n — m — \) b] = al-

therefore the product of any two tenns equidistant from the

mean is not less than al.

The property enunciated follows at once from this when n is

even. If 7i is odd, the middle term is

71 — 1 -

and (a + ^^-^ h\ = «' + {n - 1) ah + \^-^ o\
,

> d^ + [n— 1) «J,

> al
;

.'. a + ^-^ h > {aI)K

Hence, in all cases, P > [al)-".

(/3) Let r be the common ratio in the geometrical pro-

gression, S the sum of its tenns ; then

b = a——
,r — 1
'

and I = ar"'^^

.'. a + l = a{l+ r"-').

Now ar"^ + ar"-"-' - (a + 7) = « ('•'" - 1) - « (^''"' - »•""""'),

= « (r - 1) (1 - r ),

which is negative for all positive values of m.

Hence the smn of the first and last tenns is greater than the

sum of any other two tenns equidistant from the mean.

The property enunciated follows at once from this when n is

even. If n be odd, the middle tenn is

and ri^"-'> < ^^f^,
,,„_!) a + I

2

Hence, in all cases, S < (a + /) ^n.
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1851.

3.r — 2
1. If , -xV 7:^r} ttn be expanded in a series ascend-

[x— 1) [x — 2) [x — 6)
^

lug by powers of a:, find the coefficient of x\

This is best effected by resolving the given expression mto

its partial fractions, and expanding each fraction separately.

For this piu'}30se, assume

3a; -2 A B G
{x-l) {x-2)[x-^)~ x-l'^ x-2'^ x-^"*

A, Bj C being independent of x.

ThenSx-2=A{x-2){x-3) +B{x-3){x-l)+ C{x-l){x-2)

Hence, putting a; =1,
identicalhj.

3.1 - 2 = ^(1-2) (1-3),

or 1 = 2A (1).

Similarly, putting a; = 2,

3.2 - 2 = 5(2-3) (2- 1),

or 4 = - B (2),

and putting a^ = 3,

3.3 - 2 = 0(3-1) (3-2),

or 7 =2C (3);

Sx-2 _ 1 4_ 7
•''

(a;-l)(a;-2)(a;-3)
~

2 (a; - 1) a; - 2
"^

2 (a; - 3)

'

11 2 7 1

2"^ u J. — J2 1-a;l-^a; 6 1-ia;'

= -i(l+a;+ ... +a;"+...)

+ 2{l+^x-}- ... + {^xY +

-l{l + ^x + ... + i^xr + ...],

in which the coefficient of a;"

_ _ 1 2 _ 7 1

~~2'^2^~6 3""'

_ J 1. _ 7 1

- 2«-i 2 2 3^"

the required coefficient.
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2. Find the siun of the different numbers which can be

formed with m digits a, n digits /3, &c., the entire series of

w + » + &c. digits being employed in the formation of each

number.

The total number of numbers which can thus be fonned, is

equal to the number of permutations of m -^-n -\- things,

whereof wi are of one kind, n of another..., taken all together,

_ 1.2...(m + /i + ...)

~
(1.2. ..w) (1.2...??)...

'

Now, the number of times a will be found in any assigned

place : the nmnber of times j3 will be found there :...'.: m '. n : ...
\

therefore the number of times a will be found there

m 1.2...(w + w + ...) 1.2...(7n + »i+...-l)— = m
??i + « + ... [1.2...m) [1.2... n)... (1.2...w) (1.2...w)...

'

Similar expressions holding for the number of times y3, 7,... will

be found there : we have, if S be the sum of the digits in any

assigned place,

[ma + n^+ ...) \.2...[m + n-\- ... - 1)
_

[1.2...m) [1.2... n)...
'

therefore if 2 denote the sum of all the numbers,

2 = ;S(1 + 10 + 10''' + ... + iO"'+"+--^),

= ^ 9 '

_ 10»'+"^--_l (»;a + 7?/3+...) 1.2...(7>? + »+•..-!)
~

9 [1.2...m) [1.2... n)...
'

the sum required.

3. The difference between the arithmetic and geometric

means of two niunbers is less than one-eighth of the squared

difference of the numbers divided by the less number, but

greater than one-eighth of such squared difference divided by

the greater nimaber. If a*, y be any two nimibers, a-^, y, their

arithmetic and geometric means, a:^, y^ the anthmetic and geo-

metric means of iCj, 3/,, and so on, find major and minor limits

for the difference ic„ - ?/„.
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(a) Taking the notation of the Litter part of the problem,

we have

x-2 (a-M)i + y (x* - iAY
• • ^, ^1

-
2

~
2 *

Now, one-eighth of the squared difference of the numbers

K-yJ

8

4

And [x^-\-y'^y lies between [2y^f and (2a;*)'\

or > 4?/, < 4a?

;

4

>

3/ 8 '

1 [x-yY
X 8

(/3) From above it appears that

„ _ „, ^ (^«-i ~ 3/«-i) ^ (^«-i ~ 3/»-i) .

therefore, a fortiori^

X — V < ^ (^"-2 ^/n-a)

2 '

< >

< {^-yf

1



1851.] ALGEBRA. 17

Let rtj, a.^, f/^^, be the letters.

Then the product will be of the form

Now, any one of the letters, as «|, only appears n—\ times in

this product, that is, once in each of the factors a^ + a.^ . . . a, + r/,^,

therefore in no term can its index be greater than n—\.
And in such terra, the index of a^ cannot be greater than

w— 2, for a,^ can only enter n—2 times as a factor of such a tenn,

the factor a, + a.^ being excluded.

Similarly, in the term involving

a"~^a^~'^ the index of a^ cannot be > 7? — 3,

>i-l n-2 n-r+l
ttj rtj ...(i,_^ a,. > ?« — r,

therefore the sum of any r of the indices cannot be greater than

(m-1) + (n-2) +... + [n-r),

= rn - -^r (/•+!),

the required limit, which the sum of the r indices cannot exceed.

5. Eliminate x from the equations

[x — a) [x — h) = [x — c) (x — d) = [x — e) [x —f)^

and from the same equations with the additional relation e =/",

find a quadratic equation for determining the quantity e or f.

Shew also that if ?«', vi" be the values of e or f^ then m" — m is

a harmonic mean between a — in\ b — m\ and between c — m\
d — m.

(a) Since [x — a] [x — h) = [x — c) [x — d) = [x — e) [x—f),

we get

x^ — [a + b) X + ah = x'^ — [c + d) x + cd = x^ — {e +f) x + ef]

.'. ie +f— a — b) X = ef— ab^

[e +f— c — d) X = ef — cd^

... [ef- cd) [e +f- a-b) = [ef- ab) {e +/'- r - d). ..{!),
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an equation from which x is eliminated, and which may be put

in the more symmetrical form

ab{c + d-e-f)+ccl[e+f-a-h) + ef{a + h-c-(l)=0...{2).

(/9) If (' =/, equation (1) becomes

[e' - cd) {2e - a - b) = {e' -ah){2e-c- d),

... i^c-\-d-a-h) i + 2[ah - cd) e -\- {a + b) cd- [c -\- d) ab = 0.. .(3),

the quadratic for the deteniiination of e or/.

(7) If m'^ m" be the roots of equation (3),

ab — cd
m + m" = 2

mm

a + b — c — d''

ab {c + d) — cd [a + b)
^

a + b — c — d '

{ab — cd) {a + b)
.'. 2 (ah + m'm") =2 , ,

,^ ' a + b - c -d ^

= (a + b) [m + m").

Now
2 {ab->rm'm') — {a+ b) {m' + m") = [b—m') {a—m") — {a — m') {m"— b),

whence {a — on) {m" — b) = {b — m) {a — m")^

.'. a — m' '. b — m! '.'. a — m" : m" — b^

or a — m' : b — m :: a — m — {m" — m') : m" — m — {b — m')^

whence m" — in' is a harmonic mean between a — m\ b — on.

Similarly, it is a harmonic mean between c — on, d — on.
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TRIGONOMETRY.

1848.

1. The angles of a quadrilateral inscribed in a circle taken

in order, when multiplied by 1, 2, 2, 3, respectively, are in

Arithmetical Progression; find their values.

Let 6^ (j) be two adjacent angles of the quadrilateral, then

TT — 6, TT — (j), will be the angles respectively opposite to them

;

and, by the conditions of the problem, 0, 2^, 2(7r — 6), 3(7r — 1,

are in Arithmetical Progression.

.-. 2(f)- e = 2(7r-^) -
2(f)

= S[7r-(f)) - 2(7r-^),

.-. A(f) + e = 27r,

4^ - (/) = TT,

.-. 17^= Gtt,

17<^ = Ttt,

17 ' ^ 17 '

a llTT , IOtt

17 ' ^ 17 '

the required values of the angles of the quadrilateral.

2. Prove that sin 3^ sin'^ + cos3^ cos'^ = cos^2^.

We have cos 3^ = 4 cos"^ — 3 cos ^,

sin 3^ = 3 sin^ - 4 sin'^;

.-. sin 3^ sin'^ + cos 3^ cos'^

= 3 (sin*^ - cos'<9) + 4 (cos«^ - sin"^),

= 3 (cos^^ + sin''^) (sin'(9 - cos*^) + 4 (cos«^ - sin"^),

= cos'^ - 3 cos'^ sin'-'^ + 3 cos'^ siu'(9 - sin"!?,

= (cos'^-sm''^)=',

= cos" 2^,

the required result.

C2
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3. Having given the three right lines di'awn from any point

to the three angular points of an equilateral triangle, determine

a side of the triangle.

Let ABC (fig. 16) be the triangle, the point from which

the lines are dra^vn, OA = a, OB =5, = c ; also let the

angle BA 0=0^ CA =
(f>^

and let a side of the triangle = x.

Then, by the triangle BA 0,

x' + d^ - 2ax cos6 = If (1).

By the triangle CA 0,

x^ + d^ — 2ax cos(f) = c^ (2).

Also 6 +
(f)
= ^TT.

Adding (1) and (2), we get, observing that cos ^ + cos ^
^ 0-\-

cf> e-<f>= 2 cos——^ cos —!-
,

2(a;^ + a') - ^ax cos^tt cos —-^ = W + c' (3).

Subtracting (2) from (1), and observing that cos ^ — cos ^

= 2 sm — - sm —^

—

-
,

Q JL

Aax sin^TT sin——-^ = b^ — c^ (4).

By (3) and (4),

=^ ^^

COS^ ^TT sin""' ^TT
,,,'^ ji+i^\'^-:±^ ^ac^ff

,

... [y^ + c^ _ 2d'y - ix\W + 6' - 2d' + ?>a^) -h 3 (// - d')' + ^x' = 0,

... a;* _ [a' + P + c') x' + a' + b* + c*- {bV + c'd' + d'F) = 0,

2 d' + b^ + d' {{d'+b^+Cy , 4 , ,4
, 4N , 72 2, 2 2, 271!

.-. x'= ± <
^ — (a* -I- b* + c) + Fc+d'ar^-a'b'

= '"'"^t'"^''' ± % [2 (?>V + cV + d'h') - [a' + b' + c*)}4,

which determines a side of the triangle.
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1849.

1. If — a, 0, + a, be three angles whose cosines are in

Harmonical Progression, prove that

cos
(f>
= 2^ cos ^a.

Since cos(^ — a), cos</), cos(^ + a) are in Harmonical Pro-

gression, we have

2 1 1
+

cos
<f>

cos {(}> + a) cos ((jb — a)

'

2 cos<^ cos a

cos (0 — a) cos (^ + a)
'

/. cos^<^ cosa = cos(^ — a) cos((^ + a),

= ^ (cos
2(f) + cos 2a),

= cos^^ — sin'^a,

2

,

sin'^'a
.*. cos © =

,

1 — cosa

4 sin'"* ^a cos'"* ^a
~ 2 sin' ^a '

= 2 cos"''^a,

.*. cos<^ = 2- cos^a,

the required relation.

2. A person wishing to ascertain his distance from an in-

accessible object, finds three points in the horizontal plane at

which the angular elevation of the summit of the object is the

same. Shew how the distance may be found.

Let (fig. 17) be the foot of the object; A^ B^ C the three

points at which the angular elevation of the summit of the

object is the same ; then they must all be at the same distance

from 0. Let x be this common distance.

Let the angle AOB = d^ the angle AOC =
<f).

Measm-e

-BO, CA^ AB, and let their distances = r/, b, o, respectively

;
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then a = 2x sin ^[d + ^),

b = 2x sin ^<^,

c = 2x sin ^0.

Eliminate ^, <^, from these three equations, then x will be

known and the distanee of the person from the object deter-

mined.

1850.

A person wishing to ascertain the distances between three

inaccessible objects -4, ^, (7, (fig. 18), places himself in a line

with A and 7i; he then measures the distances along which he

must walk in a direction at right angles to AB^ until A^ (7, and

-B, 0, respectively, are in a line with him, and also observes in

those positions their angular bearings: shew how he can find

the distances between A^ B, and C.

Let BE and BF, the measured distances, = d and e ; BEA
and BFA the obsei-ved angles = a and /3. Let the sides of the

triangle ABC = a, h, c, and BB = x.

Therefore tan BEA = ^4^
,a '

and tan BEB = ^ ,a

.-. tan a = tRn{BEA - BEB),

X + C X
d d

^^x[x+cy
d'

cd

d'^ + x{x-{- c)
(1).

Similarly, tan^S = ~ —, ^ f2).
e- + x{x + c) ^ ^

From equations (1) and (2), a; and c are known, and thence

BAC = tan-^-^ , and CBA = 180° - tan"^ -
,

and thence the distances a and h.
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1851.

. T<> /^ w sin a cos a
1. It tanp = ;—rr- ,

1 — /i sin a

shew that tan(a-/3) = (1 — w) tana.

iiT 1 / ^N tana — tan/3We have tan (a - /3) = :; : :—^ ,
^ ^' I + tana tan/3 '

71 sin a cos a
tan a—; ;—5—

1 — n sm a

?? sin''

a

1 +
1 — n sni a

sin a
= tan a — n n sm a cos a,

cos a

sin a — «(sin a + cos a) sin a

cos a

= (1 — w) tan a.

2. Two triangles stand on the same base, determine in terms

of the base and of the tangents of the angles at the base, the

distance between the vertices of the triangles.

Let ABG^ ABC (fig. 19) be the two triangles. Let BC the

base = rt, and let the angles ABC^ A CB = B^ C, respectively,

and the angles A'BC, A' CB = j5', C Join AA', and let

AA' = ?•, then it is required to find the magnitude of r.

Draw ABj AD' pei-pendicular to the base. Then

r'= [AD-AD'f + DD'%

= {AD - AD'f + {AD cotB - AD cot By.

Now a = AD (cot B+ cot (7),

also = AD (cot B' + cotC)
;

1 1
r' = a'

cotB + cotC cot5' + cotO';

cot-B' cot5, / coti^' coti^ Y
"^ " Vcot B' + cot C cot B + cot 67
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( / tan^ tan C tan B' tan C"

(Vtan5 + tanC tani? + tanO

tanC tanC N^)*

,tani?' + tanC" tan5 + tan (7/ j
'

an expression of the required form.
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CONIC SECTIONS.

1848.

1. Given the lengths of the axes of an ellipse, and the

positions of one focus, and of one point in the curve : give a

geometrical construction for finding the centre.

Let MN (fig. 20) be a line equal in length to the axis-minor.

With N as centre and a radius equal to the axis-major, describe

an arc of a circle. From 31 draw MO perpendicular to MN^
and cutting the arc in 0, MO will be equal to the distance

between the foci of the ellipse.

Produce 8P to Q (fig. 21) making ;S^^ equal to NO. With

P as centre, and PQ as radius, describe an arc of a circle, and

Avith S as centre, and radius equal to MO^ describe another arc

;

H the point of intersection of these arcs will be the other focus,

for /SlP, PH are together equal to the axis-major, and SII is

equal to the distance between the foci. If therefore we bisect

SH in (7, C will be the centre.

Since the arcs described from 6^, P as centres will in general

intersect in two points, it appears that there are two positions

which the centre may have.

2. P is any point in an ellipse (fig. 22), A A' its axis-major,

NP an ordinate to the point P; to any point Q in the curve

draw AQ^ A' Q^ meeting NP\n R and S-^ shew that

NR.NS = NP\

Draw the ordinate QM, then by similar triangles ANP^ AMQ,

XR : NA :: MQ : MA,

an<l by similar triangles A'NS, A'MQ,

NS: NA' :: MQ : MA\
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therefore NE.NS : NA.NA :: MQ" : MA.MA
,

also NP^ : NA.NA' : : BC : A G\

therefore NR.N8 = NP\

3. FSp (fig. 23) is a focal chord of a parabola, BDr the

directrix meeting the axis in 2) ; Q is any point in the curve

:

prove that if PQ, p Q produced meet the directrix in i?, r, half

the latus-rectum will be a mean proportional between DR., Dr.

Draw PjV, Qm pei'pendicular to the directrix, and join

/ST?, Sr^ SQ.

Then sinPi^^S' = sinP8R^
PN= dnPSR^

= smPSR.&mPRN :

similarly sinQR8 = sin QSR.sin QRNj

.-. smP8R = s'ln Q8R,

.: Q8R=p8R:
similarly Q8r = P8r,

.'. R8r is a right angle,

.-. 8D' = DR.Dr,

or half the latus-rectiun is a mean proportional between DR., Dr.

1849.

1. Draw a parabola to touch a given circle in a given point,

so that its axis may touch the same circle in another given

point.

Let PQR (fig. 24) be the given circle, P the point in which

the parabola is to touch it, Q the point in which the axis is to

touch it. Draw PT a tangent to the circle at P, this will also

be a tangent to the parabola at P. Draw QT touching the

circle at (), and at the point P in the straight line PP, make the
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angle TP8 equal to the angle PTQ] then S^ the intersection

of QT and FS, will be the focus of the parabola. Bisect TF in

K, and draw KA perpendicular to ST. A will be the vertex

of the parabola, and the vertex and focus being found, the cui^ve

may be constructed.

2. If a circle be described touching the axis-major of an

ellipse in one of the foci, and passing through one extremity

of the axis-minor, the scmiaxis-major will be a mean propor-

tional between the diameter of this circle and the semiaxis-

minor.

Let AA' (fig. 25) be the axis-major of the ellipse, S the

focus, C the centre, B the extremity of the axis-minor. De-

scribe the circle S£P touching AA' in >S', and passing through

By and draw the diameter SB.

Join SBy BB; then the angle SBB^ being in a semicircle, is

a right angle, also the angle SCB is a right angle. And the

angle BSP is equal to the angle SBCj therefore the triangles

BSBy SBC are similar. Hence

BC: SB:: SB: SB,

or SB is a mean proportional between SB and BC. But SB
is equal to the semiaxis-major ; therefore the semiaxis-major

is a mean proportional between the diameter of the circle and

the semiaxis-minor.

3. If ABj CBj two lines in an ellipse, not parallel to one

another, make equal angles with either axis ; the lines A C, BD
and ADy BC will also make equal angles with either axis.

Let A'B'C'D' (fig. 26) be the points of intersection of the

peq^endiculars to the axis-major through the points ABCD with

the auxiliaiy circle A'B'C'D'. Then it is evident that a line

joining any two of the above points as A'B' will intersect the

axis-major in the same point as AB does, and any two lines

joining the above points as A'B'.^ CD' will be equally inclined

to the axis-major, and therefore to either axis, if AB., CD arc so.
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and vice versa: hence we have to prove that If A'B\ CD' are

equally inclmed to the axis-major LFE^ the lines A'C'^B'D'
and A'D\ B'C are so.

Now lAGL = LAEL + L B'A C\

and z D'HL = l UFL + l B'D'C
;

also /:AEL = I UFL,

and lB'AC = aB'D'C;

therefore lAGL = L D'HL = L B'HG,

or AC\ B'D' are equally inclined to LFE.

Again, zALH = L LD'H + z LED',

and z B'KG = lKC G ^ lKGC ',

also lLD'H=lKC'G,
and lLED = lKGC]
therefore z ALE = L B'KG,

or AD' and 5 '6" are also equally inclined to LFE\ therefore

also AC, BD and AD, BC are equally inclined to either axis.

Q. E. D.

1850.

1. If from any point P of a circle, PC be drawn to the

centre (7, and a chord PQ be drawn parallel to the diameter

A CB, and bisected in R, shew that the locus of the intersection

of CP and AR is a parabola.

Let (fig. 27) be the intersection of CP and AR. Draw
AM, CN pei-pendicular to AB, ONM parallel to AB. CN will

pass through R. Then

CO-.CP'.'. AO:AR,
:: OM:MN.

But CP=AC=MN,
therefore CO = OM,

and the locus of is a parabola, of which C is the focus, AM
the directrix.
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2. From the point P in the ellipse APB (fig. 28), lines are

drawn to A^ B, the extremities of the axis-major, and from

A, B^ Hues arc drawn perpendicular to AP^ BP; shew that the

locus of their intersection will be another ellipse, and find its

axes.

Let Q be the intersection of the lines pei'pendicular to

AP^ BP. Draw P2f, QN perpendicular to the axis-major, then

the triangles PBM, BQN ^yl\\ be similar, therefore

PM:BM::BN: QN',

similarly P3I : AM :: AN : QN,

therefore PM' : AM.BM : : AN.BN : ^.V''.

But if Z* (7 be the semiaxis-minor of the original ellipse,

PM' : AM.BM:: bC : AC\
therefore AN.BN : QN' ::hC'' : AC]
therefore the locus of Q is an ellipse whose axes are to one

another as IC : AC.
And if we draw AB\ BB' perpendieidar to Ah^ Bb^ we have

A (1^^^=#'
bC

which is one axis, the other is equal to -^-^ B'C or A C.

3. If two elUpses having the same major axes, can be

inscribed in a parallelogram, the foci of the ellipses will lie

in the comers of an equiangular parallelogram.

For it is evident that the centres of the ellipses must lie at the

point of intersection of the diagonals of the parallelogram, that

is, must be coincident, and their major axes are equal; there-

fore they will have a common auxiliary circle.

The lines joining the points of intersection of this circle and

the parallelogram, will, if the right points are joined, be pei'pen-

dicular to the sides of the parallelogram, and each of them will

contain two foci: hence the four foci will be at their points of

intersection, that is, at the comers of a parallelogram, equiangular

with the circumscribing parallelogram.
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4. If from the extremities of any diameter AB (fig. 29) of

an equilateral liyperbola, lines be drawn to any point P in the

curve, they will be equally inclined to the asymptotes.

From A and P draw the perpendiculars A C, AF, PE, PF,

on the asymptotes, AF and PF intersecting in Fj from B draw

BD perpendicular to the asjTuptote Oq. Then, since PQ = Bq.,

and the triangles QFP^ BDq are similar, they are also equal

;

therefore PE = Dq and QE = BD, therefore

AF=^ CO + EP=OD + Dq = Oq,

and PF = OE + AC = OE + BB = OE -\- EQ = OQ',

therefore the right-angled triangles APF, qQO are equal in

all respects, and the chords PA, PB equally inclined to the

asymptotes.

1851.

1. Given a pair of conjugate diameters of a conic section,

find geometrically the position of the principle diameters, (1)

in the case of the hyperbola, (2) in that of the ellipse.

Let PP', DU (fig. 30) be the given conjugate diameters

of an hj-perbola intersecting in C.

Join PD, PB'-, bisect them in E and F, draw GE, OF',

bisect the angle ECF by the line A' CA, and through C draw

BCB' pei'peudicular to ACA'
',
these will be the principal di-

ameters required. For, by the property of the hyperbola,

CE, CF are the asjnnptotes, and ACA', BCB', to which they

are equaUy inclined, are the principal diameters.

2.* The solution of this part of the problem depends upon

the property of the ellipse, that if P (fig. 31) be any point in the

ellipse, and CR, CN, two lines at right angles to each other, cut

the straight line PRN in the pomts R, N, such that PN is equal

to the semiaxis-major, and PR to the semiaxis-minor, CR and

CN will be the directions of the principal axes.

* For this solution the authors are indebted to the kindness of the Mode-
rator, Mr. Gaskin.
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Let CP, CD be the given semi-conjugate diameters; draw

Pi^ pei-pcndlcular to CD'^ make FK equal to CP; upon CK as

diameter describe the circle CFK\ tlii'ough its centre draw

PRN'^ join CP, CN'. these will be the directions of the principal

axes.

For PF. CD = PF.PK = PR.PN = A C.BC,

and CP' + CD' = CP'' + PK' = 2 CO' + 2P0' = 2 OE' + 2 0P\

= PR + P^ {Euc. II. 10) = J.0"^ + PC'^

therefore PN = AC, PR = BC,

and OP, CW are the du*ections of the principal axes.
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STATICS.

1849.

1. Two forces F and F'^ acting In the diagonals of a paral-

lelogram, keep it at rest in such a position that one of its edges

is horizontal; shew that i^seca = i^'seca' = TFcosec(a + a'),

where W is the weight of the parallelogram, a and a! the angles

between its diagonals and the horizontal side.

Let AB (fig. 32) be the horizontal side of the parallelogram.

In order to preserve equilibrium, the directions of the forces

F^ F' must meet in G^ the centre of gravity. Hence, by the

triangle of force,

F _ F' _ W
smBGW ~ &\nA GW ~ sin^ GB '

F F' W
or

cosa cosa sm(a + a)

therefore i^seca = i^'seca' = TFcosec(a -I- a').

2. A cubical box is half-filled with water, and placed upon

a rough rectangular board ; if the board be slowly inclined to the

horizon, determine whether the box will slide dowTi or topple

over.

Let fi = the coefficient of friction.

Then the box would begin to slide when the inclination of

the board to the horizon = tan~^yLt.

It would begin to topple when the inclination = jtt.

Therefore it will begin to slide or topple over, according as

/Lt < or > 1.

1850.

1, A heavy body is supported in a given position by means

of a string which is fastened to two given points in the body.
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and then passes over a sjnooth peg: find the k-ngtli ot" the

strmg.

Let G (fig. 33) be the given position of the centre of gravity,

A and B those of the points of support. The position of tlie

peg P is determined by the conditions that it must lie in the

vertical tlu'ough G^ and that the angles APG, BPG must bi;

equal, each = 6 suppose.

luQt AG = a, BG = b, lA GP = a, L BGP = /3 ; then

PG miPAG sinf^ + a)

AG sinAPG sin6>
= cos a + sin a cot^

PG
similarly -^^ — cosyS + sin^cot^,

, ^ cosa + sina cot^ BG b
thereiore y^

-.
—^ 7: = -j-f, = -

,

cosp + smp cota AG a

whence 6 is known, and length of the string

= AP^BP,
sin a sin /3 , . ,

= -.—
7i
a + -.—- b is known,

sma sma

2. Two spheres are supported by strings attached to a given

point, and rest against one another: find the tensions of the

strings.

Let -4, B^ (fig. 34) be the centres of the spheres, and C the

peg. Then, if the spheres are smooth, the strings must lie in

the lines CA^ CB; hence the parts of the triangle ABC ai-e

known. To determine its position.

Let G be the centre of gravity of the spheres, CG must be

vertical. Let W^, W^ be the weights of the spheres A and B,

therefore AG : BG :: W^ : W^-,

and if LACG = e,

smjC- 6) _ BG sin^ _ TF, sini?
^

siiT^ "" ATCf&mA ~
it; sin^ '

1 /• • /> /I n ^^^, sin5
therefore smC cot a — cosO = ttt •—7 1T^.^sm^ '

whence 6 is known.
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Let T,, T^ be the tensions of the strings which support

A and B respectively; therefore resolving the forces on the

sphere A perpendicular to AB^

T, sin^ - PF; sin(^ + ^) = 0,

_ sin(^ + ^) ,.^ .or
sin -4

and similarly 1\ = t^^ ^ TT,,

_ sin(^ + 6>)

~
sin5 «'

whence T^ and T^ are known.

3. A cone of given weight W (fig. 35) is placed with its

base on a smooth inclined plane, and supported by a weight

W\ w^hich hangs by a string fastened to the vertex of the

cone, and passing over a pully in the inclined plane at the

same height as the vertex. Find the angle of the cone when

the ratio of the weights is such that a small mcrease of W would

cause the cone to turn about the highest point of the base, as

well as slide.

Let a = the angle of the plane,

6 = the half-angle of the cone.

Since the resolved parts, along the plane, of the tensionW of

the string and the weight W just balance, we have

PTsina = T'T'cosa (1)

;

and' because the moments of the same forces about B are also

equal,

Wmia.lAC+ Wcosa.BC = W cosa.AC - W sma.BC,

W cosa.f^O = (W^ + W sin a") BC, from (1),

or BC = f sina cosa A C,

or tan^ = # sin 2a.
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1851.

1. A cone whose semi-vertical angle is tan"* -j is enclosed

in the circumscribing spherical surface, shew that it will rest in

any position.

Let ABC (fig. 35) represent a section of the cone made by

a plane through its axis. Divide the axis AD in (r, so that

GD = iADj then G will be the centre of gravity of the cone.

Join BGj then

BG' = BD"' + DG\

But
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and vertically,

Pcos^ - Pcos<^ = (1),

P(l + sln^ + sin</)) = TF. (2).

Again, AB = r cosec(^ + ^),

5?'

therefore EB = — = r {I + cosec[6 + </>) cos^},

therefore |sm(^ + 4>) = coaO (3).

By (1) e = </,,

and by (3) fsm2^ = cos^,

therefore sin^ =
],

5P
therefore by (2) W = — .

Also AB = rcosec(^ + ^),

r
^ sm2^ '

r

- -^
"3:7*'

which gives the distance AB.
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DYNAMICS.

1848.

1. Two bodies acted on by gravity are projected obliquely

from two given points in given directions and with given

velocities: determine their position when their distance is the

least possible.

Let the bodies A^ B be projected from the points A^ B
(fig. 38) in directions AC^ BC intersecting in (7, and with

velocities proportional to CE and CD] upon both the bodies

impress a velocity CE equal and opposite to ^'s velocity, and

suppose gravity not to act, the relative motion of A and B will

not be affected by either of these circumstances ; but A will now
be reduced to rest, and B will move in a direction BG parallel

to the diagonal CF of the parallelogram on CE^ CD. From A
draw AG perpendicular to BG^ AG will be the shortest possible

distance between A and B] and A and B will be at that dis-

tance at the time [t] after the instant of projection that it takes

a body animated with the velocity CF to describe the space BG^
a kuo\\Ti time therefore. Let AH and BK be the spaces due to

^'s and -B's velocity of projection in time t. Through H and K
draw HL and KM^ each equal to the space due to gravity in the

tunc t ; L and M are the positions required.

2. A railway train is going smoothly along a curve of

500 yards' radius at the rate of 30 miles an hour ; find at what

angle a plumb-line hanging in one of the carriages will be in-

clined to the vertical.

Let a denote the inclination of the plumb-line to the vertical,
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CO the angular velocity of tlie train per second, r the radius of

the cur\'e.

Then the weight at the end of the plumb-line may be con-

sidered to be in oquilibrium under the action of the centrifugal

force, gravity, and the tension of the string.

Hence (fig. 39), by the triangle of forces.

sin (tt — a) sin (^tt + a)
'

coS' g
or

sm a cos a

tana = .

9

AT „. .r^. 30x5280 44
Now g = 32.2, . = 1500, a> = ^^^^-^^^^^0

=
1500 '

(44
.'. tana =

1500 X 32.2 '

^ (44F
48300 '

- 4^4
~ 12075 '

which gives the inclination to the vertical.

3. A nmnber of balls of given elasticity A, B, C are

placed in a line ; A is projected with a given velocity so as

to impinge on B] B then impinges on (7, and so on: find the

masses of the balls B^ C , in order that each of the balls

A, B, C may be at rest after impinging on the next;

and find the velocity of the «*'' ball after its impact with the

(n - 1)'".

Let m : 1 be the ratio of the mass of w* ball to that of the

{n— 1)'^', then the ratio of the velocity of the {n— ly^ ball after

impact to its velocity before, would be, if the balls were inelastic,

_ 1

~
1 + m

'
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Since they are elastic, the ratio is

= 1 - (1+ .) f 1 - ^

= 1 - (1 + e)

1 + mj '

m
1 + m

and since the (w — 1)"* ball is thus brought to rest, this must = 0,

.-. 1 + - = 1 + e,m

and ni = -
,

e

so that the masses of the balls from a geometrical progression,

whose common ratio is -, and the ratio of the velocity of the

I -\- e
n*^ ball after impact to that of the (n— lY^ before = ;; = e :

therefore if V be the initial velocity of A, velocity of n^^ ball

after impact = e"~' V.

4. An imperfectly elastic ball is projected in a given direction

within a fixed horizontal hoop, so as to go on rebounding from

the surface of the hoop ; find the limit to which the velocity of

the ball will approach, and shew that it will attain this limit at

the end of a finite time.

Let e be the modulus of elasticity, F, V^ F^ the velocities

of the ball before the first, second, (n— 1)'^ impacts, 6, ^,...^„

the successive angles of incidence. Then

Fj cos 0^ = e Fcos ^,

F,8in^, = Fsin^,

.-. F/ = F^(sin'^^ + e"'cos^^),

= sin''^(l +e:'coi'e)V':

shuilarly F/ = sin'^6», {I + e' cof''^,) V;\

1 1

But sin'^. =
1 +cof^, 1 + rVot'^'
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therefore T^ = sin''6> (1 + c? cof^^J V%

and similarly it may be shewn that

T7 = sin-^^(1 + e'^"cof^^)F'';

hence when n is indefinitely increased,

V = Fsin(9,

the limit to which the velocity of the ball approaches.

Now the distances between the successive points of incidence

are 2rcos^ , 2?'Cos^.^ r being the radius of the circle; there-

fore the times of describing these spaces are

2?-cos^, 2rcos^„ .
,—1^-

' , —T^—^ respectively,

1 2

cot 6', 1 , cot^„ 1

= 2r

:i + cof^j* TV (i + cof^^j* f;

('cot^ (1 + e^cot-^ji 1

H-e'^cot'6')4 sin (9 F'

e'cot^ (l+e*cot'^)* 1
2r

:i +e*cot'6')4 sin^ F" '

2r cos^ 2r jjcos^
"" F^ii^' F^ dK^ '

therefore the ball will attain its terminal velocity, after the time

2r cos^ / 2 s \

2r cos^ e

V sin'^ I -e'

1849.

1. A body is projected from a given point in a horizontal

direction with a given velocity, and moves upon an inclined

plane passing through the point. If the inclination of the plane

vary, find the locus of the directrix of the parabola which the

body describes.

Let a be the inclination of the plane to the horizon ; F the

velocity of projection ; / the latus-rectum of the parabola de-
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scribed ; therefore

j^r sina '

and I sill a = .

9

But J? sin a is the height of the directrix above the given

point of projection ; therefore this height is constant, and the

locus of the directrix is a horizontal plane at a distance— above
2g

the given point.

2. An imperfectly elastic ball A lies on a billiard-table,

deteniiine the direction In which an equal ball B must strike

it in order that they may impinge upon a side of the table

at equal given angles.

The impact must be oblique and the impulse take place in

the direction in which A is to go off. This direction makes

with the side of the table the given angle a : let ^ be the angle

which ^'s direction before impact makes this direction.

V = B^s velocity before impact,

e = the modulus of elasticity.

5's velocity V sin pei'pendicular to the direction of the Impulse

will be unaltered by it: if there were no elasticity, its velocity

in direction of the impulse after impact would be ^Fcos^, since

the balls are equal, and the impulse ^MJ^cosd: hence the actual

impulse will be ^(1+e) MVcosd, and the actual velocity in its

direction after impact P^cos^ — ^{1 + e) Fcos ^ or ^(1 — e) Fcos^.

Let
<f)
= the angle which ^'s direction after impact makes

with the direction of the impulse,

tan(/) = yy- r ^ = j— r taU ^.
^(l-e)cos^ i{l-(')

But
(f>
= 2a,

.-. tan^ = ^(1 -e) tan 2a,

whence 6 is known.
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3. A bead running upon a fine thread, the extremities of

which are fixed, describes an ellipse in a plane passing through

the extremities, under the action of no external force; prove

that the tension of the thread for any given position of the bead

is inversely proportional to the square of the conjugate diameter.

Let the bead be at the point P of the ellipse.

Since the tension of the string is the same tkroughout, the

resultant force on the bead will bisect the angle SPH^ and

therefore be nonnal to the elliptic path. Consequently, as no

force acts upon the bead in the direction of its motion, its

velocity will be uniform. Now, considering the bead as moving,

for the instant, in the circle of curvature at the point P, nomial

J,
vel.' 1 .,,...

torce Gc —3—7: cc —j—^
, smce the velocity is mii-

rad. ot cui'v. rad. 01 curv. •'

form : but radius of curvature gc CD\ therefore normal force

1

Now, adopting the usual notation,

tension of the string : nomial force -.-.PE: PFr. CD.AGxCD.PF,

'.iGB-.BC,

therefore tension of the string cc -^^ .

4. The centres of two equal spheres (elasticity e, radius r,)

move in opposite directions in a circle (radius B) about a centre

of force vaiying inversely as the square of the distance ; deter-

mine the motion of the spheres after they have impinged, sup-

posing that e = ^ 5 ; and prove that the latus-rectum of the

conic section described after the second impact will be 2e^i?.

Let (fig. 40) be the centre of force ; (7, C the centres of

the spheres. Draw OPQ perpendicular to CC\ such that CQ
is perpendicular to 00, and consequently C Q to OC. Then
if CQ represent in magnitude and direction the velocity of the

sphere before impact, CPj PQ will represent its resolved parts

in directions CP^ PQ. Now draw QB perpendicular to 0'^,
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meeting CP in B: the triangle QPR is evidently similar to

G'PQ^ and therefore to CPQ. Hence

BP:PQ::PQ: CP,

.: PPiCP:: PQ' : CP' :: CP' : OP' :: r' : B' - r' :: e : I.

Consequently BP represents in magnitude and direction the

resolved part, pei'pendicular to OQ, of (7's velocity after impact.

The velocity PQ remains unaltered by the impact ; therefore

the diagonal of the parallelogram PBQ drawn through P will

represent in magnitude, and be parallel to the direction, of the

whole velocity of C after impact. Now this diagonal makes
with PQ an angle equal to BQP or COP or COP, and is

therefore parallel to OC. Hence after impact the centres of

the spheres will move directly from the centre in the lines

OC, OC. They will evidently return to the same positions

C and C, and there impinge a second time.

For the velocity of C after the second impact it is sufficient

to obser\'e that the velocity along OP will be unchanged, while

that perpendicular to OP will be again diminished in the ratio

of ?: 1. Let PB' = e.PB. Through C draw CS equal and

parallel to QB'
;
join OS. Therefore the latera-recta of the

first and third orbits will be to one another as (triangle OCQY
: (triangle OSCf, since these triangles represent upon equal

scales, half the product velocity x pei*pendicular on the tangent

;

and we may shew that (triangle OCQf : (triangle OSC)' :: 1 : e*

;

and the latus-rectum of the first or circular orbit is 2B. There-

fore that of the third is 2e^B.

1850.

1. Shew that it is possible to project a ball on a smooth

billiard-table from a given point in an infinite number of

directions, so as, after striking all the sides in order once or

oftener, to hit another given point ; but that this number is

limited if it have to return to the point from which it was

projected.

Let P (fig. 41) be the point of the table from which the ball

is projected, PQBSTU its course once round the table. 7?.S'
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may be sliewn to be parallel to QP-^ and if the elasticity be

perfect, equidistant with it from the line AD drawn through the

comer A of the table parallel to either of them. For the angle

SUB = angle QRA = 90° - BQA^^OT - PQD, therefore RS
is parallel to QP. Also if QR intersect AD in F,

RF'.QF:: RA sinRAF: QA smQAF,

:: RA s'mBRS : QA sinDQP,

:: RA smARF: QA sinAQF.

But RA smARF = QA sinA QF,

therefore RF = QF^

and RSj QP are equidistant from AD.

Similarly, RS and TU are equidistant from CE. Through

P draw VDEPU pei'pendicular to the parallel lines. Then

VD = DP and VE = EU, therefore

PU= DE+ EU- DP=DE+ EV - DV= 2DE.

The same equation, PU = 2DE, holds whether P and U be on

the same side of D and E or on opposite sides of either or both.

Hence it is evident that by choosing the direction PQ rightly

we may make the ball hit the second given point, through

which the line TU will pass, after striliing all the sides once

:

and by lessening DE or projecting the ball more nearly in the

direction of the diagonal CA, we may make it strike the second

point after striking all the sides twice, when PU will = ADEy

and so on ; there being thus an infinite number of directions of

projection each more nearly parallel to the diagonal CA than

the preceding, which will cause the ball to hit the second given

point after striking all the sides once, twice, &c., respectively.

If, however, the ball have to return to the point of projection,

we must have DE = 0, or the direction of projection parallel to

either diagonal; there being thus two directions and their op-

positcs, or four directions in all, which will bring the ball back

to its point of projection. Through this point it will pass after

making each round of the table.
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1851.

1. A body of given elasticity e is projected along a hori-

zontal plane from the middle point of one of the sides of an

isosceles right-angled triangle, so as, after reflexion at the

hypothenuse and remaining side, to return to the same point

;

shew that the cotangents of the angles of reflexion are e + 1

and e + 2, respectively.

Let ABC (fig. 42) be the triangle, right-angled at -4 ; i> the

middle point of AB the point of projection : AD — DB = a.

Let e be the modulus of elasticity. Draw DEF perpendicular

to BC^ making EF = e.ED: draw FGH perpendicular to ylC,

making GH = e.GF: di'aw HD, LF, KB: DEL will be the

path of the body.

The angle of reflexion at -ff" = 90° — LEG = 6 suppose,

L= LEG =</)

Now BD = «, .-. BE= ^, =-. EL
' 2* e '

.-. /6'=2a.2i- [l+e) BE,

= 2a.2i-(l + .)-j,

.-. AG = 2a- CG= (l+e)K

and FI = ae, IG= CG = {S- e) ^a,

.-. HG = e.FG = e (3 + e) ^a,

,._GH_ GH+AD _ l + ^e(3 + g)a
.-. COt(^_ ^^- ^^ -

^(i_^g)„

^ (2 + e)(l-he)

l+e '

= 2+e (1).
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Again, cot = tanLKC = tau (45° + KFI)
,

1 + tarnKFI
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smPSN
Also PN = SF smFSN = PM smPSN = 2AS

I- cosPSN
from above.

Similarly, pn = 2Ab nci\T == 2AS- ttcptt'-)•^
'
-^

1 + cosPSN 1 + cosP/SiV

TiAT . A o sinP/SiV , . ^ 1
.-. PX+mi = AAS

, 2novr= ^^'S^ . noAr ;^
1 - cos"PSN smPSN ^

.-. (P.V+^n)^ sm-'P/S'^Vzz^ 16^^^ (2).

From (1) and (2),

{PN-\-p7iY : PM.pn :: 4 : 1, a constant ratio. Q. e. d.
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NEWTON.

1849.

1. The circle described through two points of an equiangular

spiral and the point of intersection of the tangents at those

points will pass through the pole. Prove this, and apply tlie

proposition to shew that the curvature at any point of an equi-

angular spiral varies inversely as the distance of the point from

the pole.

In the equiangular spiral the tangent is inclined at a constant

angle to the radius vector ; hence in (fig. 44) if P^ T, P^T be the

tangents at the points P^P^^ S the pole of the equiangular

spiral P^P^,

SP^T+ 8PJ=TT,

and a circle can be described about the quadrilateral SP^TP^^

or a circle passing through P„ T, P^, will also pass the pole S.

Suppose P^P^ to be indefinitely near to each other, then P^ T
ultimately becomes equal to i^^ T, since the triangles SP^T^ STP^

ultimately become similar and equal. Produce SP^ to meet P^,T
in B, and draw P^R' perpendicular P^T; then, ultimately,

P^E' = P^EsmSP^T.

Now diameter of curvature at P^

= hmit^ = ^^p-^ hmit-^^ ,

=
g.^^py

limit ^'^ by the above property,

2P,S

sin SP^T'

or the curvatm'e at P, varies inversely as /SP,, since SP^ T is

a constant angle.
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1850.

1. If any number of particles be movhig in an tllipse about

a force in the centre, and the force suddenly cease to act, shew

/ 1 \'^
. .

that after the lapse of
I r—

]
part of the period of a complete

revolution, all the particles will be in a similar, concentric, and

similarly situated ellipse.

The velocity at any point P (fig. 45) of the orbit = fM^CD^

2ir /I \-^

and the time of revolution — ; therefore after the
[
—

)
part of

a revolution, each particle wiU have described a space PP' equal

and parallel to CD. If therefore we complete the parallelogram

PCD, P' will be its angular point.

Join CP' meeting the ellipse in Q, and PD in V. Then, by

a known property of the ellipse,

CV.CF = CQ\

and CP' = 2Cr;

.-. CF'' = 2GQ%

and CP' = 2iCQ;

therefore all the particles are in a concentric, similar, and

similarly situated ellipse.

2. Two perfectly clastic balls are moving in concentric

circvdar tubes in opposite directions and with velocities pro-

portional to the radii : at an instant when they are in the same

diameter and on opposite sides of the centre, the tubes are

removed and the balls move in ellipses mider the action of

a force of attraction in the common centre of the circles vaiying

inversely as the square of the distance. After one has per-

formed in its orbit a complete revolution and the other a

revolution and a half, a direct collision takes place between

the balls and they interchange orbits. Find the relation between

the radii of the circles and between the masses of the balls.

Let r^, r,^ be the radii of the circles. Then the greatest and

least distances in the two orbits will be ?•,, r^ in the first and

r„, r^ in the second, where i\ has to be determined.

E
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Now let hji.^ be the values of h in the two orbits, therefore

Aj vel. in circle rad. i\ x r^

\ ~ r^^r^ '

= ^ (').

a

since the velocities are proportional to the radii.

h
'' latus-rcctum in first orbit

^^'^ t'= second...'
2

= ^'i + ^'^ = !^ .

''^ + '"3

' •/ a _ 3 1^2
^2 + ^

. !\! = !\
^'2 + ^3

^2)•• ^4 ,. • ;. _|_ ,. ^ ''•

'2 '31' 2

Also the periodic time in the first orbit = f that in the second, or

-m^(!f '«)^

therefore, from (2) and (3),

r; _ /3M r.

r* \2J r.

r, _ /3M r.

and, from (3),

-©*-(i)H-(i)n-(i)-"'
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r.
the equation tor finding — . This equation has only one positive

root, and that less than 1, as it ought to be, n suppose.

To find the relation between the masses m^ and nr, of the

balls in the greater and less orbit respeetively. Let i\ and ?'.^

be tlieii' velocities before impact ; their velocities after impact

will be I'., and i\ respectively, m^ and m,, both moving after

impact in the same direction as m^ the greater did before

impact. Hence, since the elasticity is perfect, momentum lost

by 7»j = the whole momentum lost and gained by vn^, or

and since the balls are at the same distance from the centre of

force, and moving in opposite directions,

^ = ^ = i' by (1)

2 2 2

1

V
-^ + 1

-1-1
^2

1 + )l'

the required relation between the masses.

1851.

1. If a body describe an ellipse round a centre of force in

the focus, shew that the sum of the reciprocals of the squares of

the velocities at the extremities of any chord passing through

the other focus is constant.

Let PHp (fig. 46) be the chord thi'ough II. Draw the pi-r-

pendiculars SY^ St/, HZ, Hz, to the tangents at those points:

join SP, Sj).

e2



52 SoLlTlONb OF SliNATE-lluUSl-: PROISLEMS. [1851.

Then, by a known property,

1 14
^^^ + T7- = T [L the latus-rectum),
JJ.F lip L

2AC ,
2AC ,_B.^C

SP Sp SAC
.

SY Sy SAC ^

or •.• SY.HZ^ SyJIz = BC'\

SY^ Sjf_^SAM
BC "^ BC ~ L '

or SY^ + Sy^ is constant,

and the velocities at -P,^?, are inversely proportional to 8Y^ Sy,

therefore sum of the squares of the reciprocals of the velocities

at Pp are constant.

Cor. It may also be shewn that the sum of the squares of

the velocities at the extremities of any chord passing thi'ough

the centre of force is constant.

For we have shewn that

SY Sy , ,
^^-^ + -~ = constant,HZ Hz '

SY.HZ Sy.Hz ^ ^
••• ^^2 + jj^^

= constant,

or BC'^
[iTt''

"*"

77^ ) ~ constant,

'*'

TiZ'
"*"

'Hz^
^ constant,

or, taking H as the centre of force, the siun of the squares of the

velocities at the extremities of any chord passing through the

centre of force is constant.*

* TTiis corollary was set as a problem in 1848.
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HYDROSTATICS.

1848.

1. An inverted vessel formed of a substance which is heavier

than water contains enough of air to make it float : prove that

if it be pushed down througli a certain space, it will be in a

position of unstable equilibrium ; and deteraiine the space in

question.

When the vessel is floating partly immersed, the weight of

the water displaced is equal to the weight of the vessel and of

the air it contains. If the vessel be now pushed down, the

water displaced, and therefore the upward pressure on the vessel,

will be increased till the vessel is wholly immersed ; as the

vessel is now pushed down further the water displaced becomes

less on account of the compression of the air in the vessel, till

it comes into such a position that the weight of the water dis-

placed is only equal to the weight of the vessel and the air it

contains. This will be a position of equilibrium ; and the equi-

libi-ium will be mistable, for accordingly as it is a little above

or a little below tliis position, the weight of the water displaced

will be greater or less than that of the vessel and the air it

contains.

This explanation applies to a vessel of a cylindrical form

;

if, however, it is smaller at the top than the bottom it may come

into the position of unstable equilibrium before it is wholly

unmersed. To find how far the vessel must be displaced so as

to come into this position.

Let W be the weight of the vessel, V its volume ; a and j-

the altitude of the column of air in the vessel in the positions
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of Stable and luistablc equilibrium, V'V" its volumes in those

positions, 1/ the depth of its lower surface below the surface of

the water in the latter position: a the density of the water,

p, p those of tlie air in the two positions, jjy p its pressures in the

same positions.

Then, equating the weight of the fluid displaced and of the

vessel and air contamed,

^TV= W+<jV"p' (1).

Also equating the upward pressure of the water and downward

pressm-e of the air at their common surface,

!/(^!/ =P' (2)-

Also, since pressm'e and density vary inversely as volume,

^ = ^ = {; (3).

Again, when the form of the vessel is known, V and V" will be

known in tenns of a and .r. Hence equations (1), (2), and (3),

will be sufficient for the determination of x and ?/, as well as the

other unknown quantities, viz. ^j', p', and V". Hence y — x^ or

the depth of upper surface of the air below that of the Avater, is

knoAvn, and added to the difference of the heights of the same

two surfaces in the original position of equilibrium, gives the

space through which the vessel must be depressed.

2. A uniform piston, terminated by a plane of area A^ per-

pendicular to its side, is inserted into an orifice in a vessel

containing fluid
;
prove that the work done in gently pushing

in the piston through a small space s is ultimately equal to the

work done in lifting a portion of the fluid of volume As through

a height equal to the depth of the centre of gravity of the plane

below the surface of the fluid.

If the space s be indefinitely small, the pressure on each

element of the piston will l)o unaltered by the change of the

pistoirs^ position.



1849.] HYDROSTATICS. 55

Hence, i( s be indefinitely small,

work done = product of whole pressure on area A x s^ the space

through which it is moved perpendicular to itself,

= pressure at depth z of the centre of gravity of

A X area A x Sy

= gpzA^y

= ffpAs.z,

= weight of volume As of the fluid x 2,

= work done in raising the volume As through the

space z.

3. Two equal slender rods ABj AC^ moveable about a hinge

at Ay and connected by a string BC^ rest with the angle A
immersed m a given fluid ; determine the tension of the string

BC.

Let T = tension of the string,

w = weight of each rod,

2a = its length,

2l = the length of the part immersed,

a = its inclination to the horizon.

Then the rod is kept at rest by its weight, the tension of the

string, the action at the hinge and the fluid pressures which

have for resultant a vertical upward pressure w acting at a

distance I from A.

Hence, taking moment about A,

10.a cosa — w.l cos a — T.2a sin a = 0,

1 = -—— coicnAv
2a

is the required tension.

1849.

A body floats in a mixture of two given fluids with a volume

A immersed; one half of the mixture being removed, and its

place supplied by an equal quantity of the lighter fluid, the

same bodv floats Avith a volume A + B immersed. Determine
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the ratio ot" the quantities of fluid in the original mixture, sup-

posing the volume of the mixture to be equal to the sum of the

volumes of the eomponcnt fluids.

Explain the result when the densities of the fluids are as

^ + ^ to ^ - ^.

Let F, V be the original volumes of the fluids ; cr, a' their

specific gravities. Their volumes in the second mixture will be

^V and ^V + ^{V + V) or V + ^T'; the specific gravities of

the mixtures will be

hence, if W be the weight of the body,

PWFV
n -A ^.^^. ,

also = [A + H] p _^ y )

.-. A[Vct+V'<t') = {A+B) [iFo- + (F + iF)(7'},

.-. {AcT-^{A + B)a-^{A+B)a'} V^Ba'V,

V 2B(r'
or F ' [A-B] (7-{A + B)a"

the required ratio.

If tlie densities, and tlierefore the specific gravities, are as

A + B io A — B, F' = 0, shewing that the fluid cannot be a

mixture of fluids of diiferent specific gravities ; in fact, the con-

ditions of the problem then become impossible.

1850.

1. A conical vessel containing a given quantity of fluid has Its

axis vertical, and another cone with the same vertical angle is

placed to float in the fluid with its vertex downwards ; find how

much the fluid will rise in consequence.

Let h be the depth of the original cone of fluid, k the depth

to which the vertex of the floating cone will sink
; A- is known

from the specific gravities of the fluid and floating cone, z the
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height thi'ough which the fluid will rise. Then

volume of the cone height /<! + s {h-\- zf
h "

1i'
'

, volume of the cone height k k
and 7 = T? •

h h^

Therefore, subtracting,

volume of the fluid after the cone Is put Into It _ (A + zf — k^

its original volume K^
'

= 1,

since the quantity of fluid is unaltered ; therefore

{h + zf -k' = F

and z = {h' + k'Y - h

is the required space.

2. A hollow cylinder containing air Is fitted with an air-

tight piston which, when the cylinder is placed vertically, is at

a given height above the base ; the cylinder being now inverted

and placed vertically in a fluid, sinks partly below the smiace

;

find the position of equilibrium.

Let J) be the pressure of the air in the cylinder before the

cylinder Is inverted, and which Is knoAvn from the given height

(/«) of the piston above the base : p is the pressure due to the

weight of the piston and atmosphere, 11 the atmospheric pres-

sure, to the weight of the cylinder and piston, z the depth

below the sm*face of the fluid of the piston In the position of

equilibrium, i/ the distance of the piston from the base of the

cylinder, p, p the densities of the fluid and uncompressed air

;

then, for the equilibrium of the piston,

fluid pressure fi'ora beneath = pressure due to the weight of the

piston + the pressure of the air in the inverted cylinder,

ov c/pz + U =2^-U + -i> (1).
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Also ic + weight of the air iii the eyliiider

= weight of the fluid displaced,

.-. w+gp'V = fjpj^, V (2),

where Via the volume and // the height of the cylinder.

From equation (2) z is known, and thence y from (1).

1851.

1. A hollow cone floats m a fluid with its vertex upwards

and axis vertical ; determine the density of the air in the hollow

cone.

Let 2^ be the pressiu'e of the air in the cone, IT that of the

atmosphere, tv the weight of the cone, h its height, z the height

of the cone of compressed air, y the depth of its base below the

surface of the fluid, /?,
p' the densities of the fluid and uncom-

pressed air.

Then, equating the pressures at the common smface of the

air and fluid,

gpy +'n = pressure of the compressed air,

=i> = -n (1).

Also 10 + weight of the air in the cylinder

= weight of the fluid displaced,

,TT z^ — (z — vY _- , ,

or to + gpV=gp Jf-^ ^ (2),

where V is the volmne of the cone.

From equations (1) and (2) z and y are known, and thence j-j,

and the required density.
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OPTICS.

1848.

1. If Q^ q (fig. 47) be two points in the radius of a spherical

reflecting surface whose centre is E^ such that EQ : Eq :: sine

of the angle of incidence : sine of the angle of refraction, de-

termine geometrically the position of the point P, so that a ray-

proceeding from Q and incident upon the surface at P may
after refraction proceed from q.

Bisect Qq in m, and thi'ough m draw mF perpendicular to

EQ meeting the circle in P; Pwill be the point required. For
if we join FE^ Fq^ FQ, we have

sin^P^ : sinFQE:: QE : FE,

and sm^P^ : sinP<^^ :: qE : FE.

Now sinFQE = sin FqE, •. • z FQE = LFqQ,

.-. smEFQ : sinJ;P^ :: EQ : Eq :: fM : I

by the question, therefore the ray QF after refraction at P will

proceed as if from q.

2. If a ray of light, after being reflected any number of

times in one plane, at any nimiber of plane sm'faces, retmii on

its fonner course, prove that the same will be true of any ray

parallel to the foi'raer which is reflected at the same surfaces

in the same order, provided the number of reflections be even.

Let FQR8 (fig. 48) be the course of any ray which starting

from P, after reflection at Q^ R and 8^ amvcs again at P,

and is there reflected in the direction PQ of the original pro-

pagation. Let F'Q'JR'S' be the course of another ray starting

from P' in a dii'ection F' Q' parallel to FQ', we have to shew

that after reflection at 5", this ray will proceed to P, and there

be reflected in the direction P' Q'. Join S'F'.

Then since the angle Q'F'A = QPA, and QPA=SFF, there-

fore the triangle PpP' is isosceles, and the ptTpciidiiiilar frmn /'
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on FQ = that from P' on PS. Similarly the perpendicular

from Q on QR = that from Q on Q'P' = that from P on PQ
since PQ is parallel to P'Q ; therefore the pei'pendicular from

Q on QR = that from P on PS. By similar reasoning it may
be shewn that the pei'pendicular from S' on PS = that from R'

on QR = that from Q' on ^i? since Q'R' is parallel to ^^ = that

from P on PS. Hence PS' is parallel to PS'^ therefore S'P' is

the direction in which R' S' will be reflected from S\ and P Q'

is that in which S'P will be reflected from P'.

The same proof may be extended to any even nmnber of

reflections. If the number of reflections were not even we might

still shew that P', S' were equidistant from PS^ but they would

be on opposite sides of it, as P', R' are of PP, and the pro-

positions would not be true in that case.

1849.

If the angle of a hollow cone, polished internally, be any

submultiple of 180°, a cylindrical pencil of rays incident parallel

to the axis will, after a certain number of reflections, be a

cylindrical pencil parallel to the axis, and of the same diameter

as the incident pencil.

Let fig. 49 represent a section of the cone and the light by a

plane through the axis CD of the cone, and let tn^m_^ be the

successive points when the ray PQ^Q^Q^... cuts the axis CD.

180°
(1). Let the angle ACB be an even submultiple of 180°=—

—

90°
^''

suppose, or — .

Now the angle Q^m^D = ACD + CQ^m^ = ACD + A Q^P,

= 2ACD = ACB,

and the angle Q^^n.^D = BCD + CQ,^in^ = BCD + Q^Q^B,

= BCD + BCD + Q.m^D,

= 2ACB-

similarly Q^m^D = 3A CB,

~ )

and Q„<»,D = uACB = 90°,
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or after the »"' reflection the ray will be pci*pendicular to the

axis CD^ and will proceed in a path exactly similar to that

already described, finally emerging in a direction parallel to

QyP^ and at the same distance as Q^P from the axis CD^ but

on the opposite side of it.

180°
(2). Let the angle A GB be an odd submultiple of 180°=
^ > ^ ^ 2n+l

suppose.

Now the angle Q.Q^B = BCD + Q,m,D^

= IACB -\- ACBhj the above,

and the angle Q.^Q^A = A CD + Q.^mJ)^

= \ACB + 2ACB,

= IACB;

similarly Q.^Q^B = IACB,

and Q,^Q,^,^A = ^-^ACB = dO'',

or after w reflection the ray will be perpendicular to the side

CA or CBj at which it has next to be reflected, and will there-

fore after that reflection return by the same path as it came by,

and will emerge in the direction Q^P.

Hence, whether ACB be an even or odd submultiple of 180°,

the emergent rays will form a cylinder equal in diameter to the

cylinder of incident rays, and having its axis coincident with the

axis of that cylinder, if the angle A CB be an odd submultiple

of 180°; or if the angle ACB be an even submultiple of 180",

the axes of the emergent and incident pencils will lie in the

same plane with the axis of the cone at equal distances on

opposite sides of it.

1850.

1. If a luminous point be seen after reflection at a plane

min'or by an eye in a given position, there is a certain space

within which the image of the point can never be situated, how-

ever the position of the plane mirror be changed ; find this

space.
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It is easily seen that the distance from the eye of the image

foiTned by the mirror equals the actual length of the ray by

which the point is seen. This can never be less than the direct

distance of the point from the eye ; hence the image can never

be situated within the sphere which has the dii'ect distance

between the point and the eye for radius.

2. If a be the angle which every diameter of a circular

disc subtends at a luminous point, shew that the ratio of the

light Avhich falls on the disc to the whole light emitted is as

sin'^^a : 1.

About the Imninous point as centre describe a sphere with

radius unity : also with the luminous point for vertex and the

circular disc as base describe a right cone. Then the light

received on the circular disc : whole light emitted :: the portion

of the surface of the sphere Intercepted by the cone : whole

surface of the sphere.

Now by a known property of the sphere, the surface of any

portion of the sphere cut off by any plane is proportional to the

difference of the radius of the sphere and the distance of the

cutting plane fi'om the centre. Hence the surface intercepted

by the above cone : whole surface of the sphere :: 1 — cos|a

: 2 :: sin^'ja : 1, which is therefore the ratio of the light received

on the circular disc to the whole light emitted.

1851.

A sphere composed of two hemispheres of different refrac-

tive powers is placed in the path of a pencil of light in such

a maimer that the axis of the pencil is perpendicular to the

plane of jimctlon and passes through the centre : determine the'

geometrical focus of the refracted pencil.

Let r be the radius of the sphere, u the distance of the focus

of incident rays from the centre; v^v^v^ the distances of the

geometrical foci after the successive refractions, positive lines

being measured m the direction opposite to that of the incident

light
; fi^fx,, the refractive indices of the two hemispheres.



1851.] OPTICS. 63

Then i = - ^Vzi + ^.
(1),

1 /i, 1
- =^ - (2

,

(3) + (2)xl + (l)x^,,

i=-^.i^>,-i)+^,>,-i)}i+^:i,

which gives \\ the distance from the centre of the sphere of the

geometrical focus after refraction.



(
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ASTRONOMY.

1849.

1. Tlierc arc two walls of equal known height at right

angles to each other, and running in known directions ; shew

how to find the sun's altitude and azimuth by observing the

breadth of the shadows of the two walls at any given time.

And prove that the sum of the squares of the breadths of the

shadows will be the same whatever be the direction of the Avails.

Let a, h be the observed breadths of the shadows, h the

known height of the walls ; 6 the angle between the base of

the wall, the breadth of whose shadow is a, and the line joining

the shadow of the top of the line of intersection of the walls

with the bottom of that line, ^ the sun's altitude. Then

(y = tan 7- , and © = tan j-^ ^,-^,

,

i
' ^

(a^ + ly
are known. Let a be the angle between the wall whose breadth

is a and the plane of the meridian ; then a -- ^ is the angle

between the plane of the meridian and the vertical plane through

the sun, or the sun's azimuth. Hence both the altitude and

azimuth are known.

Also d^ +h^ = the square of the length of the shadow of the

Ime of intersection of the walls ; and the height of this line is

the same whatever be the direction of the walls, or a'' + // is

independent of that direction.

2. If the same two stars rise together at two places, the

places will have the same latitude. And if they rise together

at one place and set together at the other, the places will have

equal latitudes, but one north and the other south.

From the bisection of SS' the great circle passing through

the two stars S^ S' draw a quadrant of a great circle perpen-

dicular to SS' towards the north pole terminating in the
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point r, and another towards the south pole terminating in T.

First, suppose the great circle containing these quadrants to

have its point which is nearest to P the north pole, to tlic left

of P (drawing the stars on the convex part of the sphere). Then,

in order that the stars /S', S' may rise together at any place,

its zenith must at some time in the 24 hours come to T\ its

co-latitude therefore must be TP. Hence if S^ 8' rise together

at two places, the co-latitude of each must be 2!P; hence the

latitudes of the places are the same. If the point of the circle

nearest to P lie to the right of P, the zenith of the place must

pass through T' in their daily path and therefore have the same

latitude, viz. 90' — T'P\ S., P' being the south pole.

If the same stars rise together at one place and set together

at another, the zenith of one must pass tlii'ough T and that

of the other through T m their daily paths; hence they will

still have equal latitudes, but one will be north and the other

south.

1850.

1. Prove that all stars which rise at the same Instant at

a place within certain limits of latitude, will, after a certain

interval, lie in a vertical great circle ; and detenuine those

limits.

This Avill happen when the zenith of the place comes to that

great circle of the heavens which at the time of the stars' rising

was the horizon of the place. Hence it can only happen for

those places for which the altitude of the pole is less than the

co-latitude : but the altitude of the pole is the latitude, hence

if / be the latitude, I must be less than 90° — / or / less than A,'/.

2. Shew how to find the days of the year on which the

light of the sun reflected by a given window which has a south

aspect will be thrown into some one of the lower windows of an

opposite range of buildings.

Corresponding to each window opposite, let that point of the

heavens be detennined, which lies in the same plane as that

window and the horizontal line through the reflecting window

pointing to the south, and at the same angidar distance from this

r
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line as the opposite window in question, and on tlie opposite

side of it. Let the north polar distance of this point or its

declination be then observed ; the reflected light will enter the

window in question on those days when the sun has this de-

clination. Suuilarly, the days when the reflected light will

enter the other windows may be detenniued.

1851.

Altitudes of the same heavenly body are observed from the

deck of a ship and from the top of the mast the height of which

from the deck is known : find the dip of the horizon and the

tnie altitude.

Let AB = x, BC= h (fig. 50) be the height of the deck

from the sea, and of the mast respectively ; OA = r the radius

of the earth. The difference (a) of the observed altitudes is the

angle^i^Oori>(9^.

Now cosCOE = 5
, and cosCOD = ,

r + h + x^ r + x'

.-. DOE = cos"^ 5 cos
^ = a,

r + li + X r + X

an equation for the deteinnination of x.

T
Then the dip of the horizon = OBD = sin~^ is known,

and subtracted from the altitude observed at B gives the true

altitude.

From the above equation we may determine x with sufficient

accuracy thus

:

r + X \ {r + h + xY) r + h + x \ {r+x

\2r(h + x)}^- (2rx)^
or -—^ -^^ — = sma,

r r '

omitting h and x in comparison of r

;

2(h + x) .2 « • /2a;\i 2x
-^ ' = sm^a - 2 sma — -\ ,

r \ r J r ^

f2x\^- , . h
I I = 4 sin « — —

h

, , — 9 sma coseca,
\r J ^ r '

or X = l^ sma—- coseca I
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PART 11.

EUCLID.

1848.

1. AB, CD, (fig. 51) are any two chords of a circle passing

through a fixed point O, EF any chord parallel to AB
;
join

CE, DF meeting AB in the points G and H, and DE, CF
meeting AB in the points K and L : shew that the rectangle

OG.GH = OK.OL.

The triangles OCG, OHD have the common angle 0, and

^OCD = 180° - EFD = EFH,

= OHD,

since EF is parallel to AB ; hence the triangles OCG, OHD
are similar, therefore

OC:OG::OH:OD,
or OG.OH = OC.OD.

Again, L OCD = OEF = DKO,

since EF is parallel to AB ; hence the triangles OLC, ODK
are similar, therefore

OC:OL::OK:OD,
or OL.OK = OC.OD,

.-. OG.OH = OL.OK.

2. In a given circle inscribe a rectangle equal to a given

rectilineal figm'c.

Let AB (fig. 52) be a diameter of the given circle ABC.
Draw a square which shall be equal to the rectilineal figure
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{Eu<\ II. 14,; through D any point of AB draw BE pei*pen-

dicular to AB, a third projxjrtional to AB and the side of the

square. Through E draw EC parallel to AB, meeting the circle

in C
;
join AC, BC, and complete the parallelogram ACBF

:

it shall be the rectangle required.

For C and F are each right angles, being the angles in a

semicircle, therefore ACBF is a rectangle. Also its area equals

AB.DE which equals, by constniction, the square which equals

the given rectilineal figure ; therefore it is the rectangle required.

3. Through a given point A (fig. 53) describe a circle which

shall touch a given circle BCD, and intersect another given

circle LEF in a chord passing through a given point G.

From G draw any line GEF Intersecting the circle LEF In

the points E, F
;
join GA, and in GA produced if necessaiy, take

the point H, such that GA.GH = GE.GF. Through the points

A, H describe any circle cutting the circle BCD In the points

B, C
;
join BC, and produce It to meet GA In K. From K draw

KD a tangent to the circle BCD. About the triangle AHD
describe a circle, it shall be the circle required.

And first It shall touch the circle BCD : for since KD
touches the circle BCD,

KD^ = KB.KC = KA.KH,

since one circle has been made to pass through A, H, C, and B

;

and therefore KD touches the cu'cle m question as well as the

circle BCD, therefore the two circles touch. Also the chord in

which it intersects the circle LEF will pass through G. For

suppose L to be one of the points In which It intersects the circle

LEF
;
join GL and produce It to meet the two circles in M, M'.

Then
GL.GM = GE.GF = GA.GH, by construction;

also GL.GM' = GA.GH,

since H, A, L, M', lie in the circumference of the same circle,

therefore GM = GM' or the points M and M' coincide, and

GLM Is the chord in whicli the circles intersect, and the chord

passes through G as required.
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Hence tlic circle drawn as above described fulfils the required

conditions, and is therefore the circle sought.

1849.

Thi-ee circles are described, each of which touches one side of

a triangle ABC (fig. 54), and the other two sides produced. If

D be the point of contact of the side BC, E that of CxV, and F
that of AB, shew that AE = BD, BF = CE, and CD = AF.

Let AB, AC touch the circle GDH in G, H ; then

BG = BD, and CH = CD,

also AG = AH,
.•. AB + BD = AC + CD = semiperimeter of the triangle,

similarly, BA + AE = semiperimeter of the triangle :

.-. BA + AE = AB + BD,

and AE = BD

;

and similarly, BF = CE and CD = AF.

1851.

1. Let T (fig. 55) be a point without a circle, whose centre

is C ; from T draw two tangents TP, TQ ; also through T draw

any line meeting the circle in V, and PQ in B, and draw CS
perpendicular to TV; then SR.ST = SY\

Join CT, intersecting PQ in U at right angles ; draw CP;

it will be perpendicular to PT.

Since the triangles CTS, RTU are similar,

CT:TS::RT: TU,

.-. TS.TR = TC.TU,

or ST'^ - ST.SR = CT' - CT.CU,

= ST^ + CS^ - CT.CU,

.-. ST.SR = CT.CU -CS^:

but CPT, PUC are both right angles,

.-. CT.CU = CP'' = CV^
= SV^ + cs%

.-. ST.SR = SV^
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2. It" a ciix'lc be described round the poiut of intersectiou of

the diameters of a parallelogram as a centre, shew that the sum

of tlie squares of the lines drawn from any point in its cir-

cmnference to the four angular points of the parallelogram is

constant.

Join P any point in the circle with A, B, C, D (fig. 56) the

angular points of the parallelogram, and with O the centre of

the circle. Then, since OB = OD, the square of BP is greater

than the squares of OP and OB by the rectangle by which

the squares of OP and OD are greater than the square of DP
{Euc. IL 12, 13) ; hence

Bp2 ^ j)p. ^ Qg. ^ Qj)2 _^ gOP" is constant

:

similarly, AP^ + CP-^ = AO'^ + OC' 4- 20P' is constant,

therefore also AP"' + BP'^ + CP' + DP"' is constant.

3. (a). Let B (fig. 57) be any point in the circumference of a

circle whose centre is A ; in AB take two points C and D, such

that ACAD = AB'; bisect DC in E, and draw EF at right

angles to AE ; in EF take any point G, then will the tangent

drawn from G to the circle be equal to GO.

Draw GF the tangent to the circle, join CG ; then

AG^ = GF^ + AF' = GF' + AB',

also AG' = GE^ + AE' = GE' + CE' + ACAD {Euc. ii. 6),

= CG^ + AB^ by construction

;

... GF' + AB^ = CG' + AB',

and GF = CG.

(/3). Describe a circle which shall pass through a given point,

touch a given straight line, and cut orthogonally a given circle.

Let D be the given point, BFL the given circle, KH the

given line intersecting AD in H.

In AD take AC : AB :: AB : AD, and HK a mean pro-

portional to HD and HC ; the circle through CD and K shall

be the required ciicle.
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For the centre of this circle will be at some point G of EG,
and since GF = GC, will pass through F, cutting the circle BFL
orthogonally at that point.

Also since HK is a mean proportional to HD, HC, or

HK"^ = HD.HC, HK will touch the circle through the points

C, D, K ; hence that circle fulfils all the required conditions and

is the circle sought.
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ALGKBRA.
1848.

1. A walks to Trumpington and back by Granchester In

1^ hour, starting between 2 o'clock and 2f ; B walks the same

distance in the same direction in labour, starting between 2

and 2^ : find the chance that A overtakes B before he gets

home.

Unless A starts after B he cannot overtake him.

Now if he starts between 2 and 2^, it is an even chance

whether he starts first or not ; otherwise he cannot. Hence ^'s

chance of starting before B = ^.| = ^.

Again, A gets home between 3^ and 4, B between 3^ and 3f

;

therefore A has an even chance of getting home first ; therefore

also his chance of getting home last = ^, and chance of his not

overtaking B = chance of his starting first + chance of his

getting home last

= ^ + ^ = 1;

therefore chance of A overtaking -C = 1 — f

,

the required chance.

2. A paralleloplped is cut by three systems of parallel planes

given in number, parallel to the three pairs of opposite faces

respectively : find the total number of parallelopipeds formed in

every way.

Let in, w, j9, be the given number of intersecting planes

parallel to the three sides respectively; we thus have m + 2,

« -f 2, ^9 + 2 parallel planes in -three several directions.

Now, out of the first set of parallel planes we may make

^ '———- sets of two each. Similarly, out of the other two

sets we may make — ^-^——
,
— ~- sets respectively.
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Now each paralleloplped is formed by taking one out of each

of the above sets of two parallel planes, therefore the total

number of parallelepipeds will be

{m + 2){m+l) {n+2){n + l) (p + 2)(p+l)

2
'

2
•

2 '

_ {m + 1) {n + l){p + 1) [m + 2) (n + 2) (^ + 2)

8 '

the required number.

3. If {^-a){i/-ma) = {n^-mo(.){x-a) (1),

and O' - a') (y - m/3') = {m^' - na) (cc - /3') (2)

,

shew that [—^-^-\x =
-, ^-^r-

\aa pp J aa pp
Taking (1) {/3' — a) — (2) (/3 — a), so as to eliminate y, we get

m{^-oi){/3'-a'){^'-a)={{n/3-ma){l3'-0L)-{ml3'-na')[^-a)]x

- (n^ - ma) (^' - a') a + (?n/3' - na] [^ - a) ^8',

or m {(/3 - a]{l3"' - a 13') + [^' - a:)[oi' - ayS)} = [n- m)(/3/3' - aa>
-n{(;S'-a>^+(;S-a)a'/3')l+m{(^'-a>'^+(/3-a)/3"0],

.-. {n-m){ (/3' - a') a/3 + (/3 - a) a^'] = (h - w) (/3/3' - aa') a-,

and dividing by aa'/S/3',

/J l_\ ^ g + g' _ /3-F /3'

"^Vgg' m'J da /3/3' '

4. (g). Shew that the integral parts of (3* + 1
)'""'' and

(3* + 1)'^'" + 1 are respectively divisible by 2'"'^^ where m is

any integer whatever.

The integral part of (S^+ir^^ is (3* + If'""^
- (3*- 1)"""S

since it is a whole umnber, and (3* — 1)^'"+^ is less than 1.

Now generally

^.«., _ y-.^. = [x-y) [[x^'+fl + try (a;-*-̂ 4/"'-0

+ a^/(a.—* +yn + ... + x'f (A),

and if £c = 3* + 1, y = 3* - 1,

x-y = 2, xy = 2,

.-. (3* + 1)"'""'' - (3* - 1)'^'"*' = 2 [{(34 + l)'-"" + (3* - 1)'""}

+ 2 {(3* + l)"^"-^ + (3i - I)"-""-'''} + . .
. + 2"'].
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This part of the question, then, reduces itself to shewing that

(3i+ 1)'-"" + (3*- l)'-"" is divisible by 2"'.

Again, the integral part of (34 + l)'''"'+ l is {Si+1)''"'+{S^-1)'%

since this is a whole number and (3*— 1)^'" is less than 1 ; hence

the second part of the question reduces itself to shewing that

(34+1)'"' + (3i- 1)'^"* is divisible by 2"'^\ and therefore mcludes

the first part.

Now (3* + 1)*" + (3* - 1)"" = (4 + 2.34)'^" + (4 - 2.34f",

= 2''"'{(2 + 34)'-'"+ (2-34n,

which is evidently divisible by 2^"^\ Also generally

_4«+2 I
4'i+a / 2 1 2\ f / 4» , 4»\ 2 2/ 4«-4 . 4n-4\

+ a.yK- +/"-),

-...+ (-)VY"};

.-. (34 + 1)*"+''' + (34 - 1)*'^'^ = {(34 + l)'-' + (34 - 1)'}

[{(34 + 1)*" + (34- 1)*"} - 2'-^{(34 + l)*«-^+ (34-1)^"-^} +...+ {-Y2'"l

which, since (34 + 1)'" + (34 - 1)*" is divisible by 2'"^', is divisible

by 2'"+", and therefore a fortiori hy 2'"'"+' or 2^''''*'^*\.

Hence, whether ?n be of the fonn 2n or 2n + 1,

(34+1^"+ (34 -If"

is divisible by 2'"^*,. and both parts of the proposition are true.

(/5). Prove that for a given integral value of a, there are

(1), a integral values of b which will make the integral part

of (a + b'-Y'"^' divisible by 2'"+^

;

(2), a integral values of b which will make the integral part.

of {a + b'~Y"'^' + 1 divisible by 2'"^^

;

(3), 2a integral values of b which will make the integral part

of {a + UY" + 1 divisible by 2'"+\

(1). The integral part of (^4+ af'*' = (&4+ af"^' - [U-af'^-'j

provided b^ — a < I and > 0, i.e. if b lie between a^ and [a + 1)"^,

which gives only 2« values of b.
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Now by equation (A),

+ [h - «^) [{b'- + ay-'-' + {hi - aY"'-'} +...+ (/._ aTl
Now since b is only to have (a) values, we may make b — (i^

even, and then the problem is reduced to shewing that

{bi + ay"+{bi-af"

is divisible by 2", which will hfortiori be tme if

{b'- + ar + {bi-aY%

{the integral part of {b^' + af' + 1} be divisible by 2"^', and

therefore (1) reduces itself to (3).

(2). The integral part of {a+b^-f"'^'+l={a+b^-Y"'^'+{a-biy"'^\

provided a — b^ < 1 and > ; therefore b must lie between n^

and [a— 1)'\ and it will appear by a precisely similar process to

the above that (2) reduces itself to (3).

(3). The integral part of (a + b^Y'" + 1 = {a+b'-f"' + {a - 7>i)*",

provided a — b^< 1 and > — 1, i.e. if b lie between [a— 1)'^ and

{a+ ly, giving only (4«) admissible values of b.

And if we flirther make b — d^ or d^ — h even, the number

of values of b will be reduced to (2a)

.

Then, these conditions being satisfied, (3) can be proved as in

(a), only writing 5* for 3* and a for 1.

Hence the propositions enimciated are tnie.

1849.

1. A quantity of com is to be divided amongst n persons,

and is calculated to last a certain time if each of them receive

a peck every week ; during the distribution, it is found that one

person dies every week and then the coni lasts twice as long as

was expected : find the quantity of com and the time that it lasts.

Let X = the number of pecks of corn,

y = weeks it is expected to last,

then - = the whole number of persons = n
;

y

or X = ny (!)•
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Also n = number of pecks distributed in tlie 1st week,

V — 1 = 2nd

n - r + I = J-""

and it lasts 2i/ weeks ; therefore

n + {n — I) + {n — 2) + ... + {n — 2?/ + 1) = whole quantity of corn,

or {{2{n-i/) + l}?/ = x (2);

.-. by (1) 2{n-y) + I = n,

n + I

_ 7i[n + \)
^ - 2 '

and 2y = n \- 1,

which determines the quantity of corn, and the time it lasts.

2. If
,^,

C,. be the number of combinations of m things taken ?•

together, and jy be less than m and ??, shew that

We have (1 + xY{\ + .-r)" = (1 + a-)'"^".

Now the coefficient of £c" in (1 + .t)" is vOfx'. also the coef-

ficient of x^ in (1 + a;)"'"^" must be the sum of the jiroducts of the

coefficients of a;' in (1 + .x)'" multiplied into the coefficient of

af"" in (1 + x)" taken for all values of r from to j>. Hence

3. If ^Gr be the number of combinations of n things taken

r together, prove that if a be an integer greater than 1, then

will „,(7,„ be greater than („C,.)".
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The total number of combinations which can be made out

of ?w things is „„C,.„. But if we divide the na things into a sets

of n each, and restrict ourselves to those combinations containing

ra things which can be made by takuig r out of each set, we
shall get, since

,,
(7, combinations of r things may be made out of

each set of w things, [„C,.)" combinations.

Hence, since (7.„ includes every possible mode of fonnationa,

and („6'^)" only one particular one, it is clear that

4. If^ be greater than unity,

1 1 1.2 1.2.3

and if it be less,

1 1 1.2 L^__ «

1-j, 1 +i? (1 +p) (1 + 2p)^ ^
(1 +p) (1 + 22j) (1 + 32))

We have in general, when^ is greater than unity,

1 \__ _ M + 1 1

p — \ ^; + w 2^ -\r n' 2^ — X"*

1 1 ?? + 1 1

J)
— ^ J9 + 7? ^? + 7i '/> — 1

'

therefore, putting successively n — 1, 2, 3
,112 1

+
jj — 1 2.)

\- \ ^ + 1'^> — l'

1 +^f^+
^j + 1 ^^ + 1 V7? + 2 y> + 2 ^ - 1

1 1.2 1.2.3

+ T—^T7 n^N +^ + 1
"^ (^+l)(^, + 2)

^ (^>+l)(7.-+2) •;>-!'

1 1.2 1.2.3

+ 7

—

r-^,—r^x + 7

—

, ,x/ , nN/.. ox +••
2>^\ (i?+l)(i^ + 2)

" (^j+ l)(iJ + 2)(^^ + 3)
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Kj) be less than unity,

_^ I _ ^ {n+_l)p _i_
.

1 —J) 1 + np 1 + lip ' 1 — /'

'

therefore, putting ?« = 1, 2, 3,... successively,

I _ 1 2p 1

1 -i>
~ 1+p l+p ' \-p '

- ^ 2p / 1 3/> 1 \

~
1 +/?''"

1 +p li + 2^ "'' r+ 2p
•

1 -pj

'

~ l+p'^ [l+p)[l^2p)^' "^ (l+^)(l + 22^)(l + 3/^)^'

-f

5. A bag contains three bank-notes, and it Is known that

each of them is either a £5, £10, or £20 note ; at three suc-

cessive dips into the bag (replacing the note after each dip) a

£5 note was drawn : what is the probable value of the contents

of the bag ?

There are six possible states of the bag, viz.

(1). 3 £5 notes in which case the value would be £15.

(2). 2 £5 and 1 £10 £20.

(3). 2 £5 and 1 £20 £30.

(4). 1 £5 and 2 £10 £25.

(5). 1 £5 and 2 £20. £45.

(6). 1 £5, 1 £10, and 1 £20 £35,

and these are all a priori equally possible.

Now the chance of the observed event in case (1) is 1,

(2) or (3) (ror|,

(4) (5) or (6) (i^or^,

therefore the probable value of the contents is

1 X £15 + A (£20 + £30) + sV(£25 + £15 + £35)

1 + 2 X I, + 3 X i

— * ~ 4fi 1

27_ 4?nio— ^mi
= £19 15.?. V^^d.
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1850.

1. Prove that the sum of the fractions which are intermediate

in magnitude to any two nmnbers vi and n, and liave 3 for a

denominator, is n' — ni^.

The fractions, together with the intermediate whole numbers,

will be 3w + 1 ^m + 2 3n - 1

3^"'
3 ' 3

. /3m + 1 3« - 1\ (3^2-1) - 3»«
whose sum is I

—
1
——

1

,

_ [m-\-n) [^[n-m) - 1}_ _
^

and the sum of the intermediate whole numbers is

(m+1) + (?» + 2) +...+ («- 1),

» — 1 — m
= [[m + l) + [n-l)^ ,

(w + r?) {ii — m— 1)^
2 '

therefore the sum of the fractions is

(w + n) (3 [n — m) — 1} {m -f n) [n — m — 1)

2 2 '

= n' - m\

2. There are a number of comiters in a bag, of which one is

marked 1, two marked 2, up to r marked r ; a person draws

a coimter at random, for which he is to receive as many shillings

as the nmuber marked on it : find the value of his expectation.

Since the person is as likely to draw one counter as another,

the value of his expectation

total value of contents of bag

number of counters in bag '

1'^ + 2^ + ...+ ,.«

=
l + 2+...+ >-

'^'^^'''^''
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Now I' + 2' + ... + r' = „ ,

o'{r +l)(2r+l)

6

r(r + l)
1 +2 +... + r= \^ '

\

r(r + l)(2r + l) r(r + l)
hence his expectation = -=^ '-^ 1 r—

-

=—-— shillings.

3. If a, J, c be in harmonic progression, shew that

111 1 ^- + - +
7
+ 7 = 0.

a c a — b c — o

T * 7> 1
1 1

>S' /3 + a' /3-a'

then - 4- - = 2/3,
a c

and a - b = -p: -^
,

_ a

-"/3(/3 + a)'

7.
1 1

_ a

"/3(/3-a)'

^._ _J_ _^ _J_ ^ /3(^-a) _ /3(/3 + a
)

' ' a — b c — b a a '

= - 2/3,1111..
.-. - + -+ 7 + 7=0.

a c a — b c — b

4. If there be z counters of which z are marked m\ z .n,...

with or without other marks; 2!„,^, w, w, with or without other

marks; 2;^,,„ ,,,y... marked w, w, ^j, ^...; the number mimarked
is s — 22 „+ 22;,„,„— 22;„,,„,p+..., 2 involvmg all combinations.
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Let Z>,,, denote the operation of selecting from the counters

those marked with ??«, D^ those marked with w, &c. Then it is

manifestly the same thing whether we first select from the heap

those marked ;/?, and then from these, those also marked n ;
or

whether we first select those marked w, then from these, those

marked m ; or at once select those marked 7n, n. Tliis may he

symbolically expressed thus

:

D D = D D = D
;

similarly, we have in general

D D D ... = D D D ... = ... = D ...: (1).

Also 1 — Z),,, will denote selecting those unmarked with m^

1 — D^^ those immarked with ??, &c. Hence the whole number

unmarked _
(
i _ 2) j (i _ i)J . . ,z^

= (1-22) +2i) -2i>,, „+...)z',

since the spnbols D^^^^ A.v have been shewn (equation (1)) to

be commutative

^ m '
^ m,n ^ m,n,p ^•••1

the required number,

5. Prove that

a;' + / + (a; + y)« = 2 (.x" + xy^- ?/)* + SxY [x + yf (ar* + xy + f] ;

and if x^ + xy -{• y^ = a, xy {x + \j) = i, and n be any positive

integer, shew that

^^»+y^-+(^+^)^»^2a"+ n(n-2)a-6- + "("-'^^;;;'^^"-'^ a-^-

/^(»-r-l)(7^-r-2)...(ri-3r + l) ,_„.^,.

3.4. ..2r

(a). Let 2 be a quantity, such that

X + y + z = 0',

then x"" + f + [x^-yT = x'" + /" + z'\

g2
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and x'' + xy + y^ = {x-\- yj — xy^

= -z{x + y) -xy,

= - {yz + zx + xy)j

xy{x + 7/) = -xyz-

therefore, taking the notation of the latter part of the question,

yz + zx + xy = — a,

xyz = — by

therefore x, ?/, s, are the roots of the equation

.•. {^ — x){^ — y){^ — z) = ^^ — af + hj identically

j

-i)(-D(-i)--M'
l-|.(«-jy,

.-. log(l-|)+log(l-|)+log(l-|)=logjl-^,(a-|

x + t/ + z
,

1 a;' + / + ^'
, ,

1 x" + /" + z'"
,

••

f +2 f ''"••"'"2m f"
"'"•

1 / 6\ 1 / i\^' 1 / i\"
= rr-|; + 2rr-|j +-+s|-^«-|j+-;

therefore equating coefficients of ^j

,

i_
(aj--"- + y2» + 2'-*«) = 1 a" + -^ {n-l){n-2) ^„^,^,

2n n n—1 1.2

J_ (n-2)(n-3)(n-4)(7^-5)
,

^71-2 1.2.3.4
"" ^

+•••

1 [n-r){n-r-l)...{7i-?,r+\)

»i —

r

1.2. ..2r

n 2 2.3.4

(9i-r-l)...(n-3r+l)
^

2.3. ..2«
"* ^ +•
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.-. x'" + /" + [x + T/y = 2a" + n{n- 2) a"-'b'

{n-S){n-A){n-5)
^,.^^,

_^^
n

+ -
3.4

n{n-r-i)...{7i-Sr+l) ^^
3.4.. .2r

"" ^ ^••••

Hence putting n = 4, we get

a;' + y + (a; + yY = 2 [x" + xij +ff + S{x'' + X7/ + f) xY {x + yf.

/aV'^''
6. (a). If a be less than h, prove that ij-j is increased by

adding the same quantity to a and b.

(/3). And if w be greater than 1, shew that

by means of this fonnula prove that
^

(a^ + a, +. . .+ aJ" > n\a^. . .a^.

(a). Since a is less than &, we may put a = h — c, where c is

a positive quantity less than b ; then a and 5 will be increased

by the same quantity if we increase Z>, c remaining constant
j

^y "V~^j = a: suppose;

•. loga;= {2b-c)\og(^l -^ ,

/ c\ /, 1 c 1 c'

2 l\c /2 l\c' /2 1
ti-i

which is manifestly negative, since the coefficients being of the

form ( -
j
are positive ; and the absolute magnitude of the

series is diminished by increasing b if c remain unaltered ; hence

(
V 0+6

r) ,
is increased by adding the game

quantity to n and h.
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(/3).* First, let
J

be greater than unity = 1 + - suppose;

we have then to shew that

nj L n—1 J V " — 1

,

these quantities when expanded by the BinomialTheorem become

, + ^ + __^' + —i *+•'

, n — \ ., V n—\j\ M— 1/ 3 .

and 1 + a; + —7-T x- + -—- x +...

;

all the terms of both series are positive, and each term of the

first series greater than the corresponding term of the second, or

1 + 7J
"(^ + ^1) '^^^ U) >toj '

when a is greater than h.

Cb . X
Next, suppose j less than unity = 1 — - suppose, we have

to shew that

l-i^^ > J % or 1
="

w/ I w — 1 J V n — 1(. -ii-i

1
j

> (1 — x)''":

these quantities when expanded by the binomial theorem become

71 — \ „ V 71— l) \ 71— \,

1 + ^^+
1.2 '"

+
1:2:3

^ +•'

7^ .y \ 71 \ 71/ .,

and 1 + X +^^ a.^ +
^-^^^

^^ + . .
.

;

* 'This part of the solution is given by Mr. Thacker in a recent number of

the Vamhridfie and Dublin Mathematical Journal, No. xxv. p. 8L
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all the terms of both series are positive, and each term of the

first series greater than the con'esponding term of the second,

and therefore the proposition is true in this case also.

Now let the n quantities «j, a^v^n? ^® ^^ ascending order of

magnitude ; then

V n /
' V na^ )

'

^"^ 1'+ [n-l)a, I
'

by the above,

^rt. -I- «,+...+

a

n-l

> a

similarly (
-^ 5__^ « j > a_^ f _! * "

w-l ' '

n-i f^ I ^ , I ^ \ n-2

?

>

n-l ' H
, > a ,a :

hence by multiplication

or [a^-\-a^^-..,+ aJ' > n{a^a^..,aj.

7. If - be the r'^ fraction converging to — , and n' be the r*^

remainder in the process for finding the successive quotients,

prove that

m p _ p
n q pq

'

Let^ ,
^ be the {r - 2)'^ and (r - 1)* converging frac-

9'r-2 2'r-l

tions respectively; m the r'^ quotient, n' the (r— !)'•» remainder;

then
i^ = »'^>r-, +i^r-25
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And the fx"actioii — may be derived from - by wTitiug rii-\- —r,

for 111 In the above expressions for p and q ;

in
'«' + :^' ) i^r-i -^Vr^

Now — is in its lowest tenns, and n is prime to n",

.-. m = [m'n" ^n)p^^^ + n"p^_^^

n — [m'n" + n) q^._^ + n'q^_,^^

, m p mq ^ np
anci '^ -^

.

n q nq

Jig-

*

8. Find the probability of drawing a black and a white ball

the same number of times from a bag which contains an equal

number of each ; the balls being dra^\ai one by one and replaced

after each draAving, and the nmnber of drawings being the same

as the number of balls in the bag, but this number is unknown,

any number from 2 to 2n being equally probable.

Suppose there are 2x balls in the bag; the number of

drawings will then be 2a;, and the number of possible ways in

which the balls may come out = 2'''''".

Of these the number of favourable cases equals the number

of permutations of 2x things taken all together, of which x are

of one kind and x of another,

_ 1.2. ..2a;

~(l.2...a;y^'

_ (a; +1) (a; + 2)... 2a;~
1.2. ..a;

'

therefore chance of proposed event on this supposition

_ J_ (a- +1) (a; + 2)... 2a;

~ ^r 1.2. ...r
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Now the chance of there being 2x balls in the bag = - what-
n

ever number > 0, > «, x may be. Hence the chance of tlie

proposed event

^ ^^ !^l!i . .1 in+l)in + 2)...2n

n (2M 2M.2 2'"'
1.2

1851.

1. If y , y7 be fractions in their least terms, the denominators

of which do not exceed a given nmnber ??, the fonner fraction

being given, and the latter detennined from it by taking for

a and b' the greatest values of x and y (?/ not greater than w)

which satisfy the equation hx — ay = 1, then of all the fi'action

in their least tenns, the denominators of which do not exceed w,

the fraction j-, exceeds y by the smallest quantity.

,,,. , a a ha — ah' 1
Wehave _ _ _ =_^^ = _

,

since a', h' are values of x and y in the equation hx — ay = 1.

Let ^ be any other fraction in its least tenns whose de-

nominator does not exceed /i, then

a a ha — a/3

^~h^ ~ir^ ~ h^

m being some integer greater than 1 ; then a and ^ are values

of X and y in the equation

hx — ay = m.

Now this equation is satisfied by

X = ma ± qa^

y = mh' ± qh^

where q is any integer.

Again, the successive values of x and y which satisfy the

ccpiation ;,,y _ ^,y ^ 1^

= Ta say,
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differ by a and b respectively ; hence, as b' is the greatest value

of y, less than n, in this equation, b' + b> n, therefore h fortiori

mb' + b> n. Hence /S cannot be of the form mb' + qb^ since

it is less than n.

Neither can it be of the fonn mb' ; for then a would = ?««',

and p would not be in its least tcnns.

Hence yS must be of the form mb' — qb :

.•. /36 = [mb' — qb)b < mbb'j

a
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Again,

1 /J_ J_\ /J_ _1_ _1_ Jl_\

1 1 1

^ jd ^ 2'» 4*

1

<
2«-l

2^ — 1 2^
Hence S lies between -i

—

~- and
2* - 1 2^ - 1

*

3. Solve the equation

1 1 — X I I - a ^
X + a 1 =

;

1 — X X 1 — a a

and thence infer the resolution of the first side of the equation

into factors.

We see at once that the given equation is satisfied by a; = a.

Again, for a write
;

, then

1 _ 1 _ _ 1 -a
1 - a

~
1 ~ ~~ar *

I — a 1 — a ,= • = - a.
a 1

1 -a
Hence the given equation becomes

1 1 - X , 1 \ - a ^
X + a -

7 + —— = 0,
I — X X 1 — a a

of which a or is a root.
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Similarly, ;— is a root of the given equation.

But
a_-l a 1

a - \ 1 - a '

a

therefore the roots of the given equation are a, , —
;

and the first side may therefore be put into the form

x[l —x)

4. From the equation

ah[c + d-e -/) + cd{e +/- a-h) + ef[a + h-c-d) = 0,

detennine, in terms of &, c, (7, e,y, the ratios a — c : a — d, and

a — e : a—f\ and shew that the relation between the six letters

may be expressed in the form P = Q^ where P and Q are each

of them the product of three differences of pairs of letters, or

in the form R= 8^ where R and S are each of them the product

of four differences of pairs of letters.

(a) From the given equation we get

_ cd[h - e -/) + ef{c + d-b)
^^~

b{c + d-e-f) - cd + ef
^

_ c[b-d) (e+f) - he' + ef{d-b) + 6'd
•'• "" """ b[c+'d-e-f) -cd + ef

^
"^1

b{c + d-e-f)-cd^€f

=.-(b-d] ('-')i'-f)
(1)

^ ' b{c + d-e-f) -cd+ef ^^'

Snmlarly, a-d=-{h-e)
^^ f^^^^_^_^ J^^ ^y

5

— c _b — d c — e c —f
- d b — c' d— e' d —f

(2).
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In the same manner it may be shewn that

a ~ e _h - f e — c e — d ,,

^irj-h^e'T^c'J^d ^^^'

(yS) From (1) we see, by interchangiug c with e, d with /,

which does not alter the original equation, that

^ ^ ' l>[e-\-f-c-d) -i- ef- cd^

a — c _ h — d {c — e){c —f) ^

' ' a — e ^ ~f (e — c) (e — c?)
'

••• («-«) (*-/) {e-d) = [h-d) {c-f) {a-e),

which expresses the relation between the six letters in the fonn

P=Q.

(7) Again, by (2) we get

(«-c) [b-c) {d-e) (d-f) = {a-d) [h-d] (c-e) {c-f),

which is in the form B = S.

5. If d^ + 1 be exactly divisible by j), and — be converted

into a continued fraction, until two consecutive reduced fractions,

— , —
,

, are found, such that p^ > n < n. then
n ^ n ' ^ '

j^ = [na — mjpf + w".

It is manifest that

{na-mp) =np [--
-)

., .,
(m mV

by the property of Continued Fractions.

-r, m m 1

But — = + —
-,

;

n a nn

.'. (na — mpY < ^,

;

and n''^ > p

;
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therefore, h fortiori^ [na — mpf < p^

and n^ < p ;

.*. {na — inj})'^ + n^ <
2_i).

But {na — mj)f + n^ = n\d^ + 1) — 27nna.p + m^p\

which must be divisible by p, since a^ +1 is so

:

and {na — mpf + ri' has been shewn to be < 2^, and it must

be positive ; therefore we must have

{na — mpY + n^ — p.

6. If {a+yS+7+...}^ denote the expansion of (a+/3+7+...)",

retaining tho^e terms iVa"/3V^''-" only in which

& + c + ^+ ... l!(>p— 1, c + d+ ... ;^ p — 2^ &c. &c.,

then

*This theorem may be put into a rather more convenient

fonn by wi'iting x — a. for a- ; we have then to shew that

{x - a.y = x''-n {ay {x + /S)"'^ + ^ll^zil (« + ^Y {x + ^ + 7)""''

or, writing a^ for a, a,^ for /3, &c.,

(a. - «,)• = a;" - « (a.)' (* + «J- + '-^^^ (a, + «,f (.r + a, + ocj""'

-
"

'""lilT"'' («.+«^+='.l' (-+«.+«.+=•.)"-' + (1).
'

The proof of this depends on the expansion of the quantity

{a, +«,+ ... + «,}".

* For tlie solution of this problem we are indebted to Mr. Cayley.
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Expanding by the Binomial Theorem,

(a^ + a,+ ...+a,)''

To pass to {a, + a^ + . . . + «/,}''. The sum of the indices of

Og, ttg, ... a^,, are not to exceed^ — 1 ..., and generally the sum

of the indices of a,., a;.^^, ... a^,, are not to exceed p — r + 1.

Hence in (a.^ + ag + ... + a^)*", the required conditions will be

satisfied, if only the sums of the indices of a^_,.+2, ap_,.+3j • • «p do

not exceed *• — 1, and the sum of the indices of a^.^^,, a^,^^^, ... a^

do not exceed r — 2, and so on. And this will be the case

if, considering a^ + ag + . . . + a^_^+j «^ one quantity^ we replace

(a^ + a3+ ...+a^)'by

K^a + «3 + • • • + Vm) + V-+2 + • • • + a;,}^

Hence {a, + a,+ ... +a,|^ = a,^ + |a/"M(«2 + "3+ ••• V^+i^f)!'

+ f ^^ «/"' {(a. + "3 + • • • + a,_,.) + a^_^Y + ...

+ pa^{a, + a^ + ... 4 a,}""' (2),

the last term (a., + a^+ ...+ OLp)" being of course rejected alto-

gether, since the sum of the indices exceeds^ — 1.

Now the coefficient of - —-— ... (- a,)*", on the12 r

left-hand side of equation (1), is cc"~'.

On the right-hand side, it is, expanding each of the quan-

tities in the brackets
(

} by (2),

(aj + a, + ... + a,J"-'--^((a,+ ... + a,J]'(a^ + «, + ... + a,,,)"-'-^
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or, if wc write y fur x + a.^+ ... + a,^,, to for a.^ + ... + a,,^,, the

coefficient on one side is (^ — w)""'', on the other

«-r " ' f 11/ , \M-'-l

» — r » — y — 1 , ,,, , Ml-,-!!

+ —J 2
^"^ "^ "''^•'^ ^^ "^ ^'^' ^ °''*='^

'

+

Therefore we have to shew that

n — r n — 7' — 1 , lo / , , \»i-)-->

+ _ _ {a, + a ,,r {y + a
.,, + a ,3)" "-...

the theorem itself, wiiting n — r for n.

The coefficients of a^**, on each side of the equation (1), are

obviously equal. If then the theorem hold for the indices

1, 2...(m — 1), it is proved to hold for the index n. But it

obviously holds for the index 1 ; therefore it holds miiversally.

7. If = a + —^-— , and——,— = a + , ,
:

mp + X ]} + It mj) + X p + 7^
'

then supposing ic and u to vanish when x vanishes,

1 1 . ,s

-7— = m (a. ~ a. .

u ti

Since u and u' vanish when x vanishes, we have

1 B 1 . )8— = a+— , —,
= a + —

,mp J)
tnp p

Hence, by the first of the given equations,

p + u 1

Tnp + X m
X

.'. p + u = au {mp + a?) + ^ H

oc

= w ( 1 - mB + oLx) + » —
;
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.'. u (m8 — ax) = —
,m

m'/3 1
.'. ma = - .

X u

Similarly, by the second of the given equations,

m^^ , 1
ma = —:

X u

the required result.

11,
-, = m a — a
u u

H
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PLANE TRIGONOMETRY.

1848.

A cannon-ball is moving in a direction making an acute

angle 6 with a line drawn from the ball to an observer; if

V be the velocity of somid, and nV that of the ball, prove

that the whizzing of the ball at the different points of its

com'se will be heard in the order in which it is produced, or

in the reverse order, according as /? < > sec 6.

The whizzing will be heard in the ordei' in which it is pro-

duced, or in the reverse order, according as the sound or the

ball moves more quickly towards the observer. Now the velo-

city with which the ball moves towards the observer = wFcos d
;

hence the whizzing will be heard in the natural or reversed

order, according as

V >< n V cos 0,

or no sec 0,

the required condition.

„
j^

sin (a — jS) _ sin (a + ^)

sin yS sin ^ '

shew that cot /3 — cot = cot {ol + 0) + cot (a — /3).

Since
sin (a — /3) sin (a + 0)

sin /3 sin

1 1

sin /3 sin (a + 0) sin sin (a — yS)
'

sin {a + 0-^) _ sin (g - /3 + 6')
^

sin yS sin (a + 0) sin sin (a — /3)
'

.'. cot yS - cot {a + 0) = cot + cot (a - /3),

or cot 13 — cot = cot {a + 0) + cot (a — /S),

the required result.
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1849.

1. If COS a = cos ^ cos <^ = cos yS' cos 0',

and sin a = 2 sin ^(/> . sin ^0',

shew that tan \a = tan \j3 tan ^^8'.

Since sin a = 2 sin \^ sin |^<^',

.-. sin' a = (2 sin' :|<^) (2 sin' ^ <^')

= (1 — cos 0) (1 — cos 0')

;

, / cosa\ / cos a
,1 — cos a = 1 :x 1 -

cos/Q/ V cos/37 '

.'. cos a = sec /3 + sec /S' — cos a sec /8 sec /8',

, sec B + sec yS' cos B + cos /3'

and cos a =
:, ^^ 7^ = 7^ p=; ;

1 + sec p sec p I + cos p cos ya
'

2 <* _ 1 ~ cos a _ 1 — cos y8 — cos /8' + cos /3 cos y8'

2 1 + cos a 1 + cos /8 + cos /8' + cos /8 cos yS'

^(l-cos^)(l-cos^;) g ff

(l + cosy8) (l+cosyS) 2 2 '

a /8 yS'

and tan - = tan — tan — .

2 2 2

2. Find •=• from the equations

[a + h) sin d + [a - h) cos 6 = {ci' + Jr)\

a sin' e + b cos' = {Zah)K

Squaring the first of the given equations, we get

{(i'+V') [mi'd^- cos'^) - 2ah [cos'S-sm'S) + 2(a'- J') sin^cos^=a'+ b';

.-. (a' - &') sin 2^ - 2rtZ> cos 2$ = 0.

Let - = tan </>, then this equation gives

sin 2 (^ - 4>) = 0,

whence 2 (^ — ^) = or tt
;

.". 6 =
(f)

or
(f)
+ ^TT.

11 -J
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Taking ^ = </>, the second of the given equations gives

a siii^ <^ + i cos' = (3aJ)*;

'fTI + ^7-^ = ('«^^^-'

a J \ a

• •

a
= (3«&)*,

and 72-3y+l=0;
o o

« 3 1
, ,

,

••5 = 2±2(-')' (')•

Again, taking ^= ^+^7r, the second of the given equations gives

a cos^
(f>
— b sin'*

<f)
= (3aZ>)*,

a — b ,„ ,,

,

1
= {^^^)H

{a'-^bj

.-. d'- W= {a' + bf {3abf,

a* - Id'V + b^ = Sab{d' + V'),

(a^ + yy _ ^.d'b'' - dab (a' + J'^) = ;

... (a^ + J2 _ 4^J) ^^2 _^ J2 ^ ^j^ ^ .

therefore, fii-st, a''* + J^ — 4a5 = 0,

^'Z Kb.

and ^ = 2±(3)i (2):



1850.]
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.-. 2 tan-' {tan*(45" - a) tan^/3} = cos- (
tan« + cos^\

If a were > 45°, the given expressions would become imaginary.

3. Draw AB and AC (fig. 58) at right angles to one

another, and make AB equal to twice AC] produce CA to D
until CD is equal to CB: prove that BB will be the side of

a regular pentagon inscribed in a cii'cle, of which AB is the

radius.

Also, if with centre B and radius BA we describe a circle

AEF^ of which ABF is a diameter, and make AE equal to AB^
then FE will be the side of a regular pentagon circumscribing

a circle, of which A C is the radius.

(a) Let AC = a, then AB = 2a
;

.-. CB=CB= [AB' + ACy = bhi
;

.-. AD= (54-1) a,

BD = {AD^ +ABy
= (6 - 2.5* + 4)*a

= (10 -2.5*)* a

,
(10-2.5*)*= 4a ^^ —

4

= 2 sini7r.2a

= 2 sin lir.AD
;

therefore i?i) is the side of a regular pentagon inscribed in

a circle, of which AD is the radius.

{^) Again, FE'' = AF'-AE'
= {2.ADY - AB'

= 4(6-2.54)rt"'' - 4a'

= (20 - 8.5*) a'

= 2^(5-2.5*) [aY

= {2tsinl7ryAC';

therefore FE is the side of a regular pentagon circumscribed

about a circle, of which AC is the radius.
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4. If (?, hj c, be the sides of the triangle ABC, 2^1 ?> ^ lines

bisecting the angles drawn to the opposite sides, and p\ g-', r

these lines produced to meet the circle which circumscribes

the triangle; shew that

COsi^ COsii? COsiC 111— -I-
=— -k^ =— = —I 1

—

J) ^"•""^ r a c

p cos^-4 4- q cob\B + r cos^O = a •\- h + c.

(a) Let AD (fig. 59) be the line bisecting the angle BAG,
i>, D' the points in which it meets BG and the circumscribing

circle respectively.

Draw DG, DH, perpendicular respectively to AB, AC]
then DG = DH = p m\^A,

and DG.AB + DKAG=2 (area of triangle)

= AB.AC sin A',

.'. p sin^-4 {h + c) = be sin J.

= be 2 sin|^^ cos^^
;

2 cos4^ 1 1

p be
.,. ., ,

2cosi^ 1 1
Similarly, ^— = - + -

,•^

'

q c a

2cosiC 1 1
i. =

I

•

coshA cos^B cosA(7 111
p) q r a b-^c

(/3) Again, join BD', CD': these lines will be equal to one

another, since they subtend equal angles at the circumference.

But BD" = c' + p' - 2pc cos^^,

GD'^ = V' + p" - 2pb cos\A
;

.*. c" — 2p'e cos^^ = ¥ — 2p'b cos^^

;

.•. 2p' cos^-4 = J + c.

Similarly, 2q cos^5 = c + «,

2r' cos^(7 = rt + i;

.'. p cos^^ + q cos^5 4 )•' cos| C = a -\- b -{ c.
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1851.

1. If ABC be a triangle right-angled at (7, E the point

in which the inscribed circle touches BC^ and F the point in

wliich the circle drawni to touch AB and the sides CL4, CB
produced meets CA : shew that if EF be joined, the triangle

FEC is half the triangle ABC.

Let r, / be the radii of the inscribed and escribed circles

respectively ; then, since is a right angle,

CE=r and CF=r\ and

triangle FEC = \rr'

[s — a) [s — h) (s — c)]* {s[s — a) (s — Z>)]*

= i
s

adopting the usual notation,

= i(6"-a) {s-h)2

= ^ (Z> + c — a) [a-^c — b)

= 1 [a^ + F -{a- h)'] -.' c' = a' + b'\

= ^ah

= I the triangle ABC.

2. Shew that sin/3 sin 7 sin [y — /3) + sin 7 sin a sin (a — 7)

+ sin a slnyS sin {^ — a.) + sin (7 — /3) sin (a - 7) sin (/3 — a) = 0.

We have, in general,

sin^ sin5 slnC

= ^smA{cos{B-C)-cos[B+C)}
= i{sm{B+C-A) + sm{C+A-B) + sm{A + B-C)

-mi{A + B+C)}.

Hence, if ^ = /3, B=y, C=y-B,
sluyS sin7 sin (7-/3) = i (sin 2[y — /3) + sln2y8 -'feln27}.

Similarly,

sin7 sina sin (a — 7) = 4 {sin 2 (a — 7) + sin27 — sin2a},

sin a sin^ sin (/3 — a) = ^ {sin 2(/3 — a) + sin 2a — sin 2/3}.
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Again, if ^ = 7 - ^, i? = a - 7, C = /S - a,

sin (7 — /3) sin (a — 7) sin (yS — a)

= i{sin2 (iS - 7) + sin2 (7 - a) + 8in2 (a - yS)}

;

therefore, adding these equations, we get

sinyS sin7 sin(7 — yS) + sin7 sina sin (a — 7) + sina siii/9 sin (/3 — a)

+ sin(7 — ;S) sin (a — 7) sin(/3 — a) = 0.

3. The equation sina; = has not any imaginaiy roots.

We have —^ 2 smx = e""" — e
'^.

Now, every imaginary quantity may be expressed under the

form a H
—

*/3. Substituting, then, this quantity for a*, we get

-Ij: — ix --, -o — i, a
£ — £ =£"£/* — £ ' S.P

= cos a (e"'' - £^) + -* sina {e~i^ + z^)
;

therefore, if sina; = 0, we must have

cosa(£'/^-£/') = 0,

sina(£-/^ + £'^) = 0.

These require, either that

cosa = and £~^ + e'' = 0,

which cannot be satisfied by any real vakie of /3 ; or that

sina = 0, and £~^ - e'' = 0,

which can only be satisfied by yS = 0, shewing that a; = a, a real

quantity : whence the equation sin a; = has not any imaginary

roots.

4. If the cosines of the angles A^ B^ C\ of a plane triangle

be in arithmetical progression, shew that s — a, s — h^ ^ ~ ^1 "^^

be in hannonic progression, s being the semi-siun of the sides.

We have

cosvl = 1-2 sin'^^, cos5 =1-2 sin'^ B, cos C = 1 - 2 sin'^ (7;

therefore, if cos^, cos^, cos 6*, are in arithmetical progression,

sin'*^^, sin'' ^5, sin'^'^C, are so;
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^ (^s-a){s-c) _ {s-a){s-b) {s-c){s-b)^

ac ab CO

2h c a
+

'

s — h s — c s — a

or
2[^--(5-Z>)] ^ s-[s-c) ^ s-{s-a)

^

s — b s — c s — a ''

2s s s
+s-b s — c s — a

s — b s

1 1

+
c s — a

whence , 7 , , are in arithmetical progression

;

.-. s — a
,

s - b
,

s — c, are in hannonieal progression.
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SPHERICAL TRIGONOMETRY.

1848.

1. In a right-angled spherical triangle, shew that

sin a tan^^ — sinb tan^J5 = sin (a — b)

:

shew also that if ^ be the spherical excess,

. 1 T-, sinAasini& , „ cosia cos^b

cos^c cos^c

(a). We have in general

, , 1 — C08-4
tan*^ = ;—5—

,^ sin^ '

, . . sin(7 . sina
and sin>4 = —— sma = -;—

,

suic sine

since C is a right angle
;

.•. sina tan^^ = sine (1 — cos^),

= 8inc(l — tan6 cote) by Napier's rules,

= sine — tanZ> cose

:

similarly sin 5 tan^5 = sine — tana cose;

.'. sina tan^^ — sinJ tan^5 = cose (tana — tanZ*),

cose . , ,,
= 7 sm a — 6 .

cosa cos

6

But by Napier's rules, cose = cosa cos^,

.•. sina tan^^ — sin J tan^^ = sin (a — b).

(^). Again,

sin'^^a sin^^i + cos^'^a cos'^^J = :^{(1 — C08a)(l — cosi)

+ (1 + cosa)(l + cosJ)},

= ^(1 +co8a cos J),

= ^(1 +co8c) by Napier's rules,

= cos"''^o;
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fsin^asin^bV /cos^a cos|/a' • 217;. . 2 if /,\I - ^_ \ _|. / f—

—

±_\ = sin^i!/ + cos^ii...(l)

:

V cos^c / V cos^c

ami in any spherical triangle

w^ r,\ cos^ia — b) .^
^^

' cos^(a4-J)

also .1 + 5 = 180° + ^ - C, hence

cotMC-^) = ^i^|cot|C;^^
^ cos(^a + ^>) ^ '

therefore, since C is a right angle,

1 + tan^JS* 1 + tan^a tan^5

1
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or, since L ABD = 120°,

1
1 — tan''

a

— h = tana ——
,^

2 tana '

1 — tan''a

2 '

.-. tan'^a = 2,

and cos a = —^

.

Again, in the right-angled triangle OBF^

smBF= cot OBF.tan OF,

1
or smcc = —̂ tanr,

and in the right-angled triangle FO G, OF = 90° — r, and

/ OFG = FD = 2j, and

sin06^ = sinO^sinO^^?,

or sin?' = cos?- sin^,

.•. amy = tanr
;

and cosa = cos(x + j/),

= (1 — sin'''a;)*(l — sin^i/)* — sin.r siny,

or = (1 - ^tan'''>-)4(l - tan'r)* - ^ tanV

;

2
.*. cos''a -I- rj cosa tan^'r + ^tan*r = 1 — ^tan^r + ^ tan*?-,

or i + I tanV = 1 - | tan^ r,

.*. tan'"'?- = ^,

and r = 30°.

Again, let BOH = h, BO = z- then, in the right-angled

triangle BHCy
cosBC = cosBH.cosHC,

or cos 2a = cos J cosa,

.*. 2 cos"''a — 1 = cosa cosi,

^^ - 3 = 51 C086, •.• cosa = -.
,

and cos5 = — wi)

3* ' •
-"^^^-34

1
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also in the right-angled triangle OBF^

sinOF = sin OBF.m\ OB,
3*

or \ = — sin z :
2 2 '

.'. sin2; = —r = — cosA,
3* '

.-. J = 90° + 2;,

and 0/f is a quadrant.

Again, joining OC, we have

cosOC = cosO^ C0SJ5C + slnO^ sin 00 cosOBC,

= cosz cos2« + sinz sin 2a cos 60°,

_ _ 2^ 1 1 2.2* 1

~~3*'3'^P~3~2'
= 0,

and 00 is a quadrant, so is also 0-ff; therefore is the pole

of -40: similarly, if 0', 0" be the other centres, 0' is the pole

of CB, and 0" of BA
; therefore 0' 0" is the polar triangle

of ABC.

1849.

1 . If P be the perimeter of a spherical triangle, of which the

angles are A, B, 0, and the spherical excess F, prove that

^.^^^^ [sin^E smjA - ^E) sin {B - ^E) sin ( 0- ^E)]^
^ 2sin^^ sin^iJsin^O

By the expression for the sine of a side of a spherical triangle

in temis of the angles,

{sini^sin(^-i^)sin(J5-i^)sin(0-i^)}i=isinasin5sinO,

= ^smh sinO sin^ = |sinc sin^ sinJ5,

1 2

= ^(sina sini sinc)^(sin^ sin5 sinO)^ (1).

Again,

siniPslnfiP-a))i .
(
sin(^P-Z>) sin (^P-c) ]*

I
^

[
sin 5 sine

J

'
COsi^ = ^± »un^2.

( smo smc

with similar expressions for the cosines and sines of ^B and ^ ;

cos"!^ cos^'iPcos'-'iO sin^'iP

sini--4 siniP sinAO sin a sin?; sine '
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sinasinisinc
~

sin'^^ sin''^i?sin''^C
'

_ sin''^ sin'^i? sin'^6'

. 1 r» 1 / • • 7 • \3 (sin^ sinjB sin (7)
.". sin^i^= i(sma sino smc . , .

—
. , „ .—rr^,^ *^ ^ sm^A sm^B sm^C^

_ {smEsmjA - ^E) sm{B- ^E) smjC- ^E)]i
~

2sln^^ sin^Z? sin^C '

bj (1); the required formula.

1851.

1. If ABC be a spherical triangle, right-angled at C, and

cosvl = (cosrt)^, shew that b + c = ^tt or |7r, according as b

and c are both less or both greater than ^tt.

By Napier's rules

cos^ = cosrt sin 5,

but by the conditions of the problem

cos^ = cos'''a,

.•. cos a = sin 5.

Again, by Napier's rules

cose = cos a cos J,

= sini? cos J from above,

sinJ5 . , ,= . , smo coso,
smo '

= —— smb cos J, since is a right angle
;

.•. sine cose = sin?> cosJ,

or sin2e = sin 26;

and b is not equal to c, as then B would be a right angle, and

A would equal «, which is contrary to the equation cos^ = cos^/;

^euce 2& + 2c = TT or Stt.

Now b and e are both greater or both less than ^tt, since

cos^ or cos'^a = tan J cote ; therefore 2J + 2e = tt or 37r, according

as b and e are both less or both greater than ^tt.
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THEORY OF EQUATIONS.

1849.

1. Given y = .rs", prove that

- = 1 + 717 +^ + ••• +^T^'+ •••

X [2 [3 \n

One root of the equation

?/ - a-c^ =

is the coefficient of - m the expansion of — log
[
1

)
.

(See Murphy's Theory of Equations^ p. 77, Art. 62, and p. 80,

Ex. 3.)

Now -log 1 = — +-^ + ...+ -+ ...

V y I y ^ y ^ y

Expanding the exponentials, we see that the coefficient of - is

^x' i'x^ n"-'x

2 1.2.3 1.2 .„ n '

which is therefore a root of the given equation.

\«-i
-u- y ^ 2x i^xY inx)
Hence ^ = i + — + ^-—L + ... + v—L_ + ...

X [2 [3 \n

2. If a^j, x^...x^ be the roots of an algebraical equation,

and no two of them be equal, then

1 1 1 1

jn-1

7n being a positive integer less than n.
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(a). Here f{x) = {x-x;){x-x^),..{x-xj,

we may therefore assume

1 A, A A
f{x) X - X^ X - x^ X — X 1

-4j, A^y..A^^ being independent of a;;

.-. l=A^{x-x;){x-x^)..,{x-xJ+A^{x-x;){x-x^)...{x-x^){x-'X^)+...

+ A^^ {x — x^)...{x — a;,^_j) identically

^

Hence, putting x = x^^

1 = A^{x^-x^){x^-x;)...{x^-x„),

= Af{^.) (1);

similarly 1 = AJ'{x^) (2),

i = A/'K) W-
Hence

1 ^ 1 1__ 1_ _
/ (^)

~
(•» -

a^i) />i) (^ - a'J f\^,)
'"'^ ix- xj f{^J

identically.

Therefore putting a; = 0, which makes /(a?) =^„,

J_____l 1__ _ 1

\_ 1 1_^ 1

_ 1 / ^ 2CJ

and similarly for the other fractions. Hence

1 _ 1 / ^ ^ \ _1H-? + ^+-.l+z>,VJl+f + |{ + ...)

1 /, rr cr' \
+ ... +-rrr-s 1 + --f -^ + ... (1).

1
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B^t J_ ^ 1 ^ 1

f{x) x" +2hx-' + ... +2)„ ^n /j ^l\ _^ _^

A

V X '" x^

a; V •>c

Hence, if m be a positive integer, less than «, the coefficient

of ^ in 7^—r = ; and the coefficient in the right-hand member
X J-[x)

of (1) is

1— J—? i- -I
—«— •

^ ffl-l ^ m-i ^ m-i

hence J. . + ^^tt—r 4- • . . + ^,—^ = 0.

1851.

T,^ 1 1 — i^ «
1. If x+ = - 3;?,

1 — X X -^

then (x + y-^ - 0)'-' i^) = - 27 (^; - a>) (^ - a>y,

where (o is an imaginary cube root of unity.

1 1 — X
Call the quantities a;, and ^

, ^/j, j/^? ^^d 3/3 5 then

y^+y, + yz = - ¥ (i),

a^ 1
and y,y, + yjj,^y^, = Yzr^-x~ ^^"^^

= 1 1 + a; - 1
1 — a; X

= y, + y,^y^-^
= -3(i^ + l) (2),

also y,y^y^ = - 1 (3).

Again,
x^ 1 (1 - a;)"

y^y^ + y^yz + 2/3V1 = j-^r^ - ^^fz^ + ^

_ 3x{\-x) _
~ x{l-x) ~ ^*^'
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and y'^y^ + y^y^ + y'^y^ + y'^y^ + y~y^ + y; y^^

= -y^ {3 (p + 1) + ^,3/3} + -^7(2),

= 9p (^; + 1) + 3, by (1) and (3)

;

••• y"y, + y"y. + y'y, = 9i? (i> + 1) + e ... by (4) and (5).

And [y^ + mj.^ + a)'V3)' = j/^ + y/ + ^3"^ + 3^?/,y, (?/, + 6)yJ 4
similar tenns + ^y^y^^

{3/1 + (*" + ^) 3/2} + similar terms

= (-3i^r- 9(&)-l) + 3(<y'''-l)

{9p(^ + l) + 6}by(l), (4), and(5),

= - 27/ + 27/ (26)'' + ft)) - 27^? (2 + w)

+ 27&)''', since a> + &)'•* = — 1,

= - 27 (/> - ft)) (p - ft)7''

12
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GEOMETllY OF TWO DIMENSIONS.

1848.

1. With two conjugate diameters of an ellipse as asymptotes

a pair of conjugate hyperbolas is constructed
;
prove that if one

hyperbola touch the ellipse the other will do so likewise
;
prove

also that the diameters drawn thi'ough the points of contact are

conjugate to each other.

Let the equation to the ellipse, referred to the conjugate

diameters, be

1^ + ?-=' W-

And to the hyperbolas

^1/ = ^"
(2),

^I/ = - c' (3).

(a) In order that (2) may touch (1), we must have

^ _^ , ^

a perfect square, in which case we shall have also

X" xy y^

a c

a perfect square, and (3) ^v^ll also touch (1).

(/3) . If the above expressions be perfect squares, we see that

4 _ J_

- ah
••• ' =Y'

and - = ± -
;

X a
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and \i x'y be the coordinates of the pohit where (1) meets (2),

,, he' W

^ =2-

Similarly, if x"i/" be the coordinates of the point, where (1)

meets (3),

„„ b ,,,, a
y'=2^ -^ =2-

And if r\ r", be the lengths of the corresponding semi-

diameters, CO the angle between the axes,

r"' = x'^ + 2^'^ — 2x1/' cos w = ^[d' + b^ — 2ab cos to),

r'"' = x"^ + y'"'' — 2x"y" cos g) = \[c^ + i^ + 2ah cos oj),

... r"' ^r"' = ce + h';

therefore ?•', r" are conjugate to each other.

2. Shew that the curve which trisects the arcs of all seg-

ments of a circle described upon a given base is an hyperbola

whose eccentricity = 2.

Let AB (fig. 61) be the base, a its length,

AC = CD = DB = r, CAB = 0,

we then have r {1 + 2 cos 6) = a,

or, referring the curve to A as origin and AB as axis of a;,

x' -\- y' = [a-2xY'^

.-. 3j?' - / - 4aa7 -|- a' = 0,

the equation to an hyperbola, the squares of whose axes are to

one another in the ratio 3:1, and whose eccentricity therefore

= (3 + 1)^ = 2.

3. Let Z) be a point in the axis-minor of an ellipse whose

eccentricity is e, S the focus, the centre of curvature at the

D 9
extremity of the axis-minor ; with centre D and radius = ——
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describe a circle ;
shew tliat this circle will touch the ellipse or

fall entirely without it, according as D is nearer to or further

from the centre than the point 0.

Let C be the centre of the ellipse, and let CD = h^ also let

a, J, be the semi-axes of the ellipse, its equation will be

a o

Also DS' = d'^ + li^^ so that the equation to the circle will be

72

a;"' + [y + ]if = a^ + 4 (taking D below C),

1 - e'

or .-r^ 4- y + 2/^J/
= «' + K' —^— .

Where this meets the ellipse, we have

y W aV «' o' e'
"'

or ^-^/ - 2% + A'' -^ = 0;

.-.3/ = -^- h.

If this value of y give a real value for a-, the circle will

touch the ellipse, if not, it will fall entirely without it, since its

radius f ct' + -5 ) is greater than a, and therefore, afortiori^ than

DB\ which is less than h.

In order that the value of x may be real it is necessary that

y be not greater than Z>, therefore

\-e' ,

e'
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therefore the circle will touch the ellipse, or fall entirely without

it, according as h < or > CO^ i.e. as D is nearer to or further

from the centre than 0.

4. PSp is any focal chord of an ellipse, A the extremity of

the axis-major ; AP^ Ap meet the directrix in two points Q^ q :

shew that I QSq is a right angle.

We may prove this property for any point in the ellipse

by a process exactly similar to that of Part I. Conies^ 1848, 3

;

except that we have the equations

sin PBS = e sin PSR. sin PRN^

sin QR8 = e sin QRS sin PRN,

instead of those there given.

This theorem may also be proved by the method of Reci-

procal Polars. (See Salmon's Conic Sections^ chap. XIV.)

Take the polar reciprocal of the whole system with regard to

the focus S. To the ellipse w^ill correspond a circle, to the point

P, 2J^ two parallel tangents Rt^ rt\ (fig. 62) variable in position.

To A (or any point in the curve) will coiTespond a fixed tangent

tt\ and to the directrix the centre S'. Hence to AP^ Aj) will

correspond the points t^ t' respectively, and to Q^ q the lines

St^ St'. But it is easy to see that the lines Sf, St' are at right

angles to one another ; therefore the line joining the points Qj j,

subtends a right angle at the focus S.

5. In the given right lines AP^ AQ, (fig. 63) are taken

variable points ^j, q, such that Aj) : pP :: Qq : qA • prove that

the locus of the point of intersection of Pq, Qp is an ellipse,

which touches the given right lines in the points P, Q.

Let AP = o^ AQ = 5, Ap = a, Aq = yS; then the conditions

of the problem give

a:a-oi::h-^:/3, or - + f = 1 (1).an
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Take AF^ AQ, as axes; then the equations to Pq,pQ respec-

tively, are

M = ' (^).

M- (^)-

o a

whence, eliminating a, yS from (1), we get

X y

a

x^ xy if ^ X y

a ab 1/ a h

the equation to the locus of the intersection of Pq^ p Q^ which,

since the square of half the coefficient of xi/ is less than the pro-

duct of the coefficients of x^ and 3/^, is an ellipse.

When £c = 0, we have

J,
J

^ + 1 - 0,

•'•
3/ = ^

shewing that the ellipse touches AP in P.

From considerations of symmetry it is evident that it also

touches AQ m Q.

6. A parallelogram is constructed by di'awlng tangents at

the extremities of two conjugate diameters of an ellipse
;
prove

that the diagonals of the parallelogram form a second system

of conjugate diameters, and that the relation between the two

systems is reciprocal.
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Let the equation to the ellipse referred to the conjugate

diameters be

<+C = i (.).
b

The equations to the tangents, drawn at the extremities of

these diameters, are

a; = a, x = — a^

y = h, y = -h]

therefore the equations to the diagonals of the parallelogram

thus formed, are ^ .,M (^)>

I=-f («)

At the points where (2) meets (1), we have

a b

therefore the equations to the tangents at these points are

M=±^' W'

therefore these tangents are parallel to (3). Hence the diagonals

fonn a system of conjugate diameters.

Again, the equations to the tangents at the extremities of (3)

M = ±^' («)'

and at the intersection of (4) and (5), we have either

cc = 0, or 3/ = 0,

shewing that the diagonals of the parallelogram, formed by the

lines (4) and (5), are the first system of conjugate diameters;

hence the relation between the systems is reciprocal.

7. PSp is any focal chord of a parabola whose vertex is A,

prove geometrically that AP^ A_p will meet the latus-rectum in

two points Q, q, whose distances from the focus are equal to the

ordinates of the points j7 and P respectively.
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Draw P3/, prn^ (fig. 64) ortllnates to the points P, p re-

spectively. Then since SQ is parallel to Pil/,

.-. SQ:AS:: MP : AM,
.-. SQ:4.AS'':: MP: ^AS.AM,

:: MP: MP']

.-. SQ.MP=^AS\

Now SP=2A8-\- SM,

= 2A8-\- SPcoaPSM',

.-. SP{l-cosP8M) = 2^^,

.-. Pil/(1 - cosPSM) = 2A8s{nP8M:

similarly pm[l -\- cos2)8m) = 2A8 sinjy8m
j

.'. PM.pm = 4:A8'\

= 8Q.PM from above

;

.-. ^wi = 8Q,

similarly PM = 8q.

Or the distances of Q, q, from the focus are equal to the

ordinates of the points ^j, P respectively.

8. From a given point in a conic section, draw geometrically

two chords at right angles to each other which shall be in a

given ratio.

The construction which we shall give depends on the pro-

perty that all chords of a conic section which subtend a right

angle at a given point P of the curve, intersect the normal at P
in a fixed point.

Draw PK (fig. 65) the normal at P, and draw PU^ PV any

two chords at right angles to one another. Join UV, cutting the

normal in K. Then by the property above enunciated, if PQ, PR
are the required chords, QR will pass through K. Again,

PR
t3inPQR = -^^ a given ratio, hence the angle PQR is known

;

on PK we describe a segment of a circle containing an angle

equal to PQR ; let it cut the ellipse in Q. Join PQ, and di'aw

PR at right angles to it, PQ, PR will be the required chords.
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9. DeteiTnine the equation to the conic section wlilch passes

through five points whose coordinates are given ; and thence

shew that the equation to the conic section which passes through

the five points whose coordinates are

1,-1; 2, 1; -2, 3; 3, 2; -1,-3,
is 6iy - llxy - 65a;^ + 36^/ + 174a; - 151 = 0.

Let ajj, y^ ; x^, y^ ; a-,, y^ ; a„ y^ ; a,, y.^, be the coordinates of

the five given points, which we shall call yl,, A^^ A^j A^j A^ re-

spectively. Then the conic passing thi-ough A^y A^^ A^j A^^

circumscribes the quadrilateral, whose sides are A^A^j -^3^4j

A^A^^ A.A^. The equations to these sides are

^-^2 y-y^ =0
^2
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Eliminating X between tliese last two equations we get,

clearing the quantities within the brackets of fractions,

{[x-x^){y-y,)-[y-y,][x-x,)\\{x-x:^{if-y^)-{tf-y,)[x-x^)]

{(^,-«'2)(3/2-^3)-(3^-2/J(^2-^8)}{(-'^-'^4)(3/-y5)-(yi-3^4)(^-a^6)l

{
(-^

--^a)[y-yy (3/ -3/3) (•^3--^4)
1 {

(-^ --^J iy-y-y (i/-y.) i^^-^^)]

'

the equation to the required conic. The reduction of this to the

symmetrical form would be very tedious, and we shall therefore

leave it in the above shape.

In the numerical example

^, = I7 3/1 = - 1 ; ^2 = 2, 3/, = 1 ; a-, = - 2, ^3 = 3

;

^4 = 3, 2/4
= 2; x^ = -l, y^ = -3.

Hence

x^ — x^ = — \ 'y a^j — cCg = 3 ; x^ — x^ = — 2 • x^ — x^ = 2j

3/,-3/2 = -2; y,-y, = -4^; y,-y, = -^] 3/^-3/5 = 2,

a;^ — X3 = 4 ; x^ — x^ = — b-, x^ — x^ = A ', x^ — x^ = - S^

?/.2
-

3/3 = - 2 ; 3/3-3/4 = 1; 3/4-3/5 = 5; 3/5
-

3/2 = - 4

;

therefore the above equation becomes

{_ 2(a;-2) - 4(3/-!)} {5{x-S) - ^y-2)]
{(-2)(-l)-4(-2)H5(-2)-4(-3)}

|l(^ + 2) - (-5)(y-3)} {-i{x+l) - {-S){y + S)]
.

{l(3)-(-5)(-4)}{-4(2)-(-3)2}

(8 - 2a; - 4j/)(- 7 + 5x- 4.y) _ {- \Z + x -\- 6ij){b - Ix + 3j/)
•'•

20
~

34 '

.-. 17(5a;-4?/-7)(a; + 2j/-4) - 5(a; + 5?/- 13)(4a;-33/- 5)

;

.-. 65a;' + llxy - 61/ - 174a; - 36y + 151 = 0,

or 61/ - llxy - 65a;' + 36^/ + 174a; - 151 = 0,

is the equation to the conic passing through the five given

points.

10. Two chords AB^ AC are drawn from a given point A
in a cm*ve of the second order so as to contain a given angle,

shew that BC will always touch a curve of the second order.
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Let the equation to the given conic section, refen'ed to A
as origin, be

Ax^ + 2Bxi/ + Cf + 2l)x + 2Ey = (1),

and let ax + ^y = I (2)

be the equation to -BC, a, /3 being variable parameters.

At the points of intersection of (1) and (2), we have

Ax^ + 2Bxy + Cy' + 2 {Dx + Ey){ax + ^y) = 0,

or ( C + 2E^)y' + 2 (5+ ^a + D^] xy^ + (^ + 2Z>a) x' = 0...(3).

This may be considered as a quadratic in
"-

,
and if ^j, ^2 ^® ^^^

roots, ij, t,^ will be the tangents of the inclinations to the axis

of X of AB^ A C respectively. But AB^ A C include a constant

angle, iarC^m suppose; hence we must have

-^ = m.
1 + tA

'

or ^ \,^' r^-^ = irc.
(I + M2)

Now from (3), by the the theory of equations

B+Ea^D^ _ A + 2l)a

C+ 2EI3 ' '' C + 2^/3

'

.-. 4i{{B+Ea + I)^Y-{A + 2l)a){C+2E^)]

= m'
{
{A + 2Da) + C + 2E^]\

.'. 4.[E' - AC-\-2{BE-CD) a + 2{BD-AE) yS + E^a'

+ D'0' + 2{B+DE)a^],

= m'{A + C + 2{I)a + E^)]%

which may be written under the foi-m

aa' + 2hafi + c^' + 2(f7a + e/9) + 1 = (4),

a, 5, c, <7, e being certain determinate functions of A^ B^ (7, Z>, J?,

and in.

Now consider the conic section whose equation is

^V + 2B'xy + Cy + 2[D'x + E'y) + 1 = (.5).
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Where (2) meets this, we have

^V + Wxij + Cy + 2{D'x + E'7/){aa: + ^i/) + [ax + ^i/Y = 0;

.-. {A + 2D'a + a') x' + 2 (5' + E'a + D'^ + ayS) xy

+ {C'-{-2E'^ + ^')f = 0.

In order that (2) may touch (5) the roots of this equation,

considered as a quadi'atic in - , must be equal ; we must therefore

have

[B' + E'a + Z>'/S + a^Y = [A' + 2D'a + a')
(
C + 2E'^ + /3'-')

;

... B" - A'C + 2 {B'E' - CD') a + 2 [B'D' - A'E) yS

+ {E"'-C') oi' + 2{B'- D'E) a/3 + [D" - A') ^' = 0,

which agrees with (4) if

E"' - C'_ _ B' - D'E' _ D" - A' _
B^ -A'C'~ ' B" -A'G'~ ' B'' - AC

B'E' - CD' _ B'D' - A'E' _
B"'-A'C ~

' B'-'-A'C ~^'

which five conditions can be satisfied by means of the five

disposable quantities A'^ B', C, D', E . Hence BC always

touches the conic whose equation is (5).

This theorem may also be proved by the method of reciprocal

polars. For taking the polar reciprocal of the whole system

with regard to ^ ; to the conic will coiTespond a parabola, and

to -S, C (two points the line joining which subtends a constant

angle at the origin) will correspond two tangents containing

a constant angle. The reciprocal theorem then is

:

If two tangents be dra\\Ti to a parabola, including a constant

angle, the locus of their point of intersection is a curve of the

second order.*

This may be proved as follows

:

* Taking the polar reciprocal of this systena mth regard to the focus of the

parabola, the theorem to be proved is the following

:

If a chord of a circle subtend a constant angle at a given point of the curve,

it always touches a circle, which is knoAvn to be true.



1848.] GEOMETRY OF TWO DIMENSIONS. 127

Let y = tx + -

be the equation to any tangent to a parabola. This may be

written ,, „

t--y.t + -^0 (1).XX
This equation, considered as a quadratic in t^ gives the

tangents of the inclinations to the axis of the two tangents

di'awn to a parabola through a point {xy). In order that these

may include a given angle tan~S?i, we must have, if ij, ^^ be the

roots of (1), t — t
-^ = m ;

1 + f,t,

therefore, by the theory of equations.

1 + ^
X

or y^ — 4acc = nf[a + x)'\

the equation to the locus of xy^ which is therefore a curve of the

second order.

11. Pf J) are the extremities of two semi-conjugate diameters

of an ellipse E^ whose semi-axes are «, b ; upon FD describe

an equilateral triangle PDR^ so that the point R may fall with-

out the ellipse ; the locus of R will be an ellipse E^ : assuming

the above result, shew that if E^ be similarly treated, as also all

the successive ellipses, the axes A^^ B^ of the a;'^ ellipse E^ so

described will be comprised in the fonnula

[a + 5)(coti7r)-' ± (a - J)(cot^7r)*".

In the figm-e (66), let CP^ CD represent the equal semi-

conjugate diameters of the ellipse E^ and let D' be the other

extremity of the diameter through D. Join PD^ PD'\ on them

describe the equilateral triangles PDR^ PD'R ; then i?, R' will be

the extremities of the axes of E^. Join CR^ CR'. Then

CR = ^A^, CR = \B^:
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also ^, = t&nPCR = -, and FV'.CV = ^ab;CV a' ^ '

.-. OF' = i«, and PF' = ij.

And CR' = CV + V'B',

= _ + 2iZ>cos-.

O TT
Similarly Ci? = ^ + 2*a cos -

,2* 6

l(^, + JJ = (« + &)(2*cos^ + i),

AT ^X 7^ 1 3^+1 2*
Now 2*cos-+-, = -^^ = 3P33

3^+l\| /2 + 3hi /l + cosi7r\|

3^-1/ V2-3V Vl-cos^TT/'

= lcot^)*.

Similarly it may be shewn that

2^cos|-i = (tan^, ,

.-. i(5, + A) = (« + ^)(cot^),

i(5,-^J = (a-J)(tan^y,

a formula connecting the axes of any two successive ellipses
;

.-. ^^ = (« + 5)(cot^) 4- («_J)(^tan^)
,

A = (« + ^) (cot ^) - (a - &) (tan ^) .
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Now assume

B^ = {a + b) (cot ^)*' - -^ (« - b) (tan ^)'",

A=(« + ^)(cot^) +-'(«-^)(tan^)
;

tlieu, by the formula already given,

^^^ = -—T-" (cot -
) + ^.r-^ (tan-)

,2 V 127 2 V 127

= (« + J)(cot-j +_-(a-J)(tan^j
;

•Ml A A + B / 7r\*- A - B f ir\^
similarly J,,, = ^-^ (^cot -

j
+ ---^^ (^tan -j ,

= (« + J)(cot^) +_-(«- J) (tan ^j .

If then the assumed fonn hold for E^ it is proved to hold for

^^j. But it has been shewn to hold for E^^ therefore it holds

universally.

1849.

A is the origm (fig. 67), 5 a point in the axis of?/, BQ a line

parallel to the axis of ar ; in AQ (produced if necessary) P is

taken such that its ordmate is equal to ^^: shew that the locus

of P is a parabola.

Let AB = a, AP = r, BAP = ^ir - 6^ then the ordinate

of P= rsin^, also BQ = «cot^;

.'. r sin^ = acot^,

or r^ siv^ 6 = ar cos 6
;

therefore, putting r sin = y^ r cos^ = a-,

y' = c^,

shewing that the locus of P is a parabola,

a® b^
2. K from points of the curve —̂ + -a = (a* — b^j tangents

be drawn to the ellipse -7 + 75 = 1, the chords of contact will
'^ a b

be normal to the ellipse.

K
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If

at the
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Let lCAO = ^, CBO = y; also the z MOA is given equal

to a. Hence

BN _ sin(/3 + a) NR' _ sin(/3'-a)
,

MN~ sin/3 ' :?^~ sm 13'
'

Z)"'' _ sin (/3 + a) sin(y8' — a) /-^

'' ^~ sin/3 • siu^Q^ ^
^'

and a = JL¥' = .1/0+ OJ/'=^l-.-^S^ + _.J^l ..(2).
2(sm(/3 + a) sm(/3'-a)]

Again, since AO = OB,

smAC sinBCO
sinCAO ~ smOBC

cos (8 + a) cos f/S' — a)
or ^;—pj-^ = —\—7^7

—^ = p suppose

;

snip smp -^ ^^

^ ;:> + sina ,^, ^ - sina
.•. cGt/3=^^——-, cota =~ .

cos a cos a

Substituting in equations (1) and (2), we have

12

-jj = (cosa + cotyS sin a) (cos a — cot/3' sina),

(1 +2^ sina)(l —]) sin'a).
cos a

_ 1 — ^^sin"''a^

cos'^ a '

, D I cosa cosa
and a = — -. y t

,
.

2 VI +p sin a 1 — ^?sina/

I) cosa

1 — p sm a

.-. = jr, i>seca,

or h'' = aD sec a,

and 5 is a mean proportional between a and Z^seca.

4. Let P,, P^, Pj,, (),, (2.,? ^3 be six points lying in a conic

section; let the areas of the triangles P^Cl^Q^, ^iQaQ^i ^iQiQ^i
be denoted by ^,, P,, O,, and the areas of the triangles formed

K2



132 SOLUTIONS OF SENATE-HOUSE PROBLEMS. [1849.

by putting /!,, P^ successively in the place of P, be denoted by

^'11 ^27 ^2) -^3) A) ^3 I'espectlvcly
;
then will

A,\B,C, B,CJ A^\B,C\ BfiJ ' A,\B,G, B,C„

Let Mj, Mj, Wg denote the distances of any point from the lines

^•2^35 ^3^15 QiQ;^ respectively, then ?/, = 0, tt,^ = 0, u^ = will

be the equations to these lines themselves. And the equation to

any conic section passing through Q^^ Q^^ Q^^ may be written

under the form

^ + ^^ + -^ = (1),
W, M, «3

Aj, X,^? \ being constants whose values will be determined by

the condition of the conic passing through P^, P^, Pg.

Wg', ^3' be the values of u^^ w.^, u^ respectively at Pj,Let u

u.

u

Then A = 4^.^3-<, A = ^^3^x-<, ^, = i^x^.-<,

with similar expressions for ^.^, P^) ^2 5 -^35 ^35 ^3 •

J
<'? < ^j

1 5<"5<" ^-
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whence eliminating "^^W by cross-multiplication, we get

1/1 1 \ 1 / 1 1

+

1/1 1
,+ —, -7^ - -^r-. =0;

whence dividing by ^Q.,Q^.Q^Q,.Q,Q^,

1/1 1\ 1/1 1\ 1/1 1,

5. The equations of three straight lines are

u (= X sin 6 — 1/ cos ^ + c) = 0, «, = 0, m^^ = ;

prove that the equations of the four circles, to each of which

these lines are tangents, are

. . 0-$^ . . 0- 0^
w* sm -^——

i + ?/j* sm —-

—

^ + u^ sm -i—— = 0,
a a i

w* sm -^--

—

- + w * cos ? + ?/ * cos — = 0,
2 2 2

* ^. - ^1 I '
Q-Q. * ^, - ^

w* cos -^^—r—i + w * sm —-—
^ + ^C cos -^ = 0,

2 2 2

* ^2 - ^1
. i ^ - ^. * • ^, - ^ .M* cos -^-——

J + u^ COS—-—
^ H- ?<2* sm -^ = 0.

^ ^ ^

The equation to any conic section, touched by these three

lines, may be wi-Itten,

\u^ + \u^ + \u} = (1).

K we reduce this equation to the form of an equation of the

second degree, the coefficient of the terms of two dimensions

will not contain c, c^, c.^; hence, to find the condition of this repre-

sentmg a circle, suppose c, c^, c^ to be Indefinitely diminished, the

ratios c : c^ : c^ remaining unaltered.

The three lines u = 0, u^ = 0, ?/,^ = 0, will then all pass

through the origin, and the circle touching them will degenerate

into the origin ; Its equation will therefore be

x^ + if = 0,

or 1/ = ± —
* .r.
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Equation (1) will therefore become, dividlug out by a;,

\ (sin d + -i cos (9)4 + \ (sin 6^ + -* cos ^J*

+ \ (sin e^ + -4 cos ^Ji = (2)*

Hence, by Demoivre's theorem, equating real and imaginaiy

parts separately to zero,

ff ff

X sin - + \ sin -^ + \ sin ^ = 0,
2 2 2

(

^^y

e e
\ cos - + X, COS -~ + \, cos -^ = 0.

2 2 -^ 2

Eliminating X, X^, X,^ by cross-multiplication from (1), (3),

Ave get

1 • ^., ~ ^, i. • G ~ ^., i • ^1 ~ ^ /x

w* sm -^'—:

—

- + w,^ sm —-

—

- + uj sm -^—— = 0.
2 ' 2 ^ 2

Now if in this equation we write tt + ^ for ^, tt + ^^ for 6^,

and rr + 6,^ for 0^, successively, by which substitution equation

(2) is not altered, we get the equations to the remainmg circles

:

these are

X • 0.^ — ^, 1 — 0„ 1 0,-0 ^
tt* sm -~-—

^ + M * cos—-—^ + uj cos ^ — 0,
2 2 2

u^ cos
0-0^ ^ . 6' - ^, , ^ - ^

2
-^ 4- M 4 sin —-

—

- + u} cos -^— = 0,
"^ 2 2

,
—

1
— i ' —

w* cos -^—

—

- + Wj* cos ^ + Mjj* sm -^-—— = 0,
ia i^ ^

the required equations to the circles.

1850.

1. If at a given point two circles intersect and their centres

lie upon two lines at right angles to each other through the

* This method of investigating the condition that equation (1) may repre-

sent a circle, is due to Mr. Leslie Ellis. It may be shewn in precisely the

same manner, that if ip (m, u^, u^) = be any equation of the second degree, the

condition that this may represent a circle is </>
(^"^e, £-i9i, t~i6j^—o.
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point; prove that, whatever be the magnitude of the circles,

their common tangents will always meet in one of two straight

lines which pass through the given point.

Take the given point as origin, and the lines on which the

centres lie as axes. Let a, )8, be the radii of the circles. Then

the intersection of the common tangents must always lie on the

line joining the centres of the circles, whose equation is

? + ^=l.

From considerations of symmetry it is easy to see, that if this

intersection always lie on one of two fixed lines passing through

the origin, the equations to these lines must be x + y = 0,

X — y = 0. Hence, if such be the case, the equation to one of

the common tangents must be

X y X + y- 4- I + ^ -1=0,
a ^ 7

where 7 is a constant to be determined.

In order that this line may touch the circle whose radius is a,

it is necessary and sufficient that its distance from the centre of

the circle, whose coordinates are a, 0, be a. We must there-

fore have

1 i\' /I
1

Y" '

a 7/ Vy9 7/

.}__(]_ ly (I 1

' 7' ~ Va 7/ V/3 7

shewing that 7 is a symmetrical function of a and yS, and there-

fore that if this straight line touch one of the circles, it must also

touch the other. Hence the intersection of the common tangents

always lies on the line a; + y = 0, if a and yS have the same

sign, i.e. if both centres lie on the positive, or both on the nega-

tive side of the origin. If one centre lie on the positive, the

other on the negative side, similar reasoning will shew that the

intersection of the common tangents lies on the line x — ?/ = 0.
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2. A number n of equal confocal parabolas are ranged all

round the focus at equal angular intervals ; shew that the product

of the distances of all the points of intersection from the focus

is —5—
,

I beinff the latus-rectum.

Taking the common focus as pole, the equations to the para-

bolas will be

' =-b ("'

4 sm -
2

-—77B~^ <^''

V2 ^ n)

* ™ (2 + it)

4 sm - H TT

V2 n

If ^j, 0^ be the two values of 6 at the intersections of (1) and

{m + 1) it is manifest that since these intersections lie at the

extremities of the same chord passing through the pole,

Also we easily see that u, = ,

.'. C/ = TT .
^ n

Hence, if r^, r^ be the corresponding values of ?•,

/ I

'

. , mTT ' ^
, ., mTT

'

4 sm -— 4 cos —

-

271 2n

• •. rr =— .

^
^

. „ mTT
4 sm —

n
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Similar expressions holding for the intersection of (1) with

each of the other parabolas, we have

product of all the distances of intersections of (1) with the other

parabolas

^ ' Sin — sni — sm tt
w n n

-r, ,
. TT . 27r . n — \ n

rJut sm - Sin — ... sin tt = -^,
;

n n n 2

^2(«-l)

therefore the above product = -—5— .

n

To get the product of all the distances of intersections, we
n

have merely to raise this quantity to the power - : (not n ; since

each intersection would then be counted twice over)

;

therefore product of all the distances of intersections =—s- •

3. The locus of the points from which a circle is projected

into a circle, upon a plane inclined at a finite angle to that

of the given circle, is an equilateral hyperbola.

Let (fig. 69) be the centre of the given circle, AB that

diameter of it in which it is cut by a plane through 0, pei-pen-

dicular to the line of intersection of the plane of the circle, and

the plane of projection. Let CD be the corresponding diameter

of the circle in which it is projected. Join CA^ DB^ and

produce them to meet in E^ E will be the point from which

the given circle is projected.

Draw EG parallel to CD and equal to AB^ terminated by

EC^ ED : let EG, AB intersect in P, then must AP = GP^

BP = FP. Through draw two lines OX, F, parallel to

those respectively bisecting the angles APE, APG, and take

them as axes. Let «, h be the coordinates of P; — «, — 5 of ^
;

X, y those of E. Then x will be the abscissa of P, and it is

hence casv to sec that n -\- 2.r, — h will be the coordinates of G.
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Hence, f, 77 being cuiTent coordinates, the equation ofED will be

f — a 7} — h

a + 2x — a — h — b^
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their equations are

y — nx _ y — [n—\)x ,

{\ + ny "
{1 + {n-\y\^ ^^^'

y — nx y — i^n—\)x

(Tm?? " "
{i + (/i-ir}i

^^^

respectively. Hence the positions of the axes are known.

To find the magnitudes of the axes, we have, combining (1) (2),

y — nx = ,

{l + (n-iyf

y - [n-l)x = ^ 5^ ^ ;

(i+«'r

.
{i+(^-iri^-(i+^-o^

• • »^ — ' •

_ n{l + (n-l)']^- (n-l)(l + ny

{l-flw-irni+n")'

= 2 [(1 + 71^)4 [1 + {n- lY]i - [n' - n + 1)],

which gives the square of the magnitude of one of the semi-axes.

Similarly the square of the other semi-axis may be shewn to be

= 2 [(1 + riy {1 + (n - 1)^}4 + {n' -n + 1)].

The equation to the conjugate hyperbola is

{y-nx)[y-{n-\)x] =-1,
which may be written

1
11 — nx — ,^ X \- y — nx^

_ 1 1

y

X — X —

1 1

.r — X — ..

is the equation to the conjugate hyperbola.
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5. From a point (fig. 70) are drawn two lines to touch

a parabola in the points P and Q\ another line touches the

parabola in R and intersects OP, OQ in 8^ T; if V be the

intersection of the lines joining PT^ QS crosswise, 0, i?, V are

in the same straight line.

Let OP = a, OQ = h, then the equation of the parabola

referred to these lines as axes, is

!)' + (!/- (')•

Let 08= oi, 0T= /3, then the equation to 8T will be

M- c^)-

To find the condition that (2) may touch (1), we proceed as

follows

:

Square each member of (1) and multiply it crosswise by (2),

we thus get

X y _ f/^"\- (y
a

"^ ^ " |W "^ V^

This may be considered as a quadratic in
\ ]

•,
and in order

that (2) may touch (1), it is necessary that its roots be equal

;

hence its first member must be a perfect square.

The equations to PT, Q8 respectively, are

- + ^ = 1

a b

where these meet, we have

the equation to a line passing through the origin, and through

the intersection of PP, Q8^ that is to OV.
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Again, to find the equation to OR^ we have since the first

member of (3) has been made a perfect square,

therefore squaring, ^ (" " -) = 2^
(jg

-
-^j '

'1 1\ /I r

^^Kl--^)+K^-^)=''
the equation to OR^ which agrees with that ah-eady formed for

V] hence 0, i?, V are in the same straight line.

6. A series of circles pass through a given point 0, have

their centres in a line OA^ and meet another line AB. From

ilf, iV, the points in which one of the circles meets the lines

OA^ AB^ are drawn parallels to AB^ OA, intersecting in P.

Shew that the locus of P is a hyperbola, which becomes a

parabola w^hen the two lines are at right angles.

Take as origin, OA as axis of x, let the equation to any

one of the circles be
x^ +f = 2rx (1),

and that to AB xcosol + ?/siua = a (2)

;

hence the coordinates of M are 2/-, 0, and the equation to the

line through J/ parallel to AB^ is

xcosa + ?/sina = 2rcosa (3).

Now the circle in general cuts AB in two points, either of

which may be denoted by N. The equation to the line through

either of these points parallel to OA (the axis of ic), will be ob-

tained by putting the ordinate of that point = 0, and therefore

the equation to the pair of parallels will be obtained by elimi-

nating X between (1) and (2). This gives

(« -y sina)'"* + y' cos' a = 2r cosa (a — 3/ sin a)

;

.-. y'^ + 2 (rcosa — a) ^sina + d^ — 2arcosa = 0...(4).

To find the equation to the locus of P, the intersection of (3)

with either of these lines, we must eliminate r between (3) and
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(4), whence we get

y^ + (iccosa + ^sina — 2a) ?/sma + d^ — a (a?cosa + y slna) = 0,

or ^'(1 +8in'*a) + xi/ cosa sin a — a [x cos a, + 3^ sin a) + d^ = 0.

This is the equation to the locus of P which is evidently in

general an hyperbola. If however the lines are at nght angles

a = 0, and the above equation becomes

y'^ — ax + d^ = 0,

representing a parabola.

7. If from the focus of a parabola, lines be drawn to meet

the tangents at a constant angle, the locus of the points of inter-

section will be that tangent to the parabola whose inclination

to the axis is equal to the given angle. Prove this in any

manner, and shew that if m be eliminated between y = mx -\—
,

and V = [x — a), the result contains a factor which

answers to the locus. Also explain briefly the origin and

signification of the other factors.

(a). Let 4a be the latus-rectum of the parabola, a the iji-

clination to the axis of any one of the series of tangents, yS the

constant angle at which the lines through the focus meet the

tangents. Then taking the focus as pole, and the axis as

initial line, the equation to the tangent is

r = acoseca cosec(^+ a).

That to the line through the focus is

6/ = 7r-(a + ;8).

Eliminating a, we get as the locus of the intersection of these

"^^^ r = acosecyS cosec(^ + yS),

representing the tangent whose inclination to the axis = /3.

/3. From the equation

m + t .

y = [x — a) (1),

we get m [x — a + ty) = — t{x — a) + y ',
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therefore combiuing this with

y = mjc +
^^

(2),

y — tix — a] fy + X — a
y = ^ !^ 1 X + — -. -, a,

ty + X — a y — t[x — a)

y— tix—a)
, , ill— tix—a) ty + x — a- '^ ^ {x-a)+a]^ ^ ^ + ^

ty + x-a^ [ty + x — a y — t[x—a))^

{{x-a)^ + f}{l+f)
.

ty + x — a) [y — t[x — a)}
'

X — a)'' + y' ty — fx — a

^f+[x-ar^^ {[x-aY + f]{l+f)
.

ty + x — a i^ty + x — a)[y — t[x — a)]^

= 0,
X — a + ty ' y — t{x — a)

This is satisfied by y = tx + -
^

representing the locus found above.

It is also satisfied by

[x-aY + y' = %
which requires that cc = «, ?/ = 0, representing the focus.

This would be obtained by making m = (—1)* in equation (2).

Its signification therefore is, that if tangents be drawn to the

imaginary branch of the parabola, got by making x negative,

and lines be drawn through the focus of the real branch cutting

these tangents at a constant angle, the point of intersection of

these lines will only be real when the tangent to the imaginaiy

branch of the parabola passes through the focus of the real

branch.

8. Within the evolute of an ellipse is inscribed a similar

ellipse ; within its evolute another similar ellipse, and so on

ad infinitum ; shew that the sura of all the areas

TT id'+V')

4 ah

Let mrt, mh be the semi-axis of the first inscribed ellipse,

then m will be a homogeneous function of a and h of no dimen-

sions, and therefore the same function of ma and mh ; hence
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wt^/, ni^b will be those of the second, and the sum of all the areas

TTuh

1 - m' '

we have therefore only to find the value of m.

Now the equation to the evolute of the ellipse is

{axf+{hyf = {d^-hi (1).

In order that this may touch the ellipse

\ina) \mh)

they must have a common tangent at a common point.

Now the equation to the tangent to (1) at [xy] is

In order that this may touch (2) at {xy)^ we must have

'a^i 1 X

(S^^.-(3.. = K-0-'.

2 7

27,a J

X ina
' • 2 2 2 z3j 7ma a —

y^ _ mW'

therefore, by (2), m = ^r-^ 5

therefore if S equals the sum of all the areas,

Trab
S =

a'- b'\'

a' + ¥

4 ah
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9. Find the points ^,, A^^ A^...A^^^_^, A^^^ in a parabola, such

that the tangents at these points are parallel to the focal dis-

tances SA^^^^ SA^, SA^y..SA^_^^ ^^„t-\-) respectively.

TiQl A^A^KV [^g. 71) represent the parabola, A''/S'X its axis,

A^T^^ ... A^T^^ the tangents at ^„...^,,, respectively, and let

lA^SX = a^, then lA^T^X = ^a^. Hence, by the conditions of

the problem, we must have

W=^m (1),

K = «. (2),

K = a,-, (''),

^m-l = am-2 (w-1).

The last equation will be

TT + ia,,, = «„,_, (m),

since this will satisfy the condition of A^^^T^^ being parallel to

SA^^^_^^ and it is manifestly inconsistent with the preceding

equations to have ^a^^^ = a^^^_^.

Hence, multiplying generally equation (?') by 2'""^, and add-

ing all equations thus formed, the quantities a^, a^, ... «,,_ , dis-

appear, and we get

^ + i««, = 2"'-'a,„

;

- 27r
•• «m - 2'" _ 1

•

whence ., = ,-J^ ,

2'-+«_.

and generally, a,. = ^„. _ ^
,

and the positions of the points A^^ A^...A^ are determined.

10. From the focus of an ellipse lines are di-awn to any four

points in the curve, and the reciprocal of each line Is multiplied

by the sines of half the angles between any two of the remaining

lines
;
prove that the sum of the first and third of these products

taken in order is equal to the sum of the second and fourth.

L
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Let L = the latus-rcctum, e the eccentricity of the ellipse

;

then Its equation, refeiTcd to the focus as origin and the axis-

major as prime radius, will be

1 _ 1 — e cos^

and let ^,, 6^^ 6^^ 6^ be the angles between the axis and the

successive lines, r^, ;-^, rg, r^ the lengths of the lines.

Then — sm -2-——-* sm ^——? sm -^ ^

y-j 2 2 2

2 ^0-0, 0-6. (^-f>
= ^ (1 — e cos ^j) sin -^-——* sm -^-——

? sm
Z ^ >^ 2 2 2

=^ (1 - e cos ^J (sin [6^ - e,) + sin (^, - ^J + sin (^3 - ^,)}.

O- ., , 1 . ^, - ^. • ^.> - ^4 •
^4-^1

bimilarly — sm ^--— sm -^—-— sm -^-——-
•' r^ 2 2 2

=^ (1 - e cos^3) {sin (^, - e^) + sin (^, - ^J + sin(^^ - ^J];

therefore if ^8' denote the sum of these two quantities, and If the

symmetrical fmiction sin {6^ — 6^ + sin {6^ — 6^ + sin (^3 — 6^

+ sin (^.^ - 6^) -}- sin [d^ - ^J + sin [6^ - 6^ be denoted by <^,

and if we put c^ for cos^^, s^ for sin ^j, &c.,

+ ^3 k^l - ^1^.2 + ^4^2 - ^^4 + ^'^1^4 - ^4^1)}]

= ^ [0 - &A[^-h)+ ^-f^i^-^l) + C3^4(«l- «2)+^4^lK-*3)}]-

Similarly, if S' be the sum of the second and fourth products,

^S" will be obtained from S by writing 6,^ for 6^^ 0^ for ^.^, 6^ for ^3,

^j for 6^ ; hence (/), which Is a spmuetrical function, will remain

unchanged, and

whence It appears that S = /S",

or the sum of the first and third of these products is equal to the

sum of the second and fourth.
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11. If lines be drawn tlirough any two of the points

A^ i?, Cy.. and other lines through any two of the points

f/, i, Cy.. all in one plane, prove that the intersections of AB
with «7>, of AG with «c..., will all lie in one straight line, pro-

vided that the lines through the intersections of any two of

the first series of Hues and the corresponding intersections of

the second series all pass through the same point.

Conceive the points -4, i?, C, ... to lie in one plane, and

((,b,Cy.. in another; then, since the lines joining the intersec-

tions of any two of the first series of lines and the corresponding-

intersections of the second scries all pass through one point,

Aa^ Bbj Cc... all pass through one point 0.

Now consider any quadrilateral, as ABah^ whose angular

points are any two points of the first series, and the correspond-

ing two of the second series. Since the lines Aa^ Bb intersect,

they are in the same plane, therefore also AB^ ab^ are in the

same plane, and must therefore intersect,* and their intersection

must manifestly lie in the line of intersection of the planes

ABC..., abc... Similarly the intersection of any other pair of

lines, as A C, ac, lies in that line.

Hence, if we suppose the planes ABC..., abc..., to be indefinitely

nearly coincident, the proposition enunciated follows at once.

1851.

1. Having given a focus and two tangents of a conic section,

shew by means of reciprocal polars, or otherwise, that the

chord of contact always passes through a fixed point.

Let a circle be described passing through two fixed points,

A, B, and let F be the intersection of the tangents at A, B.

The locus of P will be a fixed straight line, pci-pendicular to and

bisecting AB.

Now take the polar reciprocal of this system with respect

to any fixed point S. The reciprocal of the circle will be a

conic section whose focus is S, and which has two fixed tangents

(the reciprocals of A, B). Hence the reciprocal of P, which is

* If these lines happen to be parallel we may still consider them as inter-

secting in a point infinitely distant.

L2
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tli(^ chord of contact of these tangents, will always pass through

a fixed point, the reciprocal of the locus of P.

2. Shew that there will be two pairs of equilateral hyper-

bolae which pass through two given points -4, B^ and touch two

given straight lines, and that the chords of contact of each pair

meet in AB^ and are equally inclined to AB.^

Take the middle point of AB as origin, AB as axis of a*,

let h^ — h^ be the abscissse of A^ B, respectively, and let the

equations to the two given tangents be

5 + f_l = 0, ^+1-1=0,

and that to their chord of contact - + ^—1=0,
a p '

where a, /9, are indeterminate parameters.

Then the equation to a conic section touching the two given

lines may be written mider the form

M->)(M-')=^(M-'
\ being an indeterminate parameter.

Two equations for the determination of the three arbitrary

quantities X, a, yS, are given by the conditions of its passing

through u4, B. We thus get

^o(^')=Ks-y «-

a J \a J \a.

The third equation is given by the condition of the curve

being an equilateral hyperbola. In order that this may be the

case, it is necessary that the sum of the coefficients of x^ and

y-* = 0. This gives

— - ^. + 777
- 3i = 3 .

aa a. bo p

* A shorter solution of this problem, due to Mr. Gaskin, will be found in

the Appendix.
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Combining (1) and (2), we get

^h — aV (h — a) (h — a)

Kh + aj (A -f a) {h + a)

'

This is a quadratic for the determination of a. Let a,, a„ be

its roots.

Subtracting (1) from (2) and eliminating \ by (3), we get

1 1\
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X — a cosa y — h sin a
or ^-j +'' =0;

a sill ^ a h cos^a

X a 11 . OL a
.'. - cos- + Y sill- = cos - .

a 2 h 2 2

Where this meets the axis-minor,

ij = hcot^a. (1),

which is therefore the equation to the line through this point,

parallel to the axis-major.

Again, the equation to the line drawn through (« cosa, b sin a)

to the extremity of the axis-minor, is

y — h siiia _x — a cosa

Z»sina — h a cosa '

y — h cos (I TT — a) x — a sin
(
2 "^ — a)

_

h cos(-2 7r — a) — h asin(^7r — a)

whence, by an investigation similar to the above, it is seen that

the equation to the line drawn parallel to the axis-minor through

the point where this meets the axis-major, is

X = acot(j7r — |-a)

=«3^i (^i-

Eliminating a between (1) and (2), we get

y + b

y-h'
or xy = ay + hx + ab^

or {x — a) [y — b) = 2aJ,

as the equation to the locus, which is evidently an equilateral

hyperbola, whose asymptotes are the tangents to the ellipse at

A and B.

Let ABA'B (fig. 72) be the ellipse, P the point (a cosa,

b sin a) ; then from the figure it appears that p is the point

on the hyperbola corresponding to P: one branch of the hyper-

bola is described, while P moves from A io B'^ the other branch

while 2> moves round through BA'B'A.
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4. Dctenniue the values of a', m\ n\ such that the relation

{{x-af + /}* = m (x^ + y'y- + n

may be equivalent to the relation

[{x - a)" + y'Y-
= m {x' + y'^Y + n.

The transfonnation fails (1) in the case where the curve

represented by the given equation is a conic section, (2) has a

double point.

(a). The equation

{{x-a'Y + f]^ = in {x' + f)^ + n\

when transformed to polar coordinates, and rationalized, becomes

r^ — 2a.'r cos^ + a.'^ = (?«';• + ?«y,

or (1 -m")r' - 2a'r cos^ - 2m'n'r + a' - ?i" = 0.

The equation

{(a; -a)' + /}* = m {x'+iff- + n,

similarly transformed, becomes

(1 - 7n') r^ - 2a.r cos 6 — 2mnr + ai' — n" = 0.

In order that these equations may be identical, the coefficients

of r^, r cos ^, r, must bear the same ratio to one another as the

constant temis,

1 — ni'' OL m'n a^ — n^

1 - m^
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Also wc have
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The transfonnation also fails if n = a, for we then get m' = 1

,

a = 0, n = 0, and the transformed equation becomes an identity.

In this case, the given equation, transformed into polar coor-

dinates, becomes

(1 - vf) r - 2 (a cos ^ + ma) = ;

whence we see that if

cos^ = — m^

we have r = ; but the equation cos = — m is satisfied in

general by two values of ^, whose sum = 27r ; hence the origin

is a double point.

If therefore the curve have a double point, the transfonnation

fails agam.

5. If be the centre of a reflecting circle, Q a radiant point,

and the line from Q to produced to meet the circle be con-

sidered as the axis, then, if a be the radius, u the distance QO^
the inclination to tlie axis of the radius through the point of

incidence of any ray, and
<f>

the inclination to the axis of the

reflected ray,

pcos(f) = acosd + wcos2^, psmcj) = asm0 + usm20j

where p = {a' + u^ + 2au cos 0Y is the length of the incident ray.

Let P (fig. 73) be the point of incidence of any ray, M the

point in which the reflected ray cuts the axis. Let

and draw PN perpendicular to the axis. Then

QN= /3 cos (<^ - 21/r) = QO + ON = u + «cos^,

PN = p sin (0 — 2\|r) = a sin 0.

Again, yjr = (ji — 0,

.'. p coa{'20 — (j>) = u + acos0 (1),

p8in(20-<^) = asin^ (2):

(1) cos 2^ + (2) sin 2^ gives

p cos<^ = a cos + u cos 2^,
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(1) sill 2^ — (2) cos2^ gives

psincf) = aamO + usm20j

the required equations.

6. Using the notation of the last question, and assuming the

tiTith of the theorem stated therein, shew that if fi-om the point

of incidence of each ray there be drawm, in a direction opposite

to that of the reflected ray, a line equal in length to the incident

ray, the locus of the extremities of these lines is a curve cutting

the lines at right angles, and the equation of which, referred to

the radiant point as origin and the axis QO SiS axis of x^ is

x^ + y^ — 2ux = 2a{x^ -i-
y^)^.

Shew that the origin is a double point, and trace the curve

:

shew also that the equation may be expressed in the form

{{x — af + /]* = m [x'-\-y^)^ + n.

' (a). Produce MP to i?, making PR = QP^ then we have

to find the locus of R. Let x^ y be its coordinates, then we

readily see that

x= QN -\- pcos<f)

= u + acosd + acosd + ncos20

= u{l + cos2d) + 2a cos ^,

and y = PN + psin^

= asin6' + asin^ + ?/ sin2^

= M sin 2^ + 2a sin 6 :

hence - = tan^, and RQ is parallel to PO,

and [x-
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.'. x^ + }f -2ux = 2rt(x'+y')*,

the required equation to the curve.

(y8). This equation, transformed to polar coordinates, becomes

r — 2u 0,09,6 = 2a,

.-. r = 211CO&0 + 2a (1).

Hence the radius vector of the curve exceeds by 2a the

radius vector of a circle which passes through the pole, one

of whose diameters is prime radius, and whose radius = u. If

therefore we draw such a circle, and produce 0-4*, the radius

vector of any point A in it to i?, making AB = 2a, the locus

of R will be the required cm've.

The cm-ve will pass through the origin when cos^ =
,

which condition, if a < u, is satisfied by two values of 0, one less,

the other greater than tt. Hence if a < w, i.e. if Q be outside

the circle, two branches of the curve pass through the origin,

which is therefore a double point.

When ^ = 0, / = 2 {u + «), and when 6 = tt, r = — 2 [u — a)
;

hence the curve will have the form represented in fig. (74), where

Qq = 2{zi + a), Qq =2{u-a).-f

Again, l QRM= L0PM (since QR is parallel to OP) yfr= (f>-0,

sm<f> cos^ — cos^ sin^
tSinQRM =

COS0 cos^ + sin<^ sin^

u sin

a + Mcosi

by the result of question 5.

* Tlie line OA must ahvaj's be produced in the positive direction of the

radius vector, therefore when > .Vtt, OA must be produced backwards.

t This is the form of the figure when Q is outside the circle : if it be witliin

it, the curve docs not pass through the origin, and the loop Qq' docs not

appear. The origin will then be a conjugate point.
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And if L be the angle between the radius vector and tangent,

1 flu u sin
cott = —T7i = —

L dO a + u cos 6 '

= tan()i?J/.

Hence the curve cuts the lines PR at right angles.

(7). The equation

[{x - a)' + y'Y-
= m {x' + y^ + n

is equivalent to

(1 — m^)r^ — 2mnr — 2ar cos^ + a^ — w^ = 0,

and this coincides with (1), if

-2 = «? -. -2 = ^1 a. - n =0]
1 _ ,n^

- "' 1 _ ni'

a u — am = - . 71 = a =,/<- — >*—
,u u

therefore (1) is equivalent to

,2 2^ 2 N Jw — a\ ,J^ u , ., .,,, It — a
'^\*^—:— +3/ =-i^"+rf +

)M / j a u

which is in the required fonm.

7. Given the centres of three circles, each of them touching

the other two externally, determine the radii.

How many systems of circles are there when the centres

are given, but the circles touch externally or internally at

pleasm'c ?

Let a, &, c, be the distances between the given centres ; then

'•2 + ''3 = ^)

^3 + '\ = h
r^ + r.^ = c,

b + c — a

similarly r^ =

2 '

c + a — b

2 '

a + b — c

which determine the radii.
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If the circles touch internally or externally at pleasure, there

will be four systems. For the circle described with any one

point as centre may include the other two, which must touch

each other externally, thus giving three systems. Or they may
all touch externally, giving four systems in all.

8. The locus of the point from which two given circles

subtend equal angles is a circle.

Let -4, A' (fig. 75) be the centres of the two given circles,

P a point from which the circles subtend equal angles. Draw
the tangents PT, Ft to the circle whose centre is A ; PT\ Ft' to

that whose centre is A'. Join P/1, PA\ AT^ At, A'T\ A't'.

Then LTFt = ATFt'.

And AF, A'F respectively bisect the angles PPf, TFt',

.-. z AFT = L AFT:
also the right angle ATF = \k\e, right angle A'T'F', therefore

the triangles TAF, TA'F are similar, therefore

AF'.A'F:: AT: AT (1).

Divide AA in 0, so that AO \ A :: AT : AT take as

origin, AOA as axis of x. Let AO = a, A = a', and let

X, y be the coordinates of P. Then by (1)

... d'%x^a)^^f]=d^[{x-d)'^f],

or (a — a')[x^ -\-y'^) — 'iaax = ;

shewing that the locus of P is a circle passing through 0.

9. The lines joining the corresponding points of two similar

and similarly situated figures in the same plane intersect in a

point.

All sections of a conical surface of any degree by parallel

planes are similar and similarly situated figures, and every gene-

rating line passes through coiTCsponding points. Hence, con-

versely, the lines joining coiTCsponding points of two similar and

similarly situated figures in parallel planes, pass through one

point (the vertex of the conical sm'face of which they are
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sections). Let the planes l)e now made indefinitely nearly

coincident, and the proposition enunciated follows at once.

10. Given any three of the four lines Ox^ Oy^ 0])^ Oq^

(fij^. 76), the foiu'th may be determined, such that if «, h be the

points in which a line tln-ouf2,h a point Q in Oq intersect Ox^ Oy^

and n\ h' the points in which another line through the same

point Q intersects Ox^ Oy^ the point of intersection of the lines

ah' and ah lies on the line Oj).

Let II = 0, V = 0, be the equations to any two lines passing

through the point 0, and let u — \v^ u = Xv, u = X^r, w = \v,

be the equations to Ox, Oy, Oq^j Oq, respectively. Also let

It) = be the equation to Qa, and n — \ii — fiic = that to Qa.

Then the equation

a{u — \v) — [u — \gV — [xw] = 0,

where a is a disposable parameter, represents a line passing

through a. In order that this may pass through h, the above

equation must be identical with

l3{u-\v)-w = 0,

y8 being also a disposable quantity. In order that these equa-

tions may be identical, we must have

a — 1 a\,. — \a

and (Xy — \j){u — \v) — {\y — \.) (« — \v — fiw) = 0,

or {\ - \){u - Xv) + (\ -X^)fiw = 0,

is the equation to ah. Similarly

(\ - \) (^ - K^) + {\ - \) /^^^' = 0,

is that to ah'. Where these intersect, we have

(X^ - \,) [u - Xv) + (X - \) (u - Xv) = 0,

or {X^ + Xy-2\)u + X,{X^ + Xy)v = (1).

In order that this may lie in the line 0/j, whose equation is

ti - X^v = (2)
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(1) and (2) must be identical ; hence

\ i\ +\- 2\) + \ {\ + \) = 0,

or {\ + X,]{\ + \) - 2\X, = 0,

an equation from which, when any three of the quantities

X^, X^, \ , X^, are given, the fourth may be determined, so

that when any three of the lines Ojc, Oy^ Op^ Oq are given, the

fourth may be determined so as to satisfy the required conditions.

11. The radii vectores from the focus of a conic section to

two points of the curve make equal angles with the line drawn

from the focus to the point of intersection of the tangents at the

two points.

Let a, (B be the angles which the radii vectores respectively

make with the axis-major, then the polar equations to the

tangents, referred to the focus as pole and the axis-major as

prime radius, will be

1 2
- = - {^cos^ + cos(^ — a)},

1 2
- = y {e cos^ + cos [6 - y8)|.
r i

Where these meet, we must have

which will be the equation to the line through the focus and the

intersection of the tangents, which evidently bisects the angle

between the radii vectores. Hence the proposition is tnie.

For a demonstration of this theorem by the method of re-

ciprocal polars, see Salmon's Conic Sections^ chap. xiv.

12. If two triangles be circumscribed about a conic section,

their angular points lie in another conic section.

Let u = 0, V = 0, t« = 0, be the equations to the sides of one

triangle, and let the sides of the other triangle respectively

opposite to these be represented by

?/ + &,t'+ Cj?c=0.,.(l), a^« + t'+ r,?r=0...(2), a^u+ \v+ir=0...{?,).
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Then, since these two triangles are circumscribed about a

conic section, it will follow that if (ly^'J denote the line joining

the intersection of v = and (3) with that of i« = and (2),

with similar notation for the other corresponding lines, {v^io^),

{^o^v^), (?//',) all pass through one point.

Now the equation to (^'g^t'J is

V 10
w + - + — =

that to 2v,u„ IS — -\- V + — =

U V
to t/.-y,, —I h w =

(A).

The elimination of w, r, lo between these equations would

give the necessary condition that the three lines denoted by

them should pass through one point, or that the two triangles

should be cii'cmnscribed about a conic section.

Now the equation to any conic circumscribing the triangle

(123) can be put into the form

a [a^u -\-v-\- c^w) {a^u + h^v + w) + ^ [a^u -\- b^v + w) [u -{ h^v + c^w)

+ 'y[u-\- l\v + c^w]{a^u -{-
V -\- c,^ic) = (4).

Here the coefficient of li^ is proportional to

« + -+-,

ofv^to ^ + /S + f

,

n -2. . ^ /3
of 10 to h — + 7.

c c^1 2

Hence, if we give to a, yS, 7 respectively the values which

w, V, w have at the intersection of the lines (A), each of these

coefficients will vanish, and equation (4) will be reduced to one

involving vw^ wu, uv only ; It will therefore also represent

a conic circmnscribing the triangle whose sides are u = 0,

V = Oj 10 = Oj and consequently, if two triangles be circum-
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scribed about a conic section, their angular points lie in another

conic section.*

From the above proof it is not difficult to see that the

converse (which is also the reciprocal theorem) is true.

13. If the angles ^, cj)' are connected by the equation

cos)u, = cos^ cos<^' — sin^ sin^'(l —c^ sin"''/i)-,

and sin0, sin^' arc the abscissae of points on an ellipse, the

semiaxes of which arc 1, (I— c'^)^, then the tangents at these

points meet in a point, the locus of which is an ellipse confocal

with the given ellipse.

Let f, r) be the coordinates of the intersection of the tangents,

then the equation to its polar is

1 — c*

Let sin^, (1 — o'')* cos^, be the coordinates of the points

where this line meets the given ellipse, then

^ . _ 77 cos ^

the roots of this equation in 6 are <^,
^'.

It may be written in the forai

(|sin^-ir = ^^(l-sin^^);

1

-'

.•. sm<p.sm(p =
.]

^ ^ 1 - c"

Again, it may be written in the form

( t; cos ^ ) ^,
.

,

, ^.

1-r .cos ^.cos <^' =

r +^
• Another solution of this and of several cognate problems, will be found

in a paper by Mr. Heam, in the Cambridge and Dublin Mathematical Journal,

vol. IV. p. 2G5, entitled " Singular Application of Geometry of Three Dimen-
sions to a Plane Problem."

M
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therefore, Ity the given equation,

cos/, (f 4-^) = 1 - f - (] - ^^,) (1 - c^ sin»S

or ^' (1 -t- cos /a) + —^ {cos // - (1 - c' sin»^j = 1 - (1 - c' sin">)S

the equation to the locus of (^, t;,) which is therefore an ellipse,

the squares of wliosc semiaxes are respectively

l-(l-c''sin»^ l-(l-c''sinV)^ ,

1 + cos /x '
^ ' cos /i — (1 — c"* sin'V)-

'

1 — cos/A — (1 — cos/i) (1 — c*^ sin'^yu-)*
^or ; g ,sm /i

1 — c'' sin'^/i — cos/u. — (1 — cos /a) (1 — c"* sin"''/u,)*
^

siu'^/i
'

therefore, if c' be the distance from its centre to its focus,

,a _ 1 — cos yu, — (1 — cos /a) (1 — (? sin^/i)*
C — ;:—

o

sm fx

1 — cos/A - c'"^ sin'''/u, — (1 — cosyu,) (1 — c^sin^/i)*

sin'"' /A

••• C' = «5

whence the ellipses are confocal.

14. If cc, y^ z, r«, are linear functions of the coordinates of

any point, such that no three of the lines represented by the

equations « = 0, 2/ = 0, z = 0, ?i; = 0, meet in a point, the

equation w + [yzf + [zx]^ + [xy)^ = is that of a cui've of the

fourth order having three double tangents, x = 0, y = 0, z = Oj

and three double points, y = z = w, z — x = w^x=y = w.

Shew also that the six points of contact of the double tangents

lie in a conic section.

Where the line a? = meets the cun'^e,

w + [yzY- + {zx)^ + {xy)^ = (1);

we have also w + [yz]^ = 0, or w'' = yz , (2).
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It hence appears tliat the line x = meets (1) only in the

points where it meets the conic (2), that is, in two points only.

But (1) when rationalized takes the form

(«<?'' — yz — zx — xyY = ^^xyz [x-Vy-k-z- Iw) (3),

mider which form we see that the curve represented by it is

of the fourth order; therefore the line a; = must meet it in

four real, coincident, or imaginary points. Therefore, cither

each of the pomts in which a- = meets (1) must be a double

point, or a; = must be a double tangent to (1) ; for from con-

siderations of symmetry it is clear that both points must be of

the same nature. Also we see that ^ = 0, 2 = stand in ex-

actly the same relation to (1) as a? = does.

Now consider the conic whose equation is

xc^ — yz — zx — xy = (4)

.

From (I), (2) we see that all the points in which x = 0,

y = 0, s = 0, meet (1) lie in this conic. Hence these points

cannot be double points, for if they were, a cm've of the second

order would intersect a cm've of the fourth order in twelve

points (coinciding two by two), which is impossible. Therefore

X = 0^ y = 0, 2 = 0, are double tangents to (1).

Again, if in (3) we put x = u', it becomes

{x [x — y — z] — yz\- = 4.xyz {y + z — x),

which can be reduced to

X [x-y-z] +yz = (5),

shewing that the line x = w meets the given curve only in

the points in which it meets the conic (5), that is in two points

only. Hence, either x = w is a double tangent, or it must meet

the cun'c in two double points.

Now at the points where it meets the curve, we have, as

may be seen from (5), z = x = ?r, x = y = lo respectively.

Hence, where the line x = tv meets the cm'vc, it also meets

either the line y = lo or z = iv^ and from considerations of

symmetry, if x = to touch the ciu-ve, y = iv and z = w muM
do so likewise at the same points.

m2



1()4 SOLUTIONS OF SKNATi:- HOUSE PROBLEMS. [1851.

Now we have already shewn that if x = w do not touch the

curve (I), it must meet in two double points, and we have just

now proved that if it does touch the curve, y = lo and z = w
touch it, each at one of the points where x = w docs. Therefore

two tangents can be drawoi at these points in different direction?,

therefore they must be double points. Hence, in either case,

the points in question are double points, viz. z = x = to and

X = y = w\ and similarly, it may be shewn that y = z = w \9

a double point.

15. (a). Describe a circle when two tangents are given,

and a point from which a pair of tangents drawn to the circle

shall include a given angle.

[^). By means of the properties of reciprocal polars, or

otherwise, construct a conic section, when the focus, two points,

and the angle between the asymptotes are given.

(a). Let AB^ AC (fig. 77) be the two tangents, P the point

from which a pair of tangents are to include a given angle a. Let

lBA C = 13. Bisect the angle BA C by the straight hue ^D,
join PA^ and divide it in E^ so that PE : EA : : sin ^/3 : sin ^a.

Also produce PA to F^ so that PF: ^i^: : sin^/S : sin ^a.

Bisect EF in O^ and with G as centre and GE as radius,

describe a circle, cutting AD in H. H shall be the centre of

the required circle.

For since PE : EA : : PF : FA : : sin^/3 : sin ^a, the locus

of a point, the ratio of whose distances from P and A
= sln^/3 : sin^a is the circle of which EF is a diameter.

Therefore, joming PH, PH : AHw sin^/3 : sinia.

Draw PK a tangent to the circle whose centre is H and

which touches AB^ A C, then if r be the radius of that circle,

-^ = sin EPK, -^ = sin 1/3

;

.-. sinHPK : sin ^/3::AH:PII

: : sin^a : sin ^/3j

HPK a.2'^1
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and a pair of tangents to the circle drawn from P include the

required angle a.

{13). If we take the polar reciprocal of the above system

with respect to P, to the circle will correspond an hyperbola

whose focus is P; to the two given tangents AB^ AG coitc-

spond two given points, and to the tangent through P, including

a given angle, correspond two points on the cm'vc at an infinite

distance subtending a given angle at the focus or (since the

points arc infinitely distant) at the centre. This angle therefore

is the angle between the asymptotes. Kence (/8) is the polar

reciprocal of (a); and therefore the requii'ed conic section may
be constructed by means of the circle there determined.

16. Let P be any point in a conic section whose focus is 8
and eccentricity e ; in >SPtake SQ = \L (the semi-latus-rectum);

draw QR^ ST perpendicular to ;SP, meeting the tangent at F
in R and T respectively; also draw SY perpendicular to the

tangent meeting it in 1^; and let PZ7, QZ drawn parallel to the

transverse axis meet 8Y in U and Z respectively : it is required

to prove one of the following properties

:

(1) P is a point in the latus-rectum.

(2) QR passes through the point U.

(3) PU=e.PS. (4) SR = e.ST. (5) SY.SZ={^L)\

(1). Let the inclination of SP to the axis-major be a, then

the polar equation to the tangent at P will be

1 2
- = -^{(cosi9 + cos(^-a)};

and that to QR, r = \L sec (^ — a).

At P, the point of intersection of these lines, we must have

^ = |7r;

therefore R is a point in the latus-rectum.

(2). The equation to /ST Is

/, sin a
tan = ,

e + cosa
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or ill rectangular coordinates,

jc ama = y {e + cos a).

Now the ordinate of P is

i^L sin a

1 + e cos a
'

therefore the equation to PU is

^L sin a
y =

1 + e cosa

At U the point of intersection of these, we have

_ ^L (e 4- cosa)

1 + e cosa '

.'. X cosa + y sin a = ^L.

Now this is the rectangular equation to QB ; hence QR passes

through the point U.

, V m, 1 • n r^- \L cosa
(3). The abscissa of P is .

^
'

1 + e cosa

That of CThas been shewn to be

^L (e-fcosa)

1 + e cosa '

and P, ?7, have the same ordinate ; hence

PU==e.PS.

(4). Since i2 is a point in the latus-rectum, SR is perpen-

dicular to PZ7, and ST is perpendicular to 6T, Pii to SY^

whence it readily follows that the triangles STR, SPU are

similar

;

.-. PU'.PS:: SR: ST',

but PU=e.PS,

.: SR = €.ST.

(5). The polar equation to QZ is

r sin ^ = ^L sin a,
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and that to ^F is

zj
sin a

e + cosa

. ^ sina
.*. sma =

;H-2e cosa + e')*'

therefore at Z^ the intersection of these lines,

r = 6'Z = ^X (1 + 2c cosa + e')*.

Also SY=^\L
^

{(e + cosa)'^ + sin* a}*

1 ^

(1+26 cosa 4- e')*'

.-. 8Y.8Z=[\L)\

==^L

17. If -4j, A^...A^/y rtj, «2---'^i5 ^^ ^^^^ angular points of two

polygons of n sides each, which circumscribe a given circle, and

Pj, P^...F^ the points of intersection of their first, second... h"'

sides respectively ; shew that

Shew also, by means of projective properties or otherwise, that

the same equation is true when any conic section is substituted

for a circle.

From 0, the centre of the circle, draw perpendiculars Oi?,,

OB^...OB,^, 0\, 0\...0h^,, on the sides A^A^, A^A^...A^A^,

a,a^^ ^,«2*'-^n-i^«? respectively. Through draw any line OX,

and let generally B,OX = a„ h^OX = /3, (fig. 78). Then

A^OX = i (a,_, + aj, .-. AOB, = A,OB,_^ = ^ (a, - a,J.

Similarly, a, OB, = M^r - A-J,

and P,C>Z=i(a, + ^,);

.-. P,0j5, = P^OX - B^OX =h{0r- aJ-

Also PA, = a (tan ^. OP. + tan P, OA"
)

,

a being the radius of the circle,

= a{tan^(a^ - a,_J + tan^(|S, - a,.)|

_^^
sin^(/3, - a,_J

cos-^ (a^ - a^_,) cos ^ (/3^ - aj
*
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Also F.l = a (tan yl,.,, OB,. - tan P,OB)

= a {tan^ (a,.,, - a,) - tan^ (/3, - a,,)}

= a
sin^(a,^, -^,

)

The expressions for P^a,. and P^a^+j, will be got from these

by simply interchanging a and y9

;

. Pr, -n sin^(a. -/3,_J
• • ^^''^ - ""

eosi (^, - /3,_J cosi (a, - ^J
'

Hence

cos^(/?,.^j - ySJ cosi(a, - ^,.

P.^...P.a.

PA..^,.Pa

^ sin I (^,- a,_,) sin ^ (a, - ^,._, ) cos | («,^^- g,.) cos ^ (^,.^,
-^J ,

sin^(^,,^j-a,.)sin^(a,.^j-/3,.)cos-^(a,-a,_,)cos^(^,.-^,_J

From the form of this expression it is easy to see, that if we

give r every value from 1 to n inclusive and multiply the re-

sulting fractions together (observing that instead of a,.^j, /3,.^,, we
write otj/SJ, every factor will appear both in the numerator and

denominator. Hence

P,^,.P,a,.P,^,.P,a,...PA-i^A _
1

PA,P.a,^PAs'^.%'"KA-PA '

or P^A^.P^a^.P^A,^.P^a^. . .P^.^^A

jf f T> i 1 .-. .
OP,..OA,..sm P,.OA,

It tor P,.A, we substitute
^^^

-, and make

similar substitution for each of the other lines, each member of

this equation will, since OB^ = a, be divisible by

OA,. Oa,. 0P\ . . 0A„. Oa. op:

and there will remain merely a relation between the sines of

angles subtended at 0. The property just proved must there-
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fore be tnie for any figure into which the circle can be projected,

that is for any conic section. (See the article on the Method of

Projections, in Salmon's Conic Sections^ Chap. XIV.)

18. Prove one of the two follo%viiig properties.

(1). When one of the foci of a conic section and two tan-

gents are given, the locus of the other focus is a straight line.

(2). When the centre of the conic section and two tangents

are given, the locus of the focus is an equilateral hyperbola.

The proof of these theorems depends on the property, that

the product of the pei'pendiculars from the foci on the tangent

at any point of a conic section is constant and equal to the

square of the semiaxis minor.

(1). Let J.P, AQ (fig. 79) be the two given tangents, S the

given focus, H that whose locus is to be foimd. Draw /S'F, HZ
perpendicular to AP\ SY\ HZ' io AQ'^ then

SY.HZ= ST.HZ',

.-. HZ'.HZ:: ST : SY,

a constant ratio ; therefore the locus of His a straight line.

(2). Take the centre as origin, and let the equations to the

given tangents be

cc cosa + y s'moL — a = (1), a^cosa' + i/ sina' — «' = (2).

Let I, 77, be the coordinates of one focus, then — ^, — v^ will

be those of the other. Now the length of the perpendicular

from I, 7], to (1) is

^ cosa + T) sina — a;

similarly, that from — ^, — 77, is

— I cosa — 77 sina — a.

Hence we get

(I cosa + 77 sina)'"' - n' = ^\

/3 being the semiaxis minor.

Similarly it may be shewn that

(^cosa' -f- 77 sina'V^ — «'^ = ^'-^
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.•. (^ cosa + 7} sina)"'' — a" = (| cosa' + rj siiia')"' — «'^

or (I cosa + r) sina)'^ — (^ cosa' + r/ sina')"'' = «* — «
'^

the equation to the locus of |, t;, which is therefore a rectangular

hyperbola, the equations to whose asymptotes are

I (cos a + cos a') + t; (sin a + sin a') = 0,

f (cosa — cosa') + j? (sina — sina') = 0.
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DIFFERENTIAL CALCULUS.

1848.

Find the equation to that involute of a cycloid which passes

through the cusp, and shew that in the immediate neighl)om'hood

of the cusp it becomes the curve 2a{4:yY = {3x)*y a being the

radius of the generating circle.

Let X, y be the coordinates of any point in the cycloid

referred to the cusp as origm, and base as axis of ic, s its dis-

tance measured along the arc from the cusp
; ^, rj those of the

corresponding point in the involute. The equation to the

cycloid will be

X = a(^ — sin^),

y = a[\ — cos^),

and we have, since the tangent at {pcy) passes through (f?;) at

a distance s from [xy]^

^ dx

dy

dx
Now 32 = rt(l — cos^) = 2asiii''^^,

do

-^= asin^ = 2a8ini^ cos^;
da

dd ^ '

and s = 4a(l - cos|^)

;

.-. f = a(^-8in6') - 4a(l-co8^^) sin^^,

= a(^ + sin^-4sm^^),

7) = a{l — cos^) — 4a (I — cos^^) cos^^,

= «(3 + cos^ - Icos^^),

the equations to the involute.
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In the iiiinicdiatc neighbourhood of the origin where 6 is

small, these become
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Equations (1) and (2) shew that the line OP always touches

a cycloid whose cusp coincides with the cusp of tlie original

cycloid, and generated by a circle of half the size of its gene-

rating circle.

2. Find the locus of the ultimate intersections of the lines

defined by the equation

a;cos3^ + ?/sin3^ = a(cos2^)* (1),

where 6 is the variable parameter.

Differentiating (1) with respect to ^,

a;sin3^ - ?/cos3^ = asin2^ (cos^)* (2).

Squaring (1) and (2), and adding,

x' J^ f = d'cos2d (3).

Again, (2) -i- (1) gives

ccsin3^ — ?/cos3^ , ^^—z

—

^
. ,^ = tan 2^,

a;cos3c7 + ysm'do

or —^———— = tan 2^;

1 + tan3^^
X

.-. ^= tan^,
X

1 1 /«\ -1 -1 2 1 — tan*'^
and by (3) x' -\- i/ = a' -

= a

+ tan'

x'^-f
d' +f

or {x^ + yr-^^\^'-f)^
the equation to Bcmouilli's Lemniscate.

3. If e be the eccentricity of a conic section, r the distance

of any point from the focus, p the radius of curvature at that

point, and ds an element of the arc of the curve, then

, Jr' , fd'r

' =d?-^PW'
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Let the equation to the coiiie section referred to its focus as

origin and axis-major as axis of a?, be

x' + f = [ex + cY ;

.*. r = rx + c,

dr

, dr _d'C _ e

ds ds
J ('hf\

dx \ \ dxj

d'^r d dr I

ds' dx ds ' ds '

dx

e^ it
dx'' dx 1

-||)T'I'
dy^

e dx

"^-(IJ

drV , fdS'Y ,
^ + \dx)

dlX

ds) ^P Uv ~'' 7±V'
"^

[dxJ
= e\

4. If u be a function of the independent variables x, ;/, z^

given by the equations

^*=/(^, (1),

s = F{Ix + w??/ + nz + ht)

= [mz — ny) + % [nx^ ~Iz) + yjr [ly — mx)^

and if V + m' + n' = F ; shew that

, du du du , du

aa; dy dz dt

where -j- is obtained from (1) by considering s constant.
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We have

also =z n')(^ — wi/r'

;

dt ??^' — 7>li|r' I

similarly | = |/(.) +-0)| (j-^^' - «f ) - |/((),

Multiplying these equations by ?, wi, w respectively, and

adding, remembering that 1^ + m" + w" = ^'^j

,^M c7m f?M , du .

^ J- + ?w -J- + w -J- + « -^ = 0,
GKC dy dz dt '

du „,, ,

smce
-J

means/ [t).

1850.

1. A paraboloid of revolution with its axis vertical contains

a quantity of water, into which is sunk a heavy sphere, and the

water is just sufficient to cover the sphere ; find the form of the

paraboloid that the quantity of water with which this can bo

done may be the least possible.

Let a be the radius of the sphere, I the latus-rectum of the

paraboloid; h the height to which the water rises when the

sphere is siuik : then if C be the content of the paraboloid of

height ^, V the volume of the sphere, Q the quantity of water,

g = o-r;

and we have to make Q a minimum by the variation of

I and h.
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Now C=l'rrlh',

therefore IK^ must be a minimum.

Now from the vertex the equation to the section of the

paraboloid is

/ = ^x
;

that to the section of the sphere is

[x- {h-a)Y + y' = d\

In order that these may touch one another, we must have

[x — {k — a)Y + Ix — a\

a perfect square, which requires that

4:{h'-2al) = {l-2{h-a)]%

or r - U[h-a) + 4a' = (l).

Hence we must make JK'' a minimum subject to the con-

dition (1), which may be written

£+_2ar.
4Z '

therefore we have to make

(Z+2aV = mmmium
I

4 1
or ^ T = ;

.-. ? = fa;

which determines the form of the paraboloid.

2. If a circle be described touching a curve at any point

(r, 6) and passing through the pole, shew that the equation to

the circle will be

do r

The general equation to a circle passing through the pole

and the point (r, 6) is

r — r sec(^— a) cos(^' — a) (1),
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a being the angular coordinate of the diameter through the pole.

This equation may be put in the form

cos{6'-a + (^'-^)|
j« ^= )•

'
!^ ~

cos [d — a)

= r {cos {& -6) - tan {6 - a.) sin {& -6)].

Now from (1), 'ia> = ~ ''' ^^^ (^ ~ '^) '^'^ (^ ~ ^)

= -j^ ,
when 6' = 6^

do

since the circle touches the curve at the point (?•, 6)\

•' * r tan (^ - «) = ^ )

and r = r {cos [6' - ^) + "4 sin [6' - 6)]

, d sm[e'-e)
~ '*

dd r '

, d sm{0'-0) ^
or r' + r' ^ ^ ' = 0.

dU r

3. If a parabola roll upon a line, the focus will trace out

a catenary.

The following more general problem admits of very easy

solution: A given curve rolls upon a straight line, to find the

locus of any point to which the curve is referred as pole.

Let AB (fig. 79) be the given straight line, A any fixed

point in it. Let CF be the rolling cm've, C the point which has

been in contact with A, S the pole, P the point of contact in the

position represented in the figure. Join ^SP and di'aw /SF per-

pendicular to AB. Let A Y = x, YS = y, SF = r, s the arc

of the cun^e described by S. Then the tangent being manifestly

pei*pendicular to SF, we have

'^ = cohFSY=^,
ds r

* For tills solution, wc are indebted to Mr. Goodwin

N
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Let the equation to the rolling curve be r'' =f{p)i then the

equation of the required locus is

^'{•H- (I)} =/(.).

In the case of the parabola, we have

'=?^

dx y c

ds r yl

the differential equation to the catenary.

4. Find the forms of the curve whose equation is

,ii I ^i-xy = m [x + y — «
],

according as nt^ is > = or < -^ a^.

Arranging the equation as a quadratic in cc, we have

and a^ =^ +A {/ + 4/n' («'-/)}* (1).

Hence we may use x = -^.^ as a guiding cm've ; its fonn

is shewn by the dotted curve.

To consider the equation

or f - 4w* . f + ^m\t' = 0.

This equation, considered as a cubic in y\ will have three

3 3J
real roots or one, according as oti' is > or < —— a'"*.* If it

has three real roots, one of them is negative, and the corre-

3 3-
* If m = -j— «^, it vdH have three real roots, tAvo of them being equal.
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spending values of y imaginaiy. If it has two equal, and there-

fore two real roots, the equal roots are positive and the other

negative, giving only one positive value to y'. If it has

only one real root, it is negative and y imaginary. Again,

differentiating the original equation, we get

dy 2m'x — y^
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The quantity affected with the ambiguity lias its greatest
a

value when - = ^, when r receives the value

2a
r = — ± a

IT

the latter of which is negative. Again, putting ^ = 0, we have

r = c] and differentiating,

therefore when r = c, and therefore ^ = 0,

dr

33 =
°"-

Hence the cui've is of the form shewn in fig. 83.

Also, as c and therefore a is indefinitely enlarged, equation (1)

becomes >• = —
, representing a circle.

TT

6. Find the locus of the consecutive intersections of the curve

whose equation is x^ + y'^ = 2ax' + 2by' (1) ; a and h having

any values which satisfy the equations

2„ (.!-,) = (."-/) I -2., (2),

2i(4-,)=.'-y' + 2.,| (3),

X and y being the coordmates of any given curve.

The problem is best solved by introducing polar coordinates.

Let X = r cos 6^ y = r smO]

.-. dx = — r &mdd6 -+ cosOdr^ dy = r co^6dd + shiddt",

.'. xdy — ydx = r^dd^

[x^ — y^) dy — 2xydx = r^ cos2ddy — r^ sm20dx

= r^ cos Odd — r^ s,m 6 dr^

{x^ —y'^) dx + 2xydy = r^ sin Odd + r^ cos 6dr.
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Hence equations (2) and (3) become

2a = r cos 6 — sin 6 -f^

,

da

2b = ?• sin 6 + cos -j^ :

au

da . . ^'r
.-. 2^=->-sin^-sm^^,

2 -77: = r cos c? — cos U ^7^ .

Also equation (1) transformed into polar coordinates becomes

r' = '2a cos 0' + 2b sin 0'.

Differentiating this equation with respect to 0, considering

r' and 0' constant, we have

= 2 -77. cos^ +2-77= sm^
dtf dv

= r&m{0'-0)-cos{0'-0)'^,-

tan (^'-6') =
dff'

From this equation, when r has been substituted in terms

of 0^ from the known equation to the curve, we can find

in tei-ms of 0'', and thence r and -^ will be known in tcnns
dtf

of 0'j and the required equation to the curve will be

r = 2a cos^' + 2b sin^'

dr= rcos{0'-0) + Hm{0'-0)%.
d0

1851.

If
(f)

(c) be a rational and integral function of c, the coeffi-

cients of which are functions of any number of variables ^, ?/,,..

then if 8 denote differentiation with respect to the variables,

and the quantity c be eliminated from the equations [c] = 0,
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3(/)(t')=(), the result may be represented by tiSPSQ... =
where P, Qy.. are the roots of the equation <f>{c) = 0, and tc =
is the result of the elimination of c from the equations (p (c) = 0,

<f>'{c)=0.

Since 0(c) is a rational and integral function of c, and

P, Qy.. are the roots of the equation 0(c) = 0, we have

(c) = [c — P){c— Q) identically.

dP dP
Let P^ denote ^- dx. P. -7- diu... then

^
c?^ ' "' dy '^'

g0(c) = 0(c) Slog 0(c)

=-*w(^^^^-^^--)
=-{(^.+^.+-)(o-^)(c-^)-+(^.+^.+..-)(c-^)(«-^)+"l-

Hence the result of the elimination of c between 0(c) =
and S0(c) = 0, is

= product of the expressions (P^. + P^+...) (P- Q) (P- /?)...,

((?.+ (?,+•••) («-P)(^-P)...,&c.

= (P,+P^+...)(^,+ ^,+...)...(P-(?)(P-P)...(^-P)((2-P)...

= v suppose.

Again, 0'(c) = (c-^) (c-P)...+ (c-P) (c- P). ..+...
;

.-. ,,= (P-^)(P-P)...(^-P)(^-P)...,

and SP=P, + P, +..., 8^= ^,.+ ^^4-...;

.-. v = uBPBQ....

Hence the result of the elimination may be represented by

u8P8Q... =0.
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INTEGRAL CALCULUS.
1848.

The comer of a sheet of paper is tunied down so that the

sum of the edges turned down is constant ; find the equation to

the curve traced out by the vertex of the angle ; find also the

area of the curve.

Let r, ^, be the polar coordinates of the vertex, refeiTed to

the origmal position of the vertex as pole, then the lengths

of the respective edges are

^r sec 0, ^ r cosec ^, respectively
;

therefore the equation to the curve, is

l^?-
(sec ^ + cosec ^) = constant = a suppose,

or in rectangular coordinates,

{x + 7/) {x' + f) = 2axy.

To find the area, turn the axes through an angle ^tt, then

we get _acos26'_
*" ~ 2icos^ '

therefore if A be the area of the loop traced out by the vertex,

A=-l rW1 r\^

i-^ cos'2^ ,^
27j ff"

COS a

4cos''^-4+-^] iW
cos a/

2cos2^-2 + 6ec'<9)<Z^

= |(2-7r + 2)
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2. Tangents to a system of similar and concentric ellipses

arc drawn at a given pei*pendienlar distance from the centre

;

find the locus of the point of contact, and shew that the area

of the curve is equal to that of an ellipse which has the same

greatest and least diameters.

Take the common axes of the ellipses as coordinate axes,

and let c be the distance of each tangent from the centre, then

if 6 be the inclination of a pei-pendicular on any tangent from

the centre to the axis of a;, the equation to that tangent will be

cccos^ + ymiO = c (1).

Let the equation to any one of the ellipses be

2 'i

7? + !?
= '" C^)-

If (^, 7)) be the coordinates of the point where (1) touches

this, we have

f cos^ 7? sin^
' ...n:^ ^ '

and since |, r;, is a point in (2),

m' = K + t'a: h

Eliminating m^ 6 between these equations, we get

a'
"^

h" d' W b"

the equation to the locus of the point of contact.

To find the area of this curve, transform its equation to polar

coordinates. It then becomes

cos^ 6 sin'-^ d
+

a b'
r = c

cos 6 sin'"^^

and if A be its area, cos'' sin'^ 6
' - -j

A = 2d' ( T-^S '^cW.
cos 6^ sm t^N
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Let -7 tan = tan ^

;

i^ 1 + p tan <^

and A = 2c^ i
'

.
,

- sec^(bdd>
J ^

sec
(f)

a

= —T
I

(a'^ sin''' <^ + Z>^ cos"' <^) c?^

Again, let ^' be the area of the ellipse which has the same

greatest and least diameters, then if these diameters be 2rj, 2?\^,

A = Trr/^-

cos'' sin"'' 6
4 "I" 74

JNow r = c

a'

= -5T5 («' cos'''0 + &''' sin'*^) («'' sin''*^ + h" cos'^0)

cos 20
d'b' (V 2 / V 2

The maximum and minimum values of r will be got by

putting cos20 = and 1 successively;

•* "*> ~ a* 2 '

''•' ~ "'

., _ TTC^ d' + h'
*'•

~ab
~~2~ '

the same value as that previously got for A.
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3. Prove that the remainder after n tenns of the infinite

series — + — + — +.•• whore a > 1 lies between -r^

—

-tt^i >

f
= I —

) and -, w 73-^ , approaehiner much nearer to the
V j^^yx'j (a-l)(« + ir" ^^ ^

former limit when n is large.

(1). In general

1 1

+

^,« + °L(^) ,n-Y +.

[m—pY [m + 2^)

>

Now

+
1

+...+
{n+ l-rj))" [n + 1 - {r - 1)2)Y {n + iy

1

+...

+ +
+ l + {r-l]2)Y {n+l+rjjy

+
+ l—rpY {n+l + ypY

+
l{n+l- (r-l)|>] =

+
1

{71 + 1 + {r- 1)2)Y_

1

+...+
{n + iy

> -, r- + 7 rr- +•••+ -, 7T- 1 from above,
[n + \Y [n+lY {n+\Y^ '

2/- + 1

^ [n+lY'
P + P

" {n+l-rpY [n+l-[r-l)2iY

Now let f'p = \ - Pi then this becomes

P , P , , i^

+...>
212? + pj

{n + lY

r« + +...+
{n + i +2)Y [n + ^ + 22)Y {n + i -pT {» + 1)'"

'

therefore, a fortiori^

P + ...+ T
P

(" + i+7?)^ (n + i)* [n + lY
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Let j9 = dx^ then this becomes

r"^<& 1

/
>

n.h^'^ (/^ + 1)^'

similarly
j^^^^->^^^^^,

>

We shall thus obtain an infinite series of inequalities similar

to the above. Adding them all together, we get

"^ dx 1 1 1

+ 7—T^r, +••
r dx_
„,_ (a-l)(« +ir {n+iy (n + 2)

Again, if ^j — ^iV being any integer,

+ ^"~ri Tirvr +••• (/ te™is)
(/t + 1 +i^)" (» + 1 + 2^7)^

< -;^

—

-—c- + , ^r- +... (;»' terms),
(«+l)" («+l)' ^^ ^'

1
<

(n + 1)^

For /> write dx^ then this becomes
^''+''' ^ 1

/
whence, as above, we get

'" ^ _ 1 1

^ ~ (a-l)(« + l)'''
^

(« + 1)^ ^ (7i + 2)
[ — = + 7Z-n7V.+-"5

We have /
—- = -, rr ^7

—-Tvsrr - 7

—

rsv^l ?

1 r 1

.V 2,1+2) V^^2«+2

2 f a - 1

(a-l)(n+l)'-* (2n4-2

(
a-l)(a-2)(a-3) 1

^
6 (2n + 2)''^'

1 («-2)(«-3)
.

(/?+ 1)' 24(« + i;
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r^ dx 1__ ^ (a-2)(«-3)

R . r ^ - _L_ \ \ L_i
•'„. ^""(«-i) t("+ir (n+2rf'

1 -T TT^U(a-1) (n+ir
i ^1 , 1

n+ 1

a-1 (a-l)(a-2) 1

a-1 (w+ip i(n+ l) 2 (n+1

1 a-2 1

(w + 1)' 2 (w+1)^"^

""^•^^a; a-2

+.

\ r
rx+-

(n + ir J„,, a- 2(,i + i;

It hence appears that when n is large, -. p- approaches

r"+l ^:p r""^^ dx
much more nearly to the limit I — than to I — , whence

the latter part of the proposed theorem readily follows.

4. If f[x) be positive and finite from x = a to x = a + h^

shew how to find the limit of

for n = 00
, and prove that the limit in question is less than

T I f{^) ^^^) assuming that the geometric mean of a finite

number of positive quantities which are not all equal is less than

the arithmetic.

Hence prove that s-'^o'"'* < /„
£'"'*, unless u be constant from

£C = to £C = 1.

Let log/(ir) = -Fix), then

log {/(«)/(« + ', a) .../(« + '^ hj^\

= ?/ suppose.
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When n is infinite, let - = dxi then
' n

7/ = ^ {F{a) + F{a + dx) +...+ F{a + h)},

1 /•'

=
J

I F{a + x) dx
;

...{/W/(., + i ;,).../(„ + ^A)f

approaches to the limit e^-^"
iog/t««)'''

^^
^^f„ iog/(«)rf«^ -^^^ smce

the geometric mean of a finite number of positive quantities

which are not all equal, is less than the arithmetic,

{/(«)/(«
+ i a). .,/(« + !i^^ a)}*

as long as n is finite, and this will hold up to the limit when n

is indefinitely increased : but in that case

therefore the required limit < y I f[x)dx.

Hence if /(o^) = e", « = 0, and ^ = 1, s-^i""' < /^s"(7a', unless

?i be constant from x = to ic=l, in which case they are

equal.

1849.

1. Investigate the series

&' tt' ^ cos 20 cos 30 „

for values of between — ir and tt.

Let COS0 — ^cos20 + |co830 — ... = n,

sin0 - ^sin20 + ^cos30 - ...= v,



lyO SOLUTIONS OF SKNATE-IJOUSE PROBLEMS. [1849.

then if lie between — tt and tt,

U +-iv = £-*^ -
i£-*'^' + ^3

*,

= l0g(l+£-^) = l0g(£ ^U £-') + l0g£-*S

= log(2cosi0) + -H^;

therefore equating imaginary parts,

V = sin0 - ^sin20 + |cos30 -... = ^0:

integrating with respect to 0,11 R^
- COS0 -f -5 COS20 - -2 COS30 + ... = -+ (7.

To determine the constant, put 0=0;

I 1 ^

Now 1 - |. + ^,
-••= 1 + I + y +••- 2 (j! + p +•••

II
, /. 1 1

.
=l+2^. + 3.+-.-Hl + 5. + 3.+.

..osi„e=«|l-(|)]{,-(l)}...,

and sind = 6 — ——^ +...

:

equating coefficients of ^^,

1 /. 1 1

fl'2
TT^ 1 1

and — =T7; — cos0 + ^ cos 20 — -r, cos20 +•...
4 12 2''

S''

2. If a line be drawn through the centre of an ellipse,

cutting the major axis at an angle 0, and the curve at an angle
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</), (1) prove that

(a^ - h') cos [20 -</)) = («' + h') cos</)

;

and (2) that f' (ficie = y .

(1). Let the coordinates of the point where the straight

line meets the ellipse be «cosa, 5 sin a; then will the equation

to the tangent at that pomt be

cos a sin a
X H T- y = 1.

a h "

Hence, by the conditions of the problem,

tant/ = - tana,
a '

T tan0 + tan6 h
^"*^

A 1
—

/] . .

= cota.
1 — tany tan 9 a

Hence, eliminating a,

tan'd + tan0 tan0 _ W
1 - tan0 tan</)~~

~ ~ a"

U -
-)i

tanfl tan</> = - f^ + tan'^^
;

, _ _V cos"' B + a sin'
•• ^^"*P~ "(«•''-//') sine COS©

^ (a-'+^>'-')(cos''g+sin-'0)-(ff''-^/)(cos'''e-siu-'g)

2(«'''-Z>-) sin cos

_ fl--' + ^-^ - (^-^ _ ^^) C03 2g
(«'- 6^) sin 20 '

.-. (a' - 6') (sin20 tan<^ + cos20) = d' + //,

and («' - />') cos {29 -
(f))

= («' + Z»"') cos<^.

(2). Again, since

_ b"" cos' + a" iiW 9
^"^9--

{d'-h-^)^[n9cos9 '
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= / X?n7r - tan -r-r^
—

,2. . ^ ^h at/ (2)

1 C"'= - I onvdO by adding (1) and (2)

where ?« is a constant integer to be determined.

For this purpose we observe, first, that its vahie is inde-

pendent of any relation between a and h • and secondly, that if

a = b the ellipse becomes a circle and (jy always = ^tt. Hence

in this case

(Pde= ^dB = — and m = - 1.

Hence also, in all cases, m = — 1 and

fJ ^dB = --

3. Through a given point B (fig. 84) of the axis of a; a line

is drawn parallel to the axis of y : to any point Q of this line

another straight line is drawn from the origin and produced to

P until PQ = BQ. Find the equation to the locus of P, trace

the cui've, and find the whole area included between the cm've

and the asymptote.

Extend the geometrical description so as to include the whole

of the curve given by the equation.

Let AB = a, AP = r, PAB = 0. Then

QP = r — a sec B,

QB = a tan
;

.*. r = a(sec0 + tan0),

the polar equation to the curve.
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DifFcrentiating,

-jji = asccO (t&nO + secO)
da

= r sec 0,

.". r^ -J- = rco&O = a (1 + sinO).
dr

When = - and — , r = oo and r^ -^ = 2a and : hence
2 2' dr '

the axis of ?/, and the line DCD parallel to it such that AC =2a^

are asymptotes to the curve

:

f\ r.
I dr ^

^ = ^' '• = ^' rTe = ^^

> 0, < 2 "? ^ i^ positive
;

„ TT 1 + sin .

t/ > — < TT, r = — a
J.
— IS negative

;

2
' COS0 ^ '

rt
Stt 1 - sin .t/>7r<—-, r = — a jr— is nesrativc :

2
' COS0 ^ '

B = ^Stt, r = cc
,

„ Stt ^ 1 - sin0 .

> — < 27r, r = a ^ - is positive :

2 ' • cost^
^

the negative values of give no new branch of the curve.

Hence the cun^e is of the form represented in (fig. 85).

To find the area [A) included between the curve and the

as}Tnptote D CD'. Produce AF to meet the asymptote in R
;

then the element of the area A
BA = ^{AE' - AF') 8A = ^pasecOy - a' (sec0 + tan0f} SO

= ^a" (3 sec' - 2 sec tan - tan" 6) BO

= ^d' (2 sec'd - 2 sec0 tan0 + 1) SB
;

.-. A = ^d' f2tan0- -\ + b] + C
' \ cosy /

^
[ \l + smBj

j
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from 6 = to = ^TT gives ^A,

.-. ^ = (^7r-f 2) d\

the required area.

If P' be the point where AP cuts the branch BP' of the

curve, it is evident from the tracing of the curve that QP = QB

:

hence the curve may be described as the locus of the point P
on the Hne AR whose distance from Q equals QB.
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GEOMETRY OF THREE DIMENSIONS.

1848.

1. If three chords be drawn mutually at right angles

through a fixed pomt within a surface of the second order

whose equation is u = 0, shew that 2 ^- will be constant, where

R and r are the two portions into which any one of the chords

drawn through the fixed point is divided by that point.

Prove also that the same will be true, if instead of the fixed

point there be substituted any point in the sm'face whose equa-

tion is w = c.

We shall prove the second part of this only, since it mani-

festly includes the first.

Let the equation to the surface a = 0, referred to its centre

and axes, be

Ax" + Bf + C£' = 1 (1).

Let a, /8, 7 be the point through which the lines are drawn

;

then, since it always lies on the surface u = c, we have

Ad' + ^/3'^ + Ct^ = 1 + c (2).

Let l^m^n^^ ^i^h^t h^^^a'hi ^^ ^^^ direction-cosines of the lines,

then their equations are

-,— = ^ -= - = Px say 3),

h ~ -\ ~ >\
~^' ^^'

xj-a y - ^ z-y^'^ =^r=''' <"'

02
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('.»'.»,)7 (^.;'».2*'.2)^ ih"',",) lacing, since (3), (4), (5) are at right

angles to one another, subject to the conditions

K' + f: + K =1 (6),

< + < + <=! (7),

< + < + < = 1 (8).

Where (3) meets (1) we have, substituting for xyz in tenns

^ (a + /.p,)'^ + ^ (/3 + m,p^Y + ^ (7 + n.p.Y = L

The roots of this, considered as an equation in p^, are R^r ; hence

Rr ~ Aa' + ^y8^ + Cy' - 1

^ Ai;' + ^m;-^ + c^;^

c

Similar expressions resulting from (4) and (5), we get by

(6), (7), (8),

^ 1 A+B+C
^ Rr~ c

'

which is constant.

2. Find the locus of the foot of the pei-pendicular let fall

from the origin on the tangent plane to the surface xyz = a^
;

point out the general form of the required sm'face, and find the

whole included volmue.

The equation to the tangent plane to the given surface at

a point {xyz), is

^, V, ^,^ + ^ + - = 3.xyz
The equations to the pei'pendicular on this plane from the

origin, are

At the intersection of these we have

^^1 = yy^ = ^^1 = -—3^
;

therefore, since xyz = a^, we get as the equation to the locus

required, (^^-^ + y^^ + ^-^ = 21a'x^y^z^.
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The form of this surface will be that of four similar sym-

metrical pear-shaped portions, meeting in a point at the origin,

and lying in the octants + + +, -\ , - + — ,
h-

The equation to the surface, transfonned to polar coordinates,

becomes
r" = 27rt^ cosO slu^0 cos^ sin^.

And if V be the volume of one of the portions

V = ^JfJr' smSdrdddi/,

between proper limits,

9 .

/-*"/-"

= - aM
I

COS0 sin'0 cos^ sm<f)d6d(f>
2 J -'

9 ;= - a^ j
cos (p sin (p dcj)

= ^ a'
16

therefore If V be the whole volume of the surface,

V= 4F' = -a^
4

3. A plane moves so as always to enclose between Itself

and a given surface S a constant volume
;

prove that the

envelope of the system of such planes is the same as the locus

of the centres of gravity of the portions of the planes comprised

within S.

Conceive the plane to receive a small twist about any straight

line passing through the centre of gravity of the portu)n com-

prised within S; then, whatever portion is cut off from the

enclosed volume on one side of this line, an equal portion will

be added to it on the other,* so that, by the conditions of the

problem, the plane will pass from any one position to the con-

secutive one by turning about a line passing through the centre

of gravity of the portion comprised within S. Therefore the en-

velope of the planes will be the same as the locus of the centres

of gravity of the portions of the planes comprised within S.

* See Cambridge and Dublin Mathematical Journal, vol. iii. p. 181.
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4. OA^ OB^ OC, are three straight Ihies mutually at right

angles, and a lumuious point is placed at C; shew that when

the quantity of light received upon the triangle A OB is con-

stant, the cui"ve which is always touched by AB will be an

hyperbola whose equation referred to the axes OA^ OB^ is

[y—mx) (x — my) = m&^ where OC = c^ and m is a constant

quantity.

With C as centre, and CO as radius, describe a spherical

surface, then the quantity of light received on the triangle

A OB Is the same as that received by the spherical triangle

CA'B' intercepted between the planes COA^ COB^ CBA^ and

will therefore be proportional to the area of that surface. But

if S be this area,

S = ^irr' {A OB' + OAB' + OB'A - it)

= 27rr'
(
OAB' -f OB'A - ^tt),

since A OB is a right angle.

Therefore if the quantity of light received by the triangle

be constant, OAB' + OB'A must be so, = 2a suppose.

Let the angle OB'A = a + 0^ then OAB' will = a-d^ and

the equation to the plane ABC will be

cos(a+^) x-\- cos[a — 6)y+ {1 -cos'(a + ^) -cos''(a- ^)}*^=7>;

p will be detennined from the consideration that where this

meets the axis of s, we have s = c

;

.-. {l-co3'''(a+^)-cos'(a-^)li = c,

therefore the equation to AB is

cos {c(.+ 6) X + cos[a— 6) y = (1 — cos'"' {a+ 6] — cos^ (a - 6)]^ c

= (-cos2acos2^)4 c (1).

The quantity (— cos2acos^)* is real, since 2a is greater than

a right angle and less than two right angles, and therefore

cos 2a negative.

Putting tana = w, tan^ = t, (1) becomes

(1 - 7it) x+ [l + nt] y = {{n' - 1) (1 - f]}^ c,

and we have to find the locus of ultimate intersections of this

line, subject to the variation of f.
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Clearing the equation of radicals and arranging according

to powers of f, it becomes

f [re [x-yf + in' - 1) c'} + 2tn [if-x') + (x + yf - {n' - 1) c' = 0.

Eliminating t between this equation and its derivative, we get

{[x + yY + {n^ - 1) c'] [n' [x - yY + {n^ - 1 ) c'^} = n^ (f - xj,

which may be reduced to

[x + yr-re[x-yf={n^-\)c\

or {(1 -n)x + (1+ n) y} {(1 + n) ic -I- (1 - n) y\ = («' - 1) c'

;

1 f . n — \
therefore puttmg = »i,

[y — mx) [x — my) = hik?

is the equation to the curve always touched by AB.

In a manner similar to this may be solved the following

problem, set in 1851.

Let a spherical surface whose centre is the origin of coor-

dinates meet two of the coordinate planes in the great circles

Zx^ Zy\ also let the points P, Q be taken m Zx^ Zy respec-

tively, so as to make the surface of the spherical triangle PZQ
constant: shew that the curve which is always touched by the

great circle PQ has for its equations x^ -\- y^ -{ ^ z= d^^ and

xy = ^d^ sin^, where E is the spherical excess of the triangle

PZQ.

The geometrical conditions of this problem are the same as

those of the foregoing. Writing z for c, we have as the equation

to the surface always touched by the plane through the centre,

2 7r + 1 ^ ^ '+

x' + / + z'
cos2a.
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But -rr + E= A' OB' + OAB' + OB'A In the previous notation

= -^TT + 2a
;

.-. 2a = ^TT + E,

and our equation becomes

xy = \ (a;"'* + ^^ + 2:''') sinE".

But since the curve is traced on the sphere, w^e have

x^ -\- y^ + z^ = a^, and we get as the equations to the curve,

X + y '\- z =^ a
,

xy = ^a" sinjE",

the required equations.

5. If be a given point in a surface of the second order,

and OA^ OB, 00, any three chords passing through mutually

at right angles, shew that the plane ABC will always pass

through a fixed point.

Take as origin, and the three lines OA, OB, OC, xn. any

position as axes ; let the equation to the surface be

Ax'->rBy'+Cz'-\-2Ayz+2B'zx-\-2C'xy+'iA"x+W'y+2C"z={).

Then the length of OA will be the value of x, when y = 0,

2 = 0; hence
9 A"

0A = -^-:A
2B" 2C"

similarly OB = ^- , OC = y^ ,

and the equation to ABC will be

Ax By Cz ^ ^ ,,,y+^ + ^, + 2 = (1).

And the equations to the normal at are

_ 3/ _
2A" ~ 2B" ~ 2C"~ 2 [A"" + B"^ + C"''f

where r is the distance from the origin of the point [xyz).

(2),
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Where (I) and (2) intersect, we have, dividing eaeli term

of (1) by the corresponding member of (2),

r

Now we may establish one relation among the nine coeffi-

cients of the equation to the surface. Let then [A"^ + B'"^ + C"'^)

be constant, then the above equation shews that r varies inversely

as ^ + 5 + a
But it is known that if the equation be transformed into the

form
Px' + Qy' + Bz' + 2P"x + 2Q"y + 2B"z = 0,

the quantities P, Q^ B, are the roots of the equation

(-S'- A) [S- B) {8- C) - A" [S-A)- B" [S-B]- C" {S- C)

- 2A'B'C' = 0.

Hence, by the theory of equations,

A+B+C=P+Q + B, a constant.

Hence ?*, the distance from of the point in which the plane

ABC intersects -the normal at 0, is constant, therefore the plane

ABC always passes through a fixed point.

1849.

1. If planes be drawn through any two generating lines

of an hyperboloid which intersect, shew that they will cut the

surface in another pair of generating lines.

Let the equation to the hyperboloid be
'2 2 2

-+^--=1 (1)

Now a plane, drawn through two intersecting generating

lines of an hyperboloid, touches the hyperboloid at their point

of intersection. Let then x\ y\ z\ be the coordinates of this

point, then the equation to the plane will be

XX yy zz
+"/-^: = i c^).
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a;', y\ z\ being subject to the condition

or h' c
^+^-:;ii = i (3),

(1) + 2 (2) + (3) gives

m-m'-m- (^)-

a condition which must be satisfied by the coordinates of any

point where (2) intersects (1).

Now (4) may be put into the form

ic + aj'Y'* . _ (z-\-z'^ (y-^y
a

which may be written

shewing that where (2) meets (1) we have either

fi±£:+2=i.fyif: + y±l] and^^-2 =
\
{'-±i - ^f] ,

O/ \C U J Ct rC \ C J

representing one generating line, or

^E±ii + 2 = i'
(-£±1 _ 2^) and i^^' - 2 = '., f

^ + ?t±l^)
a \ c J a fc \ c b )

representing another.

Hence if planes be drawn through any two generating lines

of an hyperboloid which intersect, they will cut the surface in

another pair of generating lines.

2. If u =f[x^ y, z) be a rational function of cc, y, 0, and

if w = be the equation to a surface, for a point («, J, c) of

which all the partial diiferential coefficients of u as far as those

of the (w — 1)* order vanish, shew that the conical sm-face whose

equation is

[(x-o) ^ + (3/-^) I + (^-^) j} /(«, h c) = 0,

will touch the proposed surface at the point (a, J, c).
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Tx X — ay — hz — c ,.
Let -^j—=^ = —— 1

/ 111 /rt ^ '

be the equations to any line passing through (a, Z>, c).

Denoting each member of (
I

) by r, we shall obtain the other

points of intersection of (1) with u = by writing

a -f- Ir for cc, h -\- mr for y, c + nr for z

in the equation u = 0. This gives, developing by Taylor's

Theorem,

7 HI 7 HI 7 n«

which, since -^ = -^ = -j-y^^ = for all values of m less than n

becomes, dividinsr out by ,' ^ ^ 1.2. ..w'

If the line (1) touch the surface ?< = at the point («, J, c)

equation (2) must be satisfied by making r indefinitely small;

(2) will then become

a condition to be satisfied by the direction-cosines of (1) in

order that it may touch m = at the point (a, 5, c). To obtain

the locus of all such lines, we must eliminate /, w, n from the

above equation by means of (1). This gives

j(^-a)
I-

+ (2,-i) I + (.- c) gV{a, J, c) =

as the equation to the conical surface which touches u = at

the point (^/, />, c).
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3. A rod AB is fixed to a universal joint to A^ and another

rod BP is conneeted to it by a universal joint at B: all di-

rections of the rod being equally probable, find the chance of

P lying between two spherical surfaces of given radii, whose

connuon centre is A ; and shew that the chance of P lying

within a given elementary portion of space containing the point

P, varies inversely as AP^.

Let AB =a,BP= h.

The chance that P will lie between two spherical surfaces

of given radii, is the chance that the angle ABP will lie be-

tween two values 6^ and 6^, which correspond to the values

r^ and r^ of -4P, r^ and r^ being the radii of the spherical shell.

Now the chance that ABP will lie between 6 and d + B0

= area of zone described by P about B fixed, while has all

values from ^ to + B6 ^ surface of sphere generated

by P about B fixed,

27rb sin^ x b s[n0 , . /, ,/,

4:7rb'
^

Hence the chance required

1 f ^ . ^ 1, z, /,^ Ifa' + b'-r;' a' + b'-r
__ I oivi /-/ — I ona H nr\a H \ -— i —i^-

1 sin ^ = - (cos 0, — cos'^,
2 / „ 2 ^

'
'

''' 2\ 2ab 2ab

4ab '

The chance that P will lie in an element V of space about P^

= chance of falling in a spherical shell about A as centre of

^, . 1 -, ,. volume of element
thickness or, radius r x ^ ;^-^j—n-' volume ot shell

_ 2rSr V _ V 1 1

4rtZ' 47rr''*^r STvab ' r r'

4. Determine the condition to which the vertices of a system

of cones which envelope an ellipsoid must be subject, in order

that the centres of the ellipses of contact may be equidistant

from the centre of the ellipsoid.
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Let ^, 7;, ^, be the coordinates of the vertex of any one of

the cones ; then if tlie ellipse be refeiTcd to its centre and

axes, the equation to the plane of contact will be

1:^ + ^ + ^ = 1 (1).

The centre of the ellipse of contact will be the intersection

of (1) with the straight line joining the centre of the ellipse

with the vertex of the cone ; its equations are

X ^ z

Hence if h, A-, I, be the coordinates of the centre of the

ellipse,

In order that the centres of the ellipses may be equidistant

from the centre of the ellipsoid, we must have

Ji^ + I? + T^ = constant, p^ suppose

;

the equation to the locus of the vertices.

5. Determine the form of the termination of a honeycomb

cell on this principle, that if a sphere which will just pass

through the hexagonal transverse section be dropped into the

cell, the unoccupied space at the extremity of the cell shall

be the least possible.*

Let ahe (fig. 86) represent half of one of the rhomboidal

plates, three of which close each hexagonal cell. ABC re-

present the eighth part of a sphere. Then, by the general

principle of Envelopes (see Cambridge and Dublin Mathematical

Journal^ vol. iii. p. 181), the volume in question is least when

the point of contact d is the centre of the rhomboid: or we

must have ac = lad.

Let OA = a, 07) = r ;
.'. a = r cos .30° = r - .

* For this solution we are indebted to Mr. Goodwin,
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Let Oac =
J

.-. a = Od = ad tan0 = ^ac tan^

= ^r cosec^ tan0
;

.
3* , 1

COS(f>
'

.'. COS9 = ,-T .

3*
Again, hd = ED sin 60 = r — , and ad = ^r cosecc^

;

.'. t&nbad = ^ = 3* sm(f> = 3* (1 - i)4 = 2*.

These are the angles required.

6. The tangent plane to a surface S cuts an ellipsoid, and

the locus of the vertex of the cone which touches the ellipsoid in

the curve of intersection is another surface S'. Prove that S and

S' are reciprocal, that is, that 8 may be generated from 8'

in the same mamier as ;S^' has been generated from 8.

Take the axes of the ellipsoid as coordinate axes, and let

the equation to 8 be
^ = 0.

°
•

That to its tangent plane at any point xt/z, is

, V d8
I

, 68 , , d8

This may be put under the form

d8 d8 d8

dS dS d8~
dx "^ dy dz

If ^, 77, ^, be the coordmates of the vertex of the cone touch-

ing the ellipsoid in the cm-ve of intersection with this plane,

we have ^
^ dx

a'^"^ dS dS'

dx ^ dy dz

with similar expressions for t] and ^.
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Again, if with [xyz) a point of S as vertex we describe a

cone touching the ellipsoid, the equation to the plane of contact

will be

«l , ^ , ^ _ 1

d' ^ h'
"^

6' ~ '

1^, 77, f being its current coordinates. To find the locus of

ultimate intersection of these planes, eliminate .r, ?/, z between

the differential of the preceding equation, and of

this gives ^^ + ^ = 0,

h dy

Multiplying these equations in order by a?, y, 2, and adding,

^'eget js dS dS ^
^ + ^;^ + ^^ + '^=''

dS

^ dx

dx " dy dz

with similar expressions for 77, ^.

Hence the locus of f , 97, ^ is 5".

That is, the locus of the vertex of the cone touching the

ellipsoid in its curve of intersection with a tangent plane to 8
is the same as the envelope of the plane of contact when a cone

is drawn from a point of 8 as vertex, circumscribing the

ellipsoid. This holds for all surfaces, therefore for 8'

.

But from the mode of generation of 8\ it is easy to see that

the envelope of the planes of contact of cones drawn from its

points as vertices is 8\ therefore, by what has been proved, the

locus of the vertices of the cones touching the ellipsoid in its

curves of intersection with the tangent planes to 8' is 8^ that
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is, S may be generated from S' in the same manner as S' was

from S, or S and S' are reciprocal.

1850.

1. If from a point be drawn any two lines to the polar

plane of in a surface of the second order and meet the plane

in A and i?, and if the central conjugate plane of OA meet OB
in C, and the central conjugate plane of OB meet OA in Z),

CB is parallel to AB.

Take that diameter of the ellipsoid which passes through 0,

and two diameters conjugate to it, as axes. Let the equation

to the ellipsoid be
H 2 2X y z

1- — -I = 1

a b c

Let ^ be the distance of from the centre, then the equation

to its polar plane is

a
" = T-

Let the coordinates of ^ be — , ?/j s^ ; of ^, -^ , y^, z^. Then

the equations to AB are

a'" y — V, z — z^ ,.

f 3/l - 3^2 ^1 - ^2

The equations to OA will be

a"
X ^

t y z

:75
^ =

f"
= ^ = ^ suppose (2),

I
.

therefore the equation to its central conjugate plane is

'a"^ J\ X w,?/ z^z

l-f)5=' +¥ + iP =
° <-'>

Similarly, the equations to OB are
'2

a
^ — -y^^ = ^ = i = .-, (4),
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therefore that to its central conjugate plane is

At the point C, the intersection of (3) with (4), we have

1-^

Similarly, it will be seen that at i), the intersection of (2) and

(5), we have

a

'2 / '•! ,

the values of .r at C and D are each equal ^o -g + (^ - I) »',?

therefore the equations to CD are

«^ = T + h--^ri'
I VI J '' y,-y^ ^1 - ^2

'

by comparing which equations with (1) we see that CD is parallel

to^i?.

2. A plane moves so as always to cut off from an ellipsoid

the same volume ; shew that it will in every position touch a

similar and concentric ellipsoid.

If a plane be drawn touching the interior of two similar

and concentric ellipsoids, the point of contact will be the centre

of its elliptic section made by the exterior one. Now conceive

this plane to receive a small twist about any diameter : it will

still remain in contact with the interior ellipsoid, and whatever

portion is taken from the volmne intercepted between it and

the exterior ellipsoid on one side, will be added to it on the

other, therefore that volume will be unaltered. Hence con-

versely, it follows that if a plane move so as always to cut off

p
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from an ellipsoid the same volume, the sm*tacc which it always

touches will be a similar and concentric ellipsoid.

3. If F{x^ y^ c) = be the equation of a system of curves,

where c is a variable parameter, and
(f)

(.r, y) = the equation

of the envelope of the system ; shew that ^ (.x, y) = is the

equation of a cylmder whose intersection with the surface

jP(.r, y, s) = is the locus of points which in sections parallel

to the planes of yx^ zx^ have their tangents parallel to the

axis of z.

Ex. The cone whose equation is a? + y'^ + s^ = [Ix + my + nzj

is cut by planes parallel to the planes of yz and zx ; find the loci

of the extremities of the diameters of the sections which are con-

jugate to the vertical diameter.

(a). The equation (f>{x,y)=0 (1)

results from the elimination of c between the equations

F{x,y,c) = 0,

and -^- = 0.
dc

It will therefore be also obtained by eliminating s between

F{x,y,z)=^0 (2),

and -^ = 0.
dz

Hence, where the sm-faces represented by (1) and (2) inter-

sect, we have

f- (3).

Now the equation to a tangent plane to (1), parallel to the

plane of yz. is

,
,dF , ,dF ^
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dF
If tlicrcforc -^- = o, this becomes

az

which is evidently parallel to the axis of z.

Hence at the curve of intersection of the cylinder (1; and

the surface (2), the tangent in a section parallel to the jdane

of yz is parallel to the axis of z.

Similarly it may be shewn that the tangent in a section

parallel to the plane of xz is parallel to the axis of z.

(/3). In the example, the tangent at the required points are

parallel to the vertical diameter, tliat is to the axis of z^ hence

we get the locus required by eliminating z between

F{x^ y, z) = oc' + / 4- z' - [Ix + my + nzf = 0,

dF
and -T- = 2z — 2n [Ix + my + nz) = 0.

The latter equation gives

Ix + my
1 - n^

Hence a.'" +f= [Jx + my; (l + ,^^ - n' ^^^^1'

_ {Ix + myY

is the equation to a cylinder, whose intersection with the given

surface is the required locus.

4. If .r, ?/, 2-, be the coordinates of any point P on the surface

f{x, y, z) = 0, x\ y\ z of a point F on the surface /(a?', y\ z') = 0,

and for any position of P, x' = Ix^ y = my^ z = nz ; and if the

surfaces be such that when we take any two points P, Q on the

first and two corresponding points P', Q' on the second, PQ is

equal to P ^ ; find the fonn of the sm^aces.

Let f , 17, ^ be the coordinates of Q.

Then ?f, W17, nf are those of Q\

... PQ- ={x- I^Y +{y- mriY + [z - nXf,

PC/ = (I - Ixf + (7; - my? + (^-. nz)%

P2
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and these are equal ; hence we get

(^ - I^y + {y- mvT +{z- n^Y = (^ - Ixf + (77 - m^/f + {^- nz)\

oi'{l-r')x'+{l-ni')f+{\-7{')z'={\-r')^'+{l-m')v'+ {l-n')^\

for all values of x, 3/, z
; |, »;, ^, consistent with the equation to

the surface /(.r, y, z) = 0.

We must therefore have

(1 - r) x' + (1 - m') y' + (1 - '?'") z' = constant, a' suppose,

which determines the form of the required surfaces, which are

evidently central smfaces of the second order, of which the axes

of coordinates are principal axes.

5. It is not possible to fill any given space with a number

of regular polyhedrons of the same kind except cubes, but this

may be done by means of tetrahedrons and octahedrons which

have equal faces, by using twice as many of the fonner as of

the latter.

Consider two octahedi'a so placed that two of their edges

shall coincide, and the squares of which they are sides be in

the same plane. Let AB (fig. 87) be either of these edges,

G a vertex of one octahedi'on, not lying in the plane of the

squares, D the corresponding vertex of the other. Then CD = a

side of the square = AB = CA = CB = BD = AD^ by definition

of a regular octahedron. Hence CADB is a regular tetrahedi'on.

Hence if we have a number of octahedra, so placed that one

plane shall contain a square section of each, and each edge of

each such section coincide with one edge of each of the adjacent

sections, an equal number of tetrahedra will fill up the vacant

space above the plane, and therefore by using twice as many

tetraliedi-a as octahedi-a, we fill up the space above and below.

6. Prove that the tangent plane at any point of the surface

[axY + iJyyY + [czY = 2 {bcyz + cazx + ahxy)^

intersects the surface ayz + hzx + cxy — in two straight lines

at right angles to one another.
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The equation

{axY + [hjY + {cz)'' = 2 [hcyz + cazx + ahxy)

may be put into the fomi

{ax)^ + [hyY- + [czY- = (1).

Also ayz + hzx + cxy = may be wiitten

« ^ c „ ,_.
- + -4 - = 2 .

x y z

The equation to the tangent plane to (1) at any point [xyz] is

Let [l^m^n^^ iO^h^^) ^® ^^^ direction-cosines of the lines m
which (2) meets (3), then the condition of these being at right

angles to one another, is

IJ^ + m^m.^ + n^n^ = (4).

Now where (2) meets (3), we have, writing x^y^z^ for xyz in (2),

«(ir-(r-(ir-(-)'i(iy^(i)'a'

a quadratic m -- whose roots are —^ ,
—^ . Hence

©'^.-(D'^'-e/^-" (^'-

njWjj VC2;

similarly -^-^ =
f
—

) :

n^n^ \czj '

.-. IJ^ + ?n,?«, + »,?i, =c (aa-)* + (%)* + [czf = by (1).

Hence the tangent plane at any point of (1) cuts (3) in two

straight lines at right angles to one another.

7. A certain territory is bomided by two meridian circles,

and by two parallels of latitude which differ in longitude and

latitude respectively by one degree, and is known to lio within

certain limits of latitude : find the probable supci*ficial area.
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First, to find tlic ohaiiec that tlic centre of the territory

which lies between known limits a, /9 of latitude lies in the zone

between paraHels of latitude J and I + hi.

area of zone breadth hi
This chance =

area of zone breadth (a— /3

27r?-cos/ rhl

I 'Inrr cos^ rhl

cosZ hi

(/• the radius of the earth,)

sin a — sin /3
'

Then the probable supei-ficies of the territory

co%lhl

j li sina — sin/S
'

A being the area of the territory when its centre lies in the zone

between the parallels I and I + hi;

1 W+30

= —- {sin (l + 30') - sin [l - 30')},
180

27rr'''sin30'
cos/.

180

Therefore the probable superficies,

27rr'sin30'

/3 180(sina — sm/3)

7rr'sin30'

cos' Ihl,

180(sina-sin/3)
[a - y8 + 1 (sin2a - sin2^)}.

1851.

1. A line passing through a fixed point and having the sum

of its inclinations to tAVO fixed lines through the same point

constant, generates a cone of the second order.

Any section perpendicular to either of the fixed lines has for

a focus its intersection with the fixed line.
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(a). Let OP be the moving line, OS^ OH the fixed lines.

Take the lines bisecting the angle 80H and its interior angle

respectively, as axes of x and y. Describe a spherical surface

about 0, cutting OP, 08, OH in P, 8, H-, join SH, SP, HP
hy arcs of great circles, then by the conditions of the problem

SP + HP = constant, 2a suppose.

Bisect ^7/ in X, join OX, let SX = HX = ^. Draw PM
an arc of a great circle, perpendicular to SH, let XM — 0,

PM=
(f).

Then, by Napier's rules

cos SP = cos 8M.C0SMP,

= C0S(/S+ d) COS(j>,

COSHP = cos HM.cosMP,

= cos(/S— 6) coacf).

XT OT> TTT> o SP+HP SP-HP
JNow cos oP + coaiiP = 2 cos -— cos ;

.'. cosp cost/ cos(^ = cos a cos
,

. jrj, Qp o • SP'rHP . SP-HP
and cosHP — cosbP = 2 sm sm ;

' a ' a M ' '
8P-HP

.'. smp sma cos9 = snia sm
,

therefore adding squares

,, , fcoB^ 13 cos' sm'8mr^0\
, ,

cos'</) ^^— + ~, = 1 (1 .^ \ cos'

a

sm'a j ^ '

Now sln^ = sinPil/ =
x'-\-y'-\-zy

2 » ^ + y
.-. cos = —, ^ ; ,^ x^ + y^ + z'^

cos = j-z 2^ 7
i^i" =

/ ., ,M ;{x'+yy {^' + y')^'

therefore equation (1) becomes

x'—^ + y ^^ = x' + y' + z' 2),
cos'a "^ sm'oL

^
^ '^

shewing that tlie locus <»f /'is a cone of the second order.
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{j3). Let i'cosyS + ?ysiii/S = ;; (3),

be the equation of a plane perpendicular to OH.
Where this meets OH, we have

X =p cos^, y — V sinyS.

The distance of any point [xyz] in (3) from this point is

If the point {xyz) also lie in (2), this becomes

fx' cos'/3 ^ ?/ sin'^/3 _ ,\4

V cos"''a ' sin'''a /
'

or substituting for y from (3)

jiC'^ COs'-'/S (j3-£CC0S/9f 2I*

( cos'^a sin"''a
J

'

which is equal to

x' cos'' /3 'Ijix cos /3 ^/ cos^ a\ *

cos a sm a sm a sm a

a; cos/3 cosa
or ; p —— .

cosa sma sma

Hence the distance of any point in the curve of intersection

of (2) and (3) from the point of intersection of OH with (3) is

a linear function of x, which is a property peculiar to the focus.

Therefore any section pei^pendicular to either of the fixed lines

has for a focus its intersection with the fixed line.*

2. The locus of the points in which a prmcipal plane of a

surface of the second order is intersected by the noi-mals at the

different points of a plane section of the sm'face is a conic

section.

Let the equation to the surface referred to its prmcipal

planes, be j^-^^ ^ Bf + C'/ = 1 (1),

and to the plane of section

Ix + lay + nz =2^ (2)-

* Sec Ilcaru on Cunes of the Second Order, p. 60, ct scqq,
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Then those to the normal at [xyz] are

Ax By Cz

Where this meets the plane of yz^ we have

i',=3'(i-D, ^.=^(1-2

Ay, Az,

EUmhiathig x between (1) and (2), and substituting the

above values of y and z^ we shall obtain the equation to the

locus required, which may easily be seen to be of the second

order.

3. Noraaals are drawn to a surface at points indefinitely

near to and equidistant from a fixed point in the surface : de-

temiine and discuss the equation of the surface generated by

the nomials.

Take the fixed point as origin, and the principal planes

through it as planes of yz and zx. Let the equation to the

surface be ^ = ^^.2 ^ ^y. ^^^^^

The equations to the noraials at (a*, y^ s), are

or x^- X ->r 2Ax{z^-Ax'- By'-...) = (1),

y,-y + 2By{z^-Ax'-Bf-...) = (2).

Again, since the point (xyz) is always at the same distance

fi'om the origin, we have

X + y + z = rt
,

or x' + y'+ {Ax' + Bf+...Y = a' (3).

The elimination of x, y between (1), (2), (3), would give the

equation to the surface. But since the point [xyz] is always

indefinitely near to the origin, .r, y, z arc always indefinitely
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small, and \vc may neglect their powers higher thau the second.

Hence our equations become

.-r, — X + 2Az^x = 0,

y,-y + 2i?2!,7/ = 0,

Eliminating a?, y between these, we get

< + y^ - .2

(2^2, -1)"^ ' i^lBz^-X)' '

the required equation to the surface.

This surface is evidently of the fourth order, and symmetrical

with respect to the planes of yz and zx. Its section, by any

plane parallel to the plane of xy is an ellipse, which becomes

a circle when the distance z^ of the cutting plane from that of

xn = ^ . When z, = —r , the equation becomes x, = 0,
"^ A + B ^ 2>1

'

'

shewing that the section is there a straight line parallel to the

axis of y, and similarly when ^1 = ^5 the section is a straight

line parallel to the axis of x. The points where these lines

meet the axis of s, are the centres of curvature of the principal

sections for —7 , -^ are the principal radii of curvature at the

origin. When ^1 > ^ (supposing A > i5), the area of the

section continually increases, as manifestly ought to be the case,

since the normals altogether diverge after ^1 > ^ •

4. A plane is drawn through the axis of 3/, such that its trace

upon the plane of zx touches the two circles in which the plane

of zx meets the surface generated by the revolution romid the

axis of z of the circle [x — aY + z^ = c^ (c < a) ; find the equation

to the curve of intersection of the plane and surface, and from

this equation trace the curve.
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The equation to the phinc will bo

z X
(0-

c [d'-c^f

The equation to tlie surface, generated by the revolution

round the axis of z of the given circle, is

\{x' + yy--aY^z' = 6\

which rationalized becomes

[x' + if + z'-^d'-6y = lc{'{x'^y'') (2).

To obtain the curve of intersection of (1) and (2), we must

turn the planes of ^^ and xy round the axis of _y till (1) coincides

with the plane of xy^ and then put z = 0. This is effected by

^^'I'iting [a^_(^\i.j,-c.^
tor X.

a

ex + (a^ — c^)^ z .
^ — for z.
a

or since z is to be put = 0, ^^ — x for x. and — for z : this

reduces the equation to

(a;« +f + a' - 6y = 4 [{d' - &) x' + a'y
},

or [x' + y' + d' - c'Y = -i{a'- c') {x' + /) + 4o\y'-',

which may be reduced to

x' + y' - a^ + c^ = ± 2cy,

or x' + [y± c)' = d%

shewing that the curve is composed of two circles, the radius of

of each of which is a, and whose centres lie on the axis of y, on

opposite sides of the origin, and at a distance from it = c.

5. Prove (one of) the two following properties

:

(1). If [A]^ {D) be two given spheres not intersecting each

other, then every sphere which cuts [A] and (/>) in given angles

will touch two fixed spheres.
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(2). If (/I), [B] be two given spheres cutting one another,

then every sphere which cuts {A) and {B) in given angles will

cut orthogonally a fixed sphere.

(I). Take the line joining the centres of the spheres for axis

of .c, and its middle point for origin : let a, — a be the abscissae

of these centres, r,, r^ the radii of [A) and [B] ; x, i/j z the

coordinates of the centre of a sphere which cuts {A) and {B) in

given angles a, /S ; r its radius. Then we must have

[x — ay + / + z^ = r'^ + 1^ — 2rjr cos a,

[x + (if + if + z' = r^l; + r' - 2?y cosyS.

Let (&, 0, 0) be the coordinates of the centre of a sphere

which this moveable sphere always touches.

Adding and subtracting the above equations, we find

ic' + a' + f + z' = \[r'^ + r/) + r' - v{i,\ cosa + ?'._, cosyS),

and — Ixb = - - \rf — r^ — 2r [r^ cosa — r^ cos/3)],

y^ - d' =^F - a\

adding these three equations, we have

{x —ljf-\-f + ^^ = ?•' — r\ r^cos a + )\ cos /3 + - [ii\ cos a — r, cos /3) \
,

+ i{<^ + ^-.^ +^ (^-/-O} + ^"^ - «^
(!)•

It is evident that the moveable sphere will touch the sphere

whose centre is at a distance from the origin if the right hand

member of equation (1) be a perfect square, or if

jr^cosa+ r^cosyS + - (r^cosa— r^cos^S) I = 2 |rj^+ r./+ - [rf— r./) \

a quadi*atic for the detennination of J, shewing that there are

two spheres which the moveable sphere always touches.

(2). Also it is evident that the moveable sphere will always

cut orthogonally the sphere, the abscissa of whose centre is Z»,

if the right-hand member of equation (1) assume the form
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This it will do if

r^ cosa + r^ cosyS + - {i\ cosa — r^ cos/3) = ;

h »• COS/8 - r, cosa
or — = ~ ' '

a r^ cosyS — r^cosa '

which dctennines the centre of the sphere.
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DIFFKIIENTIAT. EQUATIONS.

1848.
cos 37

Assuming that sinx H is a particular integral of the

equation

S + (-l)^;« ().

find the complete integral of the equation

S-(-l>=^" (^)-

We see by substitution that not only

cos a;

y = smr» H ,^ X '

is a particular integral of equation (1), but also

since

^ X

Hence the complete solution of (2) is

. / . cos£c\ -r, ( sin a?

y = A\ sma; H —
j
+ i? I cosa-

where A and B are arbitrary constants.

Now assume as the integral of equation (2),

. / . cosa-N „ / sin.r\
y ~ A\ sma; ^

J
+ i> ( cosa; 1

,

where A and B are now functions of x which have to be

detennined.

By the usual assumptions of the method of variable para-

meters, we find

dy . f sina; cosa?\ -r. / . cosa^ sina;\
-^ = A\ cosa; s— ]

- B [ sma; H -^- ,

ax \ X X j \ X X J
^

, dA I . cosa;\ dB ( sina;\ ^ ,^.

and T- sma; H + -^ cosa; = (3).
ax \ X J ax \ X J ^

'
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., dA ( sin a? cos.rN dB ( . cosa; 8111,0?

Also ^— cosa:: 5- ?- sin^c -\ ;

ax \ X X j ax \ x x

= ^'
(4).

From the equations (3) and (4), wc proceed to find -y- , -7-
,

dA {[ sinicV'' cos a; / siiiicN / . cosoj'
-5— \ cosic ^ cosa? 4- sma? ^
ax y\ X j X \ X J \ x

sin a; / . cosicXl
- -w r"^

+—j[
•

2 f sina;= X cosa;
V a;

dA [^ 1 1\ „ / sina;\
or -7- 14—, 5 = a? cosa; ,

dx \ X' X I \ £C /
'

dA „ / sina;\

, „ ,„, dB „ / . cosa!\
and irom (3) — =. — x \ sina; 4 j

;

.'. A = a^'^'sinx — 3/a; sina%?a;,

= a;^ sina? 4- 3a; cosa; — 3 sina? 4- C,

and B = x^ cosa? — 3/a; cosa;^,

= x^ cosa; — 3a; sina; — 3 cosa? 4- D
;

therefore the complete integral of (2) is

/ . cosa;\ , „ . ^ „ . ^.
.•. y = [ sma? 4-

1 (a? sma; 4- 3a; cosa? — 3 sina? 4- C
j,

/ sina?\ ... „ , „ ^,
4- ( cosa?

]
(a? cosa? — 3a? sma? — 3 cosa? 4- i/j,

2 ^J . cos.-z;\ ^ / sina;^
= a;^ 4- 6 [ sma? H \ -^ D{ cosa? j ,

C and D being arbitrary constants.

1849.

A curve is defined by this property, that the radius of cur-

vature at any point in a given multiple of the portion of the
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nonnal intercepted between tlic point and tlie axis of abscissa?

;

prove that the length of any portion of tlie curve may be ex-

pressed in finite terais of the ordinates of its extremities.

The lengths of the radius of curvature and normal are

respectively

dx)

hence the dilFerential equation to the curve is

^"^'^LL = „Ji^r^V= ny \ 1 -I-

d'^y "^
\ \dxj

_A
dx"" 1

(Fx

dy' 1
or y

I
= —

.

Lt — -t, B' .^-Ii (^^W —
dy - ^^^

'
" dy ~\ [dyj ] dy '

and cot^ -7- = —

:

dy ny '

.". log cos^ = ^ogCy
;

or cos =
(GuY

n
and s = -^ C^y " + 0',

C, C being arbitrary constants.
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lleucc the lengtli of any portion of tlie curve is known in

terms of the ordinates of its extremities.

1850.

1. lff{x — a, y — h^ z — c) be homogeneous with respect to

X — a^ y — h^ z — Cj theny (a; — a, y — b, z — c) =0 is the equa-

tion of a cone whose vertex is (a, J, c) ; if the cone pass into

a cylinder by «, J, c becoming infinite, shew algebraically that

the limiting fonn of the above equation is

(j) [nix + ny -^-pz -j- q^ mx -f ny +p'z + q) = 0.

Let the axis of the cylinder, to which, as its limiting form,

the cone tends as a, Z», c, are indefinitely increased, be parallel

to the intersection of the planes

mx + ny + pz = 0,

m'x + n'y + p'z = 0.

Then we have ma + nb + pc = a finite quantity, a suppose,

m'n -{ 71 b + pic = a'

Hence when «, Z>, c, become infinite we get, neglecting a, a!

in comparison with a, b^ c,

-.^^=^^ = -.^-^ 0).np — np pm — pm mil — mn

Now since f is a homogeneous fimction, we have, if n be

its degree,

= 0,

if iV if if if if ,„>

Hence dividing each term of the left-hand member of (2)

by the coiTcsponding member of (1), and observing that when
a, 6, c, become infinite, the right-hand member will vanish after

the division,

i¥ - "» ^ + (i^»'' -2>"i) ^ + (»'i«' - »«'«) '£ = 0...(3)

:

Q
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whence, by Lagrange's method, we get

dx dy dz

np — i^p pm — p'm mn — m'n '

whence mdx + ndy + J)*^^
— ^j

m'dx + ndy + p'dz = ;

.". mx + vy -^ pz -\- q =0,

m'x 4 ny + p'z + 5'' = 0,

q^ q being constants.

Therefore the integral of (3) is

(f>
[mx + ny + p^ + q, m'x + n'y + p'z •+ q) = 0,

the limiting fonn of f{x — a, y — h^ 2; — c) = 0, when a, />, 0,

are indefinitely increased.

2. Prove the following formulae

:

W- - = '«(^ + ^')
(1X5:7 + 93113X5 +••)•

cosl(,>-2.-) «-.l ^ cs{{n-2r)b-s] ^ ^^^^^^
^ ' sm(a—c>)sm(a—cj... sm(6—a) sm(o—c) . .

.

'

where s is the smn of the n quantities a, 5, c,... and r is any

integer between 1 and n — \ inclusive.

(1). We have

Vl.3.5.7 "^9.11.13.15
"^*"

= ^{(l?7"3:5) + (9j[5"rL13)+-

= {(!-}) - 3 (^-i)} + {{h-h) - 3 (,^1-1^)1 +•••

= 2(j-H^-U..-)-(l + ^-^-|+-) (!)•
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Again, generally

1 x' X* x'' 1 , n+x
l+J + -5+T'--=2-x^'^[l-

Let ic* = — 1, then x = cos|7r H— ^sin^Tr,

1 + ic _ 1 + cos^TT H— * sin^TT

' '

1 — X 1 — COS^TT - — 4 sin^TT

2 cos'''|7r H— * 2 sin^TT cos^tt

2 sin^^TT * 2 sin^TT cos^tt

, 1 COSiTT -\ * siniTT
= COtiTT . f J

1-
Sin^TT * COS ^77

= — * COt^TT

= £-*^"coti7r;

^^^ (r=^) = - H-^ + log COt^TT,

and
2x 2* + - 4 2*

Oj i 9*

, /l+a;\ 2* 42* ,
,

; ^^Ir^j
= 4 (- ^TT + log COt^TT)

= ^i (log COt^TT+ ^TT) - -i—
( log cot '^ - ^TT

Therefore, equating real and imaginary parts,

1 -
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(2). In general,

Let y = wx, 0) being one of the imaginary cube roots of unity,

then £"" = ^ + -]- "^TT
"^"

Similarly, e'"'^ = l + ^ + ^V..,

^^=^+f+i4+-
Now 1 + ft) + ft)^ = 0,

But e'"" + £"'•' = e^-^^-** )^ + e(-5--*i )^

= £ - 2 cos --
2 y

'

1.2.3 1.2..3.4.5.6 ^ V "r -r
;

= ^('£" + 2£-^-'cOS^

This problem may also be solved by putting the series = w,

we shall then get the differential equation -^ — t« = 0, the in-

tegration of which, when the arbitrary constants are properly

determined, will give the required value of u.

(3). If r lie between 1 and r?, we may assume

cos (?i + 1 — 2r) ;r _ A B
sin(ic— a) sin(ic — 6)... sin (a? — a) sin(a; — J)

"*'

^, J5, ... being quantities independent of iP,

.•. cos(»i+l— 2r)a;=-<4sin(ir— J)sin(a;— c)...+jBsin(a7— a)sin(a;— c)...

+ . . . identically.*

* We may justify the above assumption by expanding both sides of this

equation in terms of sinx and cosx, and dividing by cos"''j; ; the left-hand side
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Putting X = rt, we get

cos {n+ l — 2r) a = A ain {a — b) sin (a — c) . .
.,

^ cos(n+ 1 — 2r) a , >

8in(« — oj sin(a — cj...

t3- -1 1 7?
cos(w+l-2r)6 , .

bmiilarly B= • /, x • /z
.-^— (2 ,•^ 8in(6-a) 8m(6 — cj...

cos (« + 1 — 2r) a? cos (n + 1 — 2r) a

sin(ic — a) 8in(cc — 5)... 8in(a — J) 8in(a — c)...sin(a; — a)

cos (n + 1 — 2r) 5

sin [b — a) sin (& — c) . . .sin [x — 5)

cos (n + 1 — 2r) a cos (n + 1 — 2r) &
'*

sin(a—&)8in(a— c)...sin(a-a;) 8in(5— a)sin(5—c)...sin(6—a;)

+ .

^°«(''+!--2'-)-^ ,0 (8).
8in (aj — «) s,in[x — 0) . .

.

In a similar manner it may be shewn that

sin [n + 1 — 27-) a sin [n + l — 2r) ^

sin(a—&)sin(a— c)...sin(rt— x) sin(5— a) 8in(5— c)...sin(6— ic)

,

_
sin (m + 1 - 2r) a; _^

sin(a; — a) sin(a; — J)...

(3) coss + (4) sins, where s = a + b +...+ x gives

cos{(n + 1 - 2r) a- s} cos{(«+ 1 — 2r) & — s} _
sm [a — 6) sin (a — c) . . . sin {b — a) sin [b — c)... '" ^ '

the required result proved for the w + 1 quantities «, J,... a^.

of the equation becomes /(tanx).(seca:)^''''", /being of n — 2r + 1 dimensions,

or /(tanx) (1 + tan*^;)'''', which is therefore of n — 1 dimensions, and the

equation becomes one of n — I dimensions in tanx ; it may therefore be
identically satisfied by the n quantities A, B . . . . We here suppose » + 1 — 2r

positive: if however 2r > n + 1, we may A\Tite for 2r, 2m + 2 — 2s, where
2a > 1 < n + 1 ; cos (n + l - 2r) x then becomes cos (n f 1 — 2s) x, in which
n + 1 - 2i is always positive.
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3. Given f[x) ^f{y) =f{x+y)[\ -f[x)f{y)], find the

form oi f{;x).

Since f[x) +f{y) =f{x + y) [1 -f{x)f{y)} (1),

put X = y = 0^ then

2/(o)=/(0){i-7(om;

therefore either /(O) = 0, or

1 -/(0)> = 2,

giving /(0)=±(-l)i

Taking this latter value, and putting y = in equation (1),

f{x)±{-lY-=f{x){l + {-l)if{x)},

which gives f{x) = + (— 1)^ for all values of x ;
therefore the

given equation is satisfied hj f{x) = ± (— 1)*.

Again, if /"(O) = 0, in equation (1) wi'ite y = — x, then

f{x)+f{-x)=f{0){l-f{x)f{-x)],

..f{-x)=-f{x).

Differentiating (1) with respect to y, considering x constant,

therefore, putting y = - x^

/(-^)=/(0){i+yW1-^l;

or putting — x = z^

/(^) =/'(o) {i+TRi'l.

Now/'(0) = some constant, C suppose,

.-. ^^ = a{i+./>)l'^

Whence f{z) = tanCs,

or f[x) = tanCic,

which determines the foim of/(ic), C being an arbitrary constant.
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1851.

1. Let P (fig. 98) be any point in a curve and 8 a given

point in a straight line A8\ draw SU perpendicular to SP^ and

let the tangent at P meet SU^ 8A respectively in U and T\

find the nature of the curve when 8U bears a constant ratio

to 8T.

Let the curve be referred to P as pole and 8A as prime

radius; then

8U: 8T:: sm8TU: Bm8UT

:: 8m{d +8PU): cos8PU

: : sin ^ + cos ^ tan8PU : 1

;

.'. sin^ + cos^ tan 8PU= constant, e suppose.

Now tan8PU= r -=-

,

dr '

.'. rcosu -— = e — fund,
ar '

cos^ de _ 1

e — m\d dr r '

and log(e — sin &) = log -
,

• a ^
or sma = e— .

r

Transforming this equation to rectangular coordinates,

y = e (a;' + /)*-c,

or eV + (e' - 1) / - 2ci/ - c' = ;

shewing that the curve is an ellipse or hyperbola according as

e is > or < 1.

2. The equation c — a cos^ cos0 — h ainO Hin<f) = may be

considered as the complete integral of

dO #
{d' cos'^ d + J/ sin"^ d - c') ^ ' [d' cos'^ ^ + h' sin'^ - c^
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If c — acos0 COS0 — b siii^ sin(^ = (1),

(a sin 6 cos <p-b cos 6 sin 0) c?^ + (a cos ^ sin — ?> sin cos 0) (^Z0 = 0,

and (1) may be considered as the complete integral of this

equation, or of

acos^ sin^ — Jsin^ COS0 asin^ cos^ - Jcos^ sin^
•••\ n

c being considered an arbitrary constant.

Now (acos^sin^— J8in^cos0)'''+c'''= (acos^sin^— Jsin^cos^)^

+ (acos^cos^ + Jcos^sin<^)'* by (1)

= a* cos^ + b^ sm^(f>j

.'. a cos<9 sin^ - J sin^ cos^ = [a^ cos''^^ + ¥ sm^<f> - c'"')*

;

and similarly,

a sin 6 cos<f> — b cos ^ sin0 = (a''' cos'^^ + b^ sin^^ — c''')*,

therefore equation (2) becomes

[d^ cos^<^ + h^ sin"'^ - c^- [a sin ^ cos^ — b cos^ sin</>)*
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DEFINITE INTEGRALS.

1849.

1. Shew that

^
7, ax = ir.

+xy

Putting X = tan'' 6, we get

f ^l[££^ dx = 4. r sin'^^ log tan^t^^.

Now generally 1 f[x) dx = I f{a — x) dx^
•) •'0

.-. [ sm'^ log tsinOdd = (
"
cos'^ log cot^(/^

•^ •'0

= - 1 cos'^logtan^o?^.

Adding these equal quantities and dividing by 2,

r^log^
db = - 2 [ 'co82^ log tan^ J6>.

Now, integrating by parts,

- /co82^ log tSinOdO = - ^ sin 2^ log tan^ + 6 + G,

.-. -
I

co82^ log tan^c?^ = i^r,

r" a** logic ,

2. Shew that

I

log .r log \^-^) ^-^ = 7r« (l«^g ^ - 1)

•
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Let
I

logic log f —2— j dx = w,

dii f lofiTiC

then -^ = 2a \ .,

^—r, dx:
da J^ x' + a'

'

put X = a tan 0, then

dti

^ = 2 T" log (a tan ^) ^7^ (1).

Now generally, I /(a?) <;/.c =1 f{a—x) dx,
Jo ^

.. ^ = 2 riog(acot6')rZ^ (2).

(1) + (2) gives, dividing by 2,

J /•if
a it

da
= 2 1 log a I

•'

= Trloga,

.*. u = 7ra (loga — 1) -I C.

And when a = 0, ?« = 0,

.-. c = o,

and u = ira (loga — 1),

which was to be shewn.

3. Prove that

jg (l + 2ecos04e) ^ ^ -^ ~ 1 - e"

the upper or lower sign being taken according as e is less or

greater than unity.

We have

r 2e + (1 + e") COS0 ^ _ sinO

j (1 + 2e cos + e'f ~ 1 + 2ecos0+e'

'

r 2e+ (1+e') COS0, ,^
, ^^

_
,

,. ..

,, .

^^ sS—2N2
loge (1 + 2e cos^ + e') (?0

J^ (l+2e co80 + e')' *' ^
'

= ,

—

7i n ^z
log 1 + 2e cos + c') + 2e ,-—

j^ sr, dB
l + 2ecos0-fe' ^^ ^

/, H-2ecos0 + ey
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sin 6/ r cos 9= ... + -_ 1 £
1 + 2e cosO + e^ j„ 1 + 2t; cost/ + e'

I

—-^
Ti 7. , between the limits,

j„ 1 + 2e COS0 + e" '

W 7fl 1 + «'
r"

^0

+ e' + 2e COS0

I + e' r dB

2e Jo 1 + e' + 2e cos0 2e

J0
And

io 1 + e' + 2e cos^

T. tan~^ tan^TT = ^ if f < 1
1 - <?' 1 + (. ^ 1 _ e

tan" - tan^TT = g _ if e > 1;
e' - 1 e +

therefore the definite integral becomes in the two cases

I + e' TT IT 2e' , 2
+ —:^
— t •,

— TT = TT -—73 5\ and — TT- 2e 1-e' 2e 2e(l-e") 2e(l-e')

= + TT
1 - e

1850.

1. Shew that

la
'/ 3
I tan X log (tan a?) dx = Jtt'*',

•'

(;8).
I

-L——^ (7a: = Tratans or Trocots,

and that

sm2£

according as s is < or > ^tt.

(a). We have, a being < 1,

,x n-\

(See Gregory's Examples^ p. 477.)



236 SOLUTIONS OF SENATE-HOUSE PROBLEMS. [1850.

Diftercntiatiug with respect to a,

/J o

Z" , , TT COSaTT
Logzaz = —

1 + z ° sm aTT

Putting = tannic, the limits of x will be 0, ^tt, hence

. r*"^ 2<.-i 1 /.. \ 7 tt'^ cos aTT
4 I tan X log (tana;) ax = ^-r, ,

-'

whence, puttmg a = §,
27r

TT cos

4 I tan^a; logftancc) £?a: = ^ = ~^ 5

sin-

/
tan X log (tana;) c?a; = ^ tt''*.

(/8). Putting a; = a siu^, we have

^o {a'-x')i ^^ _ ^
p- cos'-'^

— sin^-I—-— a; " -r-— sint/
sm2s sm2£

therefore wTiting — 6 for 6^

= a —————— rfcr.

- ^—— + sin
smzs

Adding these equals and dividing by 2,

J-. « .
8m2ej_w 1 . o^— « ^ . ..„ sm

sin2£ sm 2£

= _^ r /"i _ cos- 2s

sin2£ i_i^ V (1- sin"''2£sin-'6') '

Tra cos'''2e
/'^'^ sec'^^r" sec

J_w 1+cos'i
« . „ I ^r 5^r— ^ f?^.

8in2e sin2e J i H-cos''^2£tan*^

f sec^ ^
Now

j 1 ^ co8''2£ tan'' 6/
^^ "" ^^^^^ tan"' (cos 2£ tan^) + C;

/•'^
sec'-'^

•*•
/ r~, 27r~z—27i

"" = 7rscc2e;
./_j^l + cos'' 2s tan'^ '
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r" {a'-x')i J I 1 co32e\
.*.

/
^ ax = irax -r—- ;—

—

J _„ a \sm2E 8in2£/

sin2£

= Tra tan s.

The above investigation holds if s < ^tt. If e > ^tt, let

e = ^TT — e' (s' being < ^tt), then

sin 2s = sin2e',

and
I

' dx = 7ra tans',

sin2 s'

= ira cots

;

.'.
I

1

'

dx = TTci tans or ira cote,
J-a «^-— -re

sin 2s

according as s < or > ^tt.

1851.

1. If 3/ be a function of a: defined by the equation

a^" = {y — nx)"'^^ [y + nxf~^^

shew that f-^ = r -.-^ = -i^ log^^tJlf.
}^y + l3x J^/3y + n'x n + ^ ^ a

Since a'-"' = (^ - na;)"^'' (y + nx)"-^
;

therefore, taking the logarithmic differential,

/ r,\ dy — ndx , „> ^?/ + ndx
^

' y — nx ' y -\- nx

W[n + ^)[y^-nx) + [n - ^){y - vx-)] dy2 2 2
y — « ic

+ n [[n — ^){y — nx) — (w + ^)[y + wa;)} <^]

y — w'^oj

dx _ dy
^

' '

y + ^x /% + Ti'^aj

'

••
J y + ^x~ J ^y + n'x
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between proper limits of the variables. Now when a? = 0, y = a,

r ^^ _ r dy
"

Ja y + ^x~ Ja ^y + n'x^

d{y + 71X)

^y + ri^x + w^ + n^x '

(w + /8)(^ + waj)
'

y + ??a;

the required result.

w + yS
log

2. Detennine the value of the definite integral

"
x'-'{\-xY-'dx

[x + ayp 'f

Let 1/

X + a 1 + a '

then when a; = 0, ^ = 0, and when a; = 1, ?/ = 1,

X = ^
;

1 + a - y^

. 1 _ ^ = OL+^Kizl)
1 + a - y ^

I + a
X -\- a = a

t)
=^^'-yy'

1 + a- y^

n-x^
\x +

.
ii-a^r' ^ {i-yr\

^

i + a-y
" [x + ay ofi 1 + a

Also 7 r- = ,,
^

, ,

{x-VaY (1+a)"'

cfe _ d'y dy

X y 1 + a — ?/

'

— 1 + ^ 7
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.-. ^7^^"^l^' da: = ,,/ ,

y'-'
(1 -yf-'dy ;

= 1 r(«lI(/3)
a^(l + a)* r(a + /3)

'

the required value.*

* See Gregory's Examples, p. 471.
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CALCULUS OF FINITE DIFFERENCES.

1851.

1. PT^ pt^ (fig. 90) are two tangents to a curve drawn at

the exti'emities of any chord PS}) passing through the pole S^

and meeting a given line SA in J", f, respectively ; it is required

to prove that the cui-ve in which the sum of the reciprocals of

ST and St is constant has for its equation

^ = 1 + ecos^ +/(sin^)'^,

wherey (sin ^)'^ denotes any rational function of (sin^)'^.

Let the angle SPT = 0, PST = 6, SP=r, then

r sin {0 + (f))

ST^ sin</) '

= sin^ cot^ + cos^,

. ^1 dr _
= sm a—77, + cos tf

:

r da

1 . a^^s a

putting We = -

Similarly, writing O + tt for 6,

1 = - sin(^ + 7r) -^ + Ue^^cos(6'+ tt),

= ^m^-^-7^,^^^cos6';

1.1 . ^ /'du(^,^ dn,

" ST + s = ™^ (11"-^)--^^ ("--"»)'

= sin'^-T7^ -^^ /M0+7r-^'e

de V sin (9
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jNow by the conditions of the problem,

1 1

^™ + -^ = rt constant, c suppose

;

" dd \ sin^ j sin''<9'

.*.
?<o^.^

— ^(Q = s'm6 {h — c cot^),

h being an arbitrary constant,

= b sin 6 — c cos d,

2e= cos(^ + a), changing the constants.

But by measuring 6 from a proper point, we shall get a = 0,

so that we may write

2e
^^e+ir -^e = - — cos 6*,

an equation of differences, which, when integrated, gives

Uff = - cos^ + Co,
a

C„ being any function of 6 which does not change its value

when TT + ^ is wa-itten for 0.

Therefore we may put

_l4 /(sin^r
^'

-
a '

and om' equation becomes

_ 1 +ecos^+/(sin^)^
"'

a '

1
or, smce Ug = -

^

^= 1 + <?cos^+/(sin^)'.

The following Problem in Geometry of Three Dimensions

(set in 1851) has been omitted.

Determine the surface generated by a tangent to a right

cylinder which moves parallel to the base, and with its point

s
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of contact lying on a helix : shew also that a hyperbolold of

one sheet may be constnicted touching the cylinder along its

base, and such that the required smface and the h}^erboloid

are developable, the one on the other.

(a) Take the axis of the cylinder as that of z : let a be

its radius, and let the equations to the helix be

z . z
X = a cos -

, y = a sin - .

Let I, 77, ^, be the current coordinates of the required

surface, the equations to the generating line touching the cy-

linder at (.r, ?/, z) will be

P cos - + 77 sin - = a, t=^z.
c c

Eliminating z between these equations, we get

t . t
^ cos -4-7? sm - = a

c c

as the equation to the required surface.

(/S) It is obvious that the inclinations of a generating line

of the cylinder to a tangent to the helix and to a generating

line of the h}^erboloid, are respectively constant, and that the

arbitrary parameter of the h}^erboloid may be so detennined

as to make these two angles equal to one another, each equal

the angle t suppose. Let a, a' be two points on the base of the

cylinder, indefinitely near together, a/3, a'/3' the generating lines

of the h}^erboloid passing through them. Also let A, A' be

two points on the helix, such that the elementary arc AA'
equals the elementary arc aa'; and let AB^ A'B' be the gene-

rating lines of the helicoidal surface passing through A^ A'

respectively, and make ayS = a'/3' = AB = A'B'.

We may then shew that BB' = ySyS', whatever he the mag-

nitude of a(3. Therefore, if the circle in which the h}'perboloid

touches the cylinder be laid upon the helix in which the heli-

coidal surface touches it, the element of surface between two
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consecutive generating lines of the former figure may be super-

imposed on the con-esponding element in the latter figure, and

so for the other elements ; the flexure only taking place round

the consecutive generating lines. Hence the two surfaces are

developable, the one on the other.

We proceed to shew that BB' = /3/3', as above stated.

It Is easy to see that 27rc is the distance between the suc-

c
cessive threads of the helix, and therefore - = cot i : hence

o

the equation to the required h}'perboloid is

x' + f _ i' _

,

It is manifest that y8, /3' lie upon the same circular section

of the hyperboloid ;
the radius (?•) of this section, whose altitude

call 2,

r = a\\ -{ —A by the above equation

= a ( 1 +

Also )8yS' subtends at the centre of its section the same angle

that Ota' does at the centre of the base of the cylinder

;

.-. ^^' = - aa
a

[ ay8' sin'^X* ,

Again, B and B' lie on the surface of a cylinder with the

same axis as the proposed, and whose radius (;•')

= [a' + AB'^f.

Also BB' is the same part of the tlu'ead of a helix on this

cylinder that AA is of the given helix ; the helices having

the same distances 27rc between the threads, and therefore

their lengths being

{(27rr')'^ + (27rc)''')4 and {(27ra)'' + (27rcy''}4,

or 27r (a''' + ^^'-^ + c')* and 27r(a'' + c7;
r2



244 SOLUTIONS OF SENATE-HOUSE PROBLEMS. [1850.

= ( 1 H a )
-^-^

J

*•' c = a cotfc,

therefore BB' = bb'^ aud the surfaces are developable, the one on

the other.*

* We are indebted to Mjf. Cayley for the solution of the second part

of this problem.



( 245 )

STATICS.

1848.

1. A unifonu slender rod passes over the fixed point A
(fig. 91) and under the fixed point 5, and Is kept at rest by

the friction at the points A and B: determine the limiting

positions of equilibriiun.

It is evident that the friction must always act upwards, and

the limiting position of equilibrium will be one in which G
is so near A, that the friction is only just able to support

the resolved part of the weight along the rod.

Let AB = a, AG = x, when G is in the limiting position.

Resolving the forces on the rod along it and perpendicular

to its length,

fiB + fiB' = TFcosa,

B- B'=:Wsma;

and taking moments about Gj

B' {a-\- x) = Bx

:

whence the above equations become

Bil =— = TFsina.
V a + xj

Whence, by division.

a + 2x
fi

= cota,

and X = 1^ i ^)

which is the least possible value for x: G may be as high

above it as is consistent with the leaning of the rod against B.
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If A were lower tluiu 7?, G miglit be as low as we please,

but at no les.s distance from JJ than the above value of x.

2. Four uniform slender rods, AB, BC, CZ>, DA, (fig. 92),

rigidly connected, form the sides of a quadi'ilateral figm'e, such

that the angle ^ is a right angle, and the points B^ (7, i>,

are equidistant from each other: when the whole is suspended

at the angle vl, detennine the position of equilibrimn.

Let ^, y be the coordinates of the centre of gravity of the

system referred to AB^ AD as coordinate axes; and let

AB = 2ff, AD = 2^», and the angle ABD = a

;

.'. {2a + 2b + 4:{a' + h'y\ x

= 2a.a+2(a''+Z»"04[2a+(a'+ Z»')4[cos(120°-a)-cos(120°+a)}]

= 2a" + 2 {d' + hy [2a + («'' 4 Irf- 3* sin a}

= 2a' + 2(«'' + ^»''')*(2« + 3i.^').

Similarly,

{2a + 2Z/ + 4 {pi' + W)"^] y = 2h' + 2 [d' + h'f {2b + 3*a).

Hence, if be the inclination of AB to the vertical,

^l^ b^-\-{a'' + by{2h + SKa]

^ a'+ {a^ + hy{2a + SKb)'

3. A string of given length is attached to the extremities

of the arms of a straight lever without weight, and passes

round a small pulley which supports a weight : find the position

of equilibrium in which the lever is inclined to the vertical, and

prove that the equilibrium is unstable.

The inclination of the lever to the horizon will be deter-

mined in this case in the method to be shewn in the next

problem but one, the point G being now the fulcinim, and P
vertically below G instead of above it.

To determine whether the equilibrium is stable or unstable,

let the lever be turned through a small angle ; then the weight

will assume the lowest position it can, and the normal at this

point to the ellipse mentioned in the above problem will be

vertical.
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Hence it is evident that the vertical, through the weight

in its displaced position, will intersect the lever on that side

of the fulcrum which is lowered in the above arbitrary dis-

placement : hence the system will tend further from its position

of rest, and the equilibrium is unstable.

4. Two equal strings, of length ?, are attached to the fixed

points Aj B^ and C, Z>, respectively, which, if joined, would

form a horizontal rectangle ; a sphere, whose diameter equals

AB^ is laid symmetrically upon the strings: find the position

of equilibrium and the tension of either string, supposing

l> AC+^irAB.

Shew also how the problem is to be solved when this condition

is not fulfilled.

The centre of the sphere must lie in the vertical line through

the point of intersection of the diagonals of the parallelogram

ABCD^ and each string must lie wholly in the plane through

its points of support and the centre of the sphere.

Let AB=2a, AC=2b^ and the depth of the centre of the

sphere = z
;

or z = {i{l-TraY-b'}i (1).

Let 2' equal the tension of either string

;

.-. 4:T
jj^

7^

J
= weight of the sphere (2)

:

from equations (1) and (2) 7" is known.

If I = 2b + TTff, = and T = cc
^ the centre of the sphere

being in the horizontal plane ABCI).

If I <2b + ira^ we must suppose the part of the string not

in contact with the sphere to become rigid, so as to support

the sphere above the horizontal plane ABCD. Each string

must still lie wholly in the plane through its points of support

and the centre of the sphere.



248 SOLUTIONS OF SKNATE-IIOUSE PROBLEMS. [1849.

1849.

1. Two unequal weights, connected by a straight rod with-

out weight, are suspended by a string fastened at the extremities

of the rod, and passing over a fixed point : detemiine the po-

sition of equilibrium.

Let G (fig. 93) be the centre of gravity of W and W\ the

two weights, P the pulley : PG must be vertical, and bisect the

angle WP]V'.

Let TFPTr= 2/, WW'=2a: then PG is the normal of the

ellipse, which has WW for foci and 2l for axis-major ; hence

WP : WG : : T^PT^ : WW,

«^' ^^'^-wTW''^^

W
and IV'P = jjj; :^, 21

;W+ W '

hence the sides of the triangle WPW are known, and thence

its angles : therefore Z WPG = I WPW is known, and WGP
= TT — WPG — PWG is known, which is the inclination of

TFTF' to the vertical.

2. A smooth body, in the form of a sphere, is divided Into

hemispheres, and placed with the plane of division vertical upon

a smooth horizontal plane : a string, loaded at its extremities

with two equal weights, hangs upon the sphere, passing over

its highest point, and cutting the plane of division at right

angles : find the least weight which will preserve the equilibrium.

Determine whether the equilibrium is stable or unstable.

Let a = radius of the sphere

;

X = distance of the centre of gravity of the hemisphere

from the plane of division

;

W = weight of the sphere

;

to = weight required.

We may consider the string to become rigidly attached

to the sphere without disturbing the equilibrium : we then have
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each system of a hemisphere and weight attached prevented

from turning about the line of intersection of the horizontal

plane and plane of division, by the tension iv, at the highest

point of the hemisphere.

Hence, taking moments about this line,

w.2a = Wx -f ioa\

.-. w = -W=lW (1).

To consider whether the equilibrium is stable or unstable.

If we give either hemisphere a small angular displace-

ment {B) about the above line, the weight to rises through

a space a^, and the centre of gravity of W falls through a space

x.d. Hence the common centre of gravity of the hemisphere

and weight rises through a space

toae - WxO = 0^ by (1),

and the equilibrium is therefore neuter.

3. A slightly elastic string, attached to two points in

the circumference of the base of a right cone, at opposite

extremities of a diameter, is just long enough to reach over

the vertex without stretching. The cone is suspended by it

from its middle point: find approximately the increase of its

length.

Let 2? = mistretched length of the string

;

h = height of the cone
;

a = radius of its base
;

z = the depth through which the cone falls

;

2 (? + \) = the stretched length of the string.

Then, by the principle that " tension varies as extension", if

T be the tension of the string,

T = E
J , E & constant weight

;
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h -\- z
and 2 T

j

—— = W the weight of the cone.
t -J- A,

Also, (h + zY = {l+ \y + a';

I I + X

or, omitting V and the higher powers of \,

W f
and A, =

2E {r-dy

4. An equilateral triangle, without weight, has three miequal

particles placed at its angular points; the system is suspended

from a fixed point by three equal strings at right angles to

each other, and fastened to the comers of the triangle : find

the inclmation of the plane of the triangle to the horizon.

Let J, y, 2, be the coordinates of the centre of gravity of

the three weights refen-ed to the strings as axes : ^, y, 2, will

be subject to the condition

X -]ry -\- z = 1^

if I be the length of the strings.

Let 6 be the angle between the nonnal to the plane of the

triangle and the line joining the centre of gravity with the

origin, which is vertical ; this angle will be the required in-

clination of the plane to the horizon. The direction-cosines

of these lines are -,. —,. —,. and j=-^
—

z=r.—=:^vi , T=i—4—^svi ?

f^qr^T^^'
respectively;

l_ ^ + y + 2
•• ''''^''-

^i' [x' + f + zy

- 1 /

~ '6^' {x'+f+zy
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5. A piece of string is fastened at its extremities to two

fixed points : detennine from mechanical considerations the form

which must be assumed by the string in order that the surface

generated by its revokition about the Ihie joining the fixed

points may be the greatest possible.

By Guldinus' property of the centre of gravity, that curve

will by its revokition generate the greatest surface whose centre

of gravity is furthest from the axis, i.e. is lowest, when the

axis is made horizontal and the plane of the curve vertical.

Now we know the centre of gravity will assmue the lowest

possible position when the string is in equilibrium under the

action of gravity : hence the curve required is the common

catenary.

6. It is required to support a smooth heavy body, in the

form of an ellipsoid, in such a manner, that a given radius

in the body shall be vertical, by means of supports at three

points : shew that if /, ?«, «, be the direction-cosines of the

radius, and the equation of the ellipsoid

2 'i V,X y z
{• -—I— = 1

then the three points in question must be on the curve of

intersection of the ellipsoid with the cone

ll/^ (^.
-

^) + ''^-^
(^

-
^.) + ^nxif

( i - 1) = 0.

We will assmne the normals at the three points to meet

hi some point of the vertical radius.*

The equation to the normal at x\, ?/,, 2,, is

^ yjL ?i '

d' h' c'

* This is an ass'omption : for the ellipsoid will be supported if two of

the normals meet in a point not in the vertical radius, provided the resultant

of the corresponding reactions meet the vertical radius in the same pouit

as the third normal docs.



252 SOLUTIONS OF SENATE-HOUSE PROBLEMS. [1850.

and this line passes through the points Ir^ mr^ nr
;

//• — .r, mr — y^ nr — z^

^ ^7 ii

^ suppose

.

a^ h' e

witli shnilar equations for the coordinates of the other points

of support.

These equations may be written

/>• - ^ . = X,,

mr -fs = y„

nr 7, s = z'.

whence, eliminating r and s by cross-multiplication,

fmz^ ny.\ (nx, Iz\ /7y, mx\

or, di'opping the suffix, we have

as the equation to the cone on which the three points of support

must lie.

1850.

1. A right cone is cut obliquely, and then placed with its

section on a horizontal plane : prove that, when the angle of

the cone is less than sin"^^, there will be two sections for which

the equilibrium is neutral, and for Intennediate sections the

cone will fall over.

Let ABC (fig. 94) be the section of the cone through its

axis, by the plane of the paper, to which the cutting plane

is supposed perpendicular. Let the trace BP of the cutting

plane make an angle 6 with BC: draw PD perpendicular to

BP^ and draw AEF through F, the bisection of BP.

Let 2a be the angle of the cone; then /.ABP=7r — a — 0,

BDP =e + OL, and APD^^O-a.
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Also, let AE = n.EF^ then

_AjE _ APs'mAPE _ 2APsm{e-a)
" " EF ~ FF smBFB

~
BP

_ 2 cos(^ + a) slnf^-a)~
sm2a '

or n sin 2a = sin 2^ — sin 2a;

.-. sin2^ = («+l) sin 2a.

If ?i = 3, E will be the centre of gravity of the part cut off,

which will therefore stand on its base in neutral equilibrium, and

sin2^ = 4 sin 2a.

Hence, if sin 2a < j^, there will be two values of 6, each acute,

such that the corresponding cutting planes shall give neutral

equilibriiun. For intermediate sections,

sin 2^ > 4 sin 2a,

and therefore ?i > 4
;

hence the centre of gravity will lie outside the vertical line PD,

and the section will fall over.

2. The three corners of a triangle are kept on a circle

by three lings capable of sliding along the circle, and the

circle is inclined to the horizon at a given angle : find the

positions of equilibiium.

It is evident that, as the triangle is moved about, its centre

of gravity describes a circle about the centre of the circle, the

positions of equilibrium are those in which the centre of gravity

is at the lowest and highest points respectively of this circle.

The corresponding positions of the triangle are easily found.

3. A smooth cylinder is supported in a position of equi-

librium by a string which is wound m times round it, and then

has its extremities attached to two points A and B in the

same horizontal line. The position of equilibrium being that

in which the coils are separate, shew how it is determined.
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and how to find the length of the string in contact with the

cylinder.

Produce the straight lines of the string to meet, as they

must do, in a point : project these produced parts and the

curved part of the string upon the axis of the cylinder; these

projections must be equal ; but the inclination to the axis of

the straight and curved parts of the string is the same ; hence

the produced parts of the string must be equal in length to

the part in contact with the cylinder. Hence the straight

parts of the string occupy the same position as they would

do if the string, instead of supporting the cylinder, ran under

an indefinitely small pulley supporting a weight. This con-

sideration determines the inclination of the straight part of

the strmg to the vertical.

Let 6 = the inclination of the axis of the cylinder to AB',

(fi — the inclination of the string to the axis

;

Q) = the angular distance from the lowest generating

line of the cylinder of the points where the string

leaves the cylinder

;

2a = the distance AB-

2l = the length of the string.

Then, if we project the line AB and the string upon the

axis of the cylinder, we have

a cos = 1 cos cji ( 1)

.

Again, if we project AB and the straight parts of the string

produced to meet as above on the plane of either extremity

of the cylinder, the line AB would be projected into a line

of length 2a sin^, and the string into two lines, each touching

the circular end of the cylinder, and of length /sini/r: and

these lines touching the circular end of the cylinder, they make
with each other the angle tt — 2ft). Hence

a sin 9 , .

coseo = ^—^—: (2).
/ sni9 ^

'
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Also the produced parts of the string each equals half the part

m contact with the cylinder = {7mrr + &)?) cosec<^.

Hence, from the ahove projected triangle,

(mTrr + cor) cosec d>
tan&) = ^^

r

= (mTT+ct)) cosec^ (3).

From (1), (2), and (3), we may determine 6 and 0; or the

position of the axis of the cylinder and a : whence the lengtli

of the part of the string in contact is knoAyn.

Another condition is, that the centre of the cylinder must

be symmetrically situated with respect to A and B.

1851.

1. A right cylinder upon an elliptic base (the semiaxes of

which are a and h) rests with its axis horizontal between

two smooth planes inclined at right angles to each other : de-

termine the position of equilibrium, (1) when the inclination

of one of the planes is greater than tan"* -r
, (2) when the

inclmation of both planes is less than tan
*

b

a

Since the locus of intersection of tangents to an ellipse at

right angles to each other is a circle, the locus of the centre

of gravity of the cylinder, as the cylinder is turned about in

a vertical plane, is a circular arc ; and the centre of gravity

is at the extremities of this arc when the axes of the cylinder

are parallel to the planes. Also these extremities are the lowest

points of the arc when the inclination of both the planes is less

than tan~* j- ; but if one of them be greater than tan"* j , one

extremity is the highest point of the arc and the other the

lowest: hence, in this case, the position of equilibrium is that

in which the major axis is parallel to the plane whose inclination

is least ; and in the former case there are two positions of equi-

librium, viz. when each axis of the cylinder is parallel to either

plane.
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2. A^ Bj Cj are three rough points iii a vertical plane

;

P, Q, Bj are the greatest weights which can be severally sup-

ported by a weight PF, when connected with it by strings

passing over A, B^ C, over A^ B^ and over B^ C, respectively:

shew that the coefficient of friction at B = - loe;, -^^r? •

We may consider each of the rough points A^ B^ C, as cy-

linders of indefinitely small radius : hence, by a known theorem

relating to strings passing over rough smfaces, if 6 be the

angle through which the string is bent at any of the points

whose coefficient of friction is ^, and T^^ T^ be the tensions of

the strings on the two sides of the point, if all possible friction

is being exerted, we have

Let fjbj,^ fjb^, ficj be the friction at A^ B^ and C; a, 7, the

inclinations to the horizon of BC and AB respectively: then,

by the question,

p^ £^^(4-7,^gM^(7-;_3Mcli''+').T.]7
(1)^

Q = e^^Afr-^'.sMBfi^+^J.Tr (2),

i? = £'-,(*'-«). £"c'^'+'MF (3);

.-. (2) X (3) - (1) gives

1 ,_ QB
TT

/^B=-lOg3p^^.
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DYNAMICS OF A PARTICLE.

1848.

1. If a and na be the respective distances of a satellite

and of the Siin from a planet, ^ and mp the periodic times of

the satellite and planet, which are supposed to describe circles

round the planet and Sim respectively : shew that the orbit

of the satellite will always be concave towards the Sun, pro-

vided n be greater than m^.

Let the angular velocities of the satellite and planet respec-

tively in their orbits be called eo and mw; then it is plain

that the rectangular coordinates of the satellite referred to the

Sun as origin and axes rightly chosen, are

X — na coswi + a coswwi,

y = na sinw^ + a sinwio)^.

Now, if the path of the satellite pass at any time t from

being concave to convex towards the Sun, we have at that time

M~ ' dt de dt df ~
'

.'. (n smoit -'r m mima>t) (n sinw^-f ni^ sinmcot)

+ {n cosQ>t + m coBmcot) [n coBwt + nf cosnicot) = ;

.•. n^ + m^ + mn[m + 1) cos(7n —\)(i>t = 0.

In order that this equation may not give a possible value

of f, we must have

n^ + m^ > mn (m + 1)

;

.*. T^ — m[m-\-\) n > — ??«"',

or

or w > m
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which 19 tlicrcfore tho condition to be fulfilled, in order that

tlie path of the satellite may be always concave towards the

Sun.*

2. A body of given elasticity is projected with a given

velocity, and rebounds n times at a horizontal plane passing

througli the point of projection: detcnninc the direction of

projection, so that the angle between the direction of projection

and the direction of the ball inunediately after the last impact

may be the greatest possible.

Let a, Kj, a^ ••• ^ni ^^ ^^^^ angles of the first projection,

and after the successive impacts;

.'. tana„ = e tana,,_j = e^ tana,,,^ = ... = e"tana,

if e is the modulus of elasticity

;

, . (1 — e") tana
.-. tan (a - aj =

; ,
J. , :

" 1 + e tan a

we have to determine a, so that this shall be a maximum.

Taking the logarithmic diiFerential of this expression with

respect to tana, we have

1 2e" tana _
tana 1 + e"tan''a

~
'

.*. 1 — e tan' a = 0,

and tana = -r .

3. If a body be projected with a given velocity about a

centre of force which cc . ,. ^ ,., , shew that the axis-minor of
(dist.)^

'

* Since the above condition assigns an inferior limit to the value of m
(n remaining constant), it manifestly precludes the possibility of a motion

of the satellite about the Sun in a direction opposite to that of the planet

i.e. a retrograde motion as seen from the Sun, -which would clearly require

m to be greater than when its path is merely alternately concave and
convex and not looped.
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the orbit described will vary as the perpendicular from the

centre of force upon the direction of projection; and detennine

the locus of the centre of the orbit described.

Let r be the distance, a the angle of projection

:

then h^ = SY.IIZ^ the product of the perpendiculars from the

foci on the direction of projection,

= SP sma.HP sma,

= r (2a — r) sin'^a.

And a is constant since the velocity of projection is so

;

.'. b cc sina,

X r sin a,

GC the perpendicular from S upon the direction of pro-

jection.

Also, if p, </) be the polar coordinates of the centre of the

curve referred to the centre of force as pole, and initial radius

vector as prime radius, p = ae^
<f>
= angular distance of the

apse, c = distance of projection.

1
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For if we join the two points of contact, the chord so formed

will be an ordinate to the vertical diameter through the point

in which the tangents meet : let 2y be this double ordinate

;

then, if h be the height of A above J5, and the equation to

B'» path referred to this diameter be

we have y^ = I'h.

Also, if I be latus-rectimi of the parabola, and a the in-

clination of the ordinates of the above diameter to it, the

horizontal distance between the points of contact

= 2y sin a,

= 21'^ sin a. A*,

= 2im,
is constant.

Therefore also the time of passage between the points is

constant.

5. A body is acted on by a force = , ,. ,^ tending to a
(^dist.j

fixed centre S: shew that in general there will be two direc-

tions, ditFerently inclined to AS^ in which the body may be

projected from a given point A^ with a given velocity v, so as

to pass through another given point B.

Prove also that if t, t' be the times of moving from A to B

in the two cases, either t = t' or t + t' = 27r/u. (^ —v^] *•

Let the body be projected from A (fig. 95) in a direction

making an angle a with the distance, so as to pass through B :

SA = a, SB = b, lASB = ^.

The equation to the orbit is

d^u fi _
Tn'2 "1" " e 2 ' 2 — ^1
do V a sm a '

or II =
.^

(1— e cos(^-7)} (1),

du fM - fa \

la = -2—2—--2- . e sm c/ — 7 .
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Now, when <9 = 0, u = -

.

' 'a
du 1

.*• - =
., ... ., (1 — e COS7) : - cota = .; .^ . 2 e 81117.

a vVsin'a^ "^ a vV sura

Eliminating e cos7 and e sin7 from equation (1), we have

u = .. ... „ ( ., ., . ) cos^ cota.sin^;
V a sin a \v a sin a aJ a

but when ^ = /9, ^ = r

;

.-. 7 = -5^, (1 + cot" a) - \-^, (1 +cot'''a) - -I cosyQ - - cota sinyS,

a quadratic equation, from which the two values of cota can be

detemiined ; which proves that there are in general two diflferent

directions of projection.

Now (Hymers' Ast.^ Art. 326) the time from A to B can

be determined in terms of the focal distances SA^ SB^ the chord

AB^ and the axis-major; and the velocity being given, the

axis-major is independent of the direction of projection : hence

SA^ ABj BS, and the major-axes of the two orbits, are the

same. Therefore the periodic time in the two orbits is the

same; and also the time from A to B.

If ^, t' be the times of describing AB, and the bodies be

projected so as both to describe the angle ASB^ t — t'. But if

one describes the angle ASB^ and the other 27r — ASB^ t + <'

equals the periodic time in the conic section = —-—
, where

A equals the semiaxia-major = -

—

——
Tap") ^^^'

, _ ji^ SP{2A-SP)
"^ ~ SF'' A '

> + > = 2.. {^-^)-\*

* For this solution we arc indebted to Mr. Gaskin.
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6. Force varvinsr as y^.
—

-., . shew that, when the hatus-
•

°
(dist.)

' '

rectum is given, an angle = 2 tan"' 5^ , measured from the nearer

apse, will be described very nearly In the same time, whether

the body moves ui an elliptic or an hyperbolic orbit, whose

eccentricities are 1 — a and 1 + a respectively, a being small.

We have

dt ~7'

and r = Z (1 + (1 + a) cos^}"\

in the ellipse and hyperbola respectively, where I is the common
latus-rectum : also h^ = fxl is the same in both cases ; hence

§ = X 'a + (!+«) cos^r

= ^-(2cos'i6' + aeos^)-''

~ h 4 V cos'^i^j

r 4 1 /, /, cos^ \
,= -y sec ho [1 + 2a —rr-p^ very nearly

;

4A ^ \ ~ cos'^6J -^ -^ '

.-. t = ^ Jisec^e) {1 ± 2a (sec'''i6' - 2)} d tan^^

= ^T /{I + tan'-'i^ ± 2a (tari*|6' - 1)} d tan 1(9.

Hence, if T be the time of describing an angle /3 from the

nearer apse,

T=^^ [tan 1/3 + 1 tan^iyS ± 2a (^ tan^i/3 - tanlyS)}.

Hence the difference of times of describing this arc in the

two cases
2«7^

= f|l (itan^'iyS-tani^),

which vanishes if /3 = 2 tan~'5% and the proposition is true.
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1849.

1. If the equation for detennining the apsidal distances in

a central orbit contain the factor {u — a)'\ shew that a will be

a root of the equation

(}>{u) - AV = 0,

where ^[u] is tlio central force.

The differential equation of the orbit will be

nnrl

dd

(1).

Multiply by 2 -^ , and integrate

;

(duS" _ C<f>[u).du ,

The general condition for an apse is, that -7^ = ; and there-

fore the equation for detennining the apsidal distances is

If this equation contain the factor [u — ay, let us suppose that

^/^W^-""=/Wl'.(«-a)';

tlien -^={u-a) .f{u),

d'^u du d (du
^^^ de'~ dd'du'Kde

= f{n)[f{u)^f'{u).{a-a)]{u-a)',

hence m = a is a root of the equation

dd' '

that is, a root of the equation

(^[u) - //V = 0.
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2. A body moves from rest at a distance a towards a centre

of force, the force varj^ing inversely as the distance : shew that

the time of describing the space between ySa and ^a will be a

maximum if yS =—j—

.

We have here

d'^x _ fx,

~de~~x'

{^\ =2/* log-,
\dtj ° 03

smce a? = a, when -r- = :
' dt

'

_ 1 dx

J
{F{x) + C] suppose.

Now, let T be the time of describing the space between

/8a and /S''af then

In order that this may be a maximum, we must have

d^ ^'

.-. n^"-'F'{/3"a)-F'{^a) =0.

1

But F'{x) =

therefore the above condition becomes

^^Z i_-o
log^.)

or H*/3"-^- 1 = 0;
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.-.-3 = 4:.
the required expression.

3. A particle is attached to the extremity of a fine string,

which is partially wound round a cylinder of diameter c; if

the unwound portion of the string be kept stretched, and the

particle be projected perpendicularly to its length with a ve-

locity F, prove that the string will be wound up after the lapse

P
of the time -^ , where I is the length of string unwound at the

time of projection.

Let r be the length of the string unwound at the time t

after projection, - the arc which has become covered with

string in that time: then, since the only force on the particle,

viz. the tension of the string, is always pei'pendicular to its

instantaneous direction of motion, the velocity of the particle

is uniform:

da
^ ^.'. r -rr = a, constant

:

at

and at the time of projection

r-= V'
dt

'

dd j^

dt

f>

Also, r = I — -6;

c ^\d0

^i^)i=^

andi(^-l^) =C-lVt:

and when < = 0, ^ = 0; .-. 6' = ^/';

J -'-6] =P-cVf..
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Let T bo the time when the string is all wound up

;

.-. t = T, when 1 -^d = 0;

r
, rp
••

Vc'

4. A particle describes an ellipse about a centre of force

in the focus 8 (tig. 96) ; about S as centre a circle is described,

which 'is cut by the radius vector SP in the point Q ; from Q
a line is drawn perpendicular to the direction of the particle's

motion, which meets the major-axis in R: prove that R is

constant in position, and that QR is proportional to the particle's

velocity throughout the motion.

From P draw the normal PG^ and from S the perpendicular

^91^ upon the tangent; also draw GL perpendicular to /S'P, PL
is half the latus-rectum.

Now QR is parallel to PG
;

.-. SR = ^.SQ

^e.SQ,

by the property of the ellipse ; therefore 8R is constant.

Agam, QR =— . 8Q =
^^

. bQ

PL.8Q PL.8Q 1

~ 8PcosP8Y 8Y 8Y'

and velocity cc -qy-]

.'. QR Qc velocity.

Q. E. D.

1850.

1. A heavy particle is fastened by two equal strings of

given length to two points in a horizontal line, and then whirled

round in a vertical plane ; the velocity is such that, if one of

the strings break when the particle is either at its lowest point

or half-way between its highest and lowest points, the particle
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will still continue to describe a circle: find the least distance

between the point to which the strings are fastened that this

may be possible.

Let I be the length of either string, 6 be the inclination

of the strings to the horizon when the distance between the

points is the least possible. Let V be the corresponding ve-

locity of the particle at its lowest point before the string breaks

;

then [V^ — 2gl &\\\d)^ will be its velocity when the strings are

horizontal.

Now, if one of the strings break when the particle is at

its lowest point, it will proceed in a horizontal circle about

the vertical line thi'ough the point of support of the unbroken

string, if the velocity be such as to produce a centrifugal force

just sufficient to keep the string at the same inclination to the

horizon, or, resolving the forces perpendicular to the length of

the string, if

^ ^ .8in0 = q cos ^,
Z cos ^ ^ '

,cos'^ . .

or l^ = gl -T—^ (1).^ sm^ ^
'

If one of the strings break when the particle is half-way

between its lowest and highest points, it will proceed to de-

scribe a vertical circle about the point of support of the other

string, provided the velocity (F" — 2^'^ sin^)* be great enough

to carry the particle over the highest point of the circle, i.e. if

V""- 2glsm6 > ^gl.

Now, 6 is supposed to have received its greatest possible

value, and therefore, from (1), F its least possible value ; hence

V -2gl%n\d = Sgl,

or al^^ — 2ql sin 6 = 3gl:
•^ smU

.-. 1 - sin'^ - 2 sin'^^ = 3 sin^,

or sin* ^ + sin ^ = ^,

and 8in^ = - i + (i + ^)*

2
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And the least distance between the points of support

= 2?cos^

= (§)Ml + (21)*}W.

2. If P be the perimeter of a closed curve described about

a centre of force, t the time of a revolution, h twice the area

described in a unit of time, and p the radius of curvature

We have

at the time <, prove that P = h I —

.

. -'or

p= rvdt
J

-/

-/i

dt

'

t'de

V
dO ,

r -7- .rar
dr

P
rdr

between proper limits.

[r'-fY

Now let (/-/)i=/(^)

•'•
/ / t!_ 2u between the above limits

= f{0)d0
•'

= /(27r)-/(0) = 0;

• P- [ P^P

-I:

PJ
jyr dr

dr

dp
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r —r dr
clr

P

r'de_ rwdd
~

Jo P

•' (1

p

''dt

3. If any number of bodies be projected from a given point

with the same velocity in one plane, and describe ellipses round

a central force which varies inversely as the square of the dis-

tance; find the law of force tending to the same centre, under

the action of which a body will describe the curve which is

the locus of the centres of the different ellipses.

Let /Lt be the absolute force, V the velocity, and c the dis-

tance of projection. Then, if a be the axis-major,

i = ?-^' is).
a c

fj.

Also the equation to the orbit is

1 _ 1 l-ecos(^-a)
^

r~ a 1-e'
*'

and om' object is to find the relation between e and a ; for if

Pj (f>
be the polar coordinates of the centre of the ellipse,

p = ae,
<f)
= a.

Now, when ^ = 0, r = c;

1

c

1
or -

c
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Now, by Newton, Sect. ii. Prop. 7, If F be the force in the

circle,

FcrJ-J-
8F' ' FV

'

And fi'om equation (2),

SF.SV=a'c{^--\',

\a cj p

and FV = p + a'ci )
-

:

\a cJ p'

r cc —,

' '^^^MHJf'
oc £

y + T-2—r^
C fl

1851.

1. If a body be acted on by a vertical force so as to

describe the common catenaiy, shew that the force and velocity

at any point will vary as the distance of that point from the

directrix.

The equation to the catenary from the directrix, as axis of x,

which we suppose horizontal, is

X X

y = \c [^- + e%
and the force is wholly vertical

;

cFx

df

dx

dt
and -Y

= constant = V suppose.
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. , dy dy dx
Also -r = -# . -r

at dx dt

.". if V = whole velocity,

X X

and V = ^V {eP -\-

€~
')

V

or the velocity at any point varies as the distance of that point

from the directrix.

Again,
d^y _ d (dy\ dx

W ~dx \dt) 'di

ccy;

or the force at any point varies as the distance of tliat point

from the directrix.

2. Force varj^ing inversely as the square of the distance,

a body is projected from a given point in a direction making

an angle of 45° with the distance, and with a velocity = ii times

the velocity in a circle at the same distance : shew that the

direction of the major-axis will be mialtered when the angle

of projection is increased to cot'\l—n^).
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The general expressions for the elements of the orbit in

terms of the distance (c), the velocity (F), and the angle (^)

of projection, are

1 _2 __r
a c /x

'

e cosa = ———— — 1, a the apsidal angle,

, . V^c sin/3 cos/8
and e sma = ;

u,
.'. cot a = tan/3 — yvo—=

—

n 5 •

V c smp COSyO

Now, in the present case,

V^ = n^ (velocity in a circle at distance c)

= w' ^ c = —^
;

c c

.*. cota = tan/S

= tan/3

w'' sin/3 cosyS

1 + tan'yS
^

w'tanyS '

2
.-. if y8 = 45°, cota = 1

and if /3 = cot"'(l-w'),

1 l +[i-ny_ n'~l-{l-ny _ l + l-w'' _ 2

l-w"'* w'''"(l-7i^)~ w'^(l-w''') " ^•' ~ n''

hence the apsidal angle, and therefore the direction of the axis-

major, is the same in the two cases.

3. A body describes a parabola imder the action of two

equal forces, one tending to the focus and varying inversely

as the distance, the other parallel to the axis : find the velocity

at any point and the time of moving between the vertex and

the extremity of the latus-rectimi.

The resultant of the two equal forces will bisect the angle

between them, and therefore be normal to the parabola : hence
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the velocity is constant; and if p bo the radius of cui-vaturc

at P,

- = resultant of the two forces

P

= 2 1^ sin SPY
Ox

_2fjL.SY
~

SJP"
'

281^
P = -gY" '

.-. v' = ifl,

and V = 2/A*, the required value.

Again, if S be the length of the arc from the vertex to tlie

extremity of the latus-rectum, the time {T) of moving over it

T=2fiiS.

where y'^ = 4fe,

I + X Jax

J n
W-TI—??

- + a; + (/a: + x^
= ^Z log i

^ + [Ix + .r'^)i

= ^Z log (3 + 2.2*) + 2*J (between the limits)

= {log(l + 2i) + 2i|7;

r=2/u,*[log(l + 2i)+2i| I
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4. If the product of the velocities at two points P, Q of the

parabolic path of a body acted on by gravity be constant, shew

that the locus of the pole of PQ is a circle having the focus of

the parabola for its centre.

Let a, /9 be the angles between the axis of the parabola and

SP, SQ respectively; then the equations to the tangents at

P, Q referred to S as pole are

1 2
- = y {cos^ + cos(^ — a)},

- = ^ {cos^ + cos(^-/3)|.
r I

Hence, at the pole of PQ,

cos(^ — a) = cos(^ — y8),

and a does not equal yS ; therefore

and at the pole

2 '

1 2 / a + /3 a-yS

^=Tr^-T-+^'^-2-
4 a /8= -^ cos- cos-.

Now 8P= I sec'^,
4 2 '

^g = ^sec*^f,

and velocity' at P = 2^.;S'P,

Q = 2g.SQ',

.'. SP.SQ = constant (by the question),

or sec'^^a sec'''^/3 = constant;

therefore the value of r at the pole is constant, or the locus of

that point is a circle about the focus as centre.
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5. Force varying as the distance, let P, Q (fig. 97) be two

points in the orbit described by a body round a given centre of

force C, and let PT (the tangent at the point P) meet CQ
produced in T; join PQ and draw TA parallel to PQ meeting

CP produced in A ; draw QA meeting PT in Z/, and CU
meeting PQ in F; in CUtake CB a mean proportional between

CV and CU, then the body will pass through the point P, and

the time of movmg from P to B will be half the time of moving

from P to Q.

Let CP=a, CQ = h, then the equation to the ellipse referred

to CP, CQ a,s axes wnll be

+ -3^ + f.=
i (1)

Let CA = a\ CT = h' ; the equation to PT will be

X y-+rr=l (2).
a

To express the condition in order that this may touch the

ellipse, take (1) — (2)"'' ; therefore

an equation to be satisfied only by the coordinates x = a, y = ;

therefore

1 1

7' ^or = - .

a

Also, since ^ Z" is parallel to PQ,

a J, c''

which is evidently the condition in order that QA may touch

the ellipse.

Hence QU, PU both touch the ellipse, and by a known pro-

perty of the ellipse, P is a point in the curve if CB' = CU. CV.

t2
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Again, let ^,, </>, 9„ be the angles C'P, CJR^ CQ respectively

make \A\\\ the apsidal distance, then the time in which the

particle will reach P from the apse

= ltan-(|tan^,),

where a and 5 are now the semiaxes.

Let (/<,, /t,), (^.^, l\) be the coordinates of the points P, Q re-

ferred to the axes of the figure, the equations to PZ7, QU will be

K K

and -^,x + -^,y=\,

and the equation to CZ7 through their point of intersection

and this line passes through the origin ; therefore

\ = - 1,

and the equation to C?7 becomes

a"-

therefore time from PXo R

= -i
|ta»"'

(j
tan<^) -tan-^

(f*^^^i)

_ 1 a tan^ — tan^,

1 + r? tant^, tan©
6 '
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it' \\ aiul r, be the velocities of Ji and B

_J_SY h SY'
~ SY' SP'^ SY' SF

~ \SP^ SF
h= , ,7 : IS constant.

^ lat. rectum

Secondly^ suppose A and B to be moving in opposite direc-

tions about S^ then their relative velocity pei'pendicular to the

transverse axis

= \\co^PTS- V^cosQT'S

- cosSPY- oD>
-^^

on^^' ' - cosSQY'
SP sin SPY ' e SF sin SQ, Y' ' e

= - I — cotSFY--^ cotSQY'']
~e [sF

= - {u cot<^ — u' cot0') suppose.

Let ASP =6, then

2

7

2
If = - (1 +e cos^) [I the latus-rectmu),

A ^A. \ du
and. cot m = ^^

:

^ u do'

du 2e .

.•. i( cot 9 = —Jn— T sine',

and writing tt + ^ for ^, and neglecting the change of sign,

since cotd)' = — ^77 and not , -j^ as above, we find
^ u do u do '

?i cot 9 = -y sma,

whence we see that the above expression gives the relative

velocity perpendicular to the transverse axis equal to zero.
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7. A body m moves with a uniform velocity v = —— /i*

in a circular tube whose radius is a, and attracts a body m'

within the same tube with a force = , ,. ,„ ; shew that if m

and m be originally situated in the opposite extremities of

a diameter and m at rest, the two bodies will meet one another

2aa
at the end of the time

b sin a
*

Let P, Q (fig. 99) be the positions of m and m at the time t

after the beginning of motion, and let PCA, QCB be their

angular distances from their original positions ^, J5 at the

extremities of the diameter AGB\ let PGA = 6^ PCQ =
(f)y

V
also QCB = - t: join PQ ; then, for the motion of m',

a

fl cos|0

(2a)' mi^^<f>'

V
Also, d = TT — (b t

;

a

•*•

de " df '

and 2 '-^ ^ = _ iL .^^^ ^

.

dt df 4«* 3in'^<^ dt
'

dt J 4a* Vsin*^)^

V* cos'^'a

sin''^<^
+ C

Now, when < = 0, -^ =
, d) = 7r:

' dt a

v^ v" cos'^a ,, ^,
•••

a'
—^('+^);

.-. C = SGC'OL- 1,
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(It a b1ii^(/)

d<f) V cosa [1 + sijr^^(sec'''a - 1)}*

V cosa {sec"a - (sec'"' a — 1) cos''^^^]*

'

, 2a 1 . _, (scc'^a— 1)* , , ^
and f = 7

—

r, -Ti sin -^ — cos*© + 6
I' cosa (seca— 1)* seca ^^

2a——:— sin ^ sina cosi6 + (7(=0).
V sin a

And if T be the time that elapses before the collision,

J. = —;— Sin sma
V sma

2aa

V sm a

8. A straight rod AB (100) slides between two planes

0-4, (9J9, one of which is horizontal and the other vertical

:

then, if a body acted on by gravity descends from rest from

the highest point, down the curve which always touches AB^
the time down any arc : the time down the corresponding

chord : : twice the arc : the chord.

Let the length of the rod AB = c, the equation to the

cui've which always touches AB^ referred to Cx^ Cy^ the ho-

rizontal and vertical axes through its highest point, is

(c — xy -f y^ = c\

We will shew that CD is the curve which has the required

property. Let a;', y' be the coordinates of the point P. Then

time down arc CP — '
-^-

•'

chord CP = y-^-^^ ,
7 the length of the chord.
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Hence the property in the question gives

ds

^Fi "l
'

ds

. f dy . 4 tUs ,

•
1 ^ ^ _£__ ^ _ 2 r"'ds

"
{gy'Y dy [gyy dy ^^A^^'

. _3_ ^^_2_ £ r^V7.9

" WJf dy' [gyy-y' Idy'^y^

3 , ds ["'ds ^"~^' w^Ldy^y^
. 3 , ^' 3 ^ ds_

" 2 ^ dy ^ 2dy'"d^'''

or dropping the accents,

ori + 3^' = 0,
y ds '

log.y + 3log^ = logc;

••• r = (-)''

»-(iy=(-;)'

dy
\

'
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.-. x-{- C=- {c^-ff,

and the curve passes through the origin

;

.-. 0=-c,
i s s

and [x — cy + ^^ = c'

is its equation, shewing that the curve which has the required

property is the curve generated as CD is.
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RIGID DYNAMICS.

1848.

1. A GIVEN Inelastic mass is let fall from a given height

on one scale of a balance, and two inelastic masses arc let fall

from different heights on the other scale, so that the three

impacts take place simultaneously : find the relations between

the masses and heights in order that the balance may remain

permanently at rest.

Let M be the given mass, h the height from which it falls

;

iJ/, M,^ the other two masses, A^, h^ the heights from which

they fall: then the momenta of the three will be

M{2gh)^^ M^[2g\)^^ M,^[2gh^)^ respectively:

in order that equilibrium may not be disturbed, we must have

sum of momenta of iHfj, M^ = momentum of M^

or M^h^i + M^^ = JfA* (1).

Also, in order that the balance may remain permanently at

rest, we must have

M^^M^ = M (2):

(1) and (2) are the required relations,

2. A cannon-ball is fired at a mark at a place whose north

latitude is Z; shew that in consequence of the Earth's rotation

the vertical plane containing the axis of the cannon must be

inclined at an angle of \ht sin/ seconds to the left of the vertical

plane passing through the mark, t being the time of flight in

seconds.

The Earth's motion (oj) of rotation about its axis of figure

may be resolved into two ; one about the vertical line at the
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place In question, and another about an axis tlirough the Eaith's

centre at right angles to tlie former. The latter rotation will

not affect the relative position of the cannon and mark.

The former velocity of rotation is w sinZ, and carries the

mark round the camion from right to left: consequently the

vertical plane through the cannon and mark will in time t

revolve through an angle to sin ?.^, or
faWtlo

^^^^^'^ degrees, if

t be the number of seconds in the time of flight, or through

an angle Yf sin/.f, or 15 sin 7.^ seconds: in order, therefore, that

the ball may hit the mark, it must be aimed 15 smLt seconds

to the left of the mark.

3. An imperfectly elastic homogeneous rough sphere is pro-

jected obliquely, without rotation, against a fixed plane ; if t', i'

be the angles of incidence and reflexion. A, the coefficient of

elasticity for direct impact, and p the ratio of the tangential

force of restitution and compression, prove that

2|0 = 5 — 7A, tani' coii.

Let Rj jR, be the normal Impulses up to the time of greatest

compression and during the whole impact respectively :

Fj F^ the same tangential impulses,

F, V the velocities of the centre of the sphere before and

after impact;

.'. R = Vcost.Mj

and V co3^' = "t? — Fcos« = XFcosz (1).

Also tangential velocity before impact = Fsin/; and at the

time of greatest tangential compression the tangential action F
. F

has diminished the velocity F sin* by the quantity -r^, and has

generated an angular velocity w where

Mk'rj = Fa.
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Wc must also express the geometrical condition that the

point in contact with the plane is at rest, or

. . F
Fsmi — ^-p= a-a.M

„ rr . . F Fd'
Hence K smi — ^r^= ^rryr,

;

.-. F= ,^\, J/Fsln?'.
af + h'

Also F^ = {\-^p)F;

. . F
.'. F'sint" = Fsini — ~M

= Fsm;{l-(l+p)^3,}

(2):
Tr . .a — pk= V sni I —T,—St

ft' + h""

(2) 4- (1) gives

., tan^ a^ — pF
tan^ = —r

t.
—^ :

X ft' + Z;'
'

or, substituting §ft'' for A;',

., tan I 5 — 2p

.*. 2p = 5 — 7X tan 2*'
cot?'.

4. Two given masses are connected by a slightly elastic

string, and projected so as to whirl round: find the time of

a small oscillation in the length of the string. Give a nu-

merical result, supposing the masses to weigh 1 lb., 2 lbs. re-

spectively, and the natural length of the string to be 1 yard,

and supposing that it stretches ^ inch for a tension of 1 lb.

The tension, and therefore the extension, of the string will

evidently depend only upon the relative motion of the masses,

not upon their absolute motions. Now the relative motion of

the masses will not be affected if we apply at each instant to
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T
both bodies [M and M') the accelerating force vf, equal to that

acting upon il/, and in the opposite direction : and if, further,

wc apply at the instant after projection to both bodies the same

velocity, viz. a velocity equal to ilf 's velocity of projection in

the opposite direction to it. But by these means J/ is reduced

to rest : let it be taken as the pole of coordinates. Then, if

— = the uncxtcnded length of the string,

1

u

and T = tension at time ^,

we have, by the principle that ' Tension ex Extension',

1 _ I
T=E ''t !i = E "^IsiIL:^ e a constant weight.

1 M "

Now the equation of il/'s motion is

Let u = u^ — a, a will be very small,

and ^-,^„ + a + ^ _ + _ 1 + 3=0;
dd-" « ' " ^ ^ Viif ^ M'j 7/v; V u^

or, omitting d\

which equation shews that a undergoes periodic mequalities,

whose period

E_(l_ l^l+T^i^ +
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this is the time of the small oscillations in the length of the

string : h must be determined by the circmnstances of projection.

Ex. Let M= 1 lb., M' = 2 lb., - = 1 yard, and E such a

weight that a tension of 1 lb. stretches the string ^ inch, or

iib. = ^Li^^«i^ = j?-

or^= ^^Ibs.;

.'. y = 27r
. , ^ ,.. ^ 1 seconds

= ^'^
/^^32,2 x\ 360 3^^

'''"^^''

(' v^ ' 359 *

2,

where v is the velocity of projection, expressed in yards, of M
or M' in their relative orbits,

seconds very nearly." 145\i

5. A rough sphere rolls within a hollow cylinder with its

axis vertical, so as to be in contact with the cm-ved smfacc

and the flat bottom: find the reactions and the fiictions, in

terms of the angular velocity with which the sphere goes

round, and explain the indetenninateuess of the problem.

Let (o be the angular velocity of the centre of the sphere

about the axis of the cylinder;

o)., (u_^, co^ the angular velocities of the sphere about that

axis and two other axes of rectangular coordinates

;

B^^ i?^, B^ and i?'^, i?'^, B\ the mutual actions at the

base and other points of contact parallel to the axes
of Xj y, and z respectively

;

a and r + a the radii of the sphere and cylinder.
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Thcu the equations of motion arc

M"^ = i?^ + n\ - Mg = 0,

MU'^ = - Ra-Ea^mO
(it

1/ e
,

[6 the angle between the radius vector and axis of x,)

JfF^^ = i2a + -B'acos^,

MT^ ^' = Ea sin<9 - E a cos(9.
dt

The geometrical condition to be expressed is, that the two

points of contact must be instantaneously at rest.

Hence,

horizontal motion of the point of contact of the curve surfaces, or

aa>^ — r« = ;

vertical motion of the same, or

ao)^ sin 6 — aco^ cos ^ = ;

and horizontal motion of the other point, or

aco^ cos 6 + aa>^ sin — rco = 0.

Hence,
aco^ = rco cos^,

ao)^ = rco sin^;

.'. a -7- = r cosd.f— r sin^.w",

dco
(where /=-£),



1848.] RIGID DYNAMICS. 289

a —jJi = r {iiT\u.f+ r cosc/.eu
,dt

It

dto

Also,

X = r cos^,

y = r sin^;

d^'x
.". -j^ = — r sin O.f— r cos6.q)'\

—^ = r cos 0.f— r sill 6.q)\

Hence the equations of motion become

- Mr sm0.f- Mr cos^.w' = R, + R\ (1),

Mr cose.f- Mr sin^.o)' = E + R\ (2),

= i? + ir, - Mg (3),

MFr cos e.f- Mh\ sin O.ui' = - Ra,' - R!p,' sin ^ (4),

MWr sin B.f+ MU'r cos 6. ai' = R/i' + R'ci' cos 6 (5)

,

Mk'rf = R'/i' sin - R\d' cos ^ ... (6),

(4) cos^ + (5) sln^ + (6),

2Mk\f=: [R^ + R',) d' sin 6* - [R^ + JS;) a^ cos (9

= -Ma'rf, by (1) and (2);

.••/=o,

and CD is constant.

Hence (4) cos^ + (5) sin^,

= i?^ s\n0 - R^ cos^,

and (1) sin^ — (2) cos^,

= R\ sin^ - R\ COS0.

Hence there is no action perpendicular to the plane tln-oiigh

the radius vector and the axis of the cylinder. Let R and R'
be the horizontal pressures in that plane on the base and at

U



290 SOLUTIONS OF SBNATE-iroUSE PROIU.EMS. [1848.

the other point of contact. Then (1) cos^ + (2) sin^ and

(5) co8^ — (4) sin^ give

11 + R = - Mrc^' (7),

and R + E = mKvcS' (8):
a'

(3), (7), and (8) are the only equations for determining i?, R\B^,

and B\.

Tlie indetcmiinatcness of the problem arises from the cir-

cmustancc, that there are more pressures on the sphere than

are necessary to produce the motion required. Thus, there are

the two vertical forces B^ and B'^ to support the weight, the

two radial forces B and B' to curve the path of the centre

of the sphere, and the two, B and B\^ to oppose the tendency

of the sphere to rotate about a horizontal axis perpendicular

to the radius-vector. Hence the above equations contain the

sums of couples of these quantities. Considerations of elasticity,

which prevents all such ambiguities in nature, would remove

them from the solution of the problem.

G. A uniform bent lever, whose arms are at right angles

to each other, is capable of being enclosed in the interior of

a smooth spherical surface ; determine the position of equi-

librium.

Find also the time of a small oscillation when the position

of equilibrium is slightly disturbed.

Since the reactions of the sphere all pass through the centre,

it is plain that the resultant force of gravity upon the lever must

also pass through the centre of the sphere ; hence, its centre of

gravity must lie vertically under the centre of the sphere.

Let C (fig. 101) be the angle of the lever ACB, join AB-,

bisect AB, AC, BC, in 0, D, and E, and in ED take the

point a, such that EG : ED :: AC : AC + BC: join OE,

OG, OD: G will be the centre of gravity of the lever, and

OD, OE, will be pei-pendicular to AC, BC: also will be
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the centre of the sphere. Hence we must have 00 vertical.

But EG: GD'.:CD'.EC::OE:OD; therefore OG bisects

the right angle 0Z>, and^C, 5C, are equally inclined to the

horizon.

^Vhen the lever is slightly disturbed in its own (vertical)

plane from its position of equilibrium, it will manifestly oscillate

as if it were attached to an axis through 0, and the sphere

removed. Hence we have to find the radius (/>) of gyration

of the straight lines AC^ BC, about an axis through 0, per-

pendicular to the plane of BC^ CA.

Let A^j, k^, be the radii for AC^ BCj respectively : then

k;' = 0D' + IAD"" = EC + ^AB'

= ¥ + !«•', if ^ C = 2a, BC = 2h.

Similarly,

K = a' + W,

and l>^-J<±JK^ll±^^^±4^±Vl^l(a + hf.

Again, to find 0G{= Z), the distance of the centre of gravity

of the lever from 0. We have

._ j^^, &'mOEG _ a j-,^sinOED

smEOG ^ TTTh smEOG

2-ah
~ a + V

therefore the time of a small oscillation

_ 2^' {a + hf

7. A section of the surtace of a circular right cone (whose

axis is horizontal and vertical angle 60°) is formed by a plane

pei'pendicular to the slant side, so as to contain the vertex

;

U2
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shew tliat when the surface so cut off makes small oscillations

21a
about the axis, the length (jf the isochronous pendulum = -—

(whether the elliptic base be included in the surface or not),

a being the length of the pei-pcndicular drawn from the vertex

upon the elliptic base.

Let k be the radius of gj^ration of the section about the axis

;

r being the distance of the element hS of the surface from

the axis. Let hS be projected upon a plane pei-pendicular to

the axis, and hS' be the corresponding elementary sm-face

;

.-. hS' = S>Scos30°;

, _ sa^v

= the square of the radius of gyration of the elliptic

projection on a plane perpendicular to the axis.

Similarly, the radius of gyration of the elliptic base equals

the radius of gyration of its projection on the same plane, which

is the same as the projection of the whole section. To find

this radius we must first find the axes of the elliptic base BC
(fig. 102).

Since the vertical angle BAC=SO°^ we have, if AC=aj

and if h equals the semi-axis minor,

(2^)"''= CF.BE=a.2a',

.'. ¥ = K.
We may now also find Oo, the distance of o, the centre

of the base from 0, the point where the axis pierces the base.

We have
Oo^oC-OC

3i 1
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•*.
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Let T be the tension at any point, then T -r- ^
"^ ji ^y >

are the tensions in dircetions of the axes ; and since the tensions

arc impulsive, wc have

difference of tensions at the extremities of any small arc

QC velocity communicated to the arc

;

or -^ al + I —r« as ec ^- (1).
as as at ^

'

Similarly, |ir+r§*cc| (2),

%'^-^'i'^-% (^)-

dx d'^x dy d^y dz d'^z

rp ^ It ~d? 'dt ~dl It Is'
"^

urx\' Td^ /^v *

d'^x dx d^y dy d^z dz
smce -jT 1-+-?^ T^ + TiF -7-=0.

ds ds ds ds ds ds

Now, the direction-cosines of the radius of cui'vature are

d'^x d'^y d'^z

d£^ ds ds^

d''x\' (d'yV fd''zy] i '

Also, if p he the radius of cui'vature,

1 (fd'xy (dW fd' Ai

p~ Wds'J
"^

[ds'J
"^

Us'J ^ '

,'. T Gc velocity communicated to [xyz] in the direction of the

radius of absolute curvature, and inversely as the curvatm*e.

2. The nut of a screw rests upon a smooth horizontal plane,

over a hole cut so as to allow a free passage for the screw,

and the screw descends through the nut by its own weight:

detcnnine the motion.
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At time t let P be the whole action between the screw and

nut perpendicular to the thread of the screw, which makes an

angle a suppose with the horizon. Then

the whole vertical force on the screw = Mg—Fcosa^
moment of the whole horizontal force = Pa sina,

on the nut = — Fa sina.

Hence, if y = depth of any point of the screw below a fixed

plane,

ft), &>', the angular velocities of the screw and nut,

d'^j/ Pcosa
df

7 2 ^Ca

dt

rrid(o'

^ dt ~ M'

The geometrical condition is, that each two cori'esponding

points of the screw and nut in contact have the same motion

perpendicular to the thread;

dy , .

.*. rto) sma 7" cosa = aco sma.
at

Differentiating this equation and substituting from the above.

u
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vertical, so that C, c, coincided : then, calling the different parts

and angles, as m the figure, we have for the equations of motion,

for the lower sphere,

MU'^=Fa (1).

for the upper one,

M'^ = B smcf> - FcoH<f> (2),

M'^ = B cos<^ + i^sinc^ - M[g (3),

M'k"^^ = Fb (4);-

and for the geometrical condition we must express the circum-

stance that the spheres roll without sliding

;

... a{(})-e) = b{e'-<f>) (5).

Also we have
X = [a + b) sin^,

7/ = [a + b) coscf).

Takmg (1) ^ — (4) «, we have

MFb~-MTa'^^0-
dt' df '

whence we find

., M¥b .
^

M'V'a ^
suppose.

Hence (5) becomes

a{(l>-0) = nbO - b<^y

a ^ + ^ J.or a = 7 d>

;

and & = n r d>.
a + no

Now the expression for the vis viva gives us

«.(|)V>ri(.+.)'(f)Vr(f)] = 23/-,,(.+.-,);
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and substituting the above values of d and 6\ we get

= 2M'g{a-\-h-y)

= 2M'g[a + h) (l-cos(/))

which may be written shortly

dt
\m^ (1 - cos^) = 7>i'''sin"^^<^

dt 1

f/<^ sin^0

'

and mt +(7 = 2 log tan \^.

The constant C may be determined by supposing ^ to have

a very small value a, when i = ; whence

^ , tani(f>
mt = 2 log \-^

,^ tanja '

and tan^^ = tan^a £*"",

which determines </», and thence 6 and ^', in terms of t.

4. What must be the angular velocity of a horizontal

cylinder, in order that a heavy string of given length attached

to it may be just wound up ?

Let I be the whole length of the string, x that of the part

hanging doAvn, /u, the mass of a imit of length ; T the tension

of the rope at the point of its contact with the cylinder. Then

for the equation of motion of the cylinder, and that part of

the rope coiled on it,

{Mk^ + fi{l-x)d^}'^ = -Ta (1);

and considering the part of the string hanging down as one

mass, the coordmate of a fixed point of which (the extremity) is Xj

and 1 — X = (10.
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Now (1) — (2) a gives

[Mk^ + /i (/ - a?) a'} -^- fiax-^, =- figax,

(Px fPx
J/A;" + fi[l — x)a\ -T^ + /^a x -j^ = figa x,

d'^x
or {MP + fild^) -jj = f^ai'x.

dx
Multiply by 2 -^ , and integrate,

.-. [Mk' + fild') ('^Y = fjigd'x' + C:

doc
and ;7- = ^) when a; = ;

.'. (7=0;

.-•. [Mh' ^ fild') {^\ =figd'x\

Hence, in the beginning of motion, when £c = /,

dd__\^dx_ {H',g)' I

dt~~ li~dt~ [MW + iiM)^
'

which is the required angular velocity.

5. A heavy rod is suspended from a fixed point by two

inextensible strings without weight, the strings and the rod

forming an equilateral triangle ; if either of the strmgs be cut,

dotemiiue the initial tension of the other.

Let the figure (104) represent the position of the beam at

the time t after the string has been cut ; GN being the vertical

line through the point of support. Hence the equations of

motion will be

.lf^^=rsin^ (1),

Jf^ = Mg - TcosO (2),

Mk^^ = - Ta sin(6'-f <^) (3).

Also the geometiy gives us

X = 2rt sin^ — a sin^,

y = 2a cos^ + a cos(f).
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Hence, differentiating twice, we find

d'x , ^ d'y ^ ^ (ddV . ,„ ,.d"(i)

-aco8(6> + (^)(^'^

T
= g cos^ — -^cos2^,

by (1) and (2).

Hence we find, by substituting the value of -j^ from (3),

-^{co82^+|j8in"''(^+</))}=5rcos^ + 2a(-^) +acos(^+</))f-^) .

Now, in the beginning of motion, —- = 0, -y^ = 0, ^ = SO"",

and = 90°: let 7^, be the initial tension

;

34

and F = ^a^
;

the required tension.

„ /I 9\ „ 34

or T^'^-^Mg,

6. A man standing in a swing is set In motion : shew that

he can accelerate the motion and increase the arc of oscillation

by crouching and rising In the swing ; and prove that the effect

will be greatest If he crouch when the swing Is at the highest

point, and rise when It Is at the lowest point of its arc of

oscillation.

Since the ropes of the swing are not supposed to slacken

or bend, we may suppose them to become rigid, and rigidly

connected with the swing.

If the man do not crouch and rise, the arc of oscillation will

be unaltered, the effect of gravity being to accelerate the motion

while he Is descending, and to retard It while he ascends.
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Now, if the man rises when the swing is at its lowest point,

the moment of the force of gravity on him about the axis

through the points of support of the swing is diminished, and

the motion less retarded tlian it would have been if he had

retained a mean position ; hence the swing will rise higher than

it otherwise would : if he crouches when at the highest point

of the arc of oscillation, the motion will be more accelerated

while the swing descends than it would have been if he had

remained in a mean position ; hence the velocity at the lowest

point will be increased on account of his having both crouched

and risen ; hence the arc of oscillation will be mcreased by

such a motion of his body.

It is evident that it will be most increased if he rises at

the lowest and crouches at the highest point of the arc of

oscillation.

In addition to the above reasons w^hy the supposed motion

of crouching and rising will increase the arc of oscillation, is

another, viz. that the principle of the conservation of areas

must hold during the sudden motion of rising at the lowest

point. For during that motion both the forces on the man,

viz. gravity and the upward pressure of the swmg, may be

considered as acting in a vertical direction, that is, normally

to his instantaneous direction of motion. The consequence will

be, that his linear velocity will be increased as he rises, and

therefore approaches the horizontal axis through the points of

support of the ropes.

If the swing be supposed to have mass this effect will be

diminished, since his rising will not so much raise the common
centre of gravity of himself and the swing. This diminution

of the effects of the principle of conservation of areas will be

practically caused by a change of the friction between the swing

and his feet, which will for the mstant retard his motion more

than it usually does.

The above reasoning has, of course, no place as applied to

his crouching when at the highest point of the arc of oscillation,

since he is then describing no areas at all about the horizontal

axis through the points of support.
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7. A circular hoop rests upon a smooth horizontal plane

with a particle at its lowest point, and receives a horizontal

velocity of projection V in its own plane : find the value of V
in order that the particle may just rise to the height of the

centre of the hoop.

DcteiTnine the motion when V is greater, and also when it

is less than this value ; and find the time of an oscillation of

the particle in the hoop when V is small.

Let P be the position of the particle in the hoop (fig. 105)

at the time t from beginning of motion. Let AN= ic, NP=y^
be the coordinates of P referred to A^ its position at projection,

as origin, AM= x. The principle of the conservation of the

motion of the centre of gravity in a horizontal direction gives us

M^ + M'^ = M'V (1).

The expression for vis viva is

Also x — X = a sin0,

y =^ a[l — cosO)
;

dx dx rt
^^ /.,\

.-. -: =- = a cosy -r (3),
dt dt dt ^ ^'

dy . add .

-f = a smO -y- (4).
dt dt ^ '-Y- = a s'mO -T-
dt dt

From (1) and (3),

(31^ M') § = M'[V- a cose
'-^;),

{M+M') ~ = M'V+ MacosB^.

ince equation (2) becomes

IM^'H' (
''- " -^^ I)' + (^' '^+ ^o •=-» f)}
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ja

If the particle just rises to the height of the centre, -^ = 0,

when = 00° and y = a\

- r=(^-^/(2,.)..

AVhen V is greater than this vahie, equation (5) gives the

fid
height to which it will rise before -r- = 0, viz.

y ~ M+ M' ' 2(7

At this time the particle is moving horizontally with the

same velocity as the hoop : it will now fall down in a parabolic

path and will strike the hoop at a point at the same distance

below the horizontal diameter as the point at which it left the

hoop is above it.

If V is not sufficiently great to make it rise to the height

of the centre, it will rise to the height

M' V^

and since the above equations apply for both directions of

motion of the particle, we see that it will continue to oscillate,

rising on both sides of the vertical diameter to the above height.

(19
If V be very small, Q and -j- will be very small : in this

case differentiate (5)

;

-P—^f^ ] cos''0.2 -^ -r-2 smO cosB -^ i = - 2q -^
\I+M [ dt dt \dfj

)

•' dt' M+M'

or
M'a \, d'^d fddV)
ifTM'f-^^W-^[dt.)\='-^^^

= — 2ga smt; -j-
,

3f +

dO
or omitting OP and 9

^
,
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df ^ M' a'^ '

the equation of oscillator}^ motion, the time of oscillation being

/ M' a\i

8. A heavy lamina, in the form of an equilateral triangle,

suspended fi'om a fixed point by three equal strings, is drawn a

little aside from its horizontal position (the strings being all

stretched) ; its centre of gravity then receives a small honzontal

velocity of projection perpendicular to the plane in which the dis-

placement was made, while at the same time a velocity of rotation

is connnunicated to it in its owti plane : detemiine the motion.

The motion of rotation of the lamina in its own plane is

evidently independent of the motion of its centre of gravity, and

will continue uniform.

By the principle of the superposition of small motions, the

oscillations of the centre of gravity in the two perpendicular

planes will be independent of each other.

The equations of these small motions will be

6 = 6^ cosnt

and
(f)
= ^^ sinnf^

6^ and ^, being the semi-arcs of oscillation

;

and the centre of gravity will move veiy nearly in a small

ellipse about its position of equilibrium as centre, with axes

rB^ and r(^^, r being the distance of the centre of gravity from

the point of suspension.

9. A man hangs by a rod which swings in a vertical plane

:

compare the exertion required to raise him from one given point

of the rod to another, 1st, when he draws himself through a

given small space always when the rod is vertical, and 2ndly,

if he makes the effort when the rod is at its greatest inclination

to the vertical.

See Prob. 6, 1849.
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Let V be the velocity of tlic man at the lowest point before

he begins to raise himself, 2a the arc of oscillation: then, if

a be his original distance from the point of support,

v^ = rt (1 — cosa).

Now, if he raises himself always through the given small

space B at the lowest point of the arc, the velocity at the lowest

point will receive a sudden increase; and it will be with this

increased velocity that he will next airive at the lowest point:

the arc of oscillation will also continually increase.

Let v^ be the velocity with which the man arrives for the

r**» time at the lowest point of the arc, when he raises himself

through the r^^ small space 8. The exertion of doing this

i
a-{r-l)8j

To detennine v^. The relation between v^ and v,._^ is given

us by the equation

v^{a-{r-l)S]=v,._^{a-{r-2)B],

which expresses the conservation of areas during the man's rise

through the small space S. We may hence deduce the equation

v^ [a— (r—1) B] = va.

This equation we may also derive from the consideration,

that the man returns each successive time to the point when
he raises himself with the velocity with which he quitted it;

and therefore we may consider that he raises himself by one

effort through the space (r— 1)S, the conservation of areas

holding all the while. This consideration gives us the above

equation immediately. We thus have

a-{r-l)8 {a-{r-l)BY'
Hence the r"^ exertion

Let us call (r— 1)S, x', then we may call S, cfe, and we
shall have, as an approximation to the true result, supposing

B extremely small,
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whole exertion

= M\gh + \vV[j^,^^-l:)

If the man raises himself at the highest point of the arc,

the arc of oscillation will remain mialtered, but the velocity

at the lowest point will be increased after each effort. Hence

every exertion will be the same, viz. Mg sin a. 8, and the whole

exertion Mg sina.^-

Hence the ratio of the two exertions

/ v^[2a-h)\
=

I' + ^FF^v '"'''°'-

10. A semicircular board, moving in its own plane without

rotation, and with Its cm'ved boundaiy foremost, comes in con-

tact with a smooth fixed obstacle : determine at what point the

impact should take place in order that the angular velocity

generated may be the greatest possible.

Let P (fig. 106) be the point where the Impact should take

place, the radius CP making an angle 6 with CD the bisecting

radius. Let P^be the velocity (in CD) of the centre of gravity

of the board before impact, t" , v\ those parallel to CD and CB
after Impact, ^ the angular velocity after Impact, R the Im-

pulse : then, if G be the centre of gravity and C6^ = a,

V = V — zTi.coaO.M '

^' = ^«in^>
) (A),

_ Ra %md
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Also we have the geometrical condition, that P must have

no motion in the direction CP after impact ; whence

V co3^ - v sin^ - r^PO amGPC = 0,

or V cos^ — v sin6 — wa sin^ = 0.

Finding r, v', from equations (A) in terms of w, and substi-

tuting in this last equations, we get

fV-— cot^] cos^ - — sin^ - ^'x sln^ = 0,

or V cos^ — ( — ^—^ + a smO )
•cj =



1841).] KKilD DYNAMICS. 307

cylinder then receives a blow of given intensity in a direction

perpendicular to the plane in which the axis moves: determine

the subsequent motion.

Since any section of the cylinder through its axis is a prin-

cipal section, the blow takes place in a principal plane, and

therefore only generates a velocity about the axis (that of

X suppose) perpendicular to the axis of previous rotation (that

of j/), and the axis of the cylinder (that of 2).

Hence, if A be the moment of inertia about the axes of

X and y^ C that about the axis of z ; and w,, eo^, Wg, be the

angular velocities about these respective axes at any time t

after impact, we have as equations of motion,

A'^-{C-A)a>.^^o.^ = 0,

C^-{A-A)co^<o^ = 0,

or ^^ = 0,
df

'

and 0)3 = constant

= 0, since that is its original value.

Hence also tUj = constant

= that generated by the blow

= —7- , if i? be the blow, a the distance from
A ' '

the centre of its point of application,

and (o,, = constant

= its original value before impact.

Hence the cylinder revolves unifonnly, and the instantaneous

axis is fixed in it, viz. in the plane xy ; hence this axis is also

fixed in space, and the axis of the cylinder, as before, sweeps

out a plane.

x2
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12. A Rolld cone is suspended by its vertex from a point

in a perfectly rough wall : if the cone be slightly displaced from

its equilibrium position, the surface remaining in contact with

the wall, determine the time of a small oscillation.

Let be the angle which the line of contact of tlie wall

and cone make with the vertical at the time t] to the angular

velocity at the same time about the line of contact ; 0^ the

original value of ^; h the height and 2a the vertical angle

of the cone : then, since the line of contact is the instantaneous

axis, the equation of vis viva gives us

Jf/c'V = 2Mg.^h cos a (cos0 - cos^J,

2 3 qh cosa
, ^ n\

or <" = n 7,>ii
— (cost/— cos^J.

Now, to connect w and 0, we have two expressions for the

rlB
motion of the centre of the base, viz. h sina.w and h cosa . -r- ;

dO ^
.-. 0) = ^ cota;

fd()\^ 3 qh sin^a
, ^ n\

••
[it) "2 'ks^f'^''^^ -"><);

.*. -jY = -
J \n sin0 , I the length of the side

;

or if the motion be very small,

d''0 3 «7/sin'''a „ ^

k'
Therefore the time of a small oscillation = 47r

(3^Z)^ sina

13. An indefinitely great number of indefinitely thin cylin-

drical shells, just fitting one within another, are revolving with

different angular velocities, but in the same sense, about their

common axis; also the angular velocity of each shell is pro-

portional to a positive power (the n"^) of its radius, and that

of the outermost shell is tu. Prove that if the system of shells
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be suddenly united into a solid cylinder, the cylinder will revolve

about its axis with the angular velocity .

If the bodies composing the Solar system were suddenly to

become rigidly connected, explain what the nature of the sub-

sequent motion would be.

If 0)^ be the angular velocity about the axis of any particle, at

a distance r from the axis, the area described by it in the time t

n n+!j
7' r

a a

if a be the radius of the outer shell.

Hence the sum of the areas described by all the particles in

the same cylindrical shell, of thickness Sr,

= TTO) -%- t . Br.
a

Hence the sum of all areas described by all particles in time t

t r— '

« Jo

a= rrmt
« + 4

If w be the angular velocity after uniting, the sum of the

areas described by all the areas in an equal time

= TT'ot I r^hr
•'

= TTWC .
—
4

By the principle of the conservation of areas, the two above

sums of areas must be equal, or

a' or
TT-art — = TTtOt 1

4 n + 4
'

4(i)

« + 4
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In the Solar system the areas of the orbits vary as the square

of the mean distances, and the periodic times squared as the mean

distances cubed, and therefore the mean angular velocities vary

as the square roots of the mean distances. Hence, if all the

bodies of the system were suddenly to become rigidly connected,

the bodies nearer the sun would have their motions suddenly

accelerated, and those furthest from it would be suddenly re-

tarded ; after which all would proceed with a common unifonn

and, so to speak, an average angular motion.

1850.

1. A parallelogram, whose centre is fixed, is rotating about

one of its principal axes in its plane ; find how it must be stiiick

that, after the blow, it may rotate with the same angular ve-

locity about the other.

Since the effect of a blow upon the velocity of rotation of

the body about a principal- axis depends only upon the moment
of the blow about that axis, it is plain that the blow must in

this case be perpendicular to the plane of the parallelogram,

and Its moments about the two principal axes in its plane must

be equal and be due to the velocity of rotation already existing

about one of them, and in a direction to destroy it.

Let A, B^ be the moments of inertia about these principal

axes, 0) the velocity of rotation about A before the blow (/)

IS given, x, «/, the coordinates of the point of application of the

impulse

;

Am

y
Bm

which equations determine the point of application of the im-

pulse.

2. Three equal smooth spheres (radius r) are placed together

on a horizontal plane, and kept in contact by a string passed

round them in the plane of their centres. A cone of given

weight [W] and vertical angle (2a), is placed between them
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80 that its axis is vertical : find the tension of the string ; and

if the string be suddenly cut, find when the cone will strike

the plane.

If R be the pressure between any sphere and the cone, we

have for the equililibrimn of the cone

3i2sma = TF;

and for that of any sphere,

i?cosa = 2 TcosItt

„ FTcota

the required tension.

At the time t after the string is cut, let y be the height of

the vertex of the cone above the plane, x the distance of any

sphere fi'om the axis of the cone : the equation of vis viva gives

us, if W be the weight of any sphere,

where y^ equals the height of the vertex of the cone in the

position of equilibrium.

We have also to express the condition, that the motion of

the point of any sphere in contact with the cone in the direc-

tion perpendicular to the generating line of the cone through

the point of its contact with that sphere, is equal to the motion

of that point in the same direction : or

dx dii .

T- cosa = —J- sma

:

dt dt
'

dx dy ^
.'. -J-

= r tana.
dt dt

Hence the above equation becomes

(
W+ 3W tan'^a) (^)' = 2 Wg {y, - y) :

or differentiating,

^ Wg_

de ~ Tr+3ir'tan''a
= — /' suppose,
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a constant retarding force. And the cone starts from rest;

therefore the time of describing the space
y^,,

To find y^. From fig. 107 it is evident that OiV, the per-

pendicular on the axis of the cone from 0, the centre of any

sphere in the position of equilibrium, is the distance of any

angular point of any equilateral triangle of side It from its

centre
;

/--» AT TT 2
.-. 6>A = r sec - = p r

;

.*. OT = ON seca = ^ ?' seca,

and PT = ( -5 seca -
1

J r

;

CT = PT coseca

2

-J
seca coseca — coseca

j
r

;

.-. CN=^ CT-NT=CT- OTsma

I

r^ (seca coseca - tana) — coseca^ r

= f-i cot a — coseca] r,

and y^ = r — CN

= f 1 -f coseea — —^ cota
j
r-;

1(1+ coseca - -j cota)
(
W-\- 3W tan'a) r

j

3. Two equal particles of mass m are fixed at the ex-

tremities of the axis of a prolate spheroid, of which the mass

is il/, the eccentricity of the generating ellipse being e. The

spheroid is struck by a couple and then left to move freely;
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shew that throughout the motion it will constantly have contact

with a single plane, if

m = ^o^e^

The spheroid will manifestly have contact with a fixed plane

parallel to the invariable plane, if it be similar to the momenta!

spheroid of the system consisting of the spheroid with the two

masses [m) at its poles. Let -4, jB, be the moments of inertia

of this system about its axis of figure and an axis through Ita

centre perpendicular to its axis of figure. Hence, if a, 5, be the

semiaxes of the generating ellipse, the condition of contact with

a single plane is

Ad'=^Bh' (1).

Now A = lMb\ B==\M{a^ + h')-\-2ma\

and condition (1) becomes

or 2ma' = lM{a'-b')-

= me\

4. A small arc of a hoop is removed and replaced by two

small straight lines, tangents to the circle at the ends of the arc,

their mass being so disposed that the centre of gravity remains

still at the centre of the hoop. If the hoop be now rolled along

a horizontal plane, sufficiently rough to prevent sliding, with an

angular velocity a> not great enough to make it leap, shew that

motion will never cease unless

. f o)''* d^ + F cos'^a

\2ga '

(1 — cosg) cosa

be a whole number ; where a is the radius of the hoop, k its

radius of gyration, and 2a the angle subtended by the arc

removed.
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The motion of rolling on the circular rim will be unifoiTn

:

hence the angular velocity at the time of impinging on the apex

of the tangent will be to. To determine the motion immediately

after this impact. See fig. 1 08.

Let F^ F' be the impulsive actions between the apex and

the plane along the plane and pei'pendicular to it; v^, v^ the

velocities of the centre of gravity in the same directions, and

C7 the angular velocity after impact. The equations for finding

y^, V . and -nr, are

F

F'

MFzj = Mk^m + Fa - F'a tana.

Also, to express the condition that the apex must be at rest

after impact, we have

v^ — aw = 0,

Vy — a tana.-cT = 0.

Hence we have

Jc^z: = Jc^oi + a^ (o) - w) — (a tana)^.^,

a'(l+tan''a) + k'

= nco suppose.

;Next, to consider the continuous motion of turning about

the apex : let 6 be the inclination to the horizon of the radius

to the apex at the interval t after impact. Then, taking the

equation of moments about the apex,

M{/c^ + c^ sec'^a) -yy = — Mga sec a cos^

;

'd6\(da\ 2qa sec a . ^ ^
\dt J F + a" sec^a

2qa seca , . ^ >

7 2, 2
2- sm e - cos a

k -f a sec a ^ '
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\dtj k~ + a' sec'a
^ i

\
n

a 1 A'^^^'

In passing from a motion of rotation about the axis to a

motion of rolling on the circular rim, there is no impulsive

motion ; hence the angular motion at the time of the second

impact of the apex on the plane is w or noa. Similarly, the

angular velocity at the time of the >•'*' impact is ifca.

Now, if the hoop ever comes to rest it must be by just

balancing on the apex : suppose this happens when it is rolling

over the apex for the ?«"' time; then equation (1) shews that

we must have

= w ft) - ^-^—^ — 1 -cosa),
/c + a^ sec'a

^ '^

o 1 if 2(7a sec a ,,
or 2m log?i = log ijj^-^, r^-^z l-cosa

'^ [[k + a sec a) w

ft)" («^ -f P cos''^a)
lof
^ I2qa (1 - cosa) cosa

or m = ^\ - 1

2log|n-^^^tan^a|

by inverting both the quantities under the logarithmic sign.

Hence, if this expression for m be a whole number, the hoop

will come to rest as it is rolling over the apex for the ?»"• time

:

if it be not a whole number it will never come to rest.

5. Two similar homogeneous cords are similarly stretched,

and one of them loaded at its middle point with a small

weight /x; shew that the fundamental note of the loaded cord

will be lower than that of the other, and that if t denote the

time of vibration of the loaded cord for any possible note, the

values of t are given by the equation

tan H fiVl = A Uxl<

wlicrc / is the length of the cord, • the mass of a unit of length.
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and T its tension. Under what initial circumstances will both

strings sound the same note?

See Duhamel in the Journ. de VEcole Polytech. tom. xvii.

It is evident that when the loaded cord is sounding its fun-

damental note, its two halves meet in a salient angle pointing

from the line joining its extremities. Thus the two halves are

portions of the trochoid which a longer cord would assume in vi-

brating, and will vibrate in the same maimer as if they actually

were parts of such a trochoid : hence the loaded cord is virtually

longer than the unloaded one, and capable of a deeper note.

Let ic, 3/, be the coordinates of any particle of the string at

the time f, referred to the line joining the extremities of the

string, and a line through its middle point perpendicular to it

and in the plane of vibration, as axes of x and y. The equation

of transversal vibrations will be (Poisson, Mecanique^ n°. 490)

, . rmr ,. , > mir
y = h sm -^— [\L — x] cos ^— at^

A A<

where h is the greatest value of y for any particle, a = (

- ) , and

\ a quantity to be determined by the circumstance that the

middle point of the string is attached to the weight [i.

Let y be the ordinate of this weight at the same time t :

the equation of motion of ^l is

Now

tan

d'y
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Now, let t represent the time of vibration

;

_ 2X, 1 _ 2\ /£

m ' a m ' \T

and the above equation becomes, by eliminating \,

the required equation for the determmation of all possible values

of «.

The value of t answering to the fundamental note is its

greatest value; it is plainly such that

T-l;) "2-

Now suppose fi indefinitely small, or the weight removed,

the value t' of t then answering to the fundamental note is

TT? /S\4 _ TT

T-[t) -2'

and therefore t > t\ or the fundamental note is lower for the

loaded than for the unloaded cord, as shewn above.

The two cords will evidently sound the same note when the

middle point of each is made a node ; in which case the note

will be that due to a length which is any submultiple of \l.

6. If a body hang by a string, and through any point of the

string a series of horizontal lines be di-awn, with any one of

which the body may be rigidly connected and perform small

oscillations about it, the time of oscillation will be a maximum
about a line at right angles to the one about which it is a

minimum : prove this, and shew how to find the position of these

two lines, and the time of oscillation about any other, in tenns

of the times about these two and the angle which it makes with

them.

If t be the time of the body's oscillation about any one of these

lines about which its moment of inertia is Q^ we have the relation

«

=

^^ (j4)''
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where M is the body's mass, h the depth of its centre of gravity

below the horizontal line in question. Now the general ex-

pression for Q is

Q = ^hn{x' + ^f + z');

therefore if we make the horizontal plane through the lines the

plane of xy^ 'S.hmz^ is the same for all the lines, and the relative

magnitudes of Q for the different lines will depend upon

But this expression will be unaltered if we project every particle

of the body upon the plane of xy. Hence, as in the case of a

plane lamina, we shall have two axes in the plane at right angles

to each other, for one of Avlilch Q will be a maximum and for

the other a minimum : hence the first part of the proposition

is tnie.

Also, as far as the part ^hn (.c^ + y"^) of Q is concerned, we
shall have the usual relation

Q = Q, co^'9 + Q,^ sin'6',

where Q^^ Q^ are the maximum and minimum moments, and 6

the angle which the axis of Q makes with that of Q^ : hence the

true relation between Q^ Q^^ and Q^ is

Q - 28m.z' = {Q^- ^Bmz^) cos'0 + {Q,- ^Smz') sm-*^,

or Q = Q^ cos'^^ + Q^ sin^^, as before.

Hence, if #, t^^ t^^ be the times about the lines about which

Qi Qit Qii ^1'® the moments of inertia,

t = {t'^ cod'd + f.; sln'^)i

To find the positions of the lines of greatest and least

moments in the given horizontal plane.

Let the direction-cosines of this plane referred to the prin-

cipal axes thi'ough the point where the string pierces the plane

be ?, m^ n] and let Q be the moment about the line whose

direction-cosines referred to the same axes are a, /3, 7 ; then we
are to have, if ^, B^ C, be the principal moments,

Q = Ad^ + B^^ + C<f = a maximum or minimum
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subject to the conditions

a' + 13' + 7'^ = 1,

and /a + w/3 + ny = 0,

which last is the equation to the horizontal plane.

Differentiating these three equations with respect to a, /9,

and 7, we find

Aada + B^d^ + C^^dy = (1),

ada + ^dl3 + rydy =0 (2),

and Ida + md^ + ndy =0 (3).

Using the arbitrary multipliers \ and //., we deduce the equations

Aa + \a = fil (4),

Bl3 -\-\^ = fZ7n (5),

Cy + \y = fjin (6).

(4) a + (5) /9 + (6) 7 gives

Q + \ = 0',

.-. {A-Q)a =fil
1

{B-Q)^ = f,m\ (A).

{C-Q)y=jjLn}

Hence a^+ ^^+y^=l= /."^ j^-^^ + ^^. + (-^|-(7),

and
1 r m^ w'
_(?« + ,„^ + ,,^) = = ^—^ + ^3^ + ^^,

which gives a quadratic for the detenmination of Q^ and Q^.

The substitution of the value of yu. from equation (7) in equations

(A) will give us the values of a, /3, 7, and so dctcnnine the

positions of the lines of maximum and minimvun moments.

1851.

1. The locus of an axis passing through a fixed point of a

solid body, and such that the moment of inertia round it of the

body is constant, is a cone of the second order, and the cones
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coiTesponding to different values of the constant moment have

the same directions of circular sections.

The expression for Qj the moment of inertia about an axis

whose direction-cosines referred to the pi*incipal axes are a, /3, 7,

in terms of the principal moments A^ B, C, is

or if the axes of A, B, (7, are those of .r, ?/, and 2:,

Q [x' +f + z') = Ax' + By"" + Cz\

the equation to a cone of the second order.

Let Aj B, Qy (7, be in descending order of magnitude, the

above equation may be put in the form

{A-Q)x' + {B-Q)f - {Q-C)z' = 0;

and if 2 = mx + 7iy + c

be the equation to any plane which cuts the cone in a cu'cle,

we have {Oregory''s Solid Geometry^ Art. 124)

n = 0,

_ ^ \
A-Q-[B-Q) \^

'A-B\i
= +

'

.B-CJ'

which shews the direction of the circular sections to be inde-

pendent of Q.

2. Determine the motion of a heavy solid composed of two

equal right cones placed together base to base, and which rolls

without sliding upon two intersecting lines inclined at equal

angles to the vertical, the common base of the cones moving

in the plane which bisects the angles between the vertical planes

through the lines.

We shall apply the principle of vis viva.

Let CA^ CB (fig. 109) be the two lines ; and at the time t

let them touch the two cones in P, P' : let GM the height of G
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the centre of gravity of the soHd above tlie horizontal plane

through (7=2;, CM = x. Then if r be the distance of P from

the axis of the cone, and S the inclination of the plane A CB
to the horizon, FN the height oi P = z — r cosS, or if CP = p,

psiny = z — rcosS;

.. 2; = p sin7 + rcosS (1).

Also, if z MCN = £,

X = CiVcoss — pcoay coss (2).

Now as the cone rolls along, the locus of P on the cone will

be a cui've like the dotted curve in the figure : let Bs be an

element of the length of this curve answering to the rotation

of the solid through a small angle 89^ then

Ss — S (rcoseca) cosecyS (3),

if /3 be the inclination of either rod to the common base of the

cones, or 2/S the inclination of the rods to each other : also

8 (rcoseca) = 8[r0) tan/9 (4)

;

.*. 8p = - 8s = — Sr coseca cosec/S by (3)

;

.•. p = (r^ — r) coseca cosec/S,

if r^ is the radius of the common base of the cones : also by (4),

r — r^ = rStan^ sin a,

if = when the solid touches both the lines at (7;

.•. = (

1

-] cotS coseco-
V rj

Hence, by (1) and (2),

z = (>;|
— r) coseca cosec/S sm7 + ?-cosS (5),

X = (r^ — r) coseca cosec/S C0S7 coss.

Now the equation of vis viva gives us
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where «„ is the height of p where tlic solid starts from rest

;

.', {cosec^rt cosec'''/9 cos'^y cos'^'s + (coseca cosec/9 sin 7 — cosS)"''

Pi-:' ,._ , (dryl'< v^o 1
(dry

+ —^ cotp coseca} I ^-1

= 2/y [z^^ — 7\^ coseca cosec/3 sin7

+ r (coseca cosec)8 sin7 — cos8)},

an equation which, when integrated, will give lis r, and there-

fore also X and 2, at any time t.

From equation (5) it appears that as z will necessarily be

diminished by the force of gravity, if the solid starts from rest

it will roll toward C or from it, according as

coseca cosec/3 sin7 > or < cos 8.

3. Shew that the diiference of the moments of inertia of

a body round two axes in a given plane which are equally

inclined to a fixed line in the same plane, is proportional to the

sine of the angle between those axes.

Let ^j, Q^ be the maximum and minimum moments about

lines in that plane, Q^ Q the moments about any two lines in

the plane making angle 0, 0' with the axis of the moment Q^ ;

then, by Problem 6, 1850,

<2 = ()^cos'0 + <?^sin'0,

.-. Q- Q = Q^ {co&'e-QOs'B') + Q,^ (sin"-"0-sin'^0')

= Q^ sin {B'-B) sin {B + B') + Q,^ sin {B - B') sin (0 + B')

= {Q,-Q,)sm{B-\-B') sin {B'-B)

= ((?,-^Jsin2asin(0'-0),

where a is the angle the fixed line makes with the axis of Q^

oc sin(0'-0),

Gc sine of the angle between the axes of Q and Q'.
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1849.

1. A plane body, one of the edge3 of Avhich is a straight

line, is immersed in water so as to have this straight line coin-

cident with the surface; shew how the depth of the centre of

pressure may be deduced from observation of the time of a small

oscillation in vacuum of the body about its rectilinear side.

WTien the body is immersed with its plane vertical,

let z be the depth of the centre of pressure below the surface,

••• z gravity
,

... z any point of the body

Jgpz'dz
Then z' =

Jf/pzdz

Mz z '

(where h' is the radius of gyration about the straight edge)

the length of the simple pendulum when the body makes small

oscillations about the rectilinear side. Hence, if T be the time

of small oscillations.

r=27r

.'.Z^l^C,—^,

the formula for the detcnnination of z from T.

2. A cylinder the radius of which is a, having its axis

vertical and containing incompressible fluid (density /a), re-

volves about its axis with an angular velocity o) = [»-r,

Y2
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n being > 1 ; a sphere (density p'), whose radius is also «, on

being put into the cylinder, is supported in such a position that

it touches the free surface at its vertex : shew that

p \ n

The equation of equilibrium is

volume of fluid displaced = — .^Tra" (1).

r

Fig. 110 shews the position of the sphere in the fluid, the

dotted line representing the continuation of the section by the

plane of the paper of the free surface.

Let F, the vertex of the free surface, be the origin of

coordinates, the axis of the cylinder that of 2, and r the distance

of any point from it. Then the equations to the free surface

and that of the sphere are

2 2a

CO ^ n ^

and r'"' = 2az — s'"*

:

therefore if z' be the height above V of the circle of intersection,

or z' = 2(7 f 1

Hence the volume of the fluid displaced

= irj^{2az-z')dz--.-

TT -I « ( 1 — -] z"^ — !«'
3'

= W(l-l){a(l-i)-Sa(.-l
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therefore from f

1

'

IIYDUOHTATrcS.

^.|W = ..a^(l-^,,

325

or - = ('--)'
> V nj

3. If X, F, Z^ be the forces acting at a point [xyz) of a mass

of heterogeneous fluid in equilibrium, and Xdx + Ydy + Zdz^

be not a perfect differential, then the pressure and density will

be constant thi'oughout the curves of which the differential

equations are

dx dy dz

d]^_d^~ dZ_dX~ dX _dY'
dz dy dx dz dy dx

Let p^ p be the pressure and density at the point (xyz)
;

]) + dp the pressiu'e at the point [x + dx^ y + dy^ z + dz)^ then

dp = p {Xdx ^-Ydy + Zdz) (1).

In order that this equation may hold, and therefore equi-

librium be possible, we must have the right-hand side of this

equation a perfect derivative of tkree independent variables,

or we must have

dp Y dpZ
dz

dpZ
dx

dpX
dy

dpX

dpY
dx '

or
ldY_ _dZ\ ^ ^dp _ ydp^

'^ \dz dy) dy dz

dZ dX\
__ Y ^P ydp

dx dz J ^ dz dx
(A).

dX
('

\ dy dx

dY\ _ Y^ _ x^^
dx dy.
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^lultiplying these equations in order by A', Y^ Z, and adding,

we get

as the condition wliicli the forces X, F, Z^ must satisfy in order

that they may be able to produce equilibrium.

Now let dx^ dfy, dz, in the expression (1) for f^>, be such that

dx fh/ dz , .

d_Y_dZ^(lz'_t(X~clX_dY ^''

dz dy dx dz dy dx

then dp will be the variation ofp as we pass from one point to the

adjacent point of any of the curves of which these are the dif-

ferential equations. Now, combinmg (l) and (3), we get by (2)

dp = 0,

wherefore p is constant along the curves whose differential

equations are (3).

Also from equations (A) we may put equation (3) in the fonn

dx dy dz

dy dz dz dx dx dy

dy =. r(x'^ - Zf
\ dz dx

dz = r{Y^i-xf\:
V dx dyj

and multiplying these equations by y- , y- , -^ , respectively,

we get ' ^

dp = -fdx + -^ dy + ~dz = 0:
dx dy dz

or p is also constant along these curves.
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1850.

1. Three equal cylinders arc placed in contact upon a

horizontal plane, sufficiently rough to prevent sliding: find

how much water must be poured into the space between the

cylinders, in order to disturb the equilibrium.

Let h be the depth of the water poured in when each

cylinder is on the pomt of turning about a tangent line to its

base, in which case the water will run out between the cylinders.

Now the moment of the fluid pressures upon each cylinder

about the tangent line to the base about which the cylinder

would begin to turn, is the same as the moment of the fluid

pressures on a vertical rectangle of height h and breadth equal

to the radius [r] of each cylinder about its base*

= /' I gp [h — z) zdz

Now this must equal the moment of the weight [Mg] of

each cylinder about the same line or Mgr^

is the required height.

2. All space being supposed filled with an elastic fluid whose

volume at a given density is known, the particles of which are

attracted to a given point by a force varying as the distance

:

find the pressure on a circular disc placed with its centre at the

centre of force.

Let fi = absolute force of attraction at distance unity ; the

attractions A', Y, Z^ parallel to the axes at the point [xyz] are

• For this is the natiire of the sectiuii of each cylinder supposed of a

height /(, made by a plane through the lines of its contact with the other

cylinders.
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— /i.r, — /i^, —
t^^i tlic centre of force being origin: hence

dji = p [Xdx + Ydy + Zdz)

= — fip [xdx + ydy + zdz) = — yuprdr if r'- = x^- + ?/' + s''

;

and p=kp\

.'. -^ — — ukrdr
;

To detennine C, wc have

p = kp = CkB-^'^"" •

BM = mass contained between two con-

secutive spheres having C for cen-

tre, radii r and r + Sr

= 47rpr'S?- = A7rCk.rh'^'""-'Br',

. 3/ = whole mass, and therefore known,

ATvCk

Let ^jfikr^ = 2,

and r'Wr = z^dz •

.-. M=4.7rCk-=— / sW^:

and /%^s-v. = r(f) = ir(i)

and M is known ; hence G is also known.

Hence, if P be the pressure on the annulus (radius a) we have

8P = 27rrBr.j)
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from r = 0) /^'^

3. A hollow cylinder is filled with inelastic fluid and made

to revolve about a vertical axis attached to the centre of its

upper plane face with a velocity sufficient to retain it at the

same inclination to the axis. Find at what point of the face

a hole might be bored without loss of any fluid.

Let ft) be the angular velocity of rotation : then, if the fluid

were contained in an open vessel, the latus-rectum (Z) of the

generating parabola of the free surface would be -^. Now

since it is supposed by the question that there is a point in the

upper plane face where the pressure of the fluid is zero, it is

manifest that the face touches the above free smiace at this

point. This point will evidently lie in the diameter of the face

most inclined to the horizon, at a distance r suppose from the

centre of the face. Let a be the inclination of the face to the

vertical, li the distance of the vertex of the supposed free smiiaee

above the centre of the face, the equation to the free surface is

and for a;, y we may write r cos a, r sin a,

.-. r^ sin'^a = Z (r cos a — h) :

the roots of this equation are equal,

, , cosa
.-. r = \l ^-^ .

sm a

g cos a

to sm a

4. A mass of inelastic fluid is contained between three co-

ordinate planes, each of which attracts with a force which varies
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as tlic distance, and the absolute forces of attraction ytt,, yu,.^, fx^^

are in harmonic progression. Half an ellipsoid is fixed with

its plane surface against one of the coordinate planes, and its

surface touching the other planes ; its axes being parallel to the

coordinate axes and proportional to //-,"*, yu,./*, fi'^. If there

be not sufficient fluid quite to cover the ellipsoid, the uncovered

part will be bounded by a semicircle.

The attractions X, F, Z^ parallel to the axes arc - yu-jir,

.'. flp = Xdx + Y(hj + Zch (if p = unity)

= - {H'.sccIx + fi_^ydy + fi^zdz)
;

therefore the equation to the free surface is

fM^x^ + fi^^y'^ + fi^z^ = a constant = C suppose (1).

The equation to the ellipsoid, if it be bisected by xz^ is

ti,[x-af + ^.y + fJi,{z-cy = C (2).

(1) — (2) gives for the plane of intersection

2fjb^ax + 2/Zg02; = a constant = 2
(
C')^ A suppose

;

••• M'l^x + /*3*^ = -4 (3),

since a — 1 , , <- —
i

—

(3) may be put in the fonn

fj,/' = A' - 2Afi^^x + fi^x^
;

subtracting this equation from (1) gives

2/A^a?" + fJ^,f = 2Afiix - A^ + C (4),

the equation to the projection on {xy) of the curve of intersection.

Let
<f)

equal the angle at which (3) is inclined to xi/
;

and cos"rf> = ——— = -^

since /a,, /w,^, ^u,.^, arc in hannonic progression.

tan0 = I'-i

V,
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This equation, taken with (4), shews that tlie axes of the

projection on xij of the curve of intersection parallel to x and y
respectively, are in the ratio of cos0 : 1; hence the curve of

intersection must be circular, evidently a semicircle, whose

diameter lies in xz^ and its plane pei'peudicular to xz.

5. A rectangular vessel is filled with fluid of twice its

weight, and placed with its open end downwards upon a hori-

zontal plane, which is then made to revolve round each side

of the base successively, one of these sides being greater and

the other less than three times its height: find when the fluid

will begin to escape in each case, supposing the centres of

gravity of the vessel and the fluid to coincide.

If the vessel had a base instead of being opened at the lower

end, the moment of the fluid pressure on its inside about any

side of the base would be the same as that of its weight acting

at its centre of gravity : hence, when the vessel is open at the

lower end, the moment of the fluid pressm-es about a side of the

base will be that of the weight acting at its centre of gravity,

minus the moment of the fluid pressures on the plane on which

the vessel rests.

To find this moment, M suppose. Let the horizontal plane

be supposed to have been turned through an angle a, and let r

be the distance of any point in it from a horizontal line in it,

at the same height as the highest edge of the vessel : the dis-

tance of the edge about which the vessel is being turned will be,

if a be this edge, h the other edge, and h the height of the

vessel, h -f h cot a. Hence

M = i f/pr sin a . adr [h + h cot a — r)

J Acota

pb*hcoti

= gpa sina I [{b + h cota) r — /•"} dr
J A cota

= gpabsma{^{b+hcota) {b+ 2hcota)-^[b''+3bhcota+3h''Qot''a)]

= gpab sina {\l>^ + \1d} cota).

Let Whc the weight of the vessel, and therefore 2 W that of

the fluid: then, when the water begins to flow out, the ni(»ment
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about tlic edge ct of all the forees on this vessel, including its

weight, is zero, or

3 W{^b cos a — ^h sin a) — M = 0,

or, since W = gpabh, and b = Snh suppose,

— [Stik cosa — h sina) — S7ih sina {^.3nh + ^h cota) = 0,

or 3« cosa — sina — n {n sina + cosa) = ;

2n
.'. tana = -2 r;

which gives the value of a when the two values of n are

substituted, one >, the other < 1. In both cases, however,

a is < 45°.
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1848.

1. A cylindrical vessel, with its axis vertical, is filled with

fluid, which issues from a great number of small orifices pierced

in the side : find the surface which touches all the streams of

spouting fluid.

This surface is evidently a surface of revolution, having the

axis of the cylinder for axis. Its generating curve is the line

which touches all the parabolic jets of water from the different

orifices in the same generating line of the cylinder. These jets

have all this generating line for axis, and a common directrix

in the plane in which they lie, viz. the horizontal line at the

level of the surface : for the velocity of efflux is that due to the

distance from this line.

Hence, making the common axis and directrix axes of x

and y respectively, the equation to the jet whose point of efliux

is at a depth h is

f = Ah{x-h).

To find the line which this cuiwc always touches, differentiate

with respect to /*, considering x^ y constant

;

.-. = a; - 27*,

and eliminating ^,

f = 'lx.\x,

or y = x\

the equation a straight line through the origin, inclined to the

vertical at an angle of 45°. Hence the surface required is a

right-angled cone placed on the cylinder in an inverted position.

2. A closed vessel is filled with water, containing in it a

piece of cork which is free to move ; if the vessel be suddenly
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moved forwards by a blow, shew that the eork will shoot for-

wards relatively to the water.

Suppose, for an instant, the eork removed, and Its plaee

occupied by solidified water ; when the blow is stnick this mass

of solidified water will instantaneously receive a velocity V equal

to that of the surrounding water, and the impulse on it will be

MV^ if M be its mass. But when the cork is in the place of

this solidified water, the impulsive actions on it of the suiTOund-

ing' fluid will be the same as they were on the solidified water,

and therefore the impulse on it will be the same. But the cork

is lighter than the same volume of solidified water, and therefore

the same impulse will impart a greater velocity to it, or the cork

will move forward relatively to the water.

3. A closed vessel is filled with water which is at rest, and

the vessel is then moved in any mamier: apply the principle

of the consei'vation of areas to prove that, if the vessel have any

motion of rotation, no finite portion of the w^ater can remain

at rest relatively to the vessel.

The principle of consei'vation of areas about any axis must

apply to the whole mass of water. But if any portion of the

water remain at rest relatively to the vessel, we may suppose

it to become solidified and rigidly attached to the vessel without

altering the motion of any particle of the water : but in this

case it is evident that the principle of the couseixation of areas

about any axis must also apply to the part of the -water not

solidified ; consequently it must also apply to the solidified poi-

tion of the water which, since the water is originally at rest,

can therefore have no motion of rotation, which is absurd if.

the vessel have any motion of rotation. Therefore, if the vessel

have any motion of rotation there cannot be any finite portion

of the water which remains at rest relatively to it.

1849.

1. Supposing the effect of friction in the case of aerial

vibrations in a tube of uniform bore to be the production of
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a retarding force on each particle equal to / x velocity,

prove that the equation of motion will be satisfied by taking

cs'^^' sm— { a f 1 — Y—^ j
t — xl as the type of the vibrations.

Let X be the coordinate of any particle at rest, oc + ^ its

coordinate when displaced at time t ; then the equation of motion

will be

df ~
clx'

J dt
'

Now, if we assume

P = cr^^' sin —- (nat — x), where 7?'^ = 1 — '.
., ., ,^ \ ^

'^'
16(1-77

'

we have

-~ +/f = cz'^-^' !—T— cos— {7iat - ^) +^ sin— {nat — x)[',

,„ 47r''^fl^ . 27r . ,

= — c£ -•"
; sm — (wa^ — ic),

by substitution of the value of n.

Ai '2
^"1 47r'''(t''^ ,,, . 27r , ,

Also a -T-T,
= ^-5- «?£

*-^^ sm ^{nat — x)\
dx- X X ^

'

'

' df '^•^
dt dx'

^^ d''^ d"^ d^

and the equation of motion is satisfied.

2. Steam is nishlng from a boiler through a conical pipe,

the diameters of the extremities of which are D and d respec-

tively : prove that if V and v be the coiTesponding velocities

of the steam,

r = T — £ =*
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where k is the pressure divided by the density, and supposed

constant. The motion may be supposed to be that of a fluid

diverging from a centre, the centre being the vertex of the cone,

of whicli tlic pipe fonns a portion.

Let
J)

and p be the pressure and density at the distance ?•

from the centre of motion at the time t, when the velocity at

that point is u
;

then, since the motion is wholly radial, its

equation is

1 dp du du . . . . - , .

~ 'j~ — ~
~ji ~ ~ '^zr y

smce the motion is steady ... (1).

Also 2) = hp (2).

The consideration of continuity gives the equation

?//)r^ = constant,

or ^ipr^ = constant (3).

From (1) and (2),

k dp du

p dr dr ^

or k \o^p = C — ^ii\

Let P, p be the pressures at the two extremities of the pipe,

But from (3),

^•log
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7A4
tetrahedron will make vertical oscillations in the time 2-77

h being the depth of the centre of gravity of the tetrahedron in

the position of equilibrimn.

We shall first shew that the centres of gravity of the tetra-

hedron and of the displaced fluid are in the same vertical, what-

ever position the tetrahedron occupies in the fluid.

Let the centre of gravity of the tetrahedron be at a depth z

below the sui*face, and be taken as origin of rectangular co-

ordinates [xyz)^ the latter vertically downwards. Let the den-

sity at a depth z below the surface be fiz : the density at the

point xyz will be ix[z' + z) = c + fiz suppose.

Let r, y, i, be the coordinates of the centre of gravity of the

displaced fluid

;

.-. (mass) X = JfJ{c + fiz) xdxdydz :

but

JJJxdxdydz = 0,

because the centre of gravity of the solid is origin, and

JJfxzdxdydz = 0,

because every system of rectangular axes through the centre of

gravity of a regular solid is 2i 2)'>'incipal system
;

.'. ^ = 0, and similarly y = :

hence the centre of gravity of the fluid displaced lies in the

vertical line through that of the tetrahedron.

Thus, in whatever position the tetrahedi'on be originally

placed, its centre of gravity will move m a vertical line, and

make finite oscillations in that line.

The force acting downwards on the solid at any time

= the weight of the solid — weight of fluid displaced

= g(TV -g fjj{c + fiz) dx dy dz

(if V be the volume of the tetrahedi'on, o- its density)

= go- V — gc F,

J5.
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since the centre of gravity is the origin of coordinates, and

therefore

fjjz dx dy dz = 0.

Hence the equation of oscillating motion is

since c = /xz'j

and the time of an oscillation

Now A, the depth of the centre of gravity in the position, is

d'^z
the value of z in the above equation, when —p^ = ;

or A = —
,

and the time of an oscillation

This proposition is equally true of any homogeneous regular

solid.
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1848.

1. Compare the brightuess of the Earth as seen from Venus

with the brightness of Venus as seen from the Earth, supposing

the sizes and reflecting powers of the two bodies equal.

Let Sy E, Vy (fig. Ill) be the respective positions of the Sun,

and the centres of the Earth and Venus, at the time when their

brightness is to be compared.

From E di-aw the straight lines JSa, Eb perpendiciilar to ES
and EV m the plane of the ecliptic, and similarly T c, Vd per-

pendicular to VS and VE: the part of the Earth seen from

Venus will be contained between planes pei'pendicular to the

ecliptic through Ea^ Eb ; and the part of Venus seen from the

Earth between the planes Vc^ Vd.

Let Q be the quantity of light that falls upon a imit of

the sm*face of Venus which has the Sun in its zenith. To find

the quantity of light reflected to the Earth from ajiy element

8S of the sm-face of Venus.

Let the latitude and longitude of the element B8, referred

to the Sun as origin, and plane of the ecliptic as plane of

longitude, be 6 and
(f).

The quantity of light reflected to the

Earth from SS will

= QBS X cosine z. d. of Sun x cosine z. D. of Earth

= QBS.cos9cos(li.cosecos{V-(f>), F= l SVE,

= Q . r'^ Bd cos^ B(f) . cos^O cos<f) cos( V— ^),

if r = radius of the Earth or Venus.

Hence the whole light reflected to the Earth

= Qr'JJcoB'd cos</) cos(r-<^) dd d<f)

= i<3r7/cos''^(co3F+cos(F-2<^)} dd d(f>

= ^Qr'Jcofi'e{cosV.<f>-^sm{V- 2<^) + Oj <7^:

z2
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from
<f>
= {V— ^7r]]

to </) = Itt

= ^ Qr"" Jcos'e [cosr (tt - F) + ^ sin (tt - T^)

= ^ Qr-' {(tt - F) cos V+ sin F} /cos'(9 tZ^

= ^Qr^ {(tt- F) cosF+ BinF}/(cos3^ + 3 cos^) d0:

from ^ = — ^tt"!

to = + i-TTJ

= |(2^.2((7r-F)cosF+sinP"|.

Similarly, the whole light reflected from the Earth to Venus

= f Q'r' {(tt - E) cosE+ sin^},

when Q' is the quantity of light that falls upon a unit of the

Earth's sui'face which has the Sun in its zenith

;

and the required ratio

_8V^
(
tt-E) cosE+s'mE

~ SE' ' (tt - F) cosF+ sm F •

2. Find the geometrical focus of a pencil of rays refracted

through a hollow glass sphere, whose external and internal radii

are ?•, r' re^ectively.

Let ti, Vj, ^25 ^3) ^^^ ^3 be the distances from the centre of

the sphere of the foci before the 1^' and after the P', 2°^*, 3'^'^, and
4"^'' refractions respectively.

Then, by the common fonnula,

i = _^i:zi + ^
(,),

1- -'LLI. 1 i
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or t^tzl + 1.
(5),

V, r v^

i=^+^
(3),

d ^ At"
^

1 1

or :^ = - C + _ (4 .

Adding (1), (2), (3), and (4),

1 1\
.

At

and for glass, /i = f ;

1 Q n i\ 1

which determines v,.

V, 3 U' rj
"^ w

'

3. Light, proceeding from a given point P, suffers any num-

ber of reflections and refractions : if consecutive rays of a given

colour come out parallel, in the direction determined by angular

coordinates ^, (f),
shew that -y- , -^ may be obtained by dif-

ferentiating as if the differently coloured rays which severally

come out parallel to their consecutives started from P in the

same direction.

Application. In the case of the rainbow of the 2^^^ order,

given
D = pjT + 2(f)

— 2{2)-\- 1) (^', sin^ = /i sin0',

find the order of the colours.

In general, if ^, ^ be the coordinates upon cniorgencc of the

ray whose coordinates as it proceeded from F were 0\ <f>\
and

if /A be the refractive index of the ray,
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Now, If and
(f)

be the coordinates of the rays of refractive

Index fji whicli come out parallel to their consecutives, 0',
<f>'

may be foiuid in terms of /x. from the equations

d6' '^
d<f>" dd'

~
'

d^ d^ ^' _
dS' dii>' ' dB'

'

those consecutive rays being supposed to come out parallel

whicli before Incidence lie In a plane defined by the particular

value of -^ .

du

Now, supposing and </> to retain the particular meaning

assigned to them above, since & and <^' are now fimctlons of /t,

dB (dd dO d<f>'\ dO' dO

dfi [dO'"^ dcf>"de') dfi'^ dfi'

d(f> _ /d(f) d(f) d<}>'\ dO' #
dfi \dd' d(f)'

' dd' J dfi dfx
'

The first tenns In these expressions for -7-
, -^ correspond

to the variation of the direction of emergence due to the va-

riation of the direction of Incidence ; the second tenns coiTcspond

to the variation of the direction of emergence due to the va-

riation of /A In the differently coloured rays. But we have seen

that the first tenns are each equal to zero ; hence the whole

variation of 6 and <^ is due to the vaiiatlon of
fj,

In the dif-

ferently coloured rays, or we may obtain -7- , — by differen-

tiating as if the differently coloured rays which severally come

out parallel to their consecutives started from P in the same

direction.

In the application to the case of the rainbow all the incident

rays are parallel ; we may, however, differentiate for -^ , -^

as if all the angles of incidence of rays which come out parallel

to their consecutives were equal.
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Here each ray which comes to the eye moves in the same

plane; and since the rays incident upon the raindrop are all

parallel, the angular coordinate after emergence will be i),

the deviation. Hence, to find -y- we differentiate i), consider-

dD „, ^, d<i>'

ing constant;

and s,in<f) = fi sin0'

;

... ,, dd)
.'. = 8m9 + /J, C0S9

-J- )

and
-J—

= —^ tan0 is positive

:

hence the red rays which come out parallel to their consecutives

will be more deviated than the violet rays which come out

parallel to their consecutives.

It only remains to find in which direction the rays which

form the rainbow have been deviated. To ascertain this, we
must differentiate D with respect to </>, considering fi constant,

and put

dD ^

d^ = '-

This equation will give us a value of ^, which substituted in D
will determine the amount of deviation of the rays of the re-

fractive index /t, by which the corresponding part of the rainbow

is seen : let this value be

D = 2mir -f i/r

:

then, if a^ be < tt, the deviation at the first refraction will be

towards the eye, and the red rays will appear on the inside of

the arch : if i/r be > tt, the deviation at the first refraction will

be from the eye, and the red rays will appear on the outside of

the arch.

4. Every diameter {d) of the extreme boundary of a sphe-

rical reflector subtends a right angle at C the centre of the

sphere: supposing parallel rays (inclined at an angle a to the
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axis of the reflector) to be incident upon every point of the

extreme boundary, shew that the section of the reflected pencil

made by a plane passing through C and peqiendicular to the

axis, will be an hyperbola, whose axes are d and J cot a.

Let CO (fig. 112) be the axis of the mirror AOB-^ let Or,

parallel to the direction of incident rays, be taken for axis of x
;

Cy, pei-pendicular to it in the plane OCx^ for axis of y, and Cz

pei-j^endicular to Cb, Cy for axis of z.

Let Cx pierce the miiTor at the point o: Join P, any point

in the bomidaiy of the miiTor by arcs of great circles, with

0, o : call Po, PoA, and </> : OF will be 45°.

The ray reflected from P will pass through the point D
of Co, such that the perpendicular from D upon CF bisects CP,

t. e. through the point {^a sec 6^ 0, o) : also the coordinates of P
are a cos^, a smd cos^, a ski 6 s'm(f>. Hence the equation of

the reflected ray is

X — ia sec6 ii z , .

a 1 a
= ^ a ± = —• a •—T = ^ SUppOSe...(l).

aeost/ — ^a secc^ asmc^cosip asmc^sm9 ^^ ^

Also, from the triangle OPo,

cos45° = cos^ cosa — sin^ sina cos(^ (2).

Our object will be to eliminate ^, <^ from these equations,

and find the relation between r\ and z when we have written.

a; = ?; sin a,

y = 7] cosar

the equation so fonned will evidently be the equation of the

curve in which the plane through C cuts the surface formed by
the refracted rays.

From (1),

X cos — la = a\ cos^d — \a\
;

.-. aV cos'a - a\x cosB + ^x^ = ^a^X{\ - 1) + Ix' ;

.-. a\ cos e = ^x+ {^d'\{\ - 1) + lx'}i (3)-

Hence equation (2) becomes, multiplying by aX,

-^a\ = [^x + {^a^X{X- 1) + ^x^] cosa - y sina,
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or {|rt'''\(X— 1) + ^x"]* cosa = -^ a\ + y sina — ^x cosa,
it"

or {^a''X(\— 1) + \7f sin*a]* cosa = ^ «^ + ^ sina cosa ...(4)

:

hence, squaring,

\ci\ (A. — 1) cos'^a = \d'''}^ + -^ ciXt] sina cosa

;

.'. aX sin'''a + a cos'^'a = — %^i) sina cosa,

and aX = — 2-7; cota — a cot'^a.

Again, from equations (1),

d'X' Qm^e = f + z' :

adding this equation to (3)'^,

«V = ^x' + f + z' + K^(X- 1) + {ia'X(X- 1) + \x']^-x^

or by (4),

ia'^X (X+ 1 ) = ^77^+ i77^cos'"'a

+

z^ ^ ( tu: «^

+

\'r] sina cosa ) « sina

;

cosa \2* y
'

or retaining only the second powers of t] and z^

Iff cot'a = \'i]\\ + cos'a) + z"* - tf + ^t^'' sin'a + &c.,

or T\' cot'^a — z'' = &c.;

shewing that the required locus is a hyperbola, the ratio of

whose axes is cot a.

Now the axis in the plane OCx is evidently d: hence the

axes are d and d cot a.

1849.

1. A ray of light is incident upon one of two reflectors

inclined to each other at an angle -
, in a direction parallel

to a line which is at right angles to their intersection, and

bisects the angle between them : supposing the intensity of a

ray reflected at an angle (j> to be to that of the incident ray

as e cos(f> to 1, shew that the intensity of the ray after it has

suffered n reflexions will be to that of the incident ray as e"

to 2"-'.
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From the problem on p. 60 it appears that, if n be even, the

successive angles of reflexion are complcmentaiy of

Itt S tt 7} — 1 it n — 1 tt Stt Itt

2'w' 2'n '"
2 'w' ~~2 'n"'2'n^ 2n'

Ilcncc the intensity of the ray after n reflexions : that of the

incident ray

-"(
. 1 TT . 3 TT .71—1 TtV ,sm - - . sm - - ... sm —-— . - : 1.

2 n 2 71 2 nj

Similarly, when n is odd, this ratio is

„ / . 1 TT . 3 TT . n ttV .

e sm - — . sm - - . . . sm - . - : 1.

V 2 w 2 n 2 nJ

Both these ratios may be expressed by the general formula

„.l7r .37r .2?i — Itt,
e siij - - . sm - - . . . sin— : 1

:

2 71 2 n 2 w '

and in Hymers' Tlieory of Equations^ Art. 22, Ex. 20, it appears,

by making ^ = 0, that

. 1 TT . 3 TT . 2« - 1 TT 1
sm - - sm - - . . . sm—-— - = -^r=-,

,

2 n 2 71 2 w 2 "

whether n be odd or even : hence each of the above ratios

= e" :
2"-\

2. A transparent medimn is bounded by two parallel planes

;

the refractive index is constant thi^oughout any plane parallel

to the bounding planes, but varies continuously in the direction

of the nonual to those planes: shew how to find the path of

a ray of light tlu'ough such a medium, and prove that in passing

through a section for which the refractive index is a maximmn
or a mmimmn, the path will in general have a point of contraiy

flexure.

It is evident that the path of any ray will lie in one plane

:

in this plane take two lines, one perpendicular to the bounding

planes, the other parallel to them as axes of x and y re-

spectively.
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At the point [xy] let the inchnation of the path to the axis

of X be 0, and let the refractive index be yit: at an adjacent

point [x + Sa-, ?/ + Sy), let these be ^ + 8^, fi-\- Bfi: then, by the

law of refraction,

Bin<f> = — sm{(f> + S(f))

+ — 1 (sin^ + COS080),

or = cos ^B(f) + — sin</)S/i;

therefore, proceeding to the limit,

-J- + - tan<^ = 0,

, , d6 1 da
or cot<i> ~ + -

-f- = 0'.

ax fi ax

.'. logging + log/i = constant = logO,

.*. sin© = —
,

01* 1 + I
^-

I
— I Vy / )

dxV _ ffM

dy) " \G

dy f//.^^ ^-*

which, since /i is a known function of a*, is a diflferential equation

for the determination of the path.
7

When /x. is a maximmn or minimum, we have -y- = 0,

and as the ray passes through such a section, its path usually

suffers inflexion.

1850.

1. If a string be wrapped round a glass prism, whose section

is an equilateral triangle, so as to be always inclined at the same
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angle to the axis of the prism, the portion of the string seen by

internal reflexion will appear to be parallel to the portions seen

directly.

Let AB (fig. 113) be a portion of the string seen directly,

BC a portion seen by internal reflexion at the surface AC oi the

prism : and first, let the eye be In such a position that the small

pencil of rays by which any point of BG very near B is seen,

shall pass through some point of the surface ABB' very near

to B\ a point in the edge AB'. Then, if the eye be at a con-

siderable distance from the prism so that the axes of small visual

pencils may be considered parallel to each other, any point of

BC very near C will be seen by a small pencil which passes

through the surface ABB' at some point very near C a point

in the edge BC. Let B'U^ G'E be the directions of these small

pencils upon emergence. Now the plane CC'E is parallel to

the plane BB'E] and if we draw a plane through A parallel to

these, the plane BB'E will be equidistant from the other two,

since the prism is equilateral, and AB^ BC equally inclined to

its axis; hence BC = AB'^ and B'C is parallel to AB:
hence BC appears parallel to AB.
Now let the eye be moved in any manner without approaching

too near the prism ; it may easily be seen that the locus of the

points where the rays from BC to the eye cross the plane ABB'
is parallel to B' C", and therefore to AB. Hence BC will always

appear parallel to AB; and the same may be shewn of any

other portion of the string seen by internal reflexion.

2. A rectangular box, at the bottom of which is a plane

mirror, contains an unknown quantity of water ; from the angle

at which a ray of light must enter through one of two small

holes in the lid in order that after refraction and reflexion It

may emerge at the other, determine the height of the- water in

the box.

Let a be the height of the box, x the depth of the water,

2h the distance between the small holes in the lid
j ^, (f)'

the

angles of Incidence and refraction when the ray enters the water.
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they will also be the angle of refraction and incidence as it

emerges from it : hence we have

h = [a — x) tan + ic tan 0',

sin0 = /isin^';

a tan 6 — h

tan^ — tan^'

a tan (j) — b

,
sin cb

'

tan</)-7-^ ^^---1
(/Lt — sni 9)*

whence x is known from <^, which is the angle the ray makes

with the vertical upon entering the hole in the lid.

3. If a kiminous point be reflected by a small plane mirror,

so as to be seen by an eye in a given position, and the mirror

move in such a way that the Imninous point always appears to

be upon a given conical surface, of which the point is the vertex

and a line through the eye the axis ; find the form of the sm'face

upon which the small mirror must always be situated.

Let 0, E (fig. 114) be the position of the luminous point and

eye respectively, 31 any position of the miiTor, P the corre-

sponding position of the image of : then will EMF be a

straight line, and MP = MO. Take OEx for axis of x, Oy
perpendicular to it for that of y ; x^ y the coordinates of M\
x\ y' those of P. Then

MP = MO
;

.-. {x'-xy+{y'-yY = x' + y%

or x' + y"' - 2xx' - 2yy' = (1):

JJ, M^ P, are m the same straight line,

.-. -y-^J— (2).X — a X — a ^

Let the equation to the generating line of the cone on which

P is situated, be

y = mx (3)

:

between (1), 2), (3), we have to eliminate x', y.
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From (2) and (3),

x - a _ m[x — a)
^

X y

y — ra[x — a)
'

From (1) and (3),

(1 + Q)f) x — 2[x + my) = 0,

or 2{x + my) [y — m[x — a)] — (1 + vi^) a?/ = ;

.-. 2m{y'' — x'] + 2{l— m') xy + 2'tnax — (1 - m') ay = 0,

the equation to an equilateral hyperbola; and the required

surface is an equilateral hyperboloid of revolution.

4. If the earth, supposed spherical, were covered to a depth

h with water, h being small compared with the earth's radius,

shew that the height to which a person must be raised above the

surface of the water in order to see as far below the horizon as

when he was on the surface of the earth is ^ , .. r nearly,
2r{fM'- 1)

•^'

fi being the index of refraction for water.

Let (fig. 115) be the centre of the earth, A the station of

the observer on the earth's surface : in order to see as far below

the horizon as possible he must look in the direction AB, such

that OBA is the critical angle ; he will then see objects situated

in the line 5(7, if i? (7 be a tangent to the surface of the water

at B. Hence P, the raised position of the observer, must be the

intersection of CB, OA. Let A OB = 6 : then, if AP = x,

or, since ^, - , - , are small

r +
r +
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Also from the triangle OAB^

/ • -1 1

, sin sni — +
r + h \ /x

• • -il
sin sin -

(A

h

or l+^=l + (/.'^-l)i^,

or ^ = -—a TTT—
3

or x — Ti —

2r' {fjC'
- 1)

'

2r (/Lt' - 1)

'

the required distance to which the man must be raised above the

surface of the water.

1851.

A number of vertical plane reflectors are placed together so

as to meet a horizontal plane in a polygon of n sides : find the

path of a ray of light which, after reflexion at the n plane

reflectors in succession, will continue to proceed in its onginal

course.

Shew also that when there are four reflectors the problem

is either indeterminate or impossible ; and that when the number

of reflectors is even, and the polygon capable of being inscribed

in a circle, the problem is indeteraiinate.

Let ^j, O,y..0^ be the complements of the successive angles

of incidence or reflexion, a^, a,^...a„ the angles of the polygon:

then ^j, ^.^, flj, are the angles of a triangle

;

so 0„ + 0^ = TT — a
.(A).

0, + ^, = TT
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Again, let ?/, = 0, u^ = 0,... u^ = 0, be the equations of the

successive parts of the ray's path, a^ = 0, a^ = 0,... a^ = 0, the

equations of the sides of the polygon ; the equations being all in

such a fonn that u considered as a function of x and y is the

distance of the point [xy) from the line u = 0.

Now Oj is the external bisector of w^, w^, whence

Wj + u^ = 2a^ cos 0^.

For let Owj, Oti^^ Oa^^ (fig. 116) be the lines w.,, Wv,, o, ; take

any point P, join OP, and draw P>-, Ps^ Pt, perpendicular to

these lines respectively. Then

Pr + Pt= OP (sillPOr + sin POf)

= 2 OPsin^iPOr+ POf) co^{POr - POt)

= 2 0PsmPOs costOs

= 2Pscos6^.

Hence, if Xj y, the coordinates of P, be substituted in Mj, u^^ a^,

we shall have
u^ + u^ = 2a^ cos^j,

and the same may be shewn wherever the point P is taken

;

hence generally,

u^ 4- ti^ = 2a^ cos 0^:'\

so u^ + u^ = 2a^cose^
\

?/, 4- u = 2a cos^
» ' 1 n n J

From equations (A) 6^^ ^.2V ^„ must be found, and thence

Wj, «*2V ^n from equations (B), and the path of the ray will then

be fully determined.

If there be four reflectors we find, by adding the P' and S'^

of equations (A),

O, + e^ + 0, + 0, = 27r-a^-^,:

.similarly, by adding the 2"<* and 4}^^

^, + ^. + ^3 + ^4 = 2vr - a.^ - a^ :
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hence we must have

a, + a, = a^ -f- a^ = TT,

or the quadrilateral must be inscrlbable in a circle in order that

the problem may be possible.

If however this condition is satisfied, still the problem is

indetemiinatc ; for if wc treat equations (B) as above, we find

ttj cos^j + rtgcos^j = a^ cos6^ + a^cos^^ (1).

This is an identical equation ; It will therefore lead us, by means

of equating the coefficicjits of x aiid i/ on the two sides of the

equation, to three conditions between ^,, 6,^^ 6^, 6^^ and constants

:

between these constants there ai'e also two relations arising from

the circumstance that the quadrilateral may be inscribed in a

circle, and the three conditions between ^,, 6^^ 6^^ 6^^ and

constants amount to only one equation independent of equa-

tions (A).

This condition, together with equations (A), will detci*mine

^1? ^2i ^35 ^4- ^^^ since we have derived the condition (1) from

equation (B), it shews that those equations are equivalent to

only three independent equations, and ii^^ u^, u^, u^ are therefore

indetemiinatc. The dii-ection only of the different parts of the

path of the ray can be determined; with these directions any

position will satisfy the problem.

Similarly, if there be any even number of reflectors, we may,

from equations (A), deduce the condition

a, + 0(3 + ... + a„_, = (x^ + a^ + ... + a„

or the siuns of the alternate angles must be equal : this condition

is satisfied if the polygon can be inscribed in a circle, and the

problem is then possible.

The problem is still indeterminate, for from equations (B)

we may deduce the condition

a,cos^,+a3Cos^34-...+ a„_,cos^,,_,=rtjjCos^2+a^cos^_, +...+ «„co8^,,

:

this Identical equation will lead, as before, to one equation of

condition independent of equations (A) between 6^^ 0^, ... 0^^

and constants, which, with equations (A), serves to detennine

AA
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O^^O.^y.. 6^. Still equations (B) are equivalent to only n — \

independent equations, and ?ij, ?<2, ... w„ are therefore inde-

terminable. Ill fact, we have shewn in Problem 2, page 59,

that ' if a ray of light, after being reflected any number of times

in one plane, at any number of plane surfaces, return on its

fonner course, the same will be time of any ray parallel to the

former which is reflected at the same surfaces in the same

order, provided the number of reflexions be even.'
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ASTRONOMY.

1848.

1. If there had been uo stars, how might the absoUite

periodic times of the Earth and planets have been determined,

even if the eqnator had coincided with the ecliptic ?

We might first have detenuined the synodic time
(
T) of the

Earth and any superior planet by observing the interval between

successive conjunctions. Let jE, P be the periodic times of the

Earth and the planet,

27r 27r , .
, , . .

-'.
'Y

~ 'p ~ relative angular velocity of

the Earth and planet

- yr,

or E=t{i-^

We might then have observed the elongation from the Sun

of P and the other planets at their points of station : this gives

the ratio of the distances of the Earth and each planet from the

Sun, and therefore, by Kepler's law that the squares of the

periods are as the cubes of the mean distances, it would give

E
approximately the ratio of the periods or -p for each of the

planets; whence from above E^ and the periods of all the

planets, would be known.

2. A star map is laid down on the gnomonic projection, the

plane of projection being parallel to the equator: give a gra-

phical solution of the problem, to determine the time at a

AA2
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kno\NTi place l>v observing wlicn two stars laid down in the map

arc in the same vertical plane.

Since the place is known, we may draw about the centre of

the map the circle described by the projection of the place on

accomit of the Earth's daily rotation. Let a line through the

two stars intersect this circle in two points A and B. Then it

is plain from the method of projection, that when the projection

of the place is at A or B, the two stars arc in the same

vertical.

Let the differences of longitude of the Sim in its place

among the stars on the day of observation, and the points A
and B, be obseiwed ; this longitude, converted into hours at the

rate of 15 degrees to an hour, w^ill give the interval since last

noon or the true solar time.

3. Shew that at the equinoxes the extremity of the shadow

of the style of a vertical south dial will trace upon the dial-plate

a horizontal straight line at a distance acosec? from the upper

extremity of the style, a being the length of the style and / the

latitude of the place.

On the day of the equinox the Sun appears to move in a

great circle of the celestial sphere. We may consider the

extremity of the style as the centre of that sphere, or that the

Sun moves in a plane through the extremity. The nonual to

this plane lies in the vertical plane thi'ough the north and south

points, therefore its intersection with the dial-plate will be a

horizontal straight line ; this is the line traced out by the ex-

tremity of the shadow of the style.

Let the plane of the paper be the vertical plane containing

the style AB (fig. 117). Draw AG vertical and BC perpen-

dicular to AB: then, since AB is parallel to the Earth's

axis, and the Sxm is in the equator, C is the extremity of the

shadow at noon, and ^ is the distance of the horizontal line

from A : it = ABcosecACB = a co&ecl.
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1850.

1. If a rod be fixed into a vertical wall which faces the

south and the shadow of it be cast upon the wall by the Sun,

find the curve upon which the shadow of the end of the rod will

be situated every day at mean noon, the Sun being supposed to

move imifonnly in the ecliptic with his mean motion.

The mean Smi is situated on the equator at the same distance

from "Y* as the true Sun ; it is mean noon when this mean Sim is

due south.

Let S, S' (fig. 118) be the true and mean Suns, then

nr >S'= "V >S", and if we draw SD an arc of a great circle perpen-

dicular to the equator, and call 'Y' S, tp D, SD^ i, a, S, re-

spectively, we have

S'I)=yS-'rD = L-a.
Now let E be the extremity of the rod, its shadow when

the Sun is in v , P the position of its shadow when the Sun is

at yS, and S' on the meridian, i.e. due south. Then if we draw

ON horizontal, NF vertical in the plane of the wall, and join

EO, EN, EP] OEN== S'D, NEP = SB, EPN=l - S, where

I = latitude of the place. Call On, x, JVP, y, EO, d,

.'. X = dtoxiS'd,

^ {d' + xy-smSD

,, , -r . , tanZ — tana
or X = dtaiiiL — a) = d ——;—-^^ '

I + tana tsuiL

, tana — cos w tana . ,= d 5
, smce cosw taniy = tana

cos<w + tan a

, (1 — cosci') tana , .

= a —f—5— (1)

;

coscD + tan a ^
'

'

and 3/ = {d' + xr~ -^f., = [cl' + ^y .

J
\ -,

^ ^ sm(/— o)
' sm^cotd — cosZ

= [d'^+x;')^ -r-5

—

J—.— , since sina cotS=cot&>...(2).
sm/cotw—cos/sma ^ ''

"We have now to eliminate a between (1) and (2).
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From (2)

sin 7 cot G) , (d'^ + x'^)^—; cost = -^^

,

sma y
• 7 V

or sin a = sin 6 cotco -r^. rrd-
{(.r + xy + ycosl'

From (1)

(coso) cos^rt + sin^a) x = d{l — cosw) sina cosa,

or (coso) + (1 — COSO)) sm'aYaf = (f (1 — cosw)'' sin^a (1 - sin^a)

;

.-. [cosw {{d^ + xy+ycosl]'^ + (1 — cosw) sin'"*? cot^ co.^^]'"' x^

= (1 - COSO))'' cof0) sin^? d'f [{{d^ +x^ + y cos?]'' - sm7 cofeo.?/''],

the equation to the required cm've.

2. Suppose that dm'ing the day of the equinox, a man walks

in a horizontal plane towards the Sim at a miiform rate
;
prove

that the equation of the path described by hun is

ny \ _ sin? ^^ ^^^^^ _^ ^ „,,^,
sin -^ + 0=^ £«'-' + e ,,

Vasecf / 2 V /

where x and y are the coordinates of his position at any time,

measured along and at right angles to his meridian at noon

;

I is his latitude, and a is the space he walks over while the

Earth revolves through an angle n.

Deduce the particular cases of his being at the pole and at

the equator.

Let 0) be the angular velocity of rotation of the Earth about

its axis ; the angle apparently described by the Sun in the time

t will be ft)^, since the Sim is in the equator, it being the day

of the equinox.

If a be the Sun's azimuth at time <,

dy
-~ = tana.
ax

Now I and mf are the sides of a right-angled triangle, sup-

posing the man to start at noon, of which the angle opposite

tot is a
y
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t&ncot
.•. tana = -v—,- ,

dy tanwf

dx sin? '

V dy _ tanw^
*°^

ds
~ (sm^Z + tau'^a)«)i

'

cfe sinZ

(/5 (sin' ? + tan' «»«)**

Also, * = - G)^

n . n
- tan -s sin - s
ay a a

^ fsin^Z + tan'-sV fsin'^Z cos' - s + 1 - cos'' - sV
V a J \ a a J

. n . n
sua — s sm - s

a , a
— sec6

4 ;

[ 1 — cos''? cos''-
s]

f sec' ? — cos' -
s

j

.*. y = -secZ-jcos'M cos - scosZj — 4 ;
•.• y = when s = 0,

or cos -s= sec? cosf

—

—i+l] (1).
a \asecl J

^ sm I cos - s
. . dx a

[sm? 1 — sm -s + sm - sj
V a I a

sm? cos-«
a

( sin'' ? + cos' ? sin'' -s\

n
cos -s

7
^

= tan?

[tan' ? + sin'' - s
j
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a

. w / . . . w \'
sin - s + tan"'' I + sin" - s

)

a \ a )
.'. X = - tan Hog i ;

'.' x = Q when s = ;

n tan /

/ \4
"'

.'. sin -s + (tan'/ + sin' - s] = tan? e°
'^°'

?

a \ a J

.-. 8in-5- (tan'/+sin^-5) = - tanZ e""'^"'

,

a \ a J

or (sec'Z-cos'^sV =^ /ga-^ +g-^
^

the required equation to the path.

We have in this sokition considered I constant ; if, however,

the man be at the pole, I will = ^tt, and sec/, tan/ will be

susceptible of great changes when / alters but very little ; hence

we must consider his motion as indefinitely small compared

with that of the Sun, or - indefinitely small : hence the above

equation leads us to x = 0, ^ = ; and the man merely stands

at the pole looking towards the Sun.

If he be on the equator, tan / = 0, and therefore a; = 0, or he

walks along the equator.

1851.

The declination of the Sun at two obsei'vations S, 8', and

the Sun's motion in right ascension and longitude in the in-

tei-val between the observations, are equal: shew that if &) be

the obliquity, and a, / the Sun's right ascension and longitude

at the first observation, cosw = cosS cos 8'; tana = sinS cot 8';

cot/ = sin 8' cotS.

Let P, K (fig. 119) be the poles of the equator and ecliptic;

>S', S' the two positions of the Sun : then, since the differences
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of the Sun's longitude and right ascension at S and S' are

equal, SS'=SPS'. Let the angle P8K=^'^ draw KR^ an

arc of a great circle, to meet SP produced at right angles:

then, in the triangle SPS\

sin/S-S" ^mPSS' = sin -S'P sin /SP/S",

or cos<^ = co88'; .*. ^ = 2',

and KR = (f)=:B':

also PR = 8, KP = ft),

lKPR = 90 - a, lPKR = I

Hence, by Napier's rules,

cos 0) = cos 8 cos S' (1),

sin 8 = tana tan 8',

or tana = sin 8 cot 8'
(2),.

sin 8' = cot? tan 8,

or cotZ = sin8' cot8 (3),

and (1), (2), (3), are the formulae required to be proved.
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DISTURBED MOTION.

1848.

Two bodies, P, P (fig. 120), describe round a central body S
circular orbits lying in one plane, the orbit of P being within

that of P'; prove that the disturbing force of P' on P, when

wholly central and additions, will be equal to the disturbing

force when P, P' are on opposite sides of /S, provided SP' be

a mean proportional between SP and SP+ SP.

Let Pj be the position of P when the distui'bing force [F^

on P, is wholly central and additious

;

. F -J^ ^
•

> P^P"''P^P">

(where fi is the absolute force of attraction of P').

Under the condition that the force of attraction of P' on

S and Pj, perpendicular to SP^, is the same, i.e. that SPP^ is

an equilateral triangle,

.-. PP^ = PS,

IJ,.SP^
or F =

SP"

Let F^ be the disturbing force when P is in opposition to P'

at P„

P = fi fi

if

SP" P^P" '

and P, = P,

1 1 ^P
SP" {SP^ + SPY~ SP"'

or, dropping the suffixes, because SP^ = SP^,

{SP+ spy - SP' = ^ {SP+ spy
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or SRSP' + 2SF" = SF' + 2SRSP" + SF%

or SF'= SF{SP+SF'),

or if SF" be a mean proportional between SF and SF+ SF.

1849.

If, in addition to the force of the Sun on a planet, there be

a small force tending towards the Smi, and varying invei*sely as

the m^^ power of the distance of the planet from the Smi, prove

that the perihelion of the orbit will have a progressive or re-

gressive motion, according as m is greater or less than 2.

Can you explain this result by reasoning similar to that used

in " Airy's Gravitation'''''^

If F be the whole central force on the planet we shall have

= jXU + fill
,

where fi' is very small. The equation of motion is

d% F

d'^u II u! „,_..

For a first approximation,

d^u yU-

W + " ~ P " ^'

which will be very approximately satisfied by

M = «{1 +e cos(c^ — a)],

if c be very near unity, and a = ^ ;

.-.
^^ m"'-» = ^ a"'-' {1 + {m -2) e cos(c(9 - a)|,

omitting higher powers of e.

Hence, for a second approximation,

-j^ +u- a- — a"' ' --
do fJL fl

+ u- a- — a"'"' - — a"""' [m -2) e cos {c0 - a) = 0,
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which is satisfied by

u = a\l+ — a'"-' + e cos (cd - a)].

if ae{l- c') cos [cO - a) - — a'""' {m -2) e cos(c^ _ «) = 0,
A*

or l-c' = ^(m-2)a!"-':

hence c is < or > 1 according as m is > or < 2.

Now, the argument {c6 — a) may be put in the form

^-{a+(l-c)^};

whence it appears that the above equation between u and

is the equation to an ellipse, the longitude of whose apse is

a + (1 — c) ^; its apse will therefore progress or regress accord-

ing as c is < or > 1, i.e. according as m is > or < 2.

This result may be explained in a manner similar to that

used in Aiiy's Chavitation^ Art. 98.

Let P, A be perihelion and aphelion.

The disturbing force is towards >S' both at P and A ; it will

therefore progress about P and regress about A. To consider

which of these effects will be the greater. If the disturbing

force at P, A and the other points of the orbit were propor-

tional to the inverse square of the distance, its only eflfect would

be to alter the magnitude of the central force in a certain ratio

without altering its law ; it would therefore have no effect upon

the position of the apsides, or its eflfects about P and A would

be equal. But if the disturbing force vary inversely as the

(distance)"', where m is > 2, the ratio of its intensity at P to

its intensity at A will be greater than the ratio of the intensities

of the central force at those points ; hence its effect will be

greater at P than at -4, or the progression at P will be greater

than the regression at A ; i. e. on the whole the perihelion will

progress. Similarly, it may be shewn that if m be < 2, the

perihelion will regress.
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ATTRACTIONS.

1848.

1. A sphere is composed of an immense number of free

particles, equally distributed, which gi'avitate to each other

without interfering: supposing the particles to have no initial

velocity, prove that the mean density about a given particle

will vaiy inversely as the cube of its distance from the centre.

The attraction upon any particle will be the same as if the

matter nearer than itself to the centre were collected there, and

attracted with a force varying inversely as the square of the

distance. This attracting mass will remain the same for the

same particle throughout the motion. Let x^ x-\- ^x be the

distances from the centre at the time ^, of two particles situated

in the same radius, whose original distances from the centre

were «, a + S«
;

d'^x fji,

•'•

~cie^~ x''

and U- =2/. --- =2^
,dtj \x aj ax

dt ( ci\^ X

dx \2fiJ (ax—x^)^

a \^ ( ^a ^a — x

2fjbJ \{ax — xy {ao; — x;y

But /A depends upon the mass originally contained within the

sphere radius a
;

.*. fi^ a^ = Ca^ suppose

;
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In order to find the relation between ^u- at the time t and

8a, we must differentiate this equation, considering x and a

variable, and t constant;

_ /,, lx\ aSx — xBa
•

^ -^ W a'
'

or 8x = '- 8a.
a

Hence the volume of the shell originally contained between

the spheres of radii a, a + Sa, i. e. of volume iTrci^Sa^ is now of

x^
volume Attx^Sx = 47r — S« a x^. Hence the density of the

matter in this shell, Avhich varies inversely as the voliune, varies

inversely as its (radius)' : hence the proposition is time.

2. Prove geometrically, or otherwise, that if g be the attrac-

tion which a particle m exerts on a point m a closed surface 8,

the angle between the direction of g and the normal, doi

an element of 8^

JJg cos, Odd) = 4:77771, or = 0,

according as m is within or without 8, the attraction of m at the

ni
distance r being —̂ .

Extend this result to the case of a finite mass cut by 8, and

thence prove by taking for 8 an elementary parallelopiped, that

if V be the potential of any mass for an internal particle,

d'V d'V d'V

'd^-^W^w=-^''p'
About the particle m as centre describe a sphere of radius

unity ; and let a cone having m in in its vertex, and circum-

scribing the element dco of the smiace 8, include a portion dco'

of the surface of this sphere : then the relation between day

and dw' will be
dot) cos 6 = r\ do)'.
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Also, let g be tlic attraction which m exerts on a point

at distance unity;

..g = l:
' r

hence g coaOdo) = g'doi'^

and fjg cosddo) = g'co'

= the whole attraction of m on w',

where w' is the whole projection of S on the surface of the

sphere: hence, if m be external to S we see, by taking the

projection of each element with its proper sign, that to' = ;

but if m be within S, cu' = 47r ; and, by the question, g' = m
;

•'• !J9 cos^c?&) = 47rw, or = 0,

according as m is within S or without it.

This equation expresses the value of the sum of the attrac-

tions of a particle m on the different points of a closed surface,

each resolved in the normal to the surface at the point.

Now, suppose the sm'face S to cut from a finite mass the

mass M^ the above equation holds for every element of this mass,

and therefore for the whole, if the symbols involved be properly

modified : we shall, therefore, still have the sum of the attrac-

tions on each point of ^S", resolved in the nonnal at that point,

= 47rJ/.

Again, suppose S to be an elementaiy parallelepiped so

small that the density [p] may be supposed uniform throughout

it: let V be the potential of a mass for an internal particle

whose coordinates are a?, y, z. Let P (fig. 121) be the point

a;, ^, s, and the comer of a parallelopipcd whose edges Zx^ Sy, S^,

arc parallel to the coordinate axes.

The above considerations shew that the sum of the attrac-

tions on the faces, each resolved in a direction pei-pendicular to

the face, will be due to the matter contained in the parallele-

piped: now

dV rrr p[x - ^) d^ dy d^

-IIIdx- JJj{[j--^f+{^-r,Y+{z-^y]i^
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the integration extending throughout the parallelepiped ; hence

dV .

at P, -J— will be positive, since ^ is always greater than x ; at

P it will be negative, since ^ is always less than x + 8x.

Hence the absolute magnitude of the attractions parallel to the

axis of a^ at P and j) will be, respectively,

dV ^ dV d'V^
-J— and J =-T- ex.
ax ax ax

Now we may consider the surfaces il/P, mj) so small, that

the attraction on every point of each of them is the same : hence

the whole attractions on JWP, mp parallel to the axis of x

d^V= -—hxhj 8z.

The whole expression for JJg cos Odo) is in this way found

to be

/ d'V d'V d'V\ . . ^

[-d^-df-^)^''^^ ^^' ^^"^^ ••• = ^'^^^

= 4:7rp 8x By Bz
;

d'V d'V d'V
•'- d^-^df-^d^ = - ^^^-

3. Supposing a mass of homogeneous fluid, which attracts

every particle of matter with a force varying as -.. ..; , to be

enclosed within a thin spherical shell, find the path described by
a heavy body let fall from any point of the surface of the fluid,

the resistance varying as the velocity. Prove also that the body

will reach the axis and equator of the spheroid after the same
intei-vals respectively, from whatever points of the surface it

begins to fall.

The attractions of the spheroid on any particle within it

perpendicular to the axis and equator, vary respectively as the

distances {x, y) of the particle from that line and plane, = ixx^ fix

suppose.
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Also, by the question, the resistance ou the particle in motion

= kv = k — : hence the resolved parts of it are

J
ds dx - ds dti , dx , dii

dt ds ' dt ds ^ dt^ dt

Hence the equations of motion are

d X dx^ + k^ + ;.x = 0,

d'?/ , dy

Let a, yS be the roots of the equation

z^ + kz + fi = 0,

and a', /9' those of

z"" + kz + yu,' = :

the above equations give

X = Ae"" + Bt^',

y = A's*' + B'zl^'\

A, B, A\ B\ being arbitrary constants to be determined by the

circumstance that the body falls from rest from a given position.

The circumstance that it falls from rest gives us the condition

that ^ = 0, ^ = 0, when t=0:
dt ^ dt ^

'

.'. = AoL + ^/3,

and = A'a + B'^'
;

A B ^
.-. - = - - = C suppose,

A' B' „,

W ^~V^ suppose

;

the equations for the determination of the relation between

X and y by the elimination of t.

Hence, if f, t' be times of fallmg to the axis and equator

respectively,

= fit" - ai^\

BB
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.-. log/3 -\- at = loga + yS^;

loga — logyS
t =

so « =

a-y8 '

loga' — logyS'
_

x' - ^' •

whence it appears that f, t' arc independent of the particle's

original position.

1849.

1. Each particle of two indefinite straight lines, lying in the

same plane, attracts with a force which varies inversely as the

distance. Determine the motion of a body projected in any

direction along the plane.

We must first find the attraction of either of the lines AB
(fig. 122) upon the particle in any position P. From P draw

PD, the perpendicular on AB^ and join PQ^ Q being a point

at the distance x from D. Let hA be the attraction of an

element hx of the line about Q resolved in PD:

.: BA^^cobQPB

fjbadx

.'. A = u tan~^ -
a

fJiTT.

from a; = — 00

to a; = + CO

Hence P will be attracted by two constant attractions in

constant directions, which are therefore equivalent to a constant

attraction in a constant direction, viz. 2yu,7r sin a (2a the angle

between the lines), parallel to the internal bisector of the lines.

Hence the case is the common case of projectiles, and the path

will be parabolic.

2. The attraction of a uniform filament of matter, in the

form of a plane curve, upon a particle is replaced by that of

a circular filament having the particle for its centre: find the
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law of density of the circular filament in order that this may

be done.

Let the cuitc be referred to the particle as pole, and let a

be the radius of the circle, yu. the density of the filament In the

form of the cun^e, p that of the circular filament at the point [B]
;

pa 80 fJ'^s
^
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To find L. In fig. 120 the moment about D of the attrac-

tion on an element at Q (P being the centre of the circle),

if /i be the absolute force of the attraction, p the mass of a unit

of length of the rod,

fipa X Sx

{a' + xj'

_ , ^M- , 2? being the length of the rod,

{(i'^rf \^ ' a^ + r V d'^rj

omitting p and higher powers of |^,

2fipal g _ 2/jbpdH „

to the same degree of approximation : and the equation of

motion becomes

"^^ {d'+ry-
or, since M= 2?p,

g+ ^^ = 0.
'^^

id'-^rfu'

Hence the time of a small oscillation

r=2
/Lt^a

1851.

1. Two uniform straight rods AB^ CD (fig. 123), mutually-

attracting each other with forces varying as the distance, are
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constrained to move in two grooves ABO, CDO at right angles

to each other ; dctenuine the time at which the extremity of one

of the rods reaches the point of intersection of the grooves.

The attraction towards of each element p'hri of CD upon

any element ph^ of AB, at a distance f from 0, will be the

same, viz. fip'SrjpB^.^ : hence, if AB = 2a, CB = 2b, the whole

attraction towards of CB on AB will

r
= 2fipp'b

J -,

^dl.

if a? be the distance from of the middle point of AB^

= Afipp'hax.

The equation of motion of AB is therefore

d'^x
2pa -y^= - ifipp'baxj

or -YY + w"'a: = 0, if n^ = 2fip'b
;

.'. x = A cos[nt + B)

= x^ cosntj

if t = at the beginning of motion, and x^ is the original

value of X.

Hence, if t be the interval before A arrives at 0, we have

a = Xq cos nt,

1 -I a
or t = ,-—rfTi cos — .

{2fip'b)i x^

2. If a portion of a thin spherical shell, whose projections

upon the three coordinate planes through the centre are A, J5, C\

attract a particle at the centre with a force varying as any

function of the distance, shew that the particle will begin to

move in the direction of a straight line whose equatioas are

X y z

A^B^C'
Let be the angle which the radius drawn to the element

SS of the shell makes with the axis of .r; then, if r = radius
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of sphere, and </>(/•) be the law of attraction, the attraction

of 8S on the particle parallel to the axis of x will be

<j){r) 8S cosO^

and the whole attraction on it (X) parallel to the axis of Xj

X = <f){r) S.8/S'cos0, since r is constant,

= <f>{r)A.

So Y=<}>{r)B,

Z=<f>{r)C.

And the equations to the direction of the resultant attraction,

which is the direction in which the particle will begin to move,

are

X y z

X^ Y^Z'
X y z
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PHYSICAL OPTICAS.

1848.

A spherical wave of light is incident directly on a lens : find

approximately the retardation of the several portions of the

• ,. , .111
wave, and prove m this way the common equation ~ / *

Suppose the lens to be a positive concavo-convex whose

thickness at the middle point is indefinitely small : take this

middle point as origin of coordinates and the axis of the lens

for axis of x. The retardation of any part or ray of the wave

will = (/u. — 1) X length of the path in glass = (/a — 1) p suppose.

Let ic, y be the coordinates of the point of incidence of this

ray, Q the inclination to the axis of the part of the ray within

the lens.

The equation to the two surfaces will be

V' = ^r^ (1),

and 77' = 2s| (2),

very nearly ; since | is very small for all rays near the axis.

Now (2) is satisfied by the coordinates x — p cos 9^ y- p sin 0,

or, as B is veiy small as well as p^ hj x — p and y ;

.-. f = 2s[x-p) ='-y-2sp',

1 ny
p = \r--sn

therefore the retardation of this portion of the wave

= (-')(7.-^)f-

Hence, if w be the distance from the origin of the centre

of the incident wave, the equivalent length in air of the ray
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we are considering from the centre of the wave to the point

of emergence,

= {(«-^)'+/]- + /*P

= u — X \- ^ +At \
— very nearly

2m \r h) 2 "^

Consequently this ray upon emergence is in the same phase as

the ray incident directly when it has travelled a distance

\ V ii\ V— alter emergence.
\u r ^\r s)\ 2 ^

Now the geometrical focus upon emergence is the centre of

curvature at the vertex of the surface of revolution, which is the

locus of all parts of the wave which, after transmission, are in

the same phase of vibration.

Let V be the radius of this sphere when only the parts of

the wave indefinitely near the axis have emerged : the sphere

will then pass through the points

[x-p, y) or
(^1^, 3/j

and

y being indefinitely small

;

u r ^\r syi 2 '

.-. / = 2v
11 ^1 _ l\\ t 4. t
u r^ *^\r s/j 2

"*"
25

11/ -N /^l 1
/. - = --f 0^-1

V u \r s

111 1/11
or = -^ ,

if -, ^ /A - 1)
V u J J \r s

But evidently v is the distance from the lens of the geome-

trical focus upon emergence ; hence this is the usual formvila.
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1850.

A and B being two fixed points, and P such that AF= /m.BP,

the locus of P is a circle. Shew from this property how to

construct a lens of common glass, such that a direct pencil

incident from a determinate point will be refracted without

aben'ation.

The property enunciated will be found In Prob. 8, p. 157.

Let A, B (fig. 124) be the points from which the pencil is

to diverge before and after passing through the lens without

aberration. Draw the circular arc HCH' such, that If Q be

any point In It, BQ = fi.AQ.

With centre A describe any circular arc HcH' intersecting

HCH' in H^ H': HCH'c Is the section by the plane of the

paper of such a lens as Is required. For a ray incident upon

the lens from A will sufiier no deviation ; and

BQ-{fi.QP+AP) =fj,.AQ-{fi.QP+AP)

= {fi- l)AP Is constant:

and therefore, by reasoning similar to that in Airy's Tracts^

p. 276, it appears that the pencil diverging from A will, after

emergence, diverge from B.

1851.

If [6) be the angle which one of the planes of polarization

makes with the plane passing through the normal to the front of

the \fave and either optic axis of a blaxal crystal, and y,, v^ be

the two velocities of transmission of the wave, shew that

(y,cos^)'''+ {v^%meY = h\

Since the planes of polarization respectively bisect the acute

and obtuse angles between the two planes through the normal to

the front and the optic axes (Griffin's Double Refraction^ Art. 21,

p. 12), It follows that the angle between these two planes = 2$.

Now, In accordance with the usual notation, the equations to

normal to the plane front are

? = J^ = ? (1).
I m n
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Those to the optic axes are

3^ = ^^ (;^^4±(J^ = (2).

If therefore tlie equations to the above planes are

Ax + Bi/ + Cz = 0,

A'x + i?'?/ + C'z = 0,

we must have
Al + Bm + Cn = 0,

A{d'-b-y + C{U'-c')^- = 0;

A B C _

Similarly

A ^b; C _ ,

AA' + BB' + CC
Also cos2^ =

{A + B' +cj {A" + B" + cy-

AA' + BB'+CC
~ {{AA'+BB'+CC'y+[BC'-CB'y+{CA'-AC'y+{AB'-BA'YY-

'

Now

AA'+BB'+ GC'= [m' {¥- c') + r {W- c^yd' {a'- b')-m' {d'-b')] rr'

= {[r-^m'){b'-c') - {m' + n'){d'-¥)]rr'

= {{r+m') b'-{l-n')6'- (I- P) d'+ {m'+n') &'} rr'

'.' P + m' + n' = 1

= _ {a' -b' + & - [I'd' + m'V' + d'c^) ] rr'

= -
(
U— 25^) rr suppose,

[BC'-CB'Y + {CA'-AC'f + [AB'-BA'Y

= 4 {id'r' 4 m' + m'd') {d' - h')[h' - c') rV
= Anf{d'-b'){b'-c')rV'

= 4 Vr\"' suppose

;
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CALCULUS OF YAIUATIONS.

1848.

A aud B are two given points in the generating line of

a surface of revolution whose axis is vertical : supposing a body

acted on by gravity, to descend along the surface from A to Bj

find its form when the whole pressure upon it between the two

given points is the least possible.

Find also the form of the surface when the length of the

generating line between the point A and B is also given, and

point out the difference between the two results.

Let y be the depth of any point of AB below A, x its dis-

tance from the axis ; the pressure at this point will be

P^Mg'^ + M-,
as p

V being the velocity, and p the radius of curvature at the point

:

hence we must have

[Pds = Mg
I

f 1 + — . -^
I

dx^ a minimum.

TT Tr , 2?/ ds
Here F = 1 + — -^

p dx

_i _ J£^.

dV_ 1q
i^ 1dy 1 +^

dp (1+/)'^'

^ dq 1 +2^
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the equation between iV, P, Q^ is

^^ dP d'Q ^

or N--Up-^4)=0.
ax \ ax)

dQ _ 2p ^pyBut ^-^ = -,-f^^ +
dx 1+/ ' (!+/)•''

or <? = 0,

shewing that the Une required is the straight line joinmg the

points A^ B.

K the length of the line be given, we have

a being an arbitrary constant to be determined.

N and Q remain of the same value as before ; P becomes

Hence we shall find, as before, that <? = 0, or the required

curve is a straight line : in this case, however, it must be a

broken line, the different parts of which are equally inclined to

the vertical, and the inclination so chosen as to give the line of

the required length. The particle is of course supposed to turn

the abiTipt angles of the line without impulsive pressure or

change of velocity.
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1851.

A uniform straight rod AB is, constrained to move in a

vertical plane with its middle point in a horizontal groove, and

its upper extremity against a smooth curve : find the nature of

the curve when the rod descends from one given position to

another in the least time possible, the initial angular velocity

being given.

Let CB (fig. 125) be the required curve, OQ the horizontal

groove ; take the point in it for origin of coordinates : at time t

let AB be the position of the rod, draw BT the tangent at P;

OX = X, XB = 2/, 0Q = ^^ lOQB= e, QB = a.

The equation of vis viva is

-j-j + ^ \~ji) = constant = c suppose (1).

Also the motion of B pei'pendicular to BT'is zero,

.-. ^ miBTN +a~coBQBT = 0,
dt dt ^ '

or, if BTN=<j>, ^sin0 + a'^^cos(<^-6') = O (2);

also {^ + xY + / = d' (3).

From (1) and (2)

\ '^d'co%\<^-e)] \dt

or, since sin^ = -, tanrf> = ^ = w,
a dx ^^

X-W

Also, from (3)

" dx^ '

{d'-Tf-y
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dt 1 +
^•y

[[d^-yy+pyY\
d^

1

c[a-ŷ a{(«^-j/?+P3/F+^4>?^^^.

or

Here V contains only y and p^

.-. V-Pp = C,

[{(« -y npy] +f^p^-
[{{a^-yy+pyY^jc^^i +

- (« -3^
)
-o,

{a^-yy{{^-yy+py] + 9. ^.f)i [[(^a^^,jy-+pyr+kYY-= o
;

1-

or {C'k-y)p = {d^-y% C = |l - (^)y';

.-. C'k sm" '^ + [p" - ff = x^ 0",

the required equation to the curve : the constants C", C" are to

be detemilned by the two given positions of the rod which give

two points through Avhich the curve must pass. The curve is

independent of the angular velocity of projection.
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APPENDIX.

The following problem in Astronomy was set in 1848.

If a rectangular court be enclosed within a wall of given

height, and one of its sides be inclined at an angle of 30° to the

meridian, detennine the breadths of the shadows of the walls on

a given day at noon, and the portions of the courts and walls

which will be enveloped in the shadow, the latitude being

52° 30' north, and the Sun's declination on the given day

7° 30' north.

By referring to the problem on p. 64, we see that here

= 30° and </> = latitude — Sun's declination = 45°,

r. a = \h^ ^ " 2" ^''

Let ?j, ?2 ^6 the lengths of the walls, whose shadows are

respectively of the breadth «, 5, the area of the courts enveloped

in shade will be \a + [l^ — a) Z>, or l^a + I
J)
— ah ; and the

shaded parts of the walls the whole of the two walls, and two

triangles \ha^ \hh of the other two.

The following solution of the problem on p, 148, is due to

Mr. Gaskin.

Let TP, TQ (fig. 126) be the two given tangents, take the

line AB as axis of cc, and let OP'Q be the chord of contact of

any conic touching TP, TQ^ and passing through A^ B. Take
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as origin, and let

'7 — ) ''7' —
a a

be the equations to TP, TQ respectively ; also let OA = a,

OB = /3. Let the equation to OP' Q' he 7/ = mx, then that to

the conic will be

,
Hence, putting ?/ = 0, we get

o,. 1, /i + i)l + (_L,_'|!) = o (.),
a; V« aj X \aa \J ^

'^

the roots of which equation are -
, p 5 whence we see that

1111
a p a a

or the line OPQ is divided harmonically in -4, i?, whence is

one of the foci of involution of the system of points P, Q^ A^ P,

so that the chords of contact of all conies touching PP, TQ and

passing tlu'ough -4, P, cut AB in one of the points 0, 0', if 0'

be the other focus of involution.

Now, in order that (1) may represent a rectangular hyperbola,

the sum of the coefficients of x'' and y'' must = ; hence

-— - m^ + 777 - 1=0.
an 00

But by (2),

1 _ 1 m'

a/3 aa \

Combining these equations, we get

aa 00 J \aa ap

giving two values for «i, equal and of opposite signs^ so that

there can be constructed two pair of rectangular hyperbolae

CC
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whose chords of contact meet in one of the foci of invohition,

and are equally inclined to AB.

The relation between the four lines Ox, Oy, Op, Oq, in the

problem on p. 158, may be expressed thus: Ox and Oy each

bisect the lines between 0}), Oq parallel to the other.

For let the equations to Op, Oq, refen-ed to Ox, Oy as axes,

be 2/ = mx, y = m'x. Then if Oa = a, Ob = b, Od = a', Ob' = b',

the equations to ah, db' are

- +1 =1a^b '

X y

a b
'.+'Tr=l;

whence, if (xy) be the point Q of intersection of these lines,

\a a J

But Q lies on the line Oq, or y = mx,

^b b'^

'' («-^'Ka"a')='^^^"^'K^-T')'

11 /I lA ^

a a \b bj

The condition that the point of intersection of this line lies

on Op or y = mx, is derived from this equation by interchanging

a, a!, and writing m for m,

1 1 ,

? + m
a a (M)--

Hence m = — m, which expresses the above relation between

Ox, Oy, Op, Oq.

The same thing may be proved geometrically by making

any one of the points a, b, a, or b', remove to an infinite

distance.
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The following statical Problems set in 1850 have been

omitted.

1. A heavy rod, whose weight is TV, rests upon a fulcrum

at its middle point, when loaded at one end with a weight W,
the density at any point of the rod at the distance x from a

TTtJC

certain point in it varies as sin— , a being the length of the

rod : find the ratio of W to TF', and determine at which point

the density is zero when this ratio is the greatest possible.

Let c be the distance from the centre of the rod of the point

where the density is zero, p the density at the point x = ^a.

The conditions of the problem give

r^
. TTic , r*-"-' . irx ,

p sm— ax \- [ p sm— dx = W,
^ Jo ^

pa (^ (tt 7rc\
, /tt ttcX) „_or^|l-eos(- + -) + l-cos(j--)| = P^';

w W
••• P'^-^ (•)•

Also taking moments about the fulcrum which is at the

middle point of the rod,

r^"'' . . irx . r . , . TTcc

Pi (ic — c) sm— ax = p I
[c- x) sm—

Jc ti '^J^^'a
TTX ,

ax

+ p \
(c + ic) sm— ax -\- W -

/•*'*'
. irx J (

[*-"''
. irx

J ^

fi"-' . irx
J

\ ^.., a
or pi xsm— ax — pel I sm— ax + I sm— ax ] = W -

T-T- f . TTX , ax TTX a^ . TTX
JN ow ixsm— ax = cos 1—5 sm \- c:

J a TT a TT a ^

. TTX , a . ire (a (a
icsm— rta; = -sm— \-z-\-c-\-\- -c

a IT « 2 V2

a . TTC
= — sm—

TT a
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and I sin— ax + l sin— ax = — , as shewn in (1

a'' . TTC 2oca ,,,, a

r /IN
TT W fa' . TTC 2ac\ „, a

or from (1 - — - sin \ = W -;
' 2 a Vtt a tt J 2

a sin 2c
a

This ratio = oo when c = ; it has a maximum value when

. TTC .

a sm 2c is a mimmum

;

a

or, clIfFerentlating with respect to c,

TTC ^ ^
TT COS 2 = 0,

a

ire
COS — =

a TT

which determines the value of c.

2. Portions are cut from an ellipsoid by planes which are

parallel and equidistant from the centre ; if -ct be the length

of a pei-pendicular from the centre upon either plane, and

Z, m, ?i, the cosines of the angles which it makes with the axes,

shew that the remainder will rest when placed with a section

on a horizontal plane, if

1 r m' n'— = or > -^ + -p- + ^

,

w a o c

a, &, c, being the axes of the ellipsoid; and express the con-

dition that ]j such solids, when placed on each other with their

sections coincident, and their centres in a line inclined to the

vertical, shall not fall over.

The one portion will rest with a section upon a horizontal

plane if the vertical line drawn through its centre of gravity,
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which is the centre of the ellipsoid, fall within the section;

i.e. if zj be equal or less than the radius vector (r) of the

ellipsoid drawn in the same direction, or since

if -^ = or > -^ = or > -, + 77 + -^ .

«j T a b c

Wlien there are ^; such solids placed on each other as above

described, the height of the centre of gravity above the plane

will be jjicr ; and, if p be the distance of the foot of the per-

pendicular drawn from the centre of gravity on the horizontal

plane from the centre of the section, p the same distance when

there is but one solid, we have p = i^p : the condition that the

p solids shall not fall over is, that pp shall be equal to or

less than the radius vector of the section through the foot

of the said perpendicular.

The equation to the cutting plane is

Ix + my + nz = vj (l)

;

and if a, /8, 7, be the coordinates of the centre of the section,

a, /8, 7, are subject to the conditions (see Gregory's Solid

Geometry^ Art. 121)

la + myS -f W7 = z^,

a /9 7 -ra- , s

and
ciH U'm c'n a'l' + H'm' + c^i'

The coordinates of the foot of the perpendicular on (1) are

IzTj v/jCT, w-ct; hence the equations to the radius vector of the

section through this foot are

y - ^ _ g - 7 _= p,r suppose (3),
Izs — o. wa — ^ 7*^ — 7

where r is the distance of the point {xyz) fi'om (a/37).

If we substitute these values of ic, y, 2, in the equation ta

the ellipsoid

x' f _^
g' _ 1

i? + 6^ + c^-*'
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we shall find the length of the radius vector r of the section

through the foot of the perpendicular,

{{1^ - a) fir -\- aY {(yn^ - /3) fir + /3Y _^ {(»^ - 7) Z^^ + tF _ 1

7?
^

h'
+

6'
'~^'

the roots of this equation are equal

;

Now, from equations (2),

la 1)1/3 7i<y

a'
"^ F "^

6' aT + bW + 6'd'
'

and -5 + 7T + -ii = -^7F

and from equations (3),

— = (?zj - a)' -I- [mzj - /Sy + {nzj - 7)"'

= w"'' - 2^' + a'"' + ^' + 7'

= d' + fi' + i' - ^'

Hence equation (4) becomes

{d'
"^

U'
"^

c"^
^ dT + yW + d'd'] p' ~ dT + hW -f c^;i^

•

Now the equation of equilibrium is

p'
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3. If a plane area, bounded by a parabola and its double

ordinate, be supported by an axis through the focus and a

vertical force acting along the ordinate, find what portion may

be cut oif by a line through the focus without aifccting the

vertical force ; and the least area for which this is possible.

Let P8Q (fig. 127) be the line cutting off the portion PQR :

the centre of gravity of PQR must lie in the vertical through 8^

or if we draw R V the diameter of PQ^ and SG vertical meeting

it in O^ G must be the centre of gravity of PQR. Hence

GV=IRV. Let AS=l, LPSB=e',

Also

But

or

tan^ =



392 SOLUTIONS OF SENATE-HOUSE PROBLEMS.

This equation, when reduced, will detennine the value of 6

in teniis of a.

The least area for which this is possible will evidently be

sucli, that the part cut off will be the half, and the cutting line

ASB: in this case S is the centre of gravity of the whole area,

and AB = |Z.

The first part of the Prob. 5, on p. 212, may be proved by

referring to the values of the angles contained between any

two adjacent sides of a regular polyhedron (see Hall's Sjjherical

Trifjonometry^ Art. 59) : it appears that this angle is a sub-

multiple of 27r only in the case of the cube.

THE END.

CAMBRIDGE:

PRINTED BY METCALFE AND PALMER.
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