SOLUTIONS OF THE PROBLEMS AND RIDERS

PROPOSED

IN THE SENATE-HOUSE EXAMINATION

For 1854.



CAMBRIDGE :
PRINTED BY METCALFE AND PALMKR

FOR MACMILLAN AND Co.

TLonUon: GEORGE BELL, 186, Fleet Street.
®xforV: J. H. PARKER.

Bublin: HODGES & SMITH.

¥Eton: E. P. WILLIAMS.

Evfnburgh: EDMONSTON & DOUGLAS.
Glasgon : JAMES MACLEHOSE.



SOLUTIONS

OF

THE PROBLEMS AND RIDERS

PROPOSED

IN THE SENATE-HOUSE EXAMINATION

For 1854.

BY

THE MODERATORS AND EXAMINERS.
f‘wa{ 23 (1(1'7) - Mbvu;;

WITH AN APPENDIX

CONTAINING THE EXAMINATION PAPERS IN FULL.

“It is good to vary and intermingle asking of questions with telling of opinions.”
Bacon.

C Qambridge:
MACMILLAN AND CO.

1854.



)0
Math 295,115 (/#5)
1463, Dranch 80 .

/z-/z.
WZ,W%



PREFACE.

THE Moderators and Examiners have been induced to
publish the present volume, mainly on the following account.

The value of a problem frequently depends in great measure
upon its illustrating clearly some general principle or exempli-
fying some analytical process; and thus a solution, which is
as it were forced out, and which misses the method designed,
is worth little in point of the instruction it affords.

It is hardly possible for any but the framers of the questions
to produce a complete series of solutions, shewing the method
which they wished the student to pursue.

In the present instance the writers have availed themselves
of their opportunities of inspecting the answers returned by
the candidates for honours, and have appended to their own
solutions some of the more striking of those which were sub-

mitted to them.

Cambridge, Oct. 1864 .






SOLUTIONS OF SENATE-HOUSE PROBLEMS
AND RIDERS

FOR, THE YEAR EIGHTEEN HUNDRED AND FIFTY-FOUR.

THURSDAY, Jan. 5, 1854. 1 o 4.

1. ABD, ACE are two straight lines touching a circle in
B and C, and, if DE be joined, DE is equal to BD and CE
together ; shew that DE touches the circle,

If DE, fig. (1), be not a tangent, from D draw DFG to
touch the circle. Then, since (Euc. 1. 47) BD is equal to DF,
and CG to GF; therefore, BD and CG are together equal to

" DG@. But BD and OF are together equal to DE. Therefore
the difference between DG and DE is equal to the difference
between CG and CE, which is EG: that is two sides of the
triangle DEG are equal to the third, which is impossible ; there-
fore no line except DE can be drawn from D to touch the
circle; therefore DE touches it.

Direct Proof—Let O, fig. (2), be the centre of the circle.
Mske DF equal to DE. Join OB, 0C, OD, OF, OF, and
draw O @G perpendicular to DE.

LS

B
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Since DF is equal to DE, therefore DF is equal to DB and
EC together; therefore BF is equafl to EC; and OB = 0C and

LOBF = OCE, therefore OF = OE; therefore, in the triangles

DOF, DOE, DO, OF, DF are equal to DO, OE, DE respec-
tively, therefore £ODF = ODE}; again, in the triangles ODB,
ODG@, OD is common, and the angles ODB, OBD, are equal
to ODG, OGD, respectively, therefore OB = OG'; therefore

the circle passes through @, and, since O@ is perpendicular to

DE, DE touches it.

2. 0, 4, B, C, are four points arranged in order in a
straight line, so that 04, OB, OC, form an harmonic pro-
gression. Prove that, 4 and C being stationary, if O move
towards 4, B will also move towards 4.

1 1 1 1

OB 0C 04 0B’

%%= %‘z’ see fig. (3),
AC—-AB _AB
OA+ AC A40?
(AC—AB).04 =(0A+AC).AB,
1 1 1 1

4B~ 40~ 4c* 04>
1 1, 2
4B~ 04" 40
If then OA4 decreases, AB also decreases.

2 1 2
.8, ¥ a, b, ¢ be positive integers, and a?, 5%, ¢® be in
' 3 2
geometrical progression, shew that o*, 4™, ¢ are also in
geometrical progression. .
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2 1
Since a*, 4%, ¢* are in geometrical progression,

wo=(4),

1 1

(ac)—" = 6;1
(ac)* =¥,
ac = b,

2 2
(ac)” = (B)=,
2 13
therefore, a*", ", ¢**, are in geometrical progression.

4. If either of the two quantities 1 + 3", 1 + 3™V, is a
multiple of 10, prove that the other is also a multiple of 10,
m and r being positive integers.

1t is intogral, it is evident that the

following quantities also are integral:
3™ — 3"+ 10
10 !
3 (3™ _ 1)
10 ’
(10—1) (8™ *-1)
10 ’
T
10 ?
13 —10
10 !
10 ’
(10-1) (8™ +1)
10 ’
3"yl
10 :

Assuming that

B2
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Proceeding in the same way, we see that 3 1-:)- 1 integral.

The reasoning here given, taken backwards, shews that, if
3 1:;1 mmtegra.], alsoxsmtegral.

The following is a somewhat different solution of the same
problem.

Suppose 3™ +1 divisible by 10; then 8™ must have 9 for
its last digit. Now 3‘=81: hence 3“ has 1 for its last digit.
Hence 3™ x 3* has 9 for its last digit, and therefore 1 + 3™ x 3"
is divisible by 10.

Suppose 3™+ 1 divisible by 10: then 3™ has 9 for its
last digit: therefore 3™ must have 9 for its last digit; for
otherwise 3™ x 3“ would not have 9 for its last digit.

Hence 3™+ 1 is divisible by 19.

5. Find the value of tana or tan@ from the equations
tan (z+ B) = tana cotB + cota tanp,
tan (a— fB) = tana cot3 — cota tanS.

Adding together the two equations, we get

tana + tanfB tana - tanf8
T —tona tanf T 1+ tena tan 3 — 2 120% 05,

1 + tan’$
*1 — tan’a tan'g

or tanB(1 + tan*B) = 1 — tan'a tan’B............ (1).
By symmetry, tana(l+ tan’z) =1 — tan'8 tan'a............ (2).
From (1) and (2), tana — tanB + tan’a — tan’8 = 0,
(tana—tanp) . {1 + tan’a + tana tanB + tan8} = 0,

(tana —tanB) . {(tana + 4tanB)* + 1 + §tan’8} =

and therefore, since the second factor cannot be zero,

2 tana = 2 tana cotf,
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From (2) and ‘(3),
tana (1 + tan'a) = 1 — tan‘a,
tan'a + tana + } = §,

_tw/h-1
)

tana = tanS.

6. If A+ B+ C=90°, shew that the least value of
tan'4 + tan'B + tan’Cis 1.

1—tand tan B—tan BtanC —tanC'tan 4
tan 4 + tan B+ tanC — tan 4 tan BtanC ’

therefore tanA4 tanB + tan B tanC + tanC tan4 = 1.

But since tan’4 + tan’B = (tan4 — tan B)' + 2 tan 4 tan B,
tan®B + tan’C = (tanB — tanC)® + 2 tan B tanC,
tan'C + tan'4 = (tan C—tan4)* + 2 tanC tan 4 ;

therefore tan’4 + tan'B +tan'C = 1 + }{(tan.4 — tan B)*
+ (tan B — tan C)*
A + (tanC — tan 4)'} ;
therefore tan’4 + tan'B + tan®C is not < 1.

0=cot(4+B+C)=

7. Lines, drawn through Y, Z, at right angles to the major
axis of an ellipse, cut the circles, of which SP, HP, are
diameters, in Z, J, respectively. Prove that IS, JH, BC, pro-
duced indefinitely, intersect each other in a single point.

Let 1Y, JZ, fig. (4), produced if necessary, intersect the
major axis in Y’, Z', respectively : then
L SIY' = supplement of S7Y,
=¢ 8PY =+ HPZ
=+ HIZ";
¢ 8Y'I = right angle = 2 HZ J,
and therefore L I8Y' = +t JHZ";
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whence the triangle formed by producing IS, HJ, is isosceles,
and therefore, CS, CH, being equal, the vertex of the triangle
must lie in BC produced.

Since the angles SIY’, HJZ', are equal respectively to the
angles SPY, HPZ, they can never be zero, and therefore SI,
HJ, can never be perpendicular to the major axis. Thus the
point of intersection of IS, JH, BC, can never move off to
an infinite distance from C.

8. From any point 7, (fig. 5), two tangents are drawn to a given
ellipse, the points of contact being @, @: CQ, C¢, Q¢, CT,
are joined; V is the intersection of Q¢', CT. Prove that the
area of the rectilinear triangle QC¢' varies inversely as

CW\} (TV\}
(z7) +(zv)-
Draw CK at right angles to QQ’. Then
(area QCQ')* = QV*. CK*

cr
AC'. BC*
=W.(CP—CW).CK'.
But CPR-CV*=CT.CV-CV*=CV.TV.
CK* 1 or cv: 1 1

Also oppp = OF° OF ~ CT%.07 ~ O ~ (CV+ TV

AC*.BC*.CV.TV
CLEY

——“—0#?'3%7 I '
('ﬁr) "(67)

or area of QCQ' varies inversely as

(7)'+ (w)-

Hence (area of QCQ)* =

and therefore area of QCQ =




1-4.] : PROBLEMS. 7

9. A piece of uniform wire is bent into three sides of a
square ABCD, of which the side AD is wanting; shew that,
if it be hung up by the two points 4 and B successively, the
angle between the two positions of BC is tan™ 18.

Let EF, fig. (6), be drawn parallel to B4, through E the
middle point of BC. Then, if G be the centre of gravity of the
piece of wire, EG equals two-thirds of BE.

Draw HG@ parallel to BC, and join 4G, BG@.

When the wire is hung up by 4, AG will be vertical, and
when hung up by B, BG will be vertical; therefore the incli-
nations of BC to the vertical will be equal to the angles which
B(C makes with AG and BG. Therefore the angle between
the two positions of BC, (supposing it to be kept in the same
plane,) will be the angle between 4G and BG.

Now tan 4GB = tan (AGH + HGB)

~_t+td e,
T1-—-4.% 18;

therefore the angle between the two positions of BC is tan™18.

10. A weight of given magnitude moves along the cir-
cumference of a circle, in which are fixed also two other
weights: prove that the locus of the centre of gravity of the
three weights is a circle, If the immoveable weights be varied
in magnitude, their sum being constant, prove that the cor-
responding circular loci intercept equal portions of the chord
joining the two immoveable weights.

Let R, fig. (7), be the moveable weight, P and @ the
stationary ones. Let G' be the centre of gravity of P and @,
H that of P, @, R.

Then GH = E.GR

PrQ+E
« GR.

But the locus of R is a circle; hence that of H is a circle,
@ being a similar point in the two circles, and GR, GH,
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similar lines. Hence, if HP', HQ, be drawn parallel to RP,
RQ, P and @ will be points in the locus of H.

Also PQ:PQ:: GH: GR,

and therefore, GH: GR being constant, and PQ being constant,
P @ is constant. .

11. A ball of elasticity ¢ is projected from a point in an
inclined plane, and, after once impinging upon .the inclined
plane, rebounds to its point of projection: prove that, a being
the inclination of the inclined plane to the horizon, and 8 that
of the direction of projection to the inclined plane,

cota .cotB=1+e.

Let V be the velocity of projection.
This is equivalent to ¥ sinB and V cos8 respectively per-
pendicular and parallel to the plane.

Also the force of gravity is equivalent to g cosa and gsina,
perpendicular and parallel to the plane.

Consider the motion perpendicular to the plane. The time
of flight = twice the time in which the velocity ¥ sin8 can be
generated by the force g cosa

VsmB
gcosa

after rebounding, the velocity perpendicular to the plane is
eV sinpB,

therefore time of returning to the point of projection
eVsinB
g cosa
therefore whole time of flight
V sin
B+a.
y cosa

~ Again, the motion parallel to the plane is not affected by
the impact, therefore
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whole time = twice the time in which the velocity ¥V cos8 can
be generated by the force g sina
V cos 8

gsma'

Therefore, equating these expressions,
V cos B V sin8
g sina g cosa
therefore cotacotB =1 +4e.

[The student may gain instruction by endeavouring to draw
a correct figure.]

(1+e),

12. Two heavy bodies are projected from the same point
at the same instant in the same direction, with different velo-
cities; find the direction of the line joining them at any
subsequent time.

By the second law of motion, the positions of the bodies at
any time after their projection will be the same as if they
moved for that time unaffected by gravity, and then fell from
rest, from the positions they had reached, for the same time.

Now after the first part of the motion, each will be in the
common line of projection; and after the second part of the
motion, since they fall through equal and parallel spaces, the
line joining them will be parallel to the line joining them before
they fell, that is, to the line of projection. Therefore, in the
actual motion, the line joining them will be always parallel to
the line of projection.

13. Three equal and perfectly elastic balls 4, B, ' move
with equal velocities towards the same point, in dlrectxons
equally inclined to each other; suppose first, that they impinge
upon each other at the same instant; secondly, that B and C
impinge on each other, and immediately afterwards simul-
" taneously on A; and thirdly, that B and C impinge simul-
taneously on 4 just before touching each other; and let
V.V,V, be the velocities of 4 after impact on these supposmons
respectlvely. shew that

V.= 1V, and that V, = § V..
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Let V be the velocity of each ball before impact. Let
4, B, C, fig. (8), be the centres of the balls at the instant when
they impinge, O the point towards which they are all moving.
Join A0 and produce it to D; 40D is perpendicular to BC.

In the first case, by symmetry, the three balls are reduced
to rest at the same instant, and since the forces of restitution
are equal to those of compression, and act in the same direc-
tions, the velocities generated are equal to those destroyed;
therefore each ball has the same velocity after impact as it
had before ; therefore

) V.=

In the second case, B and C impinge first on each other ;
their velocity parallel to DA is therefore unchanged, while their
velocities perpendicular to DA are reversed. Now, before
striking C, B was moving in the direction BO; therefore, after
striking C, B moves with the velocity ¥ in a direction perpen-
dicular to 4B; it has therefore no velocity in the direction of
the normal A4B.

Let R be the whole impulsive force between 4 and B, mea-
sured as an accelerating impulsive force, B’ the force of com-
pression, [it is convenient to measure them as accelerating
forces, the balls being equal]: then the velocity of 4 at the
time of greatest compression is

V—2R cos 30°=V — R'v3;
therefore the velocity of A4, resolved along the normal 4B, is

(V—R'v3) cos30° = @V- §R;

and the velocity of B, resolved along the same line 4B, is R
but, at the time of greatest compression, the normal velocities
are equal, therefore

43 V & RI RI’

therefore R = */3V and B = 21;.“—2*/3 v;
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therefore the velocity of 4, after the impact is completed, is
V—-2Rcs30°’=V-RV3=V-§V=-1VF;
therefore V,=1V,.
In the third case, B and C impinge on 4 just before striking
each other. Let then B be the whole accelerating impulsive

force between 4 and B, R’ the force of compression; then, as

before, the normal velocity of A at the time of greatest com-
pression .

*’ V3y _4R.
Also the normal velocity of B before impact = V co830° = f—’ v,

therefore the normal velomty of B at the time of greatest com-
pression
V3
-5 V;
therefore, equating these normal velocities,

By _yr=r- Ly,

therefore R = 2*/3 and B = 2R = 4*/3

therefore the veloclty of A after impact =V — 2R cos30°
=V-Ry3=V-V=-1V;
therefore V,=1%V,.

14. CP, CD, are two conjugate semidiameters of an ellipse
described by a body about a centre of force in the focus S:
PP, DD, chords of the ellipse parallel to the major axis.
Prove that, a, «, B, B, being the angular velocities of the
body about 8 at P, P, D, D), respectively,

1
o * BT

We know that SP. 8P = CI’.

h , ko
sF * T 5P

= a constant quantity.

But a=
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13

hence '(;a_'s* = CD
h
imilarl = 2
Similarly @A cpP
1 1 CP + CD?
Hence @) + BE = -
- c4* + OB*
3

= a constant quantity.

15. Supposing the velocity of a body in a given elliptic
orbit to be the same at a certain point, whether it describe
the orbit in a time ¢ about one focus, or in a time ¢ about the
other, prove that, 2a being the major axis, the focal distances
of the point are equal to

2 2at
t+t) t+ ¢ -

Let 8, H be the foci, }%, {#' the areas described in a umit
of time when ¢, ¢ are the periodic times respectively. Let SP,
HP be the focal distances of the point where the velocity is
V in each case; 8Y, HZ, perpendiculars on the tangent at P.

Then, since the whole area described in the times ¢, ¢ is
the same,

h:b st
SY.V:HZV:t:t
S8Y:HZ: ¢t :¢,
SP: HP:: ¢t :t,
S8P:24C::t:t+ ¢,
Tttt
= ,.24C
Tttt ’

SP 24,
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16. Three candles are placed in a room, and the two shorter
being lighted throw shadows of the third upon the ceiling;
if the directions of these shadows be produced, where will
they meet?

The shadow of any straight line, caused by a luminous point,
is in the plane passing through the luminous point and the line.
Therefore the two shadows on the ceiling are the intersections
of the ceiling by the two planes passing through the longer
candle and the two flames respectively; the shadows if pro-
duced will meet in the line in which these two planes meet,
that is, in the point when the direction of the longer candle
meets the ceiling, that is, the point directly over the longer
candle.

17. Within a reflecting circle on the same side of the
centre are two parallel rays, one dividing the circumference
into arcs which are as 3 to 1, the other dividing it into arcs
which are as 8 to 1; find the least value of » such that, after
each ray has suffered n reflections, they may be again parallel.

Let AB (fig. 9) be the original direction of the first ray,
BC its diréction after one reflection; the deviation of the ray

=a—-,ABC=(tAOB.

Now the arc 4 DB =three times the arc A EB, therefore AEB
is one fourth of the whole circumference; therefore the angle
408=7.

And since the deviation at each successive reflection is always
the same, the deviation after » reflections = 7.3

Similarly, for the other ray, the deviation at each reflection

_ 27 _ 2m
“8+1° 9
. e . 2nm
therefore the deviation after » reflections = 5

Now after n reflections the rays are parallel to each other;
therefore the deviation of one must exceed the deviation of
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the other by some multiple of two right angles; therefore

n 2n7r_
2‘” 9 —p‘ll',

5n = 18p,

and, since p is an integer, the least value of = is 18.

18. One asymptote of an hyperbola lies in the surface of
a fluid: find the depth of the centre of pressure of the area
included between the immersed asymptote, the curve, and two
given horizontal lines in the plane of the hyperbola.

Let BB'C'C (fig. 10) be the included area. Draw PM,
horizontally, equidistantly from BB', CC'. Take any two
stripg PM, P M, of equal breadths, and equidistant from P.M,.
Then, 7 denoting the breadth,

Pressure on PM = 7. PM.OM.sina
= 17 (0’ +¥") sina
= pressure on P'M".

Hence PM, P M, balance about PM,. Similarly for all like
pairs of strips. Hence the centre of pressure of BB'C'C lies
in the line PM.

19. A cone is totally immersed in a fluid, the depth of
the centre of its base being given. Prove that, P, P, P,
being the resultant pressures on its convex surface, when the
sines of the inclination of its axis to the horizon are s, 4, 5",
respectively,

P (d-38")+ P? (s"—8) + P (s—4') =0.

Let R = the resultant pressure on the whole surface of the
cone, the base included; P = the resultant pressure on the
convex surface, when the axis is inclined at an angle a to the
horizon ; B = the pressure on the base; % = the altitude of the
cone; k = the depth of the centre of its base; » = the radius
of its base; o = the density of the fluid.



1-4.] PROBLEMS. 15

Then P'=R'— 2B.R.sina + B
Now R = }omr'h, and B = omr'k;
hence P = a’n'r* (' — 6hks + 9K").

Similarly, P* = yo'n'rt (B — 6hks' + 9K°),
P" = yo'n’r* (B — 6hks" + 9K").
Multiplying these three equations in order by s' — 3", 8" — s,
s — ¢, and adding, we have
P(d—§")+ P*(s"—3s) + P*(s—5) = 0.

20. Light emanating from a luminous circular disk, placed
horizontally on the ceiling of a room, passes through a rect-
angular aperture in the floor: ascertain the form and area
of the luminous patch on the floor of the room below.

Shew that neither the shape nor the area of the patch will
be affected by any movement of the disk along the ceiling.

Let O (fig. 11) be the centre of the disk, M any point
in its circumference. Through P, any point in a side of the
aperture ABCD, draw OP(O' to meet the floor of the lower
room in 0. Draw MP and produce it to M’, a point in the
floor. With O as centre and radius O'M’ describe a circle on
the floor. This circle will be the area illuminated by the rays
which pass through the point P.

Again, lines drawn from O through 4, B, C, D, to meet
the floor will form a rectangle A'B'C'D’ on the floor.

The form of the patch is therefore such as represented in
(fig. 12).

Let AB = a, BC = b, r = radius of disk,

AB =d, B'C =V, ¥=0M,
and let 2, 2/, denote the heights of the higher and lower rooms.

];;, a'=a.h-;h, b =0, -——h+h

3
Then area of patch = mr” + a'd' + 2 (@' + &) 7
wPh® + ab(h+ k) + 20k (R + B')(a+b)}.

Then #' = 7.

-5
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This result shews that the form and area of the patch are
independent of the position of the disk on the ceiling of the
upper room.

21, If ¢, ¢, ¢, be the lengths of the meridian shadows of
three equal vertical gnomons, on the same day, at three different
places on the same meridian, prove that the latitudes A,, A, A,
of the places are connected together by the equation

(cg - cg)’ (ca - c!.)’ (C - CL —
o ta.n(h,—)\.,) ta tan()\.,— X,) Ta- tmle_xt) =0

Let = the altitude of the gnomon, 8 = the sun’s declination

when on the meridian.

Then 5%’ = tan (sun’s zenith distance when on the meridian),
c
or 5’ = tan(\, — 3).

Similarly, % = tan(A,— 8).

Hence A, — A\, = tan™ %— tan™ :%' = tan™! {u} ,

C,
T8 + x
&
and therefore %+ & = (6,— ) cOt(Ay=2) evrerennn. (1).
Similarly -c’—;l +a=(c,—¢c,) cot(A, = Q) .eeuunnnne - (2),
"';ﬁ,u z=(c,— ) COt(A,=A) verrrrnenn. ).

Multiplying (1), (2), (3), in order by ¢,(¢,—¢), ¢ (6, <),
¢, (¢,—c,), adding, and observing that

(cs - c:) + (cl - ca) + (c: - 61) =0,

and ¢, (cn - cn) +¢ (cx - 6.) + Cy (cl - 01) = 01

we have

0=c,(e,—c,)*cot(N,—\,) +¢,(c,—¢,) cot(N,—N,) +¢,(c,—¢,) "cot(N,—A)),
- s)’I (s_ )‘ (cl_c)’ -

or c,.m% + c"ta.Tc(X,é_ﬁ + c"tan()\.,—)\.,) =0.
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TuUEsSDAY, Jan. 17, 1854. 9 fo 12.

. 1. Ir € denote generally the number of combinations of m

things s together, and 0 be taken to denote unity for all values
0
of m; prove that, if

n-38 n-r+1l n-r
8_1'0+2"‘0+3"’0+4"‘0+ ...... + C +C,.
r r-1 r-2 r—3 | . 0

then
8;+ §’+ §+ S+...+ 8=1""42"43"" +...4 (n—1)"+ 2"+ (n+1)".
3 "

From the expression for S we see that

.................................

S 0+2""0’+3""0+4""‘0+ ...... +n,C+1,

n— -2 n-3 1
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But 14+C+C+C+ ... +5’=(1+1)" = 2",
1 2 3 »
n-1 n=1 ”-
1+2.0+2°.0+ ...... + 20 = (1+2)*=3"",
1 2 n-1

...............................................................

---------------------------------------------------------------

1420 = (n+1),

Hence
S+ 8+ 8+ :§’+...+ S8=1""4+2"4+3""+...4 (n—1)*+n*+ (n+1)".
0 1 2 n

2. Straight lines Aa, BB, Cy, (fig. 13), are drawn from the
angular points 4, B, C, of a triangle to bisect the opposite sides
in a, B, 7, O being the point of intersection of the three lines.
If the radii of the circles inscribed in the triangles BOa, COa;
COB, AOB; AOy, BOy; be represented by ag, ay; by, ba;
cay cg; respectively ; prove that

1_1,1_ 1,11
“p_ e, by b, "¢, cg

We see that, u denoting the area of the triangle ABC,

and %, k, I, the distances 40, BO, CO,
ag (Ba+ Oa+ BO) = area BOa = }area BAC,

ag (Ba+h+k) = fu:

gimilarly, a7(0a+ % +10) = ju.
u 1 1
Hence k—l=§.(§—;‘;).

By similarity, z_h='§.
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and h—k=§.(—l-—l).
Hence ———+3—7+=—=—==0

3. P is a point in a branch of an hyperbola, P’ a point in
a branch of its conjugate, CP, CP, being conjugate semi-~
diameters. If S, S’, be the interior foci of the two branches,

prove that
8P — SP=AC - BC.

Draw PN, P'N, (fig. 14), to meet CA4, CB, produced, at
right angles. Let (4 =a, CB=0,CN =z, CN' =&
SP=ex —a.
S'P =écx -5
%, AN}
(a -;-b) -
= ("—Jgﬂf b.2-b

NG L0
a

-b

x-b
= ex — b.

Hence 8P —~8SP=a-b.

v 4 On any chord of a parabola as diameter is described

a circle cutting the parabola again in two points; if these
points be joined, shew that the portion of the axis of the
parabola included between the two chords is equal to its
latus rectum.

Let 3* = mz be the equation to the parabola;
(®3,), (x,y,) coordinates of the ends of the given chord,
(@,s)y (BY) wveevrreeriiiiiiiiiniiiiiicneanns other ........
Since y,, y, are the roots of the equation

Y= (+9)y+9.9,=0
c2
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and since «,y,, and also x,y, satisfy the equation
y' = ma,
therefore they satisfy the equation
mz = (4,+Y) ¥ + 4,9, = 0:
this is therefore the equation to the given chord.
Similarly, the equation to the other chord is
mz = (4,430 Y + %Y. =0

Putting 0 for y in each of these equations, and subtracting
the resulting values of x#, we find the portion of the axis

intercepted between the chords equal to "—’-"—1/—4——;—3/‘3 ..

Now the equation to the circle, of which the given chord
is a diameter, is

(o= =5 + (- 2350 - (557 + (5%,

or m’—(x1+xn)m+3/‘—(yt+yt)y+x1zz+yiyn=0‘
Combining this with the equation to the parabola, by elimi-
nating x, we have

4 2,3
Ltz Lty — () y + 55 4 gy, = 0,
an equation whose roots are ¥,, ¥, ¥, ¥.;

therefore Y.9:9:Y = ¥.'Ys + MY,

therefore YoYu = Y49, + m;

therefore the portion of axis intercepted is equal to
¥.% + m' — 4.9, =m
p- .

Otherwise. Let a, b be the coordinates of the middle point of
the given chord ; then the equation to the circle may be written

o+ y' — 2ax — 2by + f=0,
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and the equations to the chords will be
z—a—-m(y—5)=0, xz+my—c=0.

Now the equation to any conic section possessing these
same chords must be of the form

k(@ +y' —2ax—2by+f) = {x—a—m(y—-0)).{ea+my—c};
let this conic section coincide with the parabola y* = lr; then
by comparison of the coefficients of like terms, we have

k=1 m=mw, — 2bk=mc+ m'(mb-a),
(k+mm') | = 2ak + mb — a ~ c;

2b

therefore ¢+ mb — B= = e (),
and (1+m)l=mb+a—c
_2mb+2~b by (1),
o 20
= (1+m’) )
therefore l—gl:—a—mb—c;
m

therefore the latus rectum is equal to the portion of the axis
included between the chords.

5 If r=£(0) and y=f (g) be the equations to two curves,

f(0) being a function which vanishes for the values 6, 0,, and

is positive for all values between these limits, and if 4 be
the area of the former between the limits

0=0, 0=90,

and M be the arithmetic mean of all transverse sections of the
solid generated by the revolution, about the axis of , of the
portion of the latter curve between the limits « =af,,  =af,;

shew that
2
M= m—: A.
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To find an expression for M, conceive the portion of the
axis af, — a0, (taking 0, to represent the greater of the two
angles 0, 0,) to be divided into n equal parts, each equal
to dxz, so that

al, — ab, = ndx;
and through each point of division draw a plane making a

transverse section of the solid: then
2

the arithmetic mean of these sections = 2:?/

- Zmyde

"~ af, - ab,’
therefore, when the number of sections is increased indefinitely,
aﬂ.
x| ydz
the arithmetic mean of all transverse sections = — a2

LG

L] 1

a(0,—-0,)
0, .
= [ F O a8 -
= _ﬂl&ﬂ_’ writing 6 for =;
2~ Y1 a
and A—j"”de— f"mo)}*da-
“Je 2 3 o, ?
M 2
therefore i= -0

6. A brick is divided by a plane, passing through one
corner, and making an angle of 45° with the length of the
brick ; find the position of this plane in which the two parts
are the most nearly equal.

Let O (fig. 15) be the given corner, OC the direction of the
length of the brick, 04 =a, OB=?%. The brick is supposed
to be transparent, so that O, which is the furthest corner,
may be seen.
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Let OFGE be the cutting plane;
a, B the angles 4 OE, BOF respectively.

Describe a spherical surface with O as centre, meeting the
planes AC, BC, FE in the arcs hl, Ik, kk respectively: then
hl=a, k=P, hlk=3m; and by the given condition the arc
drawn from ! perpendicular to ik = }; therefore
1 = tan"} cot’a + tan*}m cot'8 = cot'a + cot’8 =p" + ¢*...(1),
writing p and ¢ for cota and cotB.

Again, the equation to the cutting plane referred to
04, OB, OC as axes, is

z=uzx cota + y cotB = px + qy;
therefore the volume of the part between OBDA and OFGE

=[:j:zdydm=f:j:(pax+ o) dy de

_ %0, &
=Py TiYy

=2 (ap+5g)

And since this is always the smaller part, the two will be most
nearly equal when this part is the greatest possible;

therefore 0 = adp + bdy.

And from (1) 0 = pdp + gdg;
?_9_ 1 _ap+bq,

therefore a = 2 = Q/(a"+b") = & + » ’

therefore the volume 40B@G = %b V(a*+ %),

and DG =ap + bg =W (a"+b") = OD;
therefore the angle DOG = }m;
therefore COG = }m = inclination of OC to OFGE;

therefore the plane COG is perpendicular to the plane FE,
which defines the position of the cutting plane.
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It may be shewn further that
a' b
AE= e P e

7. If r, 7, be the radii of curvature of an involute and
evolute at corresponding points (z, y), («, ¥'); prove that
rde’ + r'dy =0, rdy Fr'de=0;
and shew that, the involute being an ellipse of which the semi-
axes are a, b, the greatest value of %, is equal to

37a b
3 -a)-
dr dy
We know that 7 A R e (1),

and therefore, by differentiation,
d'cdy —dyde _ ded’y—dyd

dy” - da*
Hence L — (dzdy —dy'd’)" _ (ded’y - dyd'z)" ﬂ‘_
r"' (dx” +dy*) (dz™ +dy®® " dx*"
1 _(ded'y—dyd'z)
But = [+ dy’
?  (d+dy'\' dyt  do
Hence _m ( P + dy”) dmd d 7.3 by (1)7
and therefore rdy Frde=0;
whence also rde + r'dy = 0.
These relations follow also directly from the formule
B B
- d‘l” r= d\P ]
! d
Z = cosyYr = + %’
%—,— =siny =F % ,
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where 4 represents the inclination of the tangent of the evolute
to the axis of @.

3
In the case of the ellipse, i, %’= 1, we know that
y’=—a - y’, hence
dy' a'-b dy ,a-b% bz o' b
E——3 A .y‘.a—x‘—~ —-—b‘— .y’.(—z?—?o—a,‘T.x.y.
r a -
Hence s =3—Fp 2y
Now xy is a maximum, under the condition a:: +g, =1,
when = = %, y= ~/ 5 : hence = has a maximum value equal to

§@_g
2\6b a/’
8. Trace the curve whose equation is
,_ x-¢
Y= zw—a)’
first supposing a to be less than ¢, then equal, then greater;
and shew how the three forms of the curve pass into each other,

when the value of @ is supposed to increase gradually through
the value c.

To find the asymptotes.
=0 and = a each make y = w0;

therefore the lines @ = 0 and & — a = 0 are asymptotes.

o, e (1-2) -2
therefore y=t<« (l - i;)* (1 - g)-!

1 ¢ 1 1
=iw(l—§%+&c.) (I+§g+§-a—,,+&c.)

(w+2+ +&c>
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therefore y = + (z+ g) is a pair of oblique asymptotes, and

if we consider points far enough from the origin, the asymptotes
lie between the curve and the axis of .

First take a <ec.
When 2 =, y=zu=
possible.*

z=c y=0,
impossible,

r=a y=>,
possible.

z =0, y=o,
impossible.

== ¢, y=0,

possible.

T=—®, Y=+x;
therefore the form of the curve is that given in fig. (16),
where 04 =a, OC=¢, OD =¢, OB = }a.
S.econdly, let ¢ =c.
We may say that the equation

Y=
degenerates into the form

¥'= (=" + c*)w(x +¢) :

z—c
z(z- ¢

or rather we should say that when x =c¢, y may have any
value, Thus the line  — ¢ =0 is part of the locus.

To find the general form of the rest of the locus,

#* The notation in the text is used for stating concisely whether the
value of y is possible or impossible between particular values.
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= makes y =+ z,

possible,
x=c y =+ 2a,

possible.
=0 Y=o,

impossible.

r=-c y=0,

possible.
r=-—o® y=+a.

The form of the curve is given in fig. (17), where 04 =¢,
0D =¢c, OB = }c.

Thirdly, let a > c.

= makes y =+,

possible.
r=a y = 9
impossible,
r=c y=0,
possible.
z=0 Y=,
impossible.
x=—c y=0,
possible.
& =— 0 y=+a.

The form of the curve is given in fig. (18), where 04 = aq,
OB=}a, 0C= 0D =c.
(It will be easier to draw the curve if we find the points

where it cuts its oblique asymptotes. The abscisse of these
points are given by the equation

__a (40‘ a’y |
w——bi/\/gf"gz), .

and it may be shewn that the negative value is always less
than — ¢, except when a = 2¢, in which case the value of =
is —c: also that the positive value is greater or less than ¢
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according as ¢ is greater or less than a. Hence there are
always, except when a = 2c, four real points at which the
curve crosses its oblique asymptotes.]

To explain how the form of the curve changes gradually
from fig. (16) to fig. (18) as a passes through the value ¢, we
must observe that, when @ = ¢, the straight line AE is part
of the locus; and that the curved branch cuts 4E in F,
AF being equal to 2a : also that when a = ¢, 4 and C coincide.
It appears then, that as 4 approaches C, the arc CG becomes
less curved, and approximates to the straight line 4F. Simi-
larly the branch HK becomes less and less curved, and at
last coincides with FE. Also as H and G approach F, the
two branches LH and GM ultimately unite and the curve
assumes the form of fig. (17). It is clear that the curvature
at @ and at H must increase indefinitely as the curve fig. (16)
approaches its limiting form. The above explanation holds for
the change from fig. (18) to fig. (17).

9. SPHQ is a quadrilateral, P and @ being points in an
ellipse of which S and H are the foci; if @ be fixed while P
moves, find the locus of the centre of gravity of the perimeter
of the quadrilateral.

Let @, fig. (19), be the centre of gravity of SP and PH,

then G the centre of gravity of the whole perimeter is the
middle point of G @,, and since @, is fixed the locus of @
will be similar to the locus of G, and of half the linear mag-
nitude : also when PCQ is a straight line, @ will be at C.

To find the locus of @, Join UV the middle points of
8P, PH: UV evidently passes through (. Again, a per-
pendicular CP' from C upon the tangent at P also passes
through @, ; for if SP be produced to H', so that PH'= PH,
CP', which is parallel to HH' and bisects SH, will also bisect
SH', (Euc. V1. 2) ; therefore a line SH' would balance on CP';
and since PH and PH' are equally inclined to CP, SP and
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PH will balance on CP'. Draw @,N; then if (zy), (zy,) be
coordinates of P and G,

Y, = ‘%’, z, = y, tanCG N =y, tan (inclination of tangent at P

' to axis of z)
e

the equation to an ellipse whose semi-axes are half the
semi-latus-rectum, and half the minor axis of the given ellipse ;
therefore the locus of G is an ellipse whose semi-axes are one-
fourth of the semi-axis minor, and one-fourth of the semi-latus-
rectum of the given ellipse, passing through C, having its centre
on the perpendicular from C upon the tangent at @, and its
major axis perpendicular to the major axis of the given ellipse.

~ Otherwise. Let S8P=r, HP=7;
and let (zy), («'y), (zy) be coordinates of P, @, G respectively.

4a.i=rw—'-;9~8+r’z +hketermsforQ

= ax + 4ae(r—r') + like terms
= ax(l —¢*) + like terms;

therefore 4z=(1-¢) (x+).
Again, 40y = r-’é + r'% + like terms
=a(y+y);

1/ 4z N1,
therefore ;,(.1____6’._:,;) +F(4y_y)a= l?

the equation to an ellipse.

10. From an external point P two tangents are drawn to

an ellipse Z;_qui: =1. Supposing the locus of the centre of
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gravity of the triangle, included between the two tangents

¥ 1, fnd

and the chord of contact, to be an ellipse :i, +3

the equation to the locus of P.

‘What must be the relation between a, b, @, b, in order that
the locus of P may be an ellipse ?

Let &, k, be the coordinates of P, and (z,, v,), (z,, ¥,), be the
two points of contact. The equation to the chord of contact is

he Ry _
FrE=1t
‘When it intersects the ellipse, viz. atp=1 we have, elimi-
nating y,
2 ' ©
(;,—+F)a:'—2ha:+a (1—?)=0;
2k
hence x‘+z,=m;
sty
. . 2k
and, similarly, ht¥=p—m-
a1 E

Now, x,y, denoting the coordinates of the centre of gravity
of the triangle,

z=3h+z,+x), y=4k+y,+9);

8z 2 3y
whence T—l+m_7.
aﬂ 73
z _ 2 y k 2
Hence z;'-*;'f”m}’ ?=§z7{‘+7i'_7? .
ax 3 ;+_ﬂ
But, by the hypothesis,
2
27_;+y_,’=1,
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hence the equation to the locus of P is
(E + E) 1+ | =9
o) o o
P
This equation cannot be reduced to one of the second order
unless )
a:b:a:b;
under this condition it will plainly represent an ellipse, its
equation being of the form
B E

atE="

Cor. Let o' =a, &' =0: then the equation to the locus

of P becomes
(E+E 14 gt =9
&+ 5) m}—-
atm

Solving this quadratic equation, we get
2

’i,. + ]f-: =4orl.

a b

The former result shews that the locus of P is an ellipse

with axes 4a, 4b. The latter belongs to the case when the
triangle is constantly zero.

11. The radii vectores of any series of points in the path
of a particle, moving about a centre of force, being in arith-
metical progression, the times of arriving at these points,
reckoned from a given epoch, form another arithmetical pro-
gression. Find the equation to the path.

By the condition of the problem, it is plain that dt is con-
stant when dr is constant; but, ¢ being some function of »
which we may denote by f(r),

dt = f'(r) dr;
hence £'(r) is constant. But
6
= =h.
dt
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Hence, 3 denoting some constant,
rdf = [3dr,

and therefore, a being a constant,

B

a—0’

which is the equation to the curve.

r=

12. In any machine in which two weights P and W are
suspended by strings and balance each other in all positions,
let P be replaced by a weight @ equal to pP; if in the
ensuing motion W and @ move vertically, find the tensions
of these strings, neglecting the friction of the machine and
the masses of its several parts.

Let W= mP, then, by the principle of virtual velocities,
P describes a space m times as great as W in the same time ;
and after P is replaced by @, @ must describe m times the
space described by W in the same time ; therefore the whole
accelerating force on @ must be m times as great as that
on W. Let T, T be the tensions of the strings to which @
and W are attached, then

Q-T T -W
¢ 7 w
9 g9
T Vi

or l—a—m(-ﬁ—,-—l),

and since the machine has no inertia, the forces which act
on it must have the same relation as if it were at rest,
(otherwise a finite velocity would be instantancously generated,)
therefore T

P
(m+3):

I

I
NI

therefore m+1
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T
therefore = ,W .

1, P

13. There are generally two directions in which a projectile
may be projected with given velocity from a point 4, so as
to pass through another point B; shew that one of these
directions is inclined to the vertical at the same angle that
the other is inclined to the line 4AB. Hence shew that the
locus of points, for-which a given sight must be used in
firing with a given charge of powder, is the surface generated
by the revolution, about the vertical, of the path of the bullet
obtained by aiming at the zenith with the given sight, and
with the given charge of powder.

The former part of this problem is solved in Phear’s Dy-
namics, Sect. II1. Art. 30, and the latter part follows at once.

Or the latter part may be worked independently as follows:

To find the locus of points, for which the same sight must
be used.

Let a be the inclination of the line of the sights to the
axis of the barrel; 7, @ the polar coordinates of a point for
which this sight is adjusted; then, substituting » cos@ and
rsin@ for z and y in the ordinary equation to the path of a
projectile, # + a being the angle of projection,

78in0 =7 cosf . tan(0 + a) — %W'(:i%s’(c%i?;)"

r{#in6 cos(6+a) — cosf.sin(f-+a)} cos(d + a) =— ﬁ,—, (r cosf)*

 sina.(cosd cosa — sinf sina) = g (7 cosf)?

2V
—y =T g
Toote = Y = o9 gintg
or y=a:cota—2—V,‘quhw",
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the equation to the path of a particle projected with velocity V'
at an angle a to the vertical : that is, if a man, facing the south
for instance, aim, with a given sight, at the zenith, the ball,
which falls behind him, will pass through all those points to the
north of the man, for which the given sight is adapted.

14. A prism whose base is a given regular polygon is
surmounted by a regular pyramid whose base coincides with
the head of the prism; find the inclination of the faces of

the pyramid to its axis in order that the whole solid may -

contain a given volume with the least possible surface.

Let a be the perpendicular distance of one of the sides
of the polygon from its centre; 6 the inclination of a face
of the pyramid to the axis; « the height of the prism;
A the area of polygon; P the perimeter. Then

A.(x + }a cotd) = const.
P(x + }a cosecﬂ)‘ = min. ;
.. }a cosecl + C — }a cot@ = min.
} cot@ cosecd — } cosec'd = 0;
-, cosf = }§,

which gives the required inclination.

15. An ellipsoid is intersected in the same curve by a
variable sphere, and a variable cylinder: the cylinder is always
parallel to the least axis of the ellipsoid, and the centre of
the sphere is always at one focus of a principal section con-
taining this axis. Prove that the axis of the cylinder is
invariable in position, and that the area of its transverse
section varies as the surface of the sphere.

Let e, ¢, be the eccentricities of the two principal sections
through e.

2 2 2
% + %,- +ta= ) DU ellipsoid,

(x—ae)+y +2"=8........... sphere;
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at their intersection

& (x—ae) ) 2 9
?=L7rl+£+“9'%
1 1 1 1 2aex a‘e’
=(Zg—;2)m’+(?—zx) s r] +1+'_*‘
1 1 1 1 2qex a'
‘@“ﬂﬁ+@ ﬁ¢“7*?
e g 2aex a'
=Tt a¥- gt

the equation to that cylinder which intersects the ellipsoid in
the same curve as the cylinder.

Therefore the axes of all the cylinders coincide with a
directrix of the principal section, and the area of a transverse
section varies as &" and therefore as the surface of the sphere.

16. An elastic tube of circular bore is placed within a

. rigid tube of square bore which it exactly fits in its unstretched

state, the tubes being of indefinite length; if there be no air
between the tubes, and air of any pressure be forced into the
elastic tube, shew that this pressure is proportional to the
ratio of the part of the elastic tube that is in contact with
the rigid tube, to the part that is curved.

Let ABCD (fig. 20) be a section of the rigid tube, EGHF
part of the section of the elastic tube: it is clear from symmetry
that if £ and F be the middle points of the sides 4B, 4D,
the part EGHF is one-fourth of the perimeter of the elastic
tube. Also the free portion G'H is circular: for the pressure
and tension being the same at every point, the radius also
must be the same, by the formula 7'=pr. Also, since the
pressure is finite the curvature must be finite throughout, so
that the sides of the rigid tube, with which the elastic tube
coincides for a certain space, must be tangents to the free
portions of the elastic tube: the circular arc G'H is therefore
a quadrant.

D2
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Join 0@, and draw the radii GK, HKQ.

Let AB = 2a, EOG = 0, p = the pressure of the air within
the tube. )

Consider an annulus of the elastic tube whose breadth is
the unit of length; and let 7" be the tension of this portion,
E being the tension required to stretch this annulus to twice
its natural length. Then

14 T _ stretched length of annulus
E " unstretched length  ’

8EG + AGK jm _ tanf+ i (1 — tanf)
2wa - i ’

. T
Agsin, p=pp=

length in contact _
(1=3m) length that is curved ’

therefore the pressure of the air in the tube is proportional
to the ratio of the part that is in contact to the part that is !
curved.

17. OA, OB, are any equal arcs of two given great circles
of a sphere, intersecting in O. 4 and B are joined by an
arc of a great circle, and also by an arc of a small ome
described about 0. Find the area of the lune included between
the two joining arcs.

If 0A =\ and L4 0B=2w, prove that the lune is greatest
when
tanw — o

o tan’w ’
ACB (fig. 21) is the arc of the small circle,
AC'B is the arc of the great circle:

cos’\ =




i
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area of ACBO = 2w (1 — cos)),
area of AC'BO = 2w + 24 — m,

% = area of lune = m — 20 co8A — 24

.J By one of Napier’s Rules,

COSA = COt®@ . COtYruuruurirrnnrnnnnnnns (1).
Hence u=m— 20.cotw.coty — 29

Putting ZT'; = 0, we have
21?—20: .cotw.cosec’Y — 2 = O......uvunee 2),
%, = — 4. cotw.cotyr. cosec’yr.
From (2), sin’y = w.cotw;
hence, from (1), cogh, = 1aB® — @

o. tan’o
Since 7 ‘P" is negative, this result corresponds to a maximum
value of u.

18. The ridges of two roofs are at right angles to each
other, and the inclination of each roof to the horizon is ;
the shadow of a chimney falling upon them makes angles a
and 8 with their ridges; shew that

cos’@ = cota cotS.

Let ACDB (fig. 22) be one side of the shadow on one roof’;
through C draw the vertical CE, and through D draw a hori-
gsontal plane cutting CE in E, and meeting the roof in DF,
which is parallel to the ridge ; draw EF perpendicular to DF,
and join CF, DE.

Now CFE = inclination of roof to horizon = 6,

CDF = inclination of shadow to ridge = a;
and since CDE is the vertical plane passing through the sun,
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EDF is equal to the sun’s azimuth measured from the direction
of the ridge of the roof, = ¢ suppose. Then

DF DF FE
cota = UF= ﬁ. EF= 00t¢. 0080.

Similarly, cotB = tang . cosd,

*. cos'd = cota.cotB.

~

19. The hour angles of two stars being e, ¢, and the
azimuths a, a’, when a ~ a' has for a moment a stationary
value ; prove that the latitude A of the place of observation
is given by the formula

sin2a . cote — sin2a’. cote’

s = cos2a — cos2a'

By spherical trigonometry we have
cota .sine = sin\.cose — cos\.tand, |

and cote'.sine’ = ginA . cose’ — cosA . tan¥d'.
Differentiating these two equations, a, ¢, , ¢/, being variables,
we get g
(cota .cose + sinA.sine) de = cosec’a .sine . da, [
(cota’.cose' + sin . sine’) de' = cosec’a’. sine’. da'.

But de =de, and, a ~ @ being for an instant stationary,
da = da': hence

cosec'a . sine. (cota’ cose’ + sin) sine’)
= cosec’a’ . sine’. (cota cose + sin) sine),
sine . sine’. sin\ (cot’a — cot'a’)
= sine’. cose. cota . cosec’a’ — sine. cose’ . cota’ . cosec'a,
sine.sine’. sin) (sin"a’ cos’a — sina cos'x)
= } sing’. cose. sin2a — § sine. cose’. sin2a,
2 sin . sin (o' — @) . sin (@' + &) = sin2a. cote — sin2d’. cote’,

sin2a . cote — sin2a’. cote’

sin\ =
cos2a — cos2a’
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20. A thin hollow ring, of which the plane is vertital, and
which contains a bead, is placed upon a smooth horizontal
plane: prove that the bead, having been placed near the
lowest point of the ring, will oscillate isochronously with a
perfect pendulum the length of which is equal to

pa
m+ p’

a being the radius of the ring, u its mass, and m the mass
of the bead.

Let C (fig. 23) be the centre of the ring, A its point of
contact with the horizontal plane, Oz the rectilinear locus of 4,
O being a fixed point. From P, the place of the bead, draw
PM at right angles to Ox.

Let OA=2, OM=4a2', PM=y, LACP=0, R =the
mutual action between the ring and the bead.

The equations of motion are

d'x .
/bd-?=Rsm0,
m%:—Rsine,
m(fii"/ = R cosf — mg.

From the geometry,
€ =x+asinb, y =a—acosb.
As far as the first order of small quantities,

dx d'z  d'0\ -
pom = R0, m(Gp+ag)=-B 0=E-my
*0
Hence %+m_+l‘.yo=0.

Hence the vibration of P is isochronous with a perfect
pendulum of length equal to

M .
m + @
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21. A uniform rod, not acted on by any forces, is in motion,
its ends being constrained to slide along two fixed rods at
right angles to each other in one plane. Prove that, during
the whole motion, the wrenching force at any point of the
moving rod varies as the product of the distances of the point
from the two fixed rods.

Let AB (fig. 24) be the moving rod, O being the inter-
section of the two fixed rods. Let C be any point in AB.
Draw CH, CK, at right angles to 04, OB. Let AB = 2a,
AC =2u, BC =2v, LBAO = 0, m = the mass of 4B, o = its
angular velocity, which will be invariable. The actions and
reactions and the wrenching force are indicated in the figure.

Since gg is equal to a constant quantity m,

dcos8___ d* cosf

7 — wsind, 7 = — o"cosf,
. o s
d;xtno = o cosf, d———;;lo = — o’ sinf.

For the motion of 4C, we have

mu d* cosf
T(2a_u)T=—X’

p=(8+YY)ucosd + Xusinf.............. (8).
For the motion of BC,

my d® sin@
- (2a - v) 78 =Y,

- %l (@~ ') *sind =Y........ vereennen(4).
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From (2) and (3),
= Xusind +2Yu coso-”;—“m'sinoeoso

o'y sinf cosf {u (2a — ¥) — 2 (a* — u’) — u'}

o' 8inf cos 0. 2a (v — a)

|3 a8

= — 2mo". uginf. (a — u) cosd

= — }me’. 2u sinf . (2a — 2u) cosf
= — }me".CH.CK

« CH.CK.

41
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WEDNESDAY, Jan. 18, 1854. 94...12%.

1. THERE are » points in space, of which p are in one
plane, and there is no other plane which contains more than
three of them; how many planes are there, each of which
contains three of the points?

Conceive n points such that no plane contains more than
three of them; the number of planes, each of which contains
three points, being equal to the number of combinations of
n things taken three at a time, is equal to

n(n—1) (n—2)
1.2.3 ’
now if p of these n points be selected, the number of planes,
each of which contains three of these points, is

plp—1) (p—2).
123 )

hence, if these p points move 8o as to lie in one plane, this

one will replace the 2 —11)2 gp = 2) planes last mentioned ;

the number required is therefore

n(n—1)(n—2) p(p-1)(p—2)
1.2.3 - 1.2.3p +1L

2. A bag contains nine coins, five are sovereigns, the other
four are equal to each other in value; find what this value
must be, in order that the expectation of receiving two coins
at random out of the bag may be worth twenty-four shillings.
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Let the value of each of the four coins be  shillings.
The chance of drawing two of the sovereigns

_54_ 98 10
1.2~ 1.2 36’
the chance of drawing one sovereign and one other coin
9.8 20
= 5.4 + -1.—2 = 3_6 H
the chance of drawing two of the other coins
43 .98 6
T 12712 36

therefore the value of the expectation in shillings = $§ of
40 shillings + 43 of (20 + ) shillings + f of 2z shillings;
therefore 36 x 24 = 400 + 20 (20 + x) + 6 x 2z,
864 — 800 = 32a,
x=2;

therefore the coin is worth two shillings.

Otherwise. Let « shillings be the value of one of the four
coins; then the contents of the bag are worth (100 + 4x)
100 + 4z

9
shillings, two coins at random are worth §(100 + 4x) shillings,
and so on;

ghillings ; therefore one coin at random is worth

therefore $ (100 + 4x) = 24,
25 + & = 27,

therefore the coin is a florin.

3. Having given that u, v, and 2z are functions of the in-

dependent variables « and y, and that one of the equations
. . du__ dz . .

for determining them is =" d transform this equation

into one in which « and z shall be the independent variables.
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This is simply an example in the change of the independent
variables.

In general, if u be a function of two variables z, y, and
a'y y' are to be made the independent variables, x, y being
given by the equations

we have z=¢,y), ¥y=S&§) i (1),
%= (%)%+ (%)‘% ........ @)

where the brackets indicate differential coefficients formed on
the supposition that , y are the independent variables.

From these equations the values of (%) and (Z—u) might
be found: but before solving the equations it will be simpler
to introduce the peculiar conditions of the problem.

Now x and 2 are to be two independent variables; there-
fore ¢, which denotes the value of z in terms of the new
variables, stands for x, and f denotes the function that y is
of x, z: hence

d$ _ . d¢_0 df dy df _dy

dx ' dy Td) dy  de”
Substituting these values, equations (2) become
du (du) (du) dy du (du) dy

dz" \dz) " \dy)dz’ &z \dy)de’
From these equations :
dy
du\ _ du _ d_u dz
(dz) Tdz dzdy
dz
To find the value of %, we must observe that in the last

equation i’c and i are found on the supposition that 2 and 2
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are the independent variables; so that if » be a function of 2
alone, % will be equal to zero. Hence, writing 2 for w,
dy
(5)--5
dz ly’
dz

and substituting these values in the given equations,

the form required.

4. (1) Trace the curve whose equation is
tan' > 4+ tan' L = 1
a a

Let o/, y' be the coordinates of a point in the curve; then
evidently the values = = mwa + &/, y = nwa + y' satisfy the
equation: hence the whole locus consists of portions similar
to the portion obtained by taking « and y from — 47 to + }r.

Again, the curve is symmetrical about the axes of = and y;
we may therefore ascertain the complete form by considering
positive values only of = and y.

Thirdly, « = 0 makes y = %a, and y decreases as x increases

till x=1—ra, when y = 0; and, if = lie between ;a and ga,
y i8 impossible; therefore the general form is a closed round
curve, and the entire locus conmsists of an infinite number of
such round figures, at equal distances, on a series of equidistant

lines at right angles to each other.

(2) Trace the curve whose equation is
xy (y—=)* — ay® = a'.
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This curve may be conveniently traced as an example of
one of the theorems in the fourth question of the paper dated
Jan. 18, 14—4; it will be found so treated further on.

5. Find the value of f tan™ {m /(1 — tan’x)} do ; and shew,

either from your result, or from the area of the former of
the two curves proposed in the preceding question, that

f }'tan“ V(1 —tan’z) dx is equal to ar (*17) nearly.
Let fm) = [ " tan™ (m /(1 — tan'a)} da,

" ‘\/(1 - ta'ng )
S (m) = 1+m"(1- tam.n’x)

(]

«/(cosec’z — 2).cosec z.cotx cosecx dx
{(m* +1) (cosec’x —2) + 1} {(cosec’x— 2) + 2}

_ v (vdv)
] {(m*+1) v+1} {v"+2}

putting " for cosec’z — 2,

_ 1 U‘” 2dv F dv
"2m’+1 S22 o(m’+l)'v’+1}

4 v 1 4 2
2m+1 {“/ tan V2 ‘\/(m,_'_l—)tan v\/(m+1)}

1 1

~/2 2m® + 1 2 V(m'+ 1) (2m* +1)°
Now J(©0) =0;

therefore f(m) =

@

]

a (" dnm o dm
vel,em 1 f~/(m’+1) 2m*+1)

—tan m42——fv(1

ﬂ)'v + 1

putting +* for ;nl—, +1,

=§tan-‘m¢2—— {g—tan «/(mi,+l)}
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From this we obtain

f}wta.n'1 N(1 - tan'z) de = 7 tan™ y/2 — %-’

= (ta.n'1 N2 — E)

= m x circular measure of (9° 44')

= ("1699);
a result which is confirmed by considering the curve traced
above: for in that curve f tan™ y/(1 — tan’z) do is the ex-
pression for } of the area of one of the round figures; and
this area has been shewn to be less than the square on §a.

and it may be shewn that the curve lies outside a circle whose

. - T
radius is —a; for when = =y,

4
’ z 1
tn =@
therefore tan a:_;/_? >1;
therefore zv2 -7,
a 4

the abscissa of the curve is therefore greater than the cor-
responding abscissa of the circle. Therefore the value of

f h«/ (1 —tan’z) de lies between s and T il that is between

o 16 4 16’
7 (*196) and m(*154); therefore
fi*J(l —tan’z) de = 7 ("17) npearly.
6. Determine the form of the function f(6) from the

equation . F(26) = cosf £(6) ;
with the condition f(0) =
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Apply the result to find the centre of gravity of a circular
arc.
0
£(6)=cos g £(3)

f(%) - ou g S

Now as n increases, -7 approximates to 1 a.ndf( )tom,

sin 2—

sin 6

- flO)=m.—5=.

The centre of gravity of a circular arc must be in the
line drawn from the centre to the middle point of the arc.

Let f(0) express the distance of the centre of gravity
from the centre of the circle, when 6 is the angle subtended
by the arc at the centre.

Let A0B, fig. (25), = 26, AQ = a.

Bisect AOB by OC, and 40C, COB, by OD, OE.

Then, since the centre of gravity of AC lies in OD at
a distance from O equal to f(6), and similarly for the centre
of gravity of CB; and since the line joining the centres of
gravity of AC and CB must cut OC at right angles in the
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centre of gravity of 4B, therefore
f(26) = cosb . £(9),

and m = a, in this case; therefore

sin @

A f(0)=a-T-

7. (1) A rod is marked at random at two points, and
then divided into three parts at those points; shew that the
probability of its being possible to form a triangle with the
pieces is }.

Let 4B, fig. (26), be the rod, C its middle point, D, E,
the middle points of AC, CB.

In order that it may be possible to form a triangle, each
of the pieces must be less than the sum of the other two,
or in other words, each must be less than half the rod.

To secure this it is clear that the two points of division
P, Q, must lie on opposite sides of C'; the probability of their
doing so is §.

Let « be the probability that two points lying on opposite
sides of the middle point of a line contain between them
less than half the line: the required probability will be .
Now there are four classes of ways in which the points may
fall, all equally likely, the chance of each is therefore %.
In the first of these classes, viz. when the points of division
lie in DC, CE, success is certain; in the second, viz.
when the points lie in 4D, EB, success is impossible; in
- the third, viz. when the points lie in 4D, CE, the proba-
bility of success is x, for success depending on the distance
between the points being less than AC, the probability is
the same as if DC were removed, and success depended on
the distance between the points being less than 4D, and this
probability is « by supposition; lastly in the fourth class,
viz. when the points lie in D€, EB, it may be shewn by
similar reasoning that the probability of success is .

E
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Hence z is equal to the sum of the four compound pro-
babilities £ + 3 + £+ 2, therefore &= 1, and the probability

required is i

Otherwise. Let a be the length of the rod, =z, y, the
distances of the two points of division from one end, = being
greater than y. Then the lengths of the three pieces are
$ -y, a—=.

And the conditions of the problem give, as above shewn,

a a
§ y =T < § .
Now let x, y, be the coordinates of a point referred to the
rectangular axes Oz Oy, fig. (27).
Let OA=a, AB=a, OAB=}~.

Then every possible way of dividing the rod may be repre-
sented by a point in the triangle O4B, and the chance of
succeeding will be equal to the ratio of the area which con-
tains points corresponding to favourable cases, to the area of
the whole triangle.

Now we must have y < §a; therefore if CD bisect OB and
AB, points in CDB are not favourable. Again, since @ —y < a,
points in EDA, E being the middle point of 04, are excluded.
And lastly, since ¢ — z < §a, or x > §a, OCE is excluded.

Hence the required chance is equal to area ECD -- area O. =i .

a
y<gz *-y<

7. (3) Again: a piece is cut off the end of a rod, and
the remainder is cut into two pieces at random; shew that
the prohability of its being possible to form a triangle with
the pieces is in this case log, 2 — §.

Let AB (fig. 28) be the rod, C its middle point; then,
if A be the end from which the piece is cut off, it is necessary
that the first point of section P should fall within 40, and
also that each of the parts into which PB is then divided
should be less than half the rod.

-
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First, the probability that P, which may fall anywhere in
AB, falls within 40, is equal to §.

Let the rod be divided into n parts, each equal to &z, so
that a = ndx.

Then, if P fall on the 7 of these parts, there is a portion
of the rod equal to (l - 2) a within which the other point @ *
may fall.

Let this part be divided into m parts, each equal to 8y,

so that (1 - ;‘) a = mdy.

Then the whole number of ways in which P and @ may
fall is mn; and these ways are all equally likely.

Now to estimaté in how many of these ways the formation

of a triangle is possible, we observe that if r >—g, a triangle

cannot be formed; and if » < =, then the space within which
Q must fall, so as to ma.ke a triangle possible, is COP’,
where PP'=AC; and CP' is equal to -

Therefore the number of favourable cases is E:,hm. .

n—r"
These results are approximately true when m and n are

‘large; they will be strictly true in the limit when m and n are

indefinitely increased : therefore the chance required is equal to

limit L 3 T
n—-7r

—lumtl "i" r
n~r

=F——-dx writing « for % and dz for i,

_f‘__l

~log (1-2) —m}

= log‘2 -4 ,
E2
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If we wish to apply to this problem the geometrical method
by which the former was solved, we may take AP =z,

PQ = (1 - g) y. Then every permissible way of cutting the

rod will correspond to a point (zy) in a certain square: and

the areas containing the points which correspond to unfavour-

able ways will be cut off by three lines, a straight line (a: = g) ,
ﬁ

and two hyperbolas whose equations are (a—z)y = 7 and

(a—2) (a—y) = %': this method will require the evaluation

of the same integral as the preceding method, of which it may
be considered as a geometrical illustration.

8. One helix rolls upon another, (the inclination of the
curve to the axis being the same in both,) in such a way
that the osculating planes of the two curves at the point of
contact coincide ; find the curve traced out by a point in the
rolling curve.

If a helix be traced on the surface of a cylinder, and a
line be drawn through any point of the curve perpendicular
to the axis, the osculating plane will pass through this line,
and through the tangent line to the curve. If therefore two
helixes be traced on the surfaces of cylinders, and the in-
clination of the curve to the axis be the same in each, if
one of the cylinders be placed within the other, and roll round
inside it, the one curve will roll upon the other, and the oscu-
lating planes at the point of contact will always coincide ; the
motion will therefore be of the kind described in the enun-
ciation: and a point in the rolling curve will evidently trace
out & hypocycloid. If the one cylinder be exterior to the
“other, that is if the curvatures of the two helixes be in
opposite directions, a point in the rolling curve will trace out
an epicycloid.

9. A, B, C, are three fixed points, and P a point which
moves first half-way to 4, then half-way to B, then half-way
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to C, then half-way to A again, and so on for ever; shew
that from whatever position P start, its path approximates to
the perimeter of a certain triangle whose area is one-seventh
of the area of the triangle 4ABC.

Let ABC (fig. 29) be the triangle formed by joining the
given points.

We shall first shew that there is a triangle A'B’'C’, such
that if P start from C' it will continue to move in the perimeter
of C'A'B'.

Find the points D, E, F, such that

BD =2DC, CE=2EA, AF=2FB.

Join 4D, BE, CF, AB', BC', C4'

Let a, b, ¢, z, stand for the areas of the triangles 44'B’,
BB'C'y, CC'4'y A'B'C', respectively.

Then, since AF = 2FB,

s C'AB' =2C'BB,
(for C'AF = 2C'BF and B'AF = 2B'BF))
or z + a = 2b.

Similarly, x+b=2c,

x + ¢ = 2a;

therefore, multiplying the second equation by 2, and the third
by 4, and adding,

T+ a = 8a;
therefore r=a;
therefore C'4 =44,

Similarly, A'B' = B'B,

BC =CC.

If, therefore, the point P start from C’, and move according
to the law stated in the enunciation, it will continue to move
in the perimeter of the triangle 4'B'C’.

Now, let P start from some other point C,; and let the
successive points where it rests be 4, B, C,; 4,, B, C,; &c.

Join C,C, 44, BB, C,C, A A, &
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Then, since C.A is bisected in 4,
and C'4 .ovveveeennns 4,
therefore A4 =30
Similarly, '=}A 4,
0l C'=4{BB';
therefore CC =3C,C'.
Stnilarly, C.C =110,

therefore the successive resting-places of P approximate to the
points 4'B'C’, and the path of P to the perimeter of 4'B'C".

Next to find the area of 4'B'C’,
CC' = C'B';
therefore AACC' = AC'B' =2 + a = 2.
Similarly, BAA' = 2z,
CBB' = 2z;

and A ABC is made up of these three triangles, together with
A'B'(C';
therefore 0 ABC = Tz,
or the area of A'B’' (" is one-seventh of the area of ABC.
Otherwise : - Let the plane which passes through ABC be
taken as the plane of zy; and let
28,0 be the coordinates of 4,

DO i . B,
PR C,

«'y'7 the original coordinates of P,
.2, the coordmates of P after moving half~way towards 4,

tl'

bbb

@ 1y 18°1

scl Ucl lcl

Bal ya! lai
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2
E
8

1 1
Then 4 =5.0+5%,
1 1
abl = 'é-b + 5:01)
1 1 ,
=§,b+;,a+zz,
1 1 1 1,
.c,—a,c+1,b+§,a+§z.
1 1 1 7
Let c, be such that §=C+Z=b+§-a—§c~’
. 7T 1 ..
o zcl=-8-cz+-8-z,
. 1, ,
b (Acl_cz)='8_(w—cn)'
. . 1
Similarly, (e,—c) = §(=°1"‘°~)

1,
=g (@ —c,),
and so on; therefore (u=c,) = élz(w' -c,);

therefore, when n is increased indefinitely,
limit (,c,—¢,) =0,

. 4 2 1
limit 0, = ¢, = 7.0+ ,—I-.b + 7.0

. . . . 4 2 1
Similarly, limit ¢, = 7€+ 7,6 + 7%
and limit ¢, = 0.
If, therefore, we select every third resting-place of P,}these

will approximate towards a certain point in the plane of 4BC,
whose coordinates are given above,
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Call this point C', and let 4'B’ be the similar points; then
the coordinates of 4’ will be

2 1

4
?,a'l",igc-l— b

?z’

4 2 1
"fva'*' T + '}'Ub’

aud of B, Fhrratie

4 2 1
. ‘7—.b+7.¢l+ ;i'c.

So far we have proved that there is a triangle 4'B'C’, to
whose perimeter the path of P approximates; we proceed to
find the area of this triangle.

The area of ABC is equal to
+3(ab+ Db+ ca—Dba—cb—ac);
and a similar expression might be written down for the area

of A'B'C’, involving the values of the coordinates of 4'B’'C’
given above.

In this latter expression the coefficient of . b would be

1(16 4 1 2 4 8)

I\ttt v o B
__1_(1).
T o\1)?

and by symmetry the expression for the area of 4'B'C’ will
be similar to that for 4BC, every coefficient in the one being
one-seventh of the corresponding coefficient in the other: there-
fore the area of A'B’(C’ is one-seventh of the area of ABC.

10. A string has a heavy particle at one end, and a small
smooth ring at the other; a loop, formed by passing the
particle through the ring, surrounds a fixed rough horizontal
cylinder, the string being in one plane perpendicular to the
axis: find the limiting positions of equilibrium; and shew that
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in every position of equilibrium the. three angles at the ring
will be all obtuse unless the coefficient of friction exceed
2log, 2

i

Let P (fig. 30) be the heavy particle, 4 the ring, PACBA
the string, PAC passing through the ring; O the axis of the
cylinder.

Let P be the weight of the particle,

T the tension of 4B,
6 the angle BOC,
p the coefficient of friction.

We must first find in what positions the system will rest,
and then limit u so as to exclude the possibility of acute
angles at 4.

If the system be at rest, the conditions of equilibrium of
the ring will be satisfied, and also the relation between P and T
will be such that the string may not slip round in either di-
rection. To secure this latter we must have

T> Pet®9) and T < P9 (1),
and the ring will rest if
angle BAC = angle BAP .........c..eee (2),
and . T=2Pucnal,
or T=2Pco88 ....cecucuurrrrrenncrnnnens (3),

(for BAC = w — 6, and BAC = BAP; therefore P4C

If (1), (2), (8) be satisfied the system will rest.
Again, since PAC <, therefore BAC, BAP must each of

them be greater than % . If, therefore, there be an acute

angle at 4, it must be PAC. It is required therefore so to
limit x that no value of 6 less than %r shall satisfy the con-
ditions (1).
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Substitute in (1) the value of 7 given by (3) : then

First, consider the condition (z): as 6 increases, cosf de-
creases, and ¢ *("-% increases, so that the smaller the value
of 6 the more likely is the condition (a) to be satisfied: it
is clear then that this condition cannot exclude small values
of .

Consider then condition (), which may be thrown into
the form

%0080 < T i (OOR

Now ¢cosf is & maximum relative to 8 for the value
0 =tan"u. First, suppose p <1; then, since the value of

v cosd increases as 0 changes from 0 to tan™ u, and decreases
as 0 changes from tan™yu to’-', it is clear that (y) will be

inconsistent with all the values of 6 from 0 to Z,provxded

it be inconsistent with these limiting values themselves, (one
or the other of these being the value most likely to satisfy (v)).
It is required therefore so to limit p that (y) may be incon-

sistent with 8 = 0andalsothh0=— that is, in order to

exclude acute angles, we must have

1> g7, or p.<lg' ’
and V2> o < *—;%- ’
which are both satisfied by
<2 log.2
v

Secondly. Suppose u > 1. Now, since tan™u, which is

the value of 6 which ma.kes ¢’ cosl a maximum, is greater

ihan , therefore ¢"® cos8 increases as @ changes from 0 to 1
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therefore (7y) will be inconsistent with every value of 6 between
0 and ‘—Z, provided it be inconsistent with 6 = 0; that is, in
order to exclude acute angles, we must have
< log,2
_ 2 °
but this is impossible, for by supposition x> 1; therefore,
if 4> 1, we cannot exclude acute angles.

On the whole, therefore, there will be no acute angle at
the ring if
2]0gt2

i

11. Two parallel vertical walls are one smooth and the
other rough, and between them is supported a hemisphere with
its curved surface in contact with the smooth wall, and a point
in its rim in contact with the rough wall: find the pressures
on the walls, and the least coefficient of friction consistent
with equilibrium.

The hemisphere is at rest under the action of three forces;
their directions must therefore lie in one plane, and pass
through one point; this plane must be vertical, and perpen-
dicular to the two walls.

In this plane let O (fig. 31) be the centre of the hemxsphere
ACB, @ its centre of gravity, COE a horizontal line through O,
GD vertical through G': join OG, DB.

Let a = A0, the radius of the hemisphere ;

b = CE, the distance between the walls;
a = A OC, the inclination of the plane face to the horizon ;
0 = BDE.

‘When the system rests the whole action at B must act along
BD, since the directions of the two other forces pass through D:
and the only condition to be fulfilled is, that the wall ZB be
sufficiently rough to exert a force in a direction making an
angle @ with the normal; that is, we must have

w < tan6.
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Now b = a (1 + cosa),
BE
BO sma

= BO cosa + O@ sina

= tat since OG = {a,

1
-— i
Jea-m ¥

therefore the least coefficient of friction comsistent with equi-
librium is
1
? .
Jea-mth

12. A body moves under the action of a force whose di- 4
rection always touches a given plane curve, shew that, so long
as the curvature is continuous, the areas, which it sweeps out
about the moving point of contact, are not proportional to
the times.

This may be proved in the _way in which Newton proves
his first proposition.
Suppose that a body in motion is deflected by a succession

of impulses, at equal intervals of time, but that the directions
of the impulses do not pass through one point.

Let AB (fig. 82) be the space described by the body in
the first interval;
BC' the space it would describe in the next;
BB the direction of the impulse at B.

BC the direction in,which the body moves after the
impulse ;
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then if C'C be drawn parallel to BS, the body will at the end
of the second interval be found at C; and, as in Newton,
area B4B = BBC.
Similarly, if Cy be the direction of the impulse at C, and
OD the space actually described in the third interval, it may
be proved that

area BBC = BCD;
therefore vCD > BBC.
Similarly, 8DE > 4(CD,
&e.

Therefore, in any number of intervals the body describes an
area which is not proportional to the time, but (as the figure
is drawn) describes an area which increases more rapidly than
in proportion to the time: therefore, in the limit, when the
number of intervals is increased and the magnitude of each
diminished, (in which case the series of impulses approximates
to a continuous force, and the locus of By3... to a curve touch-
ing the line in which the impulse acts,) the areas described
by the moving body are not proportional to the times of de-
scribing them.

Note. If the line Dy had been drawn to cut CB instead of
catting CB produced, and so on, then the area would have
‘increased less rapidly than in proportion to the time.

13. A body describes & cycloid under the action of a force,
which in every position of the body is directed towards the
centre of the corresponding generating circle; find the law of
the force and of the motion of the centre of force.

Let the equations to the cycloid be

z=a(0+sinf), y=a(l—cosh);

L) ] 2
therefore %;?=a%;£—asin0(:il—g) +acos€%g,
3, 8

‘%ﬂmo('g) +asin8‘fi—:,0.
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In any position of the generating circle, the radius drawn
through the tracing point is inclined at an angle 8 to the axis
of y. Therefore, representing the force by F, and remembering
that there is no force perpendicular to this, we have
d'y d'z .

W cosd — -th sind

a(“l—lgy as mo%:,f,

0—“% sin@ + z: cosd

F=

=a(1+cosﬂ)—d?;

&0 .do

therefore =0 g = oonst

therefore the centre of the generating circle moves uniformly
and the force is constant.

This result might have been expected: for if a circle be
fixed, a body, if projected with proper velocity, will move
uniformly in its circumference under a constant force towards
the centre; and if an initial velocity of translation be commu-
nicated both to the body and to the centre of force, the relative
motion will not be disturbed: but if this velocity of translation
be equal to that of the body in the circle, the absolute motion
of the body will be in a cycloid, and will be preserved under
the action of a constant force directed towards the centre of the

correspondmg generating circle, that circle moving umformly
in a straight line.

14. A surface of the second order circumscribes a tetra-
hedron, and each face of the tetrahedron is parallel to the
tangent plane at the opposite angular point; shew that the
centre of the surface coincides with the centre of gravity of
the tetrahedron.

Let ABCD be the angular points of the tetrahedron.
If the plane of the face BCD be produced, it will cut the
surface in & curve of the second order: we shall shew first
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that the centre of this curve coincides with the centre of gravity
of the triangle BCD.

Since the tangent plane at B is parallel to the plane ACD,
therefore the intersections of these planes with BCD are pa-
rallel ; that is, CD is parallel to the tangent to the curve BCD
at B. Therefore the line drawn through B to bisect CD will
pass through the centre of the curve BCD. But this line
evidently passes through the centre of gravity of the triangle
BCD: therefore the centre of the curve BCD, and the centre
of gravity of the triangle BCD, lie on the same straight line
through B. Similarly it may be shewn that a line through
C or D passes through the aforesaid centres; therefore they
coincide.

Let this point be called &, and join 4G.

Then, since the tangent plane at 4 is parallel to the plane
BCD, and a line is drawn from 4 to the centre of the curve
BCD, therefore this line passes through the centre of the
surface. And since this line is drawn from the vertex of a
pyramid to the centre of gravity of the base, therefore it passes
through the centre of gravity of the pyramid. Hence a line
can be drawn through A, passing through the centre of the
surface, and through the centre of gravity of the tetrahedron.
And the same may be proved of any other angular point.
Therefore the two centres, the centre of the surface and the
centre of gravity of the tetrahedron, coincide.

15. A horizontal cylinder revolves with uniform velocity
about its axis, and an endless chain, passing round it, revolves
with it in such a manner that the form of the chain in space
is always the same; shew that the form of the curve is in-
dependent of the velocity.

Let 7 be the velocity of any point of the chain,
% the mass of a unit of length of the chain,
T the tension at any point of the chain not in contact
with the cylinder,
p the radius of curvature,
0 the inclination of the tangent to.the horizon at this point.
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V and k are absolute constants: 7" and p may be considered
as functions of 6, since the position of any point is determinate
when a value i3 assigned to 0.

Since the velocity is constant, the accelerating effective force
at any point>is %‘ along the normal; and by D’Alembert’s

principle the chain would hang in its existing shape under
the action of gravity, and the reversed effective force acting -
at every point. Therefore, resolving the forces on any element
along the normal and tangent,

T
g cosf + 7 = 7‘:; ..................... (l),
1dT
0= Tp @8 e 2),
therefore, eliminating p,
147
EE_ oy,
- v
therefore, integrating,
log (%- V‘) = log(C sech);
T
therefore I—V‘=Csec0;
1 g
therefore, by (1), i oK a;
therefore % = (07"560"9’

s being the length of the chain measured from some point
fixed in space, as the lowest point;

therefore 8= g—ta.nﬁ,

the equation to the common catenary.
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We have thus proved that the species of curve which the
moving chain may assume is a catenary; it remains to shew
that the magnitude and position of the catenary are indepen-
dent of the velocity.

For this purpose, let the student draw a circle to represent
a transverse section of the cylinder, and a catenary with its
axis vertical to represent the free part of the chain; the circle
and catenary will touch each other in two points, on opposite
sides of the axis; if he now draw another catenary with its
axis vertical, and (like the former) touching the circle, he will
find that he is obliged to draw it either entirely within or
entirely without the former, according as the parameter of the
second catenary is greater or less than that of the former; and
this would require the length of the chain to be less or greater
than before: but the length of the chain is given, therefore
the magnitude and position of the catenary are determinate,
and this without reference to the velocity of the chain.

Otherwise. (The following ingenious proof was sent up in
the Senate-House by one of the candidates: it is given with
a few additions, which have been placed between brackets.)

If we suppose there to be perfect friction between the chain
and the cylinder, [or if we suppose the cylinder to be smooth,]
since the string is always stretched, the principle of virtnal
velocities will hold for the effective forces reversed, and the
impressed force of gravity.

But the effective forces are by themselves in equilibrium,
because the velocity and direction [of motion] of each point,
[fixed in the chain] are the same each time it reaches the same
point [in space; and therefore the resultant of all the effective
forces on it during a revolution is nothing, since the motion is
the same at the end as at the beginning of that time ;] and to
each point at different times correspond all the points at the
same time, [that is, the effective forces which act on an element
of the chain in its revolution, are the same as the effective
forces acting on the several elements of the chain at any parti-
cular epoch : therefore, as above asserted, the effective forces on
the whole chain at any epoch are in equilibrium by themselves].

F
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Therefore the principle of virtual velocities holds for gravity
only, and therefore the form of the [moving] curve [satisfying
the same conditions as if it were hanging subject to gravity
only,] is the common catenary.

Note. This problem is a particular case of the following:
If a uniform endless chain rest in any form, subject to the
action of forces depending only on the position of the particle
acted on, and to the reactions of smooth surfaces, it would
continue to move in the same form if put in motion in such
a manner that every point of the chain begins to move in the
direction of the tangent at that point.

This proposition may be easily proved by referring to the
general equations for a flexible string. The equations of equi-
librium are three,

%(T%) ;X+“In=°} ............... ),

the &c. standing for two other equations related to the axes of
y and 2 in the same manner that the above equation is related
to the axis of «; and X, X, standing for the resolved parts of
the forces which depend on the position of the particle, and of
the reactions of the fixed surfaces, if the point (x, ¥, 2) be in
contact with such surface.

If T were eliminated from equations (1), the two resulting
equations would be satisfied by the coordinates of every point
in the chain.

Now suppose the chain to be moving in the form in which
it would rest, in such a manner that every point is moving in
the direction of the tangent, and therefore that every point
has the same velocity; let ¥ be this velocity, 7" the temnsion
at x, ¥, 2, and suppose X', ¥, 7', to be the forces required to
continue such motion, while the reactions continue the same.
Then we shall have the three following equations of motion:

d (nde\ . v 2
Z(TE)+:+XL"‘E?=°} ......... @).
Ce
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dz dx & d'z
=& #=V

therefore equations (2) become

%{(T—km%}wwﬂ} ......... o
&e.

and, as before, if 7" were eliminated from equations (3), the two
resulting equations would be satisfied by the coordinates of
every point of the moving chain.

In order that the curve, whose equations result from
eliminating 7 from (1), may be the same as the curve
whose equations result from eliminating (7" —%V"™) from (3),
X', Y',Z', must be certain functions of xyz; whatever forms
of X', Y, Z', proper to effect this, may exist, it is clear that
if X', Y',Z', be equal to X, Y, Z, respectively, the curves
will be the same. If therefore the chain. when in motion
be subject to the same system of forces as when at rest, it
will continue to move in the same form, the reactions of the
fixed surfaces will be the same as before, and the tension at
every point will be greater than before, by £V .

16. An inclired plane is fixed on a table, and from the.
foot of it a body is projected mpwards along the plane with
the velocity due to the height ¢; after passing over the top
of the plane the body strikes the table at a distance z from
the foot of the plane; shew that, if the length of the plane

bo 7, and @ its inclination to- the horizon be less than T, the

c

Now,

greatest value of z for given values of ¢ aad a is Ao’
cot2a
and corresponds to the yalue‘ l= 2'6’5371 .

Let ¥ be the original velocity, so that. ¥ = 2gc; :
k the height of the inclinied plane, se that. s = I sina;
v the velocity on reaching the top of the plane, so that
o' =29(c—h);
 the horizontal distance of flight, so that z =& + £ cota.
: F2
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From the equation to the path of the projectile, (the top of
the plane being origin,)

gz
—h=stne=3 Feora
—ptag—d — & .
=@ Wue =9 2g(c—%) cos'a’
therefore (c—h) (h+zta.na)=m;
therefore, substituting z — A cota for z,
_ (z—A cota)*
(c—h)ztana-m,

therefore
2 — 2(h cota cos2a+c sin2a) 2 + &' cot’'a =0 ... (1):
and, differentiating with respect to A, in order to find the
maximum valne of 2,
{# — (R cota cos2a + ¢ sin2a)} 3—: — cota cos2a.z + & cot'a =0

...... @),

de . cota
therefore ‘—i—h = 0, lf 2= h E;Q—a)
therefore, substituting this value of # in (1), and reducing,
he=oc co82a .
~ " cos'a °

also substitnting in the coefficient of % in (2),

A cota

——— — h cota cos2a — ¢ sin2a = ¢ sin2a;
cos2a

therefore, as A increases through the value ¢ z%z?g, the co-

efficient of % continues nearly equal to ¢ sin2a, and therefore

continues positive, while the remainder of equation (2), viz.
— cota cos2a.z + k cot'a, increases from — to +, for z is sta-
tionary and % i8 increasing;

therefore % changes from + to —;
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therefore z is a maximum when

k cot2a
l= - = 4C )
sina cosa
cota _ c

and == .
cos2a  sIna cosa
17. A slender ring, moveable in a vertical plane, has a fixed
rough cylinder passing through it, the axis of the cylinder being
perpendicular to the plane of the ring; the ring whirls round
in its own plane so as always to be in contact with the cylinder,
and to roll on it without sliding: if V.V, be the velocities of
the centre of the ring when in its highest and lowest positions
respectively, and if P be the point of contact, O the centre of
the ring, when the tendency to slide is greatest, and O4 a
vertical drawn downwards through O, shew that
] 2
cosPO4 =2 %;—I]% .

Explain the result when V' > 3V
Let a, b, be the radii of the ring and of the cylinder,

¢ the angle POA (fig. 33),

0 the angle which a particular radius fixed in the ring

makes with a fixed line in the plane of the ring,
F, R, the friction, and normal action at P, estimated
a8 accelerating forces.

The tendency to slide will be greatest when % is a maxi-
mum, provided it never become infinite; we must therefore

find an expression for % and make it a maximum.

Applying D’Alembert’s principle, and resolving forces pa-
rallel and perpendicular to OP, and taking moments about O,
we obtain

(a—10) (‘fl—f)‘ =gcosd + B...ceveeennnens (1),
@5 T ghing— F oo @),
at D Bt (3).
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Also, since there is no sliding at P,

dp  do
(a—b) E{—GE=0,

by which (3) becomes

To express (%‘—-f)’ in terms of ¢ ;

from (2) and (4), 2 (a—?) % =g sing;

v (@=b) (‘igl)l C = g OO8P werrrrrrrns (5).
From (1) and (5), R=C—2gco8¢...ccccovrruuunennns (6),
and from (2) and (4), F = }gsin¢;
LE_1__sin
| R 4 C cos¢’
* and this is 8 maximum when
cos¢=?g.
It remains to introduce V, and ¥, instead of C;
from (5), Fi= (09 (e ;s
V,"=(C+g) (amp) f rromem H
L9 V="
COTVF V’
Hence the tendency to slide is greatest when
cosp =2 8=V
[ARS A

. Since 2 V V" =14 —;3,1-_*_—1,}-, it follows that the ex-

pression for cos¢ i less than 1 only when V'<3V'; hence
arises the question, What happens when V' is greater than



94—-124.] PROBLEMS. 71

3V? Now, by substituting for V%, after eliminating C from
equations (7), the expression for cos¢ becomes

2 9(a_b) N
g(a_b) + il,”

therefore, as V' decreases from w to g(a—>), ¢ decreases from
% to 0; and if V' be less than g(a—b), ¢ becomes impossible,
and at the same time V' becomes greater than 3V}

Hence, if the ring revolve very rapidly, the risk of sliding
is greatest when the centre of the ring is only just above a
horizontal line through the centre of the cylinder; if the speed
be diminished, the position in which sliding is more probable
than in any other becomes nearer to the highest position of
the ring; if the speed be such that V' = g(a—¥5), the risk of
sliding is greater when the ring is highest, than at any other
part of the revolution. In this case (¢.e. when V! = g(a—12),)

C=2 by (1),
and therefore when the ring is highest,
B=0 by (6);

and though F =0, yet %=w.

A smaller value of V', besides making V> 3V} would
make the expression for R, given by (6), negative; hence we
see that the contact between the ring and the cylinder would
be broken before the ring completed a revolution, and that
the risk of sliding would never be a maximum, in the proper
sense of the word, but would increase without limit as the
ring approached the critical position at which it would fall.

18. A cylindrical vessel is moveable about a horizontal axis
passing through its centre of gravity, and is placed so as to
have its axis vertical; if water be poured in, shew that the
equilibrium is at first unstable; and find .the condition which
must be satisfied, in order that it may be possible to make
the equilibrium stable by pouring in enough water.
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Let CFD (fig. 34) be the base of the vessel,
G its centre of gravity,
AEB the surface of the water,
H its centre of gravity,
CF=a, FE=hk FG=c.

The equilibrium will be stable if, on the vessel being turned
round through a very small angle, the resultant of the fluid
pressures tends to bring the vessel back to its former position,
the weight of the vessel producing no effect, because the centre
of gravity lies on the axis of motion.

Now the line of action of the resultant pressure is the same
as if a solid cylinder, that would just fit into the given cylinder,
were floating on a fluid, in such a manner that the volume of
fluid displaced were equal to the volume contained in the given
cylindrical vessel; for the pressures would be the same in the
two cases, except that in the one they would act downwards
and outwards, in the other they would act upwards and inwards;
therefore in the existing case the downward resultant acts
through M, the metacentre of the space AD; and by the
usual formula we have

wa'
4 a
HM = mah. 4k’
hence the equilibrium will be unstable if
kb a
5 + E > ¢,

or if A* — 2he + %. be positive.

Now by the Theory of Equations this is always positive

unless 2 be between \
ci«/<c‘—a§-);

Now if it be possible to make the equilibrium stable, these
two quantities must be real; hence the required condition is

that ¢* be greater than %’
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19. Given the directions of three plane mirrors in space,
construct a straight line, such that, if light from it be reflected
by the three mirrors in succession, the third image shall be
parallel to the straight line.

From the centre O of any sphere draw radii perpendicular
to the mirrors, and let 4, B, C, (fig. 35) be the extremities
of these radii: then, if we can construct a spherical triangle
A'B'C', such that 4, B, C, shall be the middle points of its
sides, the radii 0A4', OB', OC', will severally satisfy the re-
quired condition. For, supposing the images to be formed by
the mirrors corresponding to A4, B, C, in succession since
O0B', 0C', are equally inclined to the normal OA, the image,
formed by A, of OB’, will be parallel to OC’; similarly, the
image, formed by B, of a line parallel to OC’, will be parallel
to 0OA4'; and the image, formed by C, of a line parallel to 04’,
will be parallel to OB'; so that if there be a luminous object
parallel to OB, the first and second images of it will be parallel
to OC' and OB', and the third image will be parallel to the
object. The problem is thus reduced to the determination of
a spherical triangle, the middle points of whose sides shall
coincide with. three given points on the surface of a sphere.

Join BC by an arc of a great circle, and produce it both
ways to meet B'C’' produced in D, E; DAE is a semicircle,
and 4 is its middle point. (Hymers’ Spherical Trigonometry,
Prob. 7.) -

Hence the triangle 4'B'C" is to be found by the following
construction : Join BC, and produce it both ways to meet the
great circle, of which 4 is the pole, in the points D, E: join
DAE; part of this circle will be the side B'C’ of the required
triangle ; similarly, the sides 4'B’, 4'C’, may be constructed;
and hence the lines 04', OB', 0C', may be drawn.

The above construction for the required line may be put
into the following form, which is independent of spherical
trigonometry.

Let a, B3, v, be the names of the mirrors in the order in
which successive images are formed by them.
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Let a meet a plane perpendicular both to 3 and to v, and
through the Yine of intersection draw a plane perpendicular
to a; similarly, let 4 meet a plane perpendicular both to a
and to 3, and through the line of intersection draw a plane
perpendicular to -y ; the intersection of these two planes (which
correspond to DAE and A'CB' respectively,) is the line
required.

It may be remarked that there is only one solution to the
problem ; that is, when the order in which the light falls on
the mirrors is fixed, there is in general only one direction of
the object which satisfies the required condition.

For though we may take, instead of A4, the diametrically
opposite point, and so of B and C, still we shall not obtain
any other line than OB'. For the great circle through BC
will not be affected by the supposed change, neither will the
great circle of which 4 is the pole; the points D and E, and
the circle DAE, will therefore always keep the same position ;
hence the three circles which intersect in B', C', 4' will always
keep their present positions.

Note. By the above construction we have secured, not only
that the third image shall be parallel to the original line, but
that corresponding ends shall be turned towards the same parts.
For instance, if the object were an arrow, and B’ corresponded
to the head, and O to the feathered end, then in the first image
C’ would correspond to the head, in the second 4', and in
the third B'; so that the third image would point in the same
direction as the object.

If it be required that the thitd image shall be reversed,
it may be shewn that the problem is impossible unless the
mirrors are all perpendicular to one plane.

For, as before, supposing ABC (fig. 36) to be normals to
the mirrors, OB’ will be reflected by 4 into OC', OC' by B
into 04’y 04' by C into OB"; and it is required to find B’
such that B" (instead of coinciding with B’y as before,) shall
be at the opposite end of the diameter through B'. Hence
B'C’ produced will .pass through B”, and B'C'B” will be a
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semicircle. Let 4, be the middle point of C'B”, then 44,
is a quadrant, and the problem is reduced to the following:
Given three points 4, B, C, to find a triangle C'4'B" such
that the middle points of its sides may be B, C, and a point 4,
whose distance from A4 shall be a quadrant, and that the side
B”C’ produced shall pass through 4. Now, under these cir-
cumstances BC produced meets B” ("’ in points whose distances
from A, are quadrants; that is, the great circle through BC
passes through 4. If this condition be not satisfied, there
can be no triangle C"A'B” possessing the above-stated pro-
perties, and the problem of the reversed arrow is impossible.

But if the three mirrors be perpendicular to one plane, the
above condition is satisfied, and any point 4, may be chosen
on the great circle, of which 4 is the pole, and a triangle
C’'A'B" constructed by the method given in pages 72 and 73,
whence OB’ may be drawn.

20. Shew that, in latitude 60°, on the 21st of March, the
setting Sun is visible for about 69 seconds longer from the
top than from the bottom of a tower 66 feet high, taking the
Earth’s radius 4000 miles and neglecting the effect of refraction.

On the 21st of March the Sun is on the equator; and
therefore in ¢ seconds of time he describes 15¢ seconds of
space: again, in latitude 60° the inclination of the equator to
the horizon is 30°; therefore when the Sun has described 15¢”
from the horizon, measured along the equator, his vertical
distance below the horizon is (15¢.8in30°)" = 4p¢". If therefore
the setting Sun be seen ¢ seconds longer from the top than
from the bottom of a tower, the dip of the horizon as seen
from the top must be 1pt"; therefore a straight line, drawn
from the top of the tower to the horizon, subtends at the

" w .
centre of the Earth an angle of ¢’ or ?tm in
circular measure;

T 0 — Earth’s radius + height of tower _
180 % 60 X 60 1’5)_ Earth’s radius 3

. st
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1 aT * 22
i l+§(180><60+60 "”) =1+ 1500 x 1760

s - o= )3
: 180x60x8')—4000x40— 400/ ’
216 216

. t=7=€‘}—=69 nearly.

21. Shew how to determine graphically the path of the
centre of graduation of a mural circle, by observing the dif-
ferences between the readings of any three microscopes, (seve-
rally corrected for runs,) for various positions of the instrument.

Let A0 (fig. 37) be the direction of the axis of the first

microscope, inclined at an angle 4 to the horizon,

C, the position of the centre of graduation when the
circle is in a certain position, chosen as a standard
position: C, will serve as an origin to which the path
of the centre of graduation may be referred,

C its position when the instrument has been turned
through a certain angle ¢,

C,C = p; inclination of C,C to the horizon = .

If the values of p and @ be ascertained for a great number
of successive positions of the instrument, the path of the centre
of graduation may be laid down on paper.

Now, let the three microscopes be read off first in the
standard position of the circle, and secondly, after the circle
has turned through the angle ¢, and the centre of graduation
has arrived at C: the difference of the readings at 4 will
give the value of ¢, affected with an error, in consequence
of the displacement of the centre of graduation; this error
would be removed if, before taking the second reading, the
circle were moved parallel to itself till C coincided with C,.

Let A4 be the point of the limb actually viewed at the second
reading, A’ the point which would be at 4", and be there
viewed if C coincided with C,; the second reading at 4 is

|

s
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therefore too great by 4'4. Now A4”"A' is equal and parallel
to C,C, and the angle 44”4’ equal to (4—0);

.~ error in seconds in the value of ¢ assigned by first microscope

180 x 60 x 60

= psin(4 ), BOX 660,
R being the radius of the circle.
Similarly, error in the value of ¢ assigned by second microscope

180 x 60 x 60
R )

Now, as we do not know the true value of ¢, we cannot
determine from observation the error at a single microscope;
but by subtracting the value of ¢ given by 4 from that given
by B, we shall obtain the difference of the two errors: let
. ¢, be the value given by 4, ¢, + 8" the value given by B;

180 x 60 x 60
R

=psin(B-0).

< B=p{sin(B—06)—sin(4 - 6)}.
=2p cos(B';A - 0) .8in B;.A 180 x:l(z) x 60
Similarly, if ¢, + o be the value of ¢ given by the third

microscope,

fy=2pcos(

C—A4 180 x 60 x 60

2 R :
Hence p and 6 may be obtained; and if this operation be
repeated for successive positions of the circle, the path of the
centre of graduation may be laid down on paper with any
required degree of accuracy.

G;A—O).sin
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THURSDAY, Jan. 19, 1854. 9...12.

1. Two circles of radii r, , touch a straight line at the
same point on opposite sides: a circle, of which the radius is B
and of which the straight line is a chord, touches both the former

circles. Prove that the length of the chord is equal to
4R __
Gy +C)

’

r r

Let AB (fig. 38) be the straight line, E the point in which
it is touched by the twe circles, the centres of which are O, O'.
Let C be the centre of the third circle. Draw CH at right
angles to 4B. Join 00, OC, O'C.

Let CH=a, HE=b, tOCH=.
From the geometry,

also r+a=(R—7r)cosf............... (2).
(2)*-(1)" gives
(r+a)* cos'd = {(BR—7r)"- 0"} f:os’a,

and therefore O=R'—2Rr — a' — 2ar....ccuuuvueeeee (3).
Similarly, putting —a for a, and # for »,
U =R —2Ry —a' + 2ar'.....ceuueen.e. (4).
From (3) and (4), a=R. :—;—:
Hence AP =R -a@=R.

)



9-12.] » PROBLEMS. 79

and therefore AB = --#R—p-; .
) + )

=) +
r

r

2. Prove that, n being any positive integer, and e the base
of Napier’s logarithms,
(n+1)
1.23...n°
LemMA. For any value of z, except zero, between the limits
—1and + o,
x> log(1+ ).

Put y=x—log(l+=):
dy =
then ﬁ—m.

dy .
) dz
" and therefore y keeps always decreasing. Again, as 2 increases

Hence, a8 « increases from —1 to 0, =~ is always negative,

from 0 to ), % is always positive, and therefore y keeps

always increasing. But y =0 when @ =0: hence the truth
of the lemma.
Since, when « is any positive quantity,
x> log(x+1),
it follows that €>ax+ 1.

3
Puta:—— then e>n_:;l

e.n' > (n+1)
Writing for n, successively, 1, 2, 3, ... n, we have
e.1' > 2
e.2' > 3,

?

e.(n—1)"">n""?,
en” > (n+1)"
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Multiplying these inequalities together and casting out factors
common to both sides of the resulting equation, we have
(n+1)°

€.123..n> (n+1)" or e >123..n"

3. From a focus S of a conic section ARQPA (fig. 39),
three radii vectores SR, SQ, SP, are drawn, the angles
PSQ, QSR, being invariable. Prove that the tangent at P
intersects the chord RQ produced in a point of which the
locus is another comic section.

Supposing ¢ to be the eccentricity of the original conic
section and ¢' of the conical locus, shew that, if 2 RSQ = 2a,
and £ QSP =4,

o ssin‘%l cos‘§
¢ ,a+B+ B,a+/3
2 2

Let £48Q =A. Then the equation to the chord RQ7 is
;= seca cos(6 —\ +a) + e cosf,
and that to the tangent PT is
;= cos(@—x—B) + e cosf.

At the intersection of the chord and tangent, subtracting and
adding the equations

(;—ecow).oosa= cos(0 -+ a),

;——ecoso= cos(0—r—-R),

we get
(;_ecos(;)_ ; -§=sin“;'e.sin(e-x+°%),
. a a+pB

(;—ecow).cos g =008 —5 .cos(0—).+a;B) .
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=3 2
% =¢cosf + 1 )
T sin* cos* = 14
sin"a-;'e cos’a-;g

a result which establishes the proposition.

4. Tangents PP, PP", are drawn from a point P to touch
the elli
e ellipse 2 s 7,
al bﬂ ,
at points P, P’. Supposing the harmonic mean between the
absciss® of the points P, P, to be equal to that between their
ordinates, shew that the locus of P consists of four arcs of a
curve of the third order.

Trace the curve and shew that, when @ =25, the curve
degenerates into a straight line and an ellipse.

Let &, k, be the coordinates of P; z, y, of P'; ,, y,, of P".
The equation to P'P" is
hxe  ky 1

=+ =
a b
At the intersections of this line with the ellipse,
2
a:*(" +E) —2hx+a’(1—’f) =o0.

@7 &
H _ 2k . %
ence z,+tz,=p—ym I2=0. gF—m,
atF FtE
and therefore 1 + 1_ 2—’: . L .
x, =z, a |3
-5
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1 1 2% 1
By symmetry, 37;+E=F.j.
: @

Hence, by the condition of the problem,

#(-2)-5(-%)

or, replacing &, k, by z, y, we have for the equation to the
curve in which P always lies,

. ¥_y.2

al b‘ b. + ? ..................... (1).

The shape of the curve is IEBA’OAB’E’I’ (fig- 40), Ior
being an asymptote.
The equation to IOI is

- (%)’x-

The curve at O is inclined to the axis of = at an anglé

(8
tan™ (a—,) .
The locus of P consists of the four arcs
IE, B4, AB, E'T.
At the intersections of the ellipse and curve

ab — ab
B (2=0 A (y=0 ( (a"+5%)} |7 @)
B'(.V=:tb)’ A’(z=ta)’ E a | E ab |
@ = @

If a =", then the equation (1) becomes

(@-3). (@ +2y+y'—a) =0,
which represents a straight line EE' and an elhpse AaB'S' A'a’ BB,
(fig. 41), the semi-axes of which are

Oa=ay2 = 0Od,
and OB =av3 = OB.
The locus of P consists of the lines
EF, E'F', BaA', B'aA.
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5. The distances of the successive angular points of ‘a plane
polygon from a given point O within its area are given. Sup-
posing the polygonal area to be the greatest possible, prove
that, C,_, C,, C,,,, being any three consecutive angular points,
no two of which are in a line with O, the line C,_ C,,, is per-

pendicular to the distance OC.,. -

Let 0C, 0C,, 0C, ...... (fig. 42) be denoted respectively
by ¢,y €y veeeen , and the angles C,0C,, C,0C,, C,0C,......
by 6767, 6.,...... Then, » denoting the area of the polygon,

2u = ¢, 8inb" + c,0,806," + c,c, 80} + ...,
and 2r =0+ 0} +6+...
Differentiating these equations and putting du =0, we have,
A being an arbitrary multiplier,
A, =c,_c,cosf, _ .0

r-1)
Ab, = c,c,, cosf?. 6,

Hence, supposing neither 6, nor 6, to be zero,

2
¢, cosf _ =c, cosb’

This result establishes the proposition.

Aliter. Let E (fig. 42) be the intersection of 0,0 with C,C,
Then, the positions of all the radial lines except OC, being
assigned, the triangular area C,C,C,, and therefore the whole
polygonal area, will be greatest, when the distance of C, from
'C,C, is greatest, which, since OC, is given, will evidently be
the case when C,0 is at right angles to C,C,, unless C, lie in
the lines OC,, OC,, or these lines produced. Like remarks are
applicable to all the other radial lines: hence the truth of the

proposition.

6. A rectangular column is formed by placing a number
of smooth cubical blocks one above another, the base of the
column resting upon a horizontal plane. All the blocks above
the lowest are then twisted in the same direction about an
edge of the column, first the highest, then the two highest,
and s0 on, in each case as far as is consistent with equilibrium,
Prove that the sum of the sines of the inclinations of a diagonal

G2
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of the base of any block to the like diagonals of the bases of
all the blocks above it is equal to the sum of the cosines.

Take the two sides of the base of any block, which terminate
in the edge, as axes of = and y: let this be the n** block from
the top. Let ABCO (fig. 43) be the projection of the base of
the highest block upon the plane of z,y. Let £ 40z =6,
Then, (z, y) being the projection of the centre of gravity of
this block, and 2z denoting the length of an edge of any block,

z = a(cos 0, —8inb,).

Similarly for the projections of the centres of gravity of all
other blocks. Hence, X being the abscissa of the projection
of the centre of gravity of all the blocks above the.n®,

(n—1) %= cos80, + cosl, + cosl, + ... + cosl,
— (8in @, +sin@, + 8inb, + ... + sinf, ).

But, under the conditions of the problem, the point (X, Y¥) must
liein Oy. Hence X =0, and therefore

8in@, + sinf, + sinf, + ... + sinf,
= cos 0, + cosf, + cosl, + ... + cosf, .

7. A uniform chain of length 7 hangs over two fixed points,
which are in a horizontal line: from its middle point is sus-
pended by one end another chain of equal thickness and of
length I'. Supposing each of the two tangents of the former
chain at its middle point to make an angle § with the vertical,
find the distance between the two fixed points.

Shew that the value of @ can never exceed that given by

the equation
6 _1-V .
A
Complete the catenary of which BC (fig. 44) is a portion.
Let 7 = the tension at B. BK is the suspended chain.
Let CF=2, AO=c¢, OE=a, OF =8, C0'=2EF=uy,
= the mass of a unit of length of the chain.

tan’

|
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P2
Then - z=1}c(e‘—e ‘—e’+e ') ............ @),
B=a=%u.cciriiiiiriiiiinirnniininnnns (2)
- Also 27 cosf = mgl’,
T = mgBE,
and therefore 2c0s0.BE =1,
or ccosf. (e'2+ e_g) =V, (3).
Again, putting cotf = % at B,
cotf = (e%—-e-e) .................... (4).
LA 4
Also 2 =§c(e°+e ’) .................. (5).
From (1) and (5), .
d—c.e= —«}c(ej—e_;) ............... (6).
From (4),
. a a . a -2
4 cosec’d = (e7’+e—7), 2 cosech =¢’ + ¢ °,
and therefore o = cotf + cosect = cot g ........... oee (7).
From (3) and (7),
0 0 ' '
ccoso(cot gHtng) =0, o=}l tanf......(s).
From (2) and (7),
B_u 0
it i log (cot §)
0
by (8), =7 t::n st log (cot §) .............. (9).

From (4) and (6),

4l - ce’ = — ¢ cot,
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and therefore, by (8) and (9),

0

-3 .tan9.cot§.e7“_"5= —~ 3,

tan 9
u = I' tan0.log l_'_l.—2 ............ (10).
From (9) and (10),
B I+
<= 1% (ri0)

U'tan 9/’

and therefore, by (5) and (8),

, I+0 U tanf
(407 4+ 1" tan"0
e ¥ R (11).

In order that », given by (10), may have a positive value,
we must have

(l+l')tang>l’ta.n0, 2l'<l+l'—(l+l')tan'g,
.mn,O -0
2 <TI0
0 1= g L=
If tan §=?—+7’ r tan'f & e
then, from (10) and (11),
u=0 and z=3}(I4+0V+1-10) =14l
and therefore B, C, C’, will coincide.
'z’ by . . |

8. If W=y + Cy =1, and if, for any assigned

values of « and y, the expression
. g
e A
has only one value, prove that
a'z + 8y = 4(a* - 0"
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Write, for the sake of brevity, a, b, @, y, v, r, instead of
a', ¥, &) ', o*, ", respectively, »* denoting the value of the
expression. Then

by
1= (v'f’a), F g s (1),
P 2z + Y
HoZa oo
and therefore, by (1),
r=v+w+y+”iza+vb_"lb ............ (2).

Let v, v,, be two of the roots of (1): then, » possessing
only one value, we have, putting v, v, successively in (2),
subtracting, and dividing out by v, — v,

ax

= by
L= o= T e = (3).

Now (1) has four roots: hence, = denoting summation in
regard to all its roots, of which there are six pairs, we have,
from (3),

R O O R B (o e B

VPutting v —a=w, (1) may be transformed into
w'+..+{(e-8)'—ax—-by} ... —ax(a—5)=0.

Hence
1w0,0,0,0,= — s (@—B, (w00) = (a—b)' - az— by,
and therefore
1 _s( 1l )_a+tby—(a-b)
{(v, —a) (v,— a)} 2 (wlw . ax (a—b)* ’

From (4), attending to symmetry,
az + by = 4(a—BY,
or, restoring a', ¥, ... for q,,...,
@'z + by = 4 (a* - b")".



4

88 SENATE-HOUSE PROBLEMS AND RIDERS. [Jan. 19,

9. A great circle of a sphere intersects two given great
circles, drawn through a point O, in points 4, B, such that the
product of tanOA4, tanOB, is invariable. If P be the inter- .
section of this circle with the consecative one of the series of }
circles described according to the same law, prove that I

cot'OP « sin POA . sin POB.
We will first find the polar equation to AB. Let .X0Y = o,
(fig. 45), OA=a, OB=p5, tPOA =06, tPOB=¢, LBAO =1.
From the triangle 4 OP we have
cotr.sina = cot¢.sinf + cosa. cosf.
Since B, , are simultaneous values of =, 6, we see that
cotB.sina = cots.sinw + cosa.cosw.
Eliminating cot¢ we get |
sina. (cotr.sinw — cotB.sinf) =cosa. (sinw . cosf - cosmw . sinf), |

cotr.tana.sinw = tana.sinf. cot8 + sin(w - 0),

sinw _ sinf  sing 1
tanr — tang T tamg (1),
the polar equation to 4B.
Put m =tana, n=tanB: then, from (1),
sinw _sinf  sing .
e T eereneenanes 2);
and, by hypothesis,
’ = M arercrerererereseeseeseanns 3).

Diﬁ'erentialting (2) and (3) with regard to the parametgrs
m and n, and using an indeterminate multiplier A, we have
- ).:1:10, & =Xs;nﬂ’ f= Xs;'mp

and therefore
¢ =2A'.ginf.8ing, ¢’ =\ (sinf sing)i.
1 ¥ 1 ¥
Hence m=c(:—i.l¥%), n=c(;im—;—:).
i 2 . .
Hence, from (2), % == (sin@. sin )3,

and therefore cot’ OP « sin POA . sin POB.
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10. Investigate an equation for the form of the floats in
the paddle-wheels of a steam vessel, in order #hat they may
enter the water without splashing.

If u = ho, where u = the velocity of the vessel, @ = the
angular velocity of the wheels, and % =the height of the
centres of the wheels above the water, shew that the floats
of each wheel must have the forms of arcs of involutes of
a concentric circle touching the water level.

Let O (fig. 46) be the centre of one of the wheels, K8
the line of its intersection with the water-level.

Let the dark line at P, a point in K8, indicate one of the
floats entering the water, the dotted line from this dark line
to A4' pointing out the curve of which the float is an arc.
Let OA’ be the prime radius vector. Let ’

re = the velocity of the impact of the water, due to revolu-
tion, perpendicular to OP,
u = the velocity of the impact of the water, due to trans-
lation, parallel to SK.
Then

ro —u cost = the whole velocity of the impact of the water,
perpendicular to OP,

u sin¢ = the whole velocity of the impact of the water
along PO.

Consequently, that there may be no splashing, we must have,
¢ being the angle between OP and the curve at P,

0= (ro—u cosi).cosqs _usini.sin¢,

. rd0

7o — u CO8% = ¥ 8in¢.tang = u sing. ——,

N dr
h) rd6

k
TU—-‘M-;=‘M.( —-r-, .W,

_  ordr hdr
Tu(P=ER T r(P A

dé
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whence, supposing 04’ to be equal to A, which it will be if
its position be properly chosen,
=2 (P 1) — sec™ ©.
0= - (¥ — A"t — sec 3
the equation to the curve of which the float is an arc.
If 4 = wh, then
17

1
= = (r* — A*)t — gec”
0_1'( k")t — sec 3

the equation to the involute of a circle described round O such
as to touch the water level.

11. A hollow vertical polygonal prism, open at both ends,
rests upon a horizontal plane. Every two contiguous faces

are moveable about their common edge. Supposing the prism
to be in equilibrium, when filled with fluid, prove that

e _ ¢
sina, sina, sina,
0,y G,y &yy... being the angles of a transverse section 4, 4.4,...4 4 ,
and ¢, c, ¢, ... denoting the lines 4. 4, 4.4, 4.4, ...
Thence shew that there will be equilibrium when the points
A, A4, A4,.. lie all in the circumference of a circle.

The actions of the faces 4,_ A4, A4 A, (fig. 47), upon the

n-1"n)
face 4,4, must evidently be equal to each other and inclined
at the same angle 6 to 4.4
For the equilibrium of 4,4, putting 4 4 = a,

2P sin @ = the fluid pressure on 4, 4,

%

B e, ).
Similarly, for the equilibrium of 4,4, putting' 4,4, = b,
. 2Psin(0+a) = pb.coeeriirnnnennns (2).
From (1) and (2),
sina, . cosd = %, (T P (3)-
From (1),
sina, . 8in 6 = Lo BING, «vvvevenerannnnanes (4).

2P
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(3)’ + (4)* gives

2
(a*+ 8" — 2abcosa)=”'—'c‘-

sin’, = ;s 4P
 _ sing,
‘ 2P ¢
Hence, by symmetry,
G . G —_ ) =
sina, sina, sina,
c, 4.4, ¢ A A,
O e ~TmAAA’ sna,—smd A4’

and therefore there will be equilibrium if
tAAA =tA4AA4A4,

1™

that is if the circle, passing through 4,4 A4 , passes also through
A ; if that through 4,4 A passes also through 4_ , and 8o on.
Thus we see that there will be equilibrium when the polygon is

in a circle.

12. A filament of fluid oscillates in a thin cycloidal tube
of uniform bore, the axis of the cycloid being vertical and
its vertex downwards. Supposing the filament to be placed
initially with its lower end at the lowest point of the tube,
find the pressure at any point of the filament at any time.

Shew that the pressure is a maximum, during the whole
motion, at the middle point of the filament.

Let P', P", (fig. 48), be the ends of the filament at any
time, /= the whole length P'AP" of the filament, AP = a,
AP'=4, AP" =", whence also &' + 8" =1

"For the motion of the filament
ds' doc P , l oy
ZW——g " da=—‘g(a:—a:’)=—éla>(s"-s")=—g—a(a—bs)
.o
_g—a(2‘9,—l)1
- d's

55 4a(s~y)_0 s'—§l=Asin{(-iLq)i.t+E}.
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Initially, &' =1, %’i=0’ Hence }! = A sine, 0 = 4 cose,
and therefore ¢ = 4w, 4 = }l. Hence

s = }l{1+cosnt}, where n = (4:—“{1)'I
The equation for the pressum p at any point is
(o+.) Gt =—go - —p,
« denoting % and C a constant.
Let IT be the atmospheric pressure: then

(C+8’)‘—g-'+}u"=—gx'—%ﬂ;
,du'___ . __1_ _
hence  (s-4) F =g -2) -2 (p-T0)
n 1
=5, - ) - (-,
(=) % =1 -0 - Le-m,
1 2
HISE (a—a){ +§ﬂ(s+s)}
= {§{+ 4l cosnt— s} s+ 3l- }lwsnt}
= § {l‘— (28 —1 cosnt)'},

which gives the value of p at every point of the filament at
any time.
It is evident from the result that p is greatest when

s =}l cosnt:
but & = 31{1+cosnt};
hence §—s=14l,

or the point of greatest pressure coincides with the middle point
of the filament.
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This problem may also be solved as if the fluid filament
were a string. Putting PP'=1,P P"=1, P = the reaction
between the two parts of the string at P, we have

l——P g] Gd=P-L-,

ds i "
L5 =-P- gf'zda=—l’—i(e’—a"),
d
and therefore d; = - —-( —-38").

As in the former solution, we have s' = }I(1 + cosnt), and

therefore
- n*l.cosnt. (s —8) = P — %(s"—s’):

differentiating with regard to s,
: dP g aP g
}nlcosnt=_j;+zg, =t
dP
Put da-—-o.then

2
8= ?a.n’.l.cosnt=}lcosnt, d—s=1}l

Thus the middle point of P'P" is the one of maximum reaction.

13. A ray experiences a series of reflections between two
plane inclined mirrors. Prove that all the segments of the ray,
produced indefinitely, are tangents to every one of an infinite
series of spheres.

LeMMA. If a ray incur reflection at a plane mirror, the
incident and reflected rays are equally inclined to any straight
line in the mirror.

Let PO, 0Q (fig. 49), be the incident and reflected rays
at a point O of the mirror, EF the intersection of the plane
POQ with the mirror. Through O draw any line HOK in
the plane of the mirror. Now PO, HO, are in precisely the
same attitude on one side as QO, KO, on the other. Hence
L POH=(tQOK. Q.E.D.
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Let AB, BA, AB, (fig. 50), be any three consecutive
segments of the ray. Let O be any point in the line of in-
tersection of the mirrors. With O as a centre describe a sphere
to touch A4 B, (produced if necessary) in the point C,. Join
OB,. Now, by the lemma, B 4, and B,C, make equal angles
with OB,: hence evidently B4, must touch the sphere which
A, B, touches, in some point D,. Again, joining 04, and
observing that £ B, 4.0 = £ D, 4,0, we see that 4 B, (produced
if necessary) will touch in some point C, the same sphere which
B, touches. So on indefinitely. Thus we see that all the
segments are tangents to one sphere described about 0. But
O is any point in the line of intersection of the mirrors. Hence
the number of such spheres is infinite.

14. A parrow self-luminous rectangular lamina is placed
with one end at the edge of a circular plate: the lamina is
at right angles to the plate, and its plane passes through the
centre of the plate: find the whole illumination on the plate.

If the length of the lamina be equal to the diameter of the
plate, its intrinsic brightness and breadth being given, prove
that the illumination varies as the diameter of the plate.

Let ¢ = the length of the lamina, r = its breadth, @ = the
radius of the plate. Let u = the distance of any point P (fig. 51)
in the plate from any point @ in the lamina, » = the distance
of P from the point O where the lamina touches the plate ; and
QO==z. Let the axis of x coincide with the diameter through O,
the axis of y being perpendicular to it in the plane of the
plate. Let ¢ be the inclination of u to the plate and i to
the axis of y, 0 the inclination of » to the axis of x, I the
illumination on the plate. Then, d,d,d,I denoting the illumi-
nation on the element 7dfdr of the plate, derived from an
element 7dz of the lamina, and # a constant quantity,

dddJ = rdfdr. 5 .sing. cosy . Tdz:
but sing = s , ucosy =rsinb,

w=7r 42
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+* sin 0
Hence ddd,] = prdsdrdo. %

Integrating with regard to 2 from 2 =0 to z = ¢,
1 . 1 1
d'doI— §[l:7‘1"d’)‘d0 sin@ (? - m) 9
_1 . drdOsin@

I Lath I
Integrating with regard to r, from 7 =0 to r = 2a cosf,
L singd. Ltaa”
d,I-2p'rc smﬂdﬂ.ctan .
= %p'rc .sin6df. tan™ (2—{%0—82) .

N ow f i'sinodo tan™ (26—0080)
o ¢ .
=f:t°‘n_l (2%”) dv = v tan™ (“’%”) -2 J 2 vdvc
O+

gan-1 (20 _ € Y _,.oaf2e) ¢, 4a'+c
=tan (c ) Mlog(v"+4?) =tan (7) b log———c,l .
1 2 (2a c 4a" + ¢
Hence I= g HTe. {ta.n (?) - log (—c,—)} )
the illumination of one half of the plate. ' v
‘)OR. Let 2a =c: then the whole illumination is egual to

T 1
MuTC {71 - §log2}
1 1 e"
= g pTo (7w —log4) = T hTe log (Z) R

or the illumination varies as the diameter of the plate.

15. Prove that an infinite number of plane centric sections
of an hyperboloid of one sheet may be drawn, each possessing ,
the following property, viz. that the normals to the surface at
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the curve of section all pass through two straight lines lying
in the same plane with the two possible axes.

Shew that these centric planes envelope the asymptotic cone,
while the two straight lines envelope an ellipse.

Let the hyperboloid be denoted by

2. y_2_
P + FF= ) . (1).

Let the equation to a centric section be
Z=MT 4 BY ceeininieniainieniann (2)

At the intersection of (1) and (2),
1w 2mnzy (1 w"\ ,

(a_"'?)”'_—c’ +(b__?)y’_1 ...... 3).

If o, y, be the point in which the plane of z, y, is inter-
sected by a normal at z, y, 2,

@y —y).l =
@-2).2=0-9.5=5

P2 A )
whence T=ora Y=g

Substituting these values of = and y in (3), we see that

o & a’h’ 2y
(c’—ma').?.(?_*_—c,), —2mn.7.mm
h +(c* = n'BY ’;,’.(7%7,=1 ...... (4)

In order that this equation may denote two straight lines,
we must have

(¢* = m*a®).(c* — n*D") = m*n'a'D", o' =m'a" + 2D ... (5).
From (4) and (5) we get
. my L °
p i Rl - Rl B SEETIRIER (e),
the equation to two straight lines.
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It is readily ascertained that the envelope of (2), under the
condition (5), is denoted by the equation

1}

I'
c 2

1 ‘;L:, the asymptotic cone,
and the envelop of (6), under the same condition, by

a'd” By :
(a“ + c")’ + ('bi + ce)n =1, an enlpse.

16. Prove that the envelope of a sphere, of which any one
of one series of circular sections of an ellipsoid is a diametral
plane, is a spheroid touching a sphere, described on the mean
axis of the ellipsoid as diameter, in a plane perpendicular to
any one of the same series of circular sections.

Let a, 0, 7y, be the coordinates of the centre of any one of
the series of circular sections; the radius of the section will
be equal to the square root of

Thus the equation to the corresponding sphere will be
, @ _ 9
@—W+f+@—ﬂ=yo—;—§%

a'
or (a—a:)’+(fy—z)'+b’(;,+c£,)=b'—y’ ...... (1),
a and « being, as we know, subject to the equation
7 TR Y A0 N Tt O
a(b ) c(a BR=0...cciirnnenns . (2).

Differentiating (1) and (2) with relation to « and v, and
making use of an arbitrary multiplier A, we get

2
' s(b"—c’)*=a—a:+z;a,
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2

Mo et L
and —c(a—b)—'y z+c,fy. ‘

Multiplying these two equations by a, v, adding, and attending
to (2), we get
3
O=a(@—x)+9y(y—2) +?8 (g—, + 'g) )
and, adding this last equation to (1), we see that
aww+yr=2"+y+2"-b .t (3).
Multiplying (3) by 2, and adding the result to (1), we have
%, (@*+5) + ;L: P+ =2 +y+2 =B ......(4).
From (2) and (3) we easily ascertain that ‘
2 (an(a?— B + (B~ W] = (2 + 47+ 21— ). ("~ B,
and g {ax(a"—0")} +c2(B' - c")}} = (&*+y' + 2" = b").(0" - ")},
and therefore (4) becomes
(@+y +2 -8 . (a*~ ")
=@+ +2' = 8. {az(a" - B + ez (8" — PP,
and therefore the required envelop has for its equation
(o (6 = B} + 08 (8 — )P = (0 — ). (2 + 4+ 8 — Y,
the form of which establishes the truth of the proposition.

The factor a* + y* + 2* — 5" has been rejected, because, if
2+ y+ 20 =0, we get, from (1) and (3),
a'—2ax+'1’—275+b'(:—:+§)=0, ax + 9z =0,
and therefore -

a’+¢+b'(§+g)=°, whence a=0, y=0,

whereas &, 7y, are by the hypothesis variable parameters.
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17. The Sun’s centre, in proceeding from Aries to the Sum-
mer Solstice, passes, when at a distance ¢ from the Solstice,
through the zenith of a certain place. Prove that, supposing
the Earth’s orbit circular and the plane of the equator in-
variable in position, it will not again pass exactly through the
zenith of this place in moving from the Solstice to Libra, unless

n denoting the ratio of the Earth’s angular velocity about its
axis to its angular velocity about the Sun.

Let P (fig. 52) be the pole of the equator, <, L, Aries and
Libra, E the summer solstice, Z and Z' the positions of the Sun
when in the zenith of the place before and after the summer
solstice.

Join PZ, PE, PZ', by arcs of great circles, and produce
PE to cut the equator in I,

Then ZE = ¢ = Z'E, LZPE = n¢ — 2rw = LZ'PE, where
r is an integer. By the right-angled triangle ZPE or Z'PE,
we see that

tanng¢

tang = cosec PE = sec EI = seco.

18. Determine u,, from the equation

— 1)
c = Au,,,,

W unn, ¢
where A affects  only; and, having given the expressions for
%, % 4, » shew how to determine the values of the arbitrary

functions which appear in the result.
% u, ,=a'r",shew from your formul that
d ',z ¢ -f N
Eu',t = {a.r ’(P‘ +F’ )7

If u, ,=az +b, and

.4 being a constant quantity.
H2
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4

4 "
c 75 Yo = A, o 7 (1+A)'u,, =A%,

{c’ ‘%: (1+A)'—A'} u, , =0,

1 1 1
% =3a 17 - 0
cZ(1+a)-a cZ(1+4)+A

1 1
2oA(l+A)u,',=-{£_ r -—-i+ < }0
dt c(1+4) dt c(1+4)

A t A

Then Rl AEIRRE TR (1),
d 1 A 1
%ul.0=z 1+ A(vn wn) =E A(”D-l wa—l)’
and therefore cz%uﬂ,,.—vz—w, .................... (2).

From (1) and (2) we get
20, =u_,+c % by 20,=u,_,~ °% By, o

These formpulee determine the arbitrary functions.

Let u, ,=ax+b, d:;'“ =a'7", Then

car
-1

20.=aw+b+ca’2r"‘=ax+b+r 7,
2w =ax+b— ar .~

r—1
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L t 4 :
Hence 2¢° l‘”A'vm=e"'l""(aa:+b+ __rl.r')
at | ca'r t A 2 Ay
_a‘”+b+_+r-1{1+21+A+1.2.c'(1+A)

124 g(r-1)
at car e

=ax+b+— + .
¢ r—1

Similarly, putting — ¢ for ¢,"
t A

- — 1 241 ¢(r-1)
26““Aw,=am+b—a;t_m e
¢c r-—1
car*  Leny - £ (r-1).

Hence u"‘_w+b+2(r_—1){ — },

d ar®  Len _Ly

At

= §d’. 7" (' + p7),

4 being a constant.

19. Determine the differential equation to a family of curves
which possess the following property: if we take in one of the
curves any three points P, P’, P", so related that C’, C",
the centres of curvature at P’, P", lie respectively in the or-
dinates PM, P'M', produced if necessary, the ratio of M'M"
to MM' shall be invariable.

Shew from your result that the Elastica, the equation to
which is

du = o'dx
Y = G

is an individual of the family.
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Let z, y, be the coordinates of P (fig. 53), and let f(z)
denote the length MM'. Then, the abscissa of P’ being
z+f(x), M'M" will be equal to f{z +f(x)].

Hence, by the condition of the problem,

Sfl{z +f(x)} =N (x), where X is a constant.

Let z+f(x) =y (), or f(x)=y(x) —2: then |

Thas fle+f(@}=f{§ (@)} =¥ (@) - Y(a).

V(@) = b(@) =MW (@) — Az, ¥() = (140) $(a) + Az =0.
Assume (z) = Bz: then
B-(1+A)B+r=0:

hence B=1 or B=),
and therefore Y@)=2 or Y(z)=2>rz,
whence f@)=0 or fl&)=(A-1)=.

The former value of f(x) must evidently be rejected: the
latter shews that
A—1

MM'=(A-1)z=(N-1) (£ —MM') =Tz',
and therefore, by the differential calculus,

dy"
A-1, dy 113
it "Ry -l

dx®

or, dropping accents,

y dropp: y _jd_'i/ @d’y
A 1 d _? dz ' do
A—1'2 dy ay\ dy ay’

2(+F) £ 1+%
d; dy'\
=i log(ax) =log (-3) —log (1 + d_!:{:”) y @ being a constant,
NN
P S W
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A ca=l.
Put m=ﬂ, a—c. then
c_ P a. T g T
@y PEF @—(c"'—a!"‘)i'

_nil' If n=2, the curve is the
Elastica and the ratio =2.

" Ly
Verifoation, 4 & Ty 7"
(-2 (@ -
and therefore, £ denoting the abscissa of C,
1+
~E= dy dz’ _x
& o . T_y_ p
az?
Hence =22 ey SO
and therefore
ey - we=22 ey

20. A small heavy insect, placed at an end of the hori-
zontal diameter of a thin heavy motionless ring, which is move-
able about its centre in a vertical plane, starts off to crawl
round the ring so as to describe in space equal angles in
equal times about its centre. Determine its velocity relatively
to the ring in any position.

Let P (fig. 54) be the insect at any time after starting,
O the centre of the ring, Oz a horizontal line.

Let a=the radius of the ring, m =its mass, u = the mass
of the insect, 8 = the inclination of OP to Oz, ® = the constant

value of %3 Let N, T, denote the normal and .tangepi;ial
actions respectively between the ring and the inseet.
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Then, for the motion of the insect,

p%‘;=NeosO— T sin 6,

3,
p‘fl—g=Nsin0+Teosa—pg.
But z=acosf, %=—amsin0, %:,f=—aw’oosﬂ.
y=asinb, %-= aw cosf, %‘—g=—aw"sin0.
Hence — paw* co8d = N cosf — T'sinb,

— paw' sin@ = N sinf + Tcosd — ug.
From these two equations we see that
T=pgcosd, N=pu(gsinb—an'’).
For the motion of the ring, 2 denoting its angular velocity,
ma’%—;t2 = — Ta = — pag cosf.
Let a = the angular velocity of the insect relatively to
the ring: then

Q+a=w, and therefore ma%:pgcosﬂ.

Let the time be dated from the instant of the insect’s being
in Oz: then .
m%=pgcosmt, maa=%95inmt+0.
Let o' be the value of a when ¢ is zero: then
©g

aa = -~ ginwt + ad’,
me
or the relative velocity of the insect at P = its relative velocity

at 4+ 9 sine.
mo

Suppose the ring to be initially at rest, the insect to be
placed at 4, and then to start suddenly to move as stated in



—
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the problem: then, ©, being the value of Q Just after the insect
starts,
ma'Q, + pa'w =0, m, + po =0.

Hence, attending to the equation Q& + a =, we have

Q+d=w -pw+md=mne, a'———;ﬂ'

Hence

aa=—"i.sinwt+am+”
mo m

o = the relative velocity of the insect.

It may be observed that
T=upg cosbt, N = u(g sinwt - an’).

21. A series of perfectly rough semicylinders are fixed,
side by side, upon their flat faces directly across a straight
road of constant inclination. Determine the inclination of the
road in order that a rough circular inelastic hoop, just started
downwards from the summit of one of the cylindrical ridges,
may travel directly along the road with a uniform mean
velocity.

Let a=the radius of the hoop, a, = that of one of the
cylinders, m = the mass of the hoop, u = the velocity of the
hoop’s centre just before and «' just after collision: let o, o',

denote the angular velocities of the hoop just before and just
after.

Then, see (fig. 55),

mu' = mu cos2a + R,

and ma'e’ = ma'w — Ra,

whence ¥ + a0’ = u cos2a + aw,
But ao =u, a0’ =u': hence
2u' = u (1 + cos2a),

u = u cos’a.
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Bat, by the condition of the problem,
u'+ d'o'=2u"=2¢g(a+a) (1—cosf)=4g(a+a) sin’ g ,

u=(3g(a+a)ising.

Similarly, W =(2ga+a)sin,
since «’ i8 lost in ascending the next ridge.
: .0 .0
Hence sin 5 = sin 5 . cos’a.
But 0=a+B, @=a-p.
. A—
simm —
Hence cos’a = 2
. atpB’
sin —

an equation which determines 8, a being given by the equation

. a
sing = —1—.
a+ta

22. A brittle rod 4B, attached to smooth hinges at 4
and B, is attracted towards a centre of force C according to
the law of nature. Supposing the absolute force to be in-
definitely angmented, prove that the rod will eventually snap
at a point E, the position of which is defined by the equation

where a, 8, denote the angles B4 C, ABC, respectively.

Draw CM, ON, (fig. 56), bisecting the angles 4CE, BCE.
The force of C on AE is, by a known proposition, equal to
27”' smg and acts along MC, ¢ being the perpendicular distance

of C from AB.
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Let x=the wrench impressed upon AE by BE to preserve
the equilibrium of AE. Then, Y denoting the action at E
perpendicular to 4B, for the equilibrium of AE there is

x=Y.AE+2—”'sin2.AM.sin(a+Q).
c 2 2
Similarly, for the equilibrium of BE,

- 0 ® : k4

K= Y.BE+ 5 sm2.BN.sm(B+ 2).
: _ 2 .0 . (0
Hence «. —?{AM.BE.smE.sm(g-i-a)

. ¢ . (¢

+BN.AE.sm§.sm(§+B)}.

Now AM.sin(o +a)= = AC.sin), wnd BE=BO. ?:!:B)'
.0 .
. .0 . /0 3 smé.smcp
Hence AM.BE.sm§.sm(§+a)=AC'. C.mmrery
nm"'p 8in @

Similarly, BN. AE.sin2 . sin (2 + /8) — A0.BC. 'TT
.

c.x.AB sin' = 3 .8in@ sin'g—.sin¢

Hence g AC.BC™Tal7a) T sals A"
But 6+ a+¢+=1m: hence the left-hand member is equal to

. 0+¢ .0 . ¢

gaind nf e 2, atf T3
Smg-Mlg-Em@+ta) 2 'Bn0ta)

0-¢ 0+ ¢

¢+B Cco8 3 - Co8 3

=y sn(0 + a)
. (fa+8B _ a+ B
LY sm( +0) sin —

2 8in (0 + a)
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This is a positive quantity, because
. (a+ . a+ . 0 +8+0
un(a23+0)—sma——2ﬁ=2sm§.oos_—a g ’
a+B+0 =
and ——<3-
t;in(%@+0)—singi2-£3
When « is & maximum, PEYCET) is a

maximum.
Hence f(0)=sin(0+¢).cos(a—-;—é+0)
_cos(0+a).{s' ( +ﬁ+0)—sina+ﬁ}

2
. a=pB . a+P
=sin — = +sin —

.co8(@+a)=0

' 0)=—sina+ﬁ.sin 0 + a) = a negative quantity.
2 q

Hence the point, where fracture will take place, is given
by the equation

or cosLAEG’=—a—+6.

23. A vessel, of given capacity, in the form of a surface
of revolution with two circular ends, is just filled with inelastic
fluid which revolves about the axis of the vessel, and is sup-
posed to be free from the action of gravity: investigate the
form of the vessel that the whole pressure which the fluid
exerts upon it may be the least possible, the magnitudes of
the circular ends being given. -
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Shew that, for a certain relation between the radii of the
circular ends, the generating curve of the surface of revolution
is the common catenary.

Let the axis of the vessel be taken as the axis of z (fig. 57).
Then

Pressure on curve surface = [2myds. }po'y’ = mpo® f ¥ (14 p")ida.

Volume = = f y'da.

Hence V=3(1+p" - ay"
But V= Pp + C, C being a constant: hence
s gt TP
y(1+p)—ay A+p)p + G,

¥y .
———(1 rpo e y* + C.

The values of y at the circular ends being given, there is
8y,=0, 3y,=0: thus the equation for the limits becomes
(VM—'PMPM) 8‘”41— (K_Rp:) szl = 0’ or 08z11—08x1= 0:

but 8z, 8z, are independent of each other: hence C'=0, and

the equation for the generating curve becomes

y=a(l+p"}, y'—d'=d % ’ % = Wiy—a:); ee(1)y

a’f-:c=log {y+ (y* — a"¥}, c being a constant:
e g (PP =a'e, 2 o mepme
y+(y'—afi=e7, y—(y'—a')t=ad'e", P me*+m™e ¢...(2),
a and m being unknown constants.
Let the origin be in one of the ends, of which the radius=5:

then 22—=m+m ....................... (3).

Also let %* denote the capacity of the vessel: then, from (1),
b denoting the radius of the other end,
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d,
k'=1rfy’da:=7ra .@,y._—':/z.?

= w7 — oY= (= P+ garlog LEET=EN

- g m .ee .

Thus (3) and (4) determine the constants ¢ and m. The
equation (2) defines the generating curve.

Cor. If m =1, the curve is the common catenary, the
conditions being, from (3) and (4),

’ N 78\§
a=b, I =jmd {b’(b"-—b")* + Blog ”—iﬂ’;—b)—} .

24. If a, B, v, be the direction-cosines of one of the two
lines of vibration of the plane front of a wave in a biaxal
crystal, and o, &, o', those of either of the two lines of vibration
of a plane front intersecting the former plane front at right
angles and passing through the line (a, B, ), prove that

Zp-a+he-a+l@-r=o,

F=oy , @=a) , [@=3) _
and that -t gE + prev =0
Let (a, B, v) be a line of vibration in the front

le+my+mnz=0...cceeernrnnnans (1).

The equation to a plane front perpendicular to (1) and passing
through (o, 8, v), is

G-D) 56D 5o
Then, (a, (3, y) being a line of vibration in (1),

la+mB4+ny=0.ccciiiiiiuunnns (3),
and é(b' c’)+ (¢ —a)+§(a7'—b’)=0 ..... ’....(4).
Also, (o, 8'y ¥') being a lme of vibration in (2),

a’(%_$)+%('_;_é)+%(é_%)=o ...... (8),
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and

22 -+ 5 G0+ S oo
From (3) and (4) we have

m

:

n I I m
y & a B’

I3

and therefore g— ,

are proportional to

-7, d—a', a'-?b".

The equations (5) and (6) become therefore
)+ B e + L=t =
a(b c’)+ﬁ(c" a’)+7(a b) =0,

b~ c’)' (¢'—a")* (a’ -5
d ( g ) =0
= aa Bp 77
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Tuespay, Jan. 3, 1854. 9...12.

1. THE complements of the parallelograms, which are about
the diameter of any parallelogram, are equal to one another.

If K be the common angular point of these parallelograms,
and BD the other diameter, the difference of the parallelograms
is equal to twice the triangle BKD.

Since BK (fig. 58) bisects EG, and KD bisects HF, the two
GBK, FKD are together equal to EBK, HKD; to these equals
add the unequals GF, EH; then the difference of the paral-
lelograms G'F, EH is equal to the difference of the figures
CBKD, ABKD: but the latter difference is evidently equal
to twice the triangle KBD; for CBKD exceeds CBD or ABD
by the triangle KXBD, and CBD or ABD exceeds ABKD by
the triangle KBD; therefore the difference of the parallelo-
grams GF, EH is equal to twice the triangle KBD.

2. Divide a given straight line into two parts so that the
rectangle contained by the whole line and one of the parts
shall be equal to the square of the other part.

Produce a given straight line to a point such that the rect-
angle contained by the whole line thus produced and the part
produced shall be equal to the square of the given straight
line.

In Euclid’s figure, the rectangle contained by CF and FA
is proved to be equal to the square on CA.

If therefore CA be the given line, describe a square on
CA, and proceed as in Euclid: F will be the point required.
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8. The opposite angles of any quadrilateral figure inscribed
in a circle are together equal to two right angles.

If the opposite sides of the quadrilateral be produced to .
meet in P, @, and about the triangles so formed without the
quadrilateral circles be described meeting again in B; P, R, Q
will be in one straight line.

Let AB and DC meet in P, AD and BC in Q (fig. 39);
then the circles described about the triangles PBC, @QDC meet
in C and R. Join PR, CR, QR.

The angles CRP, CBP are together equal to CBP and
CBA (Euc. 1. 13; 11 22); therefore CRP is equal to CB4;
similarly CRQ is equal to CDA; therefore the two CRP
and CRQ are together equal to the two CBA and CDA, that
is to two right angles; therefore PR is a straight line.

5. AE, EA', are diameters of two circles touching each
other externally at E: a chord AB of the former circle, when
produced, touches the latter at C’, while a chord 4'B’' of the
latter touches the former at C. Prove that the rectangle con-
tained by 4B, A'B’, is four times as great as that contained
by BC', B'C.

Euc. bk. v1., prop. 2,

AB: BC' ::20E: EO, (fig. 60).
Euc. bk. v., prop. 4,
AB:2B(C'::20E:2EO0.
Similarly, A'B' :2B'C::20'E: 2EO.
Hence, Euc. bk. v., prop. 11,
AB:2BC'::2B'C: A'B'.
Hence, Euc. bk. vI1., prop. 16,
rect. (4B, A'B’) = rect.(2BC', 2B'()
= 4 rect.(BC', B'C).

6. Within the area of a given triangle is described a tri-
angle, the sides of which are parallel to those of the given one.
Prove that the sum of the angles subtended by the sides of the
interior triangle at any point not in the plane of the triangles

I



114 SENATE-HOUSE PROBLEMS AND RIDERS. [Jan. 3,

is less than the. sum of the angles subtended at the same point
by the sides of the exterior triangle.

Let ABC (fig. 61) be the exterior, and abc the interior tri-
angle. Produce the sides of the interior triangle to intersect
those of the exterior, in the points o, a"; 8, 8" 7, 9"; and
join oy’

Let the angles subtended by any line in the plane of the
triangles at the external point be denoted by the line itself.

Then be Lby + oy,

bcLa"B+ cgr_*_(yl ',
be La"B + Co' + B
Similarly ca’lLB'C+AF + oy’
ab L'YHA + .B'y' + ﬁ'd"-

Adding together these inequalities, we have

bc+ca+abtBC+ CA + AB.

8. If NP be the ordinate of any point P of an ellipse, ¥
and Z the points where the tangent at P meets the perpen-
diculars from the foci,

NY:NZ:: PY: PZ

Circles may be described about- NPYS, NPZH, (fig. 62).

But L8SPY = t HPZ:
hence LSNY = tHNZ;
hence LYNP = LZNP;

and therefore, by Euclid, bk. vr., 8,
NY: NZ:.PY: PZ

11. Parallelograms, whose sides touch an. hyperbola and
its conjugate, and are parallel to conJugate diameters, have
the same area.

If CP, CD be conjugate semi-diameters, and through C a
straight line be drawn parallel to either focal distance of P,
the perpendicular let fall from D on this straight line will be
equal to half the minor axis. '
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Let DM (fig. 63) be the perpendicular let fall from D on
the line through C parallel to SP or HP; draw PF perpen-
dicular to CD, and produce SP, CD to meet in E; then
PE = AC.

The triangles MDC, FPE are similar, for - DCM = PEF,
and DMC = PFE;

s MD:CD:: FP: PE;
~. MD.PE = CD.FP,
MD.AC = AC.BC,
MD = BC.

TuEsDAY, Jan. 3. 1}...4.

10. Find the value of sin18°

In Euclid’s construction for determining an isosceles tri-
angle, the angles at whose base are double of the angle at
the vertex, shew that the common chord of the two circles
is equal to the base of the triangle.

Let E be the other point of intersection of the two circles,
AE=AC :
are chords of segments containing equal angles ADC or BDC;
o LACE=tBDC=tABC;
~. CE= BC.

11. Find 4 from the equation, tan24 = 8 cos’4 — cot 4.
Tan24 = 8 cos’4 — cot A,
"8 cos’d = tan24 + cot 4,
_cosf24'—4)
" cos24sin4’
S L R | R 1);
12
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or 1 =8 cos4 sin4 cos24
= 4 8in24 cos24 = 2sin44,
gindd = § =8in30°......cccenvennnennnn (2),
by (1), A4 = (2n+1) 90°,
by (2), 44 =n.180° + (—1)" 30°,

A4 =n45 + (-1)" 1°30,
n being any positive or negative integer or zero.

If sin34 = nsind be true for any values of A4 besides 0
or a multiple of 90°, shew that » must be less than 3 and not
less than — 1. Solve the equation when n = 2.

If 8in34 = nsind,
or 88ind — 48in’4 = ngin 4,
be true for other values of 4 than 0 or multiples of 90°, so is

8 —4sin’4d = n,

or intd =227,
in which case nis <3, and 3 —n <4, or n> — 1.
If n=2,
BiNA=0...ccocenvrniinnnnnnnnnnns (1),
and gin’4 = },
or gind = 8in(+30%) c.coouvrieneeiiacnnnns (2);

therefore by (1), .4 = m180°,
by (2), 4 =m180° + 30°,
m = 0, or any integer.

If cosd cosgp = sin(a — B) sin (x + B),
and sin(@ - ¢) sin(6 + ¢) = 4 cosa cosB; find cosd, and cos¢p.
By the second equation,
cos’p — cos'0 = 4 cosa cosf,’
by the first, " cos¢g cosf = cos'B — cos’a;
<. (cos’p + cos’d)® = 16 cos’a cos’8 + 4 (cos"B — cos’a)",
= 4 (cos'8 4+ cos’a)’ ;
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*. cos’p + cos’@ = 2 (cos"B + cos’a);
*. cos'p = (cosf + cosa)’,
cos'd = (cosB — cosa)’;

‘. cos¢ = + (cosfB+ cosa),

cosf = + (cosB — cosa).

The radical must be taken with the same sign in each, the
additional roots obtained by taking different signs having been
introduced by squaring in the third step.

12. In any triangle ABC, prove that
AB* = BC" + CA* — 2BC.CA cosC.
AD (fig. 64) is drawn to meet BC, or BC produced, in D,
so that AD is equal to A4C; shew that if the sum of 4B and

AC is n times B, their difference is ith of BD.

AB + AC = ».BC,
AB* - AC*= BC* — 2BC.CA cosC,
and CD =2CA4 cosC, or 2CA cos(180°—-C);
. (AB-AC)(AB+ AC)= BC (BC*0D);

s AB— AC= iBD.

13. Find the radius of the circle described about a tri-
angle whose sides are given.

Shew that the radius of the circle inscribed in an isosceles
triangle can never be greater than one half of that of the cir-
cumscribed circle.

The radius of the circumscribing circle (R)
abe
T V{@a+b+c)@+b—0c) (atc=b) b+c—a)}"
The radius of the inscribed circle (r)
(a+bd=c)(a+c—b) (b+c—a)
*«/{ }

a+b+ec
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LT :. (a+b—c) (a+c—b) (b+c—a)
R abe :

—a T "(26 a) a
I3 =0, F=p. 20000 }{1—(1_5)},
which can never be g'reater than §.
I%is equal to § when a = ¢, or the triangle is equilateral.

14. Two posts 4B and CD (fig. 65) are placed at the edge
of a river at a distance 4C equal to 4B, the height of CD
being such that 4B and CD subtend equal angles at £ a point
on the other bank exactly opposite to 4 ; shew that the square

.. AB*
of the bregdth of the river is equal to O — 45 and that

AD and BC subtend equal angles at E.
tBEA =t DEC=a,
LBAE = tCAE = 90°,
and BA =AC;
therefore BAE, CAE are equal in all respects.
AB = AE tana,
CD = CE tana,
AB'=CE' - AE®
= (CD*— AB") cot'a;
. AB'=(CD'—-AB") AE ;

AB
. AE’=0D,_A

Also we have two solid angles at E,
one contained by AEC, BEA, and BEC,
and the other by AEC, CED, and DEA;
AEQ is common to both,
BEA = CED in planes perpendicular to AEC;
. LBEC=(DEA,
or AD, BC subtend equal angles at E.

L s —
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Otherwise: cos BEC = 1 — 2 sin*(} BEC)

&
=1-2.{73 ¢
b2

27, . sinco BO" = 248,
AR

= BE?

=L ST 4L, sine OE= B,

= cosAED;

<. BEC = AED.

=] -

WEDNESDAY, Jan. 4. 9...12.

1. Two unequal forces act in parallel lines and in opposite
directions upon a rigid body moveable about a fixed point in
their plane; shew that, if there be equilibrium, the moments of
the forces with respect to the fixed point are equal.

Three straight tobacco-pipes rest upon a table, with their
bowls, mouth downwards, in the angles of an equilateral triangle,
the tubes being supported in the air by crossing symmetrically,
each under one and over the other, so as to form another equi-
lateral triangle; shew that the mutual pressure of the tubes
varies inversely as the side of the last triangle.

Let ABC (fig. 66) be the positions of the bowls of the three
pipes 4a, Bb, Ce. '
The mutual actions on a, b, ¢, are the same.
Let W = weight of each pipe,
G the centre of gravity of the pipe 4aq,
R the mutual action.
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Aa is kept at rest by the action of the table, the weight,
and the couple whose moment is E.ab;
therefore, taking moments round 4,

W.AGQ = R.ab;
. R x %

2. If three forces acting upon a particle keep it at rest, shew
that the forces are respectively in the ratio of the sines of the
angles contained by the other two.

A smooth circular ring is fixed in a horizontal position, and
a small ring sliding upon it is in equilibrium when acted on
by two strings in the direction of the chords PA, PBj; shew
that, if PC be a diameter of the circle, the tensions of the
strings are in the ratio of BC to AC.

If A and B be fixed points, is the equilibrium stable ?

The ring is kept in equilibrium at P (fig. 67) by the re-
actions in direction CP, and the tensions in direction P4, PB;

.. tension of PA : tension of I’B:: sin BPC : sin A PC
:: BC: AC.

If P be displaced to P, the tensions of the strings remaining
the same, the effect of the tension of the string towards B is
diminished in the ratio of cos P’ CB: cos PCB, and that of the

- tension to 4 is increased ; similarly, if P be displaced to P";
therefore the equilibrium is unstable.

3. Define the centre of gravity of a system of heavy par-
ticles, and shew that in every case there exists one and only
one such point.

From this fact deduce the property that the lines joining
the middle points of opposite sides of any quadrilateral bisect
each other.

Let equal masses be placed in the angular points of the
quadrilateral 4 BCD.
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The centre of gravity of these four masses is that of the
masses of A4, B, collected at a the middle point of 4B, and
that of C, D, collected at ¢ the middle point of CD, and is
therefore in O the middle point of ac.

Similarly, it is at the middle point of 3d bisecting BC and
DA.

Therefore, since a system has only one centre of gravity,
ac and bd bisect each other.

4. Find the ratio of Pto W in the single moveable pulley,
when the strings are not parallel.

If a weight W be supported by a weight P hanging over
a fixed pulley, the strings being parallel, shew that, in what-
ever position they hang, the position of their centre of gravity
is the same.

If W be depressed through a space a, P is raised through
a space 2a, and the centre of gravity is moved through a space

K;,:_-—g;—%; and since W = 2P, the centre of gravity is sta-

tionary.

5. Describe the construction and graduation of the common
steelyard.

Shew that, if a steelyard be constructed with a given rod,
whose weight is inconsiderable compared with that of the
sliding weight, the sensibility varies inversely as the sum of
the sliding weight and the greatest weight which can be
weighed.

Let P at M (fig. 68) balance the weight W,
Pat Nooevenvrnirnnrninniininnnnnnannn. w';
therefore - P.CM=W.AC,
P.ON= W'AC;
therefore P.MN=(W-W')AC.
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Now the sensibility of the instrument varies as the distance
through which P must move in order to detect a given dif-
ference of weight ; therefore the sensibility o« MN oc %TC H
and if Q = the greatest weight which can be weighed,

Q.AC=P.BC;

therefore (Q+P) AC = P.AB;

therefore the sensibility o 1 Yoyl since 4B is given.

Q+

8. What is meant by a unit, and what i8 usually taken as
the unit of accelerating force ?

If the force of gravity be taken as the umit of force, and
a rate of ten miles an hour as the umit of velocity, what must
be the units of time and space?

Suppose a feet to be the unit of space,
and & seconds ............... time ; '
a and b are numbers whose values it is now our object to
ascertain.
A velocity of 10 miles an hour is the same as a velocity of
10 x 1760 x 3
60 x 60

10 x 1760 x 3 "
or — 60X 60 b feet per 3".

But a velocity of 10 miles an hour is the unit of velocity, and
is therefore a velocity of a feet per 4";

_10x 1760 x 3
T 60 x60

feet per 1",

therefore

Again, the force of gravity
generates in 1” a velocity of 32.2 feet per 1"
therefore it ............... ) O 32.2b......... b";
therefore it ............... O i, 32.20"........ b":

but the force of gravity is the unit of foree ;
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therefore it generates in 4" the unit of velocity,

thatis, ....ccccoeeiinninnee. a velocity of a feet per ";
therefore a=8220"....ccovuiinrrnnnnnnnns (2).
From (1) and (2) the values of @ and 5.may be found ;
- __(44) |
b=gxs2a’ = Fxsaz’
the unit of space is therefore — () foet, and the wnit of
P 9"+ 322
. 44
time %322 seconds.

11. Two balls of given masses and given elasticity are
moving with given velocities in the same direction; determine
their motion after impact.

Two balls are moving in the same straight line, one of
them only being acted on by a force; if the force be constant
and tend towards the other ball, shew that the times which -
elapse between consecutive impacts decrease in geometrical
progression.

Let m, m' be the masses of the balls,

f the force acting on the former,

v, v, their velocities after the (n —1)™ impact,
Uy V' cererrniniinnine before the ™ impact,
Uy, e after the ™ impact,

R, eR, the impulsive forces of compression and resti-
tution at the »™ impact,
the time between the (n —1)™ and the n™ im-
pact.
Since the spaces described by the two balls between the
(n—1)" and »® impacts are equal,
Vpilos + =Yty

v -
Lt =2 Ml el eiieieee 1).
7 1)

¢

n-1

n—-1
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Similarly, o=
. v, — 9P
t_.: — v"-l — vrl llllllllllllllllll (2).

Also the force f acting for the time 7, changes the velocity
of m from v_, to u_;

therefore u, =v_ +ft
=2, +2(v,—v.), by(1);
therefore u, — v, =0, =Y, i (3).

Again, since the two balls have the same velocity at the
instant of greatest compression,

'Ru ! 'Ru
uu_;=v-—l+ﬁ,
B

v.+eTn9=v'_— ‘,',T"';
therefore v,—v,=¢e(y-v,)
=e(v,,—v,.), by(d);
therefore (2) becomes Z‘: =

Hence the times decrease in geometrical progression.

12. Prove that the time of falling in a straight line from
the highest point of a vertical circle to any point in the cir-
cumference is less than to any point outside; and give a geo-
metrical construction for the straight line of quickest descent
to the circumference of a vertical circle from a given point
within it.

Shew that the circumference of two circles contains all points
from which the time of quickest descent to a given vertical
circle is the same.

Let R be the radius of the given circle, and construct any
number of equal circles touching the given circle, and let »
be the radius of one of them ; then the time of quickest descent
to the given circle from the highest point of any of these circles
is the same: and it may be shewn that those circles which

l
|
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touch the given circle externally have their highest points in
the circumference of a circle whose radius is R + r, and whose
centre is a point Q at a distance » vertically above the centre
of the given circle; and that those circles which touch the
given circle internally have their highest points in the circum-
ference of another circle whose centre is @ and radius R ~ r:
hence the circumference of these two circles contain, &c.

WEDNESDAY, Jan. 4. 1%...4.

4. A rod of length a and density p, is moveable freely
about one end, which is fixed at a depth ¢ below the surface
of a fluid of density o: prove that the rod may remain at rest,
when inclined to the vertical, provided that '

2
g.>1a.nd<(—z—,.
) ¢

Shew that such a position is one of stable equilibrium.

It is evident that the rod cannot rest obliquely when entirely
immersed within the fluid.

For equilibrium, supposing the rod partially out of the water,
O being its lower and 4 its higher end, and P its intersection
with the surface of the water, (fig. 69),

a o.c c .
G = (p.a.i—co'—sé.mo) .8in@ = O......... (1),

where 6 denotes the inclination of OP to the vertical line OC.

Hence, for oblique equilibrium,

080 = T2, irreeerenen veerees (2)
pa
But, from the geometry, o
3g_C¢ _°.
cos’0 =0BE > &'

hence, from (2), a>p.
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Also, o.c' > p.a’, in order that @ in (2) may be possible.
Thus there will be oblique equilibrium, defined by (2), under
the conditions ¢ > p, o.c*' < p.a’.

Putting B for the value of @ given by (2), we have, by (1),

G=§pa'(1-%”,0 =t 880 <Borf>p.

Hence, the oblique equilibrium is stable.

8. A pencil of rays diverging from a point at a given dis-
tance from the centre, is incident directly on a concave spherical

refracting surface, determine the distance of the geometrical

focus of the refracted pencil from the centre.

An eye is placed close to the surface of a sphere of glass
(w=48), which is silvered at the back; shew that the image
which the eye sees of itself is § of the natural size.

Let ACB (fig. 70) be the diameter of the eye placed close
to the surface of the sphere, so that rays proceeding from it
are unaffected by refraction at entering the sphere, and after
reflection at the back form the image ach. Let COM be the
diameter of the sphere, O the centre. Then

1 1 2

oct 0.~ o0
or 0°=“%"

the negative sign signifying on which side of O c lies.
Let the image of ach, formed by refraction out of the
sphere, be a'c'’d’, which is the image which the eye sees. Then

1
1 1 ;_1
g.0c~ 0~ =0C"
2 1 1
or 30c~ 0¢ " 300"
2 1 1
0C " 30C~ 0c
Oc'=3—0—q.

5
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Now the ratio of Oc': OC is the ratio of a'c'd’ to ACB,
therefore the ratio of the image to the .natural size of the
eye is 3: 5

9. A rod, inclined at any angle to a plate of glass, is seen
by an eye on the opposite side of the plate; shew that the
length of the image of the rod, formed by geometrical foci, is-
equal to the length of the rod. Is the image, formed by re-
fraction at the first surface, of the same magnitude as either ?

Let PQ (fig. 71) be the rod, P ¢ its image after refraetion
at the first surface AB of the plate, and P’'Q" after refraction
at the second surface CD. Draw @R, QR’ Q'R", at right-
angles to BP'.

Then Q@4 =pAdQ,
PB = u.PB,
and therefore PR = u.PR:
hence PR > PR,
and therefore PqQ > PQ.
Again, DP" =5 DP
1
= - (¢+ u.PB
5+ pPB)
=1 pB;
R’
similarly, cQ' = f—" + @Q4;
hence P'R" = PR,
and therefore P'Q' = PqQ.

10. Find the deviation of a ray of light refracted through
a prism in a plane perpendicular to the edge.

If rays in this plane are incident at one point of the prism
in all directions, shew that, if the refracting angle be greater
than sin™ 1;, rays incident from that side of the normal which

is towards the edge of the prism will not pass through, and
examine what rays will pass through.
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If the refracting angle of a prism be > sin™ i, and rays

be incident at a point of one face of the prism in all direc-
tions, lying in a plane perpendicular to the edge of the prism,
shew that no ray will pass through which is incident from
the side of the normal towards the edge, and examine what
rays will pass through.

Let the plane of the paper be the plane of incident rays,
A (fig. 72) the point of incidence, V the trace of the edge,
QAR the course of a ray incident at 4 and refracted to R,
NAn normal at 4,

LVRA=§—LRA1¢—LV,
<§—Lﬁ

therefore the angle of incidence at 4 > £V, a fortiors, > sin™ 3 ,
or the ray cannot emerge at R.

If QAR be a ray incident from the side of the normal
which is from the edge,

LVRA=3 +LRAn-V;
and if the ray be capable of emergence,
LVRAT — el
2 »®
therefore T s 3T 4 RdAn -V,
2 b 2
or (RAN< V—sin"i,
. . . 1
AN V—sin™ -
8in Q' {psm( sin I‘)’

or all rays on that side of the normal, incident at an angle

not less than sin™ {p sin(V— sin~* ’—i)}, will pass through.
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12. A short-sighted person moves his eye-glass gradually
from his eye towards a small object: shew that the linear
magnitude of the image will keep increasing during the motion,
and that the angle subtended by the image at the eye will be
least when the eye-glass has advanced half way towards the
object.

Let PQ (fig. 73) be the object, which we may suppose to
‘be at right angles to the axis EAP of the eye-glass, 4 the
centre of the eye-glass, and E the place of the eye.

Let pg be the image of PQ; join QE, gE. Let AP = u,
AE=d, tPEQ=a, tpEg =0, Ap =v.

Then, a8 is proved in elementary treatises on Optics,

tanf wu+d

tana u+d+d—i&

. 7 »
Now u + d is constant: hence tan6 is least when du is
greatest, that is, when u = d.
. v PQ
Again, pg:PQ.;=—u.
1+,

f

Hence pq increases as u diminishes.

THURSDAY, Jan. 5. 9...12.

1. EXPLAIN what is meant by the limit of a varying quan-
tity or ratio, and enunciate and prove Newton's first Lemma.

Two triangles CAB, C'AB' have a common angle 4, and
the sum of their sides about that angle the same in each; if
CB, C'B' intersect in D, and B’ move up to B, then in the
limit DC: DB:: AB: AC.

From (fig. 74) C draw CE parallel to 4B meeting B'C’ in E,
Because AB+ AC = AB' + AC',
BB = CC';
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by similar triangles, DCE, DBB',
DC:DB::CE: BB;

and by similar triangles 4B'C’, CEC',
AC': C0O':: AB': CE,

or alt. AC' : AB' :: CC': CE
:: BB': CE;
but DC: DB:: CE: BB';

therefore comp. @ AC': AB':: DC: DB;
therefore in the limit AC: AB:: DC: DB.

2. Define the circle of curvature at any point of a curve.
If PQ be an arc, and QR a subtense, the chord of the circle
of curvature at P parallel to QR is equal to the limit of the
third proportional to QR and PQ. Find the chord of curvature
through the focus of an ellipse.

EF is a chord of a given circle and § its middle peint; con-~
struct the ellipse of which E is one point, S one focus, and
the given circle the circle of curvature at E.

The chord of curvature (fig. 75) through the focus =2 ——~—

if H be the second focus and A4 C the semi-major axis.

Baut in this case the chord is equal to 2SE. Hence HE=AC,
and Z is the extremity of the minor axis of the ellipse.

Draw through E the chord EG making the same angle with
the tangent at E that £F does. The middle point of this chord
will be the second focus H, and the ellipse is constructed.

SE.HE
T4C

8. Shew that, in an orbit described under the action of a
force tending to a fixed point, the velocity at any point is in-
versely proportional to the perpendicular from the centre of
force on the tangent at that point.

A body is describing a parabola under the action of a force
which always tends to the focus, and a straight line is drawn
from the focus perpendicular to the tangent, and proportional
to the velocity, at any point; shew that the extremu:y of this
stra.lght line will lie in a certain circle.
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Draw SY (fig. 76) perpendicular from the focus S on the
tangent at P. Produce it to ¢, so that SQ bears a certain
ratio to the velocity at P, and in the axis take a point B, such
that SB bears the same ratio to the velocity at the vertex 4;
and join BQ.

. 1
Then . 8Q « velocity at P %
or 8Y.8Q = a constant quantity = S4.8B,
or 8Y: 84 : SB: 8Q.

And the triangles 4SY, @SB, having a common angle @
at 8, and their sides about that angle proportional, are similar.
Hence the angle BQ.S = the angle SAY = a right angle, and
@ will always lie on the circle whose diameter is SB.

4. Given the velocities and the directions of motion at any
three points of an orbit described under the action of a central
force: find the centre of force.

If the velocities at the three points be respectively parallel
and proportional to the opposite sides of the triangle of which
they are the angular points, the centre of force is the centre of
gravity of the triangle.

Let P, @, R (fig. 77) be three points of a cemtral orbit, at
each of which the velocity is parallel and proportional to the
opposite side of the triangle PQR: produce the tangents at
P, Q, R.so as to form a new triangle P'Q'R', having its sides
parallel and proportional to those of PQE.

Join PP’: because the- perpendiculars from the centre of
force on P'Qy, PR’ are inversely proportional to the velo-
cities at R, @, they are inversely proportional to the sides 7' ¢,
P'R’; therefore the triangles, whese common vertex is the centre
of force, and whose bases are the sides P'¢, P'R', will be
equal, and therefore the centre of force will lie in the line
PP’: so also it will lie in the line Q¢', and will be the centre
of gravity of the triangle PQR, for the lines PP, Q@' bisect
respectively the sides QR, RF.

K 2
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5. An ellipse is described under the action of a force tending
to the focus; find the law of force and the velocity at any point.

If, without changing the velocity, the direction of motion of
the body receive a very slight alteration, shew that the position
of the major axis will be altered, unless the body be at one
extremity of the latus-rectum through the focus to which the
force does not tend.

Let 8 (fig. 78) be the centre of force, PY the tangent, H
the second focus: let the direction of motion be altered through
the indefinitely small angle YPY", and let H’ be the position
of the second focus of the new orbit.

Then, since the focal distances make equal angles with the

tangent
L HPH' = twice LYPY",

and because the velocity is unaltered, the major axis is unaltered
in length,

8P+ HP= SP+ H'P,
or HP=HP,

and the position of the major axis will be altered, unless
8, H, H be in one straight line. Let them be in one straight
line, then PH, PH' make equal angles with this line; that is,
since HPH' is indefinitely small, PH, PH' are each at right
angles to SH, or the particle is at the extremity of the latus-
rectum through H.

6. Enumerate the principal steps which led Newton to con-
clude that the Moon is retained in her orbit by the force of
gravity.

Assuming that the Moon is retained in her orbit by the’
Earth’s attraction alone, and that, approximately, her orbit is
circular, her period about the Earth 27 days, the accelerating
effect of gravity at the Earth’s surface 32 feet per second, and
the Earth’s radius 4000 miles, find the distance of the Moon
from the Earth’s centre.

Let 4000r be the distance of the Moon from the Earth’s
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centre in miles, f the accelerating effect on the Moon by reason
of the Earth’s attraction, in feet per second, then

fi82:u1:r
32
or f=7;

but the periodic time of the Moon is 27 x 24 x 60 x 60 seconds,
27.40007 x 1760 x 3 . feet

2T x24x60x 60 o o0 P
second: hence the accelerating force on it tending to its
centre is

and therefore its velocity is

(@mr)*
(27 x 24 x 60 x 60)"
If the Moon be under the influence of the Earth’s attraction .
only, this must be equal to f,
32___ (2n)
”  (27x24x60x60)*"
s _ 32 x (27 x24x60x60)"
T 474000 x 1760 x 3
8% 38%2%3%24 3% (10)*
T o 2%11 x3 x10*
27. 31! 26. 31!
@11 7P x165’

or r= s 60 very nearly.

(7* x 16°5)

. 40007 x 1760 x 3.

or

40007 x 1760 x 8,

or

11. Explain the aberration of light, and shew in what direc-
tion the error of aberration takes place.

‘What limit is there to the position of a place in order that
at some time in the day a star in the ecliptic may have its
error of aberration in a vertical plane?

The aberration of a star always taking place towards a point
in the ecliptic 90° behind the sun, if a star be in the ecliptic,

.
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its aberration will take place in the ecliptic: the question is
therefore equivalent to this, At what places is the ecliptic ever
vertical? The answer is, At every place whose zenith is not
more than 23° 28’ from the celestial equator, that is, at every
place within the tropics.

Monpay, Jan. 16. 9...12.

1. A SYSTEM of rigid bodies is under the action of no forces
but their weights, mutual reactions, tensions of inextensible
strings, and pressures on smooth fixed surfaces; prove that if
the height of the centre of gravity above a fixed horizontal
plane be a maximum or a minimum, the system will be in

equilibrium.

Apply this principle to determine the position of equilibrium .

of two equal uniform rods, connected by a smooth hinge at one
extremity and resting symmetrically on two smooth pegs in
the same horizontal line. ,

Let A4, B (fig. 79) be the pegs, ' the middle point of 4B,
P the hinge connecting the rods, which will be in the vertical
line through C; @ the centre of gravity of the two rods, which
will be the middle point of the straight line joining the middle
points of the rods, and will therefore also be in the vertical line
passing through C.

The depth of @ below C = PQ — CP
=a cosd — b coté),
if the length of each rod be 2a, 4B = 25, angle at P = 20.
For this depth to be a maximum,

. b
0=—»asm0+m,
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. b
or sin’f = -,
a

which determines the position of equilibrium.
It is manifest that b is always < a, and therefore the position
is possible.

2. Determine the necessary and sufficient conditions that
a system of forces acting on a rigid body may have a single
resultant.

A portion of a curve surface of continuous curvature is cut
off by a plane, and at a point in each element of that portion,
a force proportional to the element is applied in the direction
of the normal; shew that, if all the forces act inwards or all
outwards, they will in the limit have a single resultant.

Let AS represent an element of the surface, whose coordi-
nates are «, ¥, #; the bounding plane being taken as that of
@y, I, m, n the direction-cosines of the normal. Then, if PAS
be the force applied in the direction of the normal, the re-
solved parts of this force are PIAS, PmAS, PrAS parallel to
the axes of @, y, 2, and the moments of this force about the
axes of z, y, z are respectively PAS (ny ~me), PAS (lz — nx),
PAS (mx—1ly). Butif 4, 4, A, represent the projections of
the surface on the coordinate planes of yz, 2z, xy respectxvely,
we shall have

la8=AA,
mAS = A4,
nAZ = AA,;

or if = (X), =(Y), 2(Z) represent the sums of all the resolved
forces, and L, M, N the sums of all the moments,

3(X)=P2(A4,)=P.A4,=0,
3(Y)=P2(Ad4,)=P.A4, =0,
3(Z)=Ps(a4,)=P.A, = P.A,
A being the area of the curve bounding the section by the
plane of xy, and Z, y the coordinates of its centre of gravity.
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Also L = Px(yAd,—244) = P.A.y,
M = P2(204,-xA4)=— P.A.z,
N =P2(zA4,—yAAdz)=0;
. LEX+ M.2Y + N.2Z=0.

8. A particle under the action of any forces rests on a
surface whose equation is given; determine the conditions of
equilibrium, (1) when the surface is smooth, (2) when it is rough.

Find the least coefficient of friction between a given elliptic
cylinder and a particle, in order that, for all positions of the
cylinder in which the axis is horizontal, the particle may be
capable of resting at any point vertically over the axis.

Let APA' (fig. 80) be a section of the cylinder made by
a plane perpendicular to the axis, and passing through the
particle, C the centre, CA the semi-axis-major of the elliptic
section, P the particle vertically above C, 2 PC4 =0, 2a, 2b
the axes of the elliptic section.

Then, in order that the particle may be capable of resting
for all values of 0, the greatest angle which the tangent at P
can make with the horizon must be not greater than tan™u,
# being the coefficient of friction. Let the tangent at P be
produced to meet CA produced in 7': then CPT must not be

greater than g + tan™ u,

and tanCPT = — tan(0 + CTP)

_ _tan0 + tanCTP
1- tan0.tanCZP"

Now, if ¢ be the eccentric angle of P,

b
tan0=;-mn¢’

and tanCTP = ;bz-. cotd;
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. (tang +cotg)

therefore tanCPT = — A
-3

__ 2 1

a® — 5 sin2¢’

therefore the angle which PT" makes with the horizon

2ad ? g
therefore the greatest angle which PT' makes with the horizon
is tan™ ek

2ab

hence x must not be less than

= CPT- ’§’ = tan

, and this must not be greater than tan™u:
a* -

2ab

4. A heavy elastic string is suspended from one extremity,
and stretched by its own weight; determine its length when
it is at rest.

If a heavy elastic string rest upon the convex side of a
smooth curve in a vertical plane, shew how to determine the
tension at any point.

Let a heavy elastic string (fig. 81) rest in a vertical plane
on the smooth curve 4P@Q, beginning at 4. Take Oz, Oy
horizontal and vertical axes, and let , y be the coordinates of
a point P,  a contiguous point, AP =3, PQ=3s; then the
coordinates of @ will be

and if ¢ be the tension at P, t+%.83+ ...... will be the

tension at Q.

Let the natural length of AP be &, of 4Q, s'+ 3¢, e the
coefficient of elasticity.
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Then 88 = 8¢'(1+et),

where ¢ is intermediate to the tensions at P and @, provided PQ
be taken sufficiently small ;

therefore, taking the limit, ;—1; =1+ et

Also resolving the forces which act on PQ along the tangent
at P, u being the mass of a unit of length of the string in
its natural state, we have ultimately

dt dy ds'
ds s ds
d
(o) T =g,

an equation from which ¢ may be determined.

5. If a particle be moving in any path, straight or curved,
and, at the time ¢, s be its distance measured along its path
from a fixed point; shew that % is a measure of the accele-
rating force in the direction of motion.

If the position of a particle moving in a plane be deter-
mined by the coordinates p and ¢, p being measured from
a fixed circle along a tangent which has revolved through an
angle ¢ from a fixed tangent, investigate the following ex-
pressions for the components of the accelerating force along
and perpendicular to p respectively, (the latter being considered
positive when it tends to increase ¢):

d'p de\* d'¢ 1d/,dp do\*
W"P(Ei> tew , dt(P )+a(dt)

After proving the first part of the question we may state
at once, that if # and y be rectangular coordinates of a particle,
the accelerating forces parallel to the axes of = and y are
d'z d’

7 and respectxvely

Let t’ne centre of the fixed circle be the origin, and a line

parallel to the fixed tangent be the axis of «: then

x=asing +pcosp, y=—acosg+psing;



-

9-12.] RIDERS. 139

dx dp  dp dg
therefore 7= (a 7T dt) cosp —p - .sing,

T e (B o
(e (@) 4% F e e

dy ( d¢  dp do
= {dt""d P( ).}““‘4’

d¢ dp d¢ d’¢} .
+{“(Tiz) 2% a TP o
d'x dy .
therefore force along p = 77 08¢ + =z sing
d§¢ d¢ 2
a7 dt’ —f (712) 1

force perpendicular to p = %:,'Z cos¢ — d_i_m sin ¢

(dq,) +2 dp d¢ d'p

at GdatPr

(3150 %)

6. State the laws which regulate the magnitude and the
direction of statical and of sliding friction.

Two equal bodies lie on a rough horizontal table, and are
connected by a string which passes through a fine ring on the
table; if the string be stretched, find the greatest velocity
with which one of the bodies can be projected in a direction
perpendicular to its portion of the string without moving the
other body.

Dynamical friction acts in the direction in which the body
is moving; statical friction acts in the direction in which the
body tends to move, that is, the direction in which the body
would begin to move if there were no friction.
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Suppose that when the one body is projected the other
remains at rest; friction will act on the former in the direc-
tion perpendicular to the string, on the latter in the direction
of the string.

Let m be the mass of each body,

w the coefficient of friction,
r the length of string between the ring and the pro-
jected body,
V the velocity of projection,
T the tension of the string :
gsince one body is at rest the other body describes a circle, and
since friction acts on it in a direction perpendicular to the string,

T=m—;

but in order that the other may continue at rest, the tension
and friction must be equal, therefore the temsion must not
exceed the greatest possible friction, that is,

V‘
m— 3 pmng;
therefore V* P ugr.

The velocity is always decreasing, in consequence of the
friction on the moving body; if therefore the other body do
not move at first it will not move at all.

9. Having given the index of refraction between the two
media 4 and B, and also between the two 4 and C, shew
how to find that between B and C.

The index of refraction (u) in a medium varies from point
to point, being a function of the distances = and y from two
planes at right angles to each other; a ray traverses the medium
in a plane perpendicular to these two planes; if logu = f(x, ),
prove that the curvature of the path of the ray varies as

Fe Y- o2,

Let P (fig. 82) be a point in the path of the ray, PT its
direction at that point, AN =2, NP=y; at P let the ray
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pass from a medium whose index is ux, to one whose index
is u + 8u, and the direction be consequently changed to P7":
let PG be the normal at P to the surface of equal density
passing through P. Then

sinGPT p+ 8u

sin GPT~ u °?

cos TPT" 4+ cot GPT" .sin TPT = 1 + £ 8"

or, taking the limit,

cot GPT. diz. (ton %)

du
* da

I

%.!&‘ 'El)-‘

(logu)
=f@) +f ) 2
Now, cot GPT = cot (PG — PTx),

b)) Y.
and tan PG =725 s ta.nPTa:—d—Z,

L4 L) v

therefore cot GPT = W;
' Yy _ %Y

S0 R
o -red 1+(@)
=g
:(Z—,!;Sl:f@)—f(z)%’

1 v\ Y, dx

z- ~f@ G- F

T
or the curvature varies as f’(w)%—f’(y)%
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12. Describe the reading microscope of the mural circle.
What are ‘Runs’? Shew that the effects of the eccentricity
and irregular form of the pivot are eliminated by taking the
sum of opposite Microscope-readings corrected for Runs.

The effects of eccentricity and of the irregular form of the
pivot in the mural circle are of exactly the same kind, viz.
displacing the circle, parallel to itself, from the position which
it would have had, when the telescope was pointed to the same
heavenly body, if its pivot had been truly conical, and the
axis of the pivot had passed through the centre of graduation.

Now, if there be two microscopes opposite to each other,
that is, having their axes in the same straight line, the two
points on the limb actually observed through the microscopes
will be at the extremities of a certain chord of the circle,
while the points which ought to be observed are at the ex-
tremities of a parallel chord; but the two arcs contained be-
tween parallel chords of a circle are equal; therefore the error
of one reading in excess is equal to the error of the other in
defect ; these errors are therefore eliminated by taking the sum
of opposite readings.

The necessity of correcting for runs arises from the fact,
that the errors of runs at two microscopes have no tendency
to compensate each other. The error of runs may be kept
within convenient limits by properly adjusting the distance of
the microscope from the limb; but so long as there is any
eccentricity, or any irregularity of the form of the pivot, this
distance will necessarily vary, and the error of runs will con-
sequently exist. And when the error exists, the value of the
correction to be applied depends upon the number of minutes
and seconds which are read off at the microscope in question:
for example, if the error for 5’ be 5", the error will be 1" for 1/,
2" for 2, and 80 on. Hence it is impossible to give any method
for eliminating these errors: they must therefore be separately
corrected for.

14. What is the greatest value of the inclination of the
Moon’s orbit to the ecliptic, for which there would have been
a lunar eclipse at every opposition ?

e  me
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Find the lunar ecliptic limits; and determine whether there
was or was not an eclipse of the Moon on the 31st of March 1847,
from the following data, selected from the Nautical Almanac:

The Sun’s The Moon’s
Semidiam.| Longitude. | Semidiam. IPn.raI]nx Longitude. | Latitude.
Mar. 31. Noon | 16'1”.3 |10°9'18".3| 14'44”.3 |64’ 5”.0/185°6'16".2(1°10'27".1
Midnight| ...... een... o| 1445”.8 |64'107.6(191°63'11".3(0°37'65".6
Apr.1. Noon | 16'17.0 [11°8°26".1|.. .. ... .| coviua]feeernernid]ivnennes

1847.

Apr. 1. Sun’s parallax 8".58, longitude of Moon’s ascending
node 199° 26'.2.

In order that there might be a lunar eclipse at every op-
position, it would be necessary that
the greatest distance of the} the least value of the sum of

, .
Moon’s centre from the ecliptic % ( the Moon’s radius and the ra-

dius of the Earth’s shadow :

_ (the inclination of the Moon’s

but the greatest distance of the {
~ (orbit to the ecliptic;

Moon’s centre from the ecliptic

the Moon’s orbit to the) not ( dius and the radims of the

therefore the inclination of] must [ the sum of the Moon’s ra~
ecliptic exceed | Earth’s shadow.

From the numerical data the difference of the longitudes of

the Sun and Moon was

175° 46’ 57".9 at noon

181° 14’ 19".1 at midnight} on March 31.
Hence the separation in longitude during twelve hours was
5° 27’ 21".2,

In this interval the Moon’s longitude increased by 4° 35’ 53".3,
and the Moon’s longitude at opposition was 190° 32’ 9".5. But
the longitude of her node was 199° 26' 12"; therefore the dis-
tance of the Moon from her node was 8° 53’ 52".5.

Now (Hymers’ Astron., Art. 425) if the Moon’s distance
from her node when she is in opposition be less than 9°, there
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must be an eclipse; therefore on the 31st of March, between
noon and midnight, the Moon was eclipsed.

If the distance of the Moon from her node had been between
9° and 12° 36', we should have been obliged to calculate the
exact value, under the given circumstances, of the quantity
whose greatest and least values are 9° and 12° 36'.

Moxnpay, Jan. 16. 1%...4.

2. SHEW that all the roots of the following equation are
possible : |

] 3 ] 2
4, + 4, + 4, F oeenne +-i11—=1.
z—a, x—a, x-—a z—a,
If possible, let z = u + v 4/(—1) ; then
A. Aﬂ' a—
s e toveD fasareven T =1,
A¥fu—a —v4/(—1
o ST T—
and therefore

4! 4!
vv(—l)'{@—a,‘)'+'v'+(u—aj"+v"+ ...... }=0,
which shews that v = 0, and therefore establishes the pro-

position.—Liouville: Journal de Mathématiques, 1838, p. 337.
The same thing is true in relation to the equation
2 2 2 2
4, + 4, + 4, + oeeeen + 4, = A+ pu'z.
xr—a x—a, x-—a z—a,

8
Liouville: 754d.

8. If a + B #/(— 1) be a root of the equation
L +gx+r=0,
prove that a is a root of the equation
82’ + 2qx — r = 0,

i
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Since a + 8 4/(—1) is a root of the proposed equation, we

have
fa+BV(=1)}+ gla+BV(=1)} +7r=0,
whence
@ +3a'BN(—1) - 38— B V(- 1) + ga + gBWN(—1) + r=0.
Hence e’ —3a8' + qa + r =0,
and 3" -8 +¢=0.

Eliminating 8 between these equations, we sce that
a'- 3a(3a"+¢) + ga + r =0,
8a’ + 2ga — r = 0,
or that a is a root of the cubic
82° + 29z — r = 0.

5. Prove that the series tana — §tan’a + }tan’a — ... ad inf.
is equal to nw + a, where n is zero or such a positive or nega-

tive integer as will make nm + a lie between "—; and — 7—;
Shew that, whatever positive integer m be, if

2 1 2 .,
?=Gmrn= 3" *73?
is a very approximate solution of the equation tané = 6.

As 0 changes from mm to mm + g,

tanf ................ 0 to oo continually;

therefore, at some intermediate value of @, tanf = 6 ; and since
in this case the arc subtended is equal to the linear tangent,

the angle must be nearly m=r + "2—", and more nearly the larger

integer m is.

Let 0=m1r+7§r'—a
=é —a, ¢ anda being small;
1 ™
A (F-a) = ooty
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. tana = ¢ + a¢ tana,
a = ¢, for a first approximation ;
‘. tana = ¢ + ¢", nearly,
and a = tana — }tan’a, .........
= ¢+ ¢ - 44"
oo 0= %— ¢ — $¢°, nearly.

6. Investigate the condition of perpendicularity of two

straight lines whose equations are
Az + By+C=0, A+ By+(C =0.

Shew that, if the axes be inclined at an angle o, the con-
dition that the straight lines may be equally inclined to the axis
of z in opposite directions, is

B B _,
z + I = 4 COS®.

If, besides being equally inclined to the axis of , the
straight lines pass through the origin and be perpendicular to
one another, the equation of the straight lines is

o' + 2zy cosw + y* cos2w = 0.

Let 6, m — 6 be the inclinations of the straight lines to the

axis of x.
g__sin(m—ﬂ)
4 sin @
= — sinw cotd + cosw,
g= sinw cotd + cosw;
. B B'__2
RN Z+I-—— COB .

If the straight lines be perpendicular and pass through the
origiph C=0=C", and
AA' + BB' — (AB'+ B4') cosow = 0;

%+1—(§:+—§)wsm=0,

— -

L
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BB
A4

B

and =-1 +2cos’m=cos2¢b;

and ﬁ: are roots of the equation
2" — 2 coswz + cos2w = 0;

*. replacing 2z b —g,

x* + 2y cosw + y* cos2w =0

is the equation of the two lines.

7. Investigate the equations to the tangents at the extre-
mities of two conjugate diameters of an ellipse whose equation is

« 9

e + r =
the coordinates of the extremity of one of the diameters being
given.
In an ellipse SQ and H(Q, drawn perpendicularly to a pair
of conjugate diameters, intersect in @; prove that the locus of
@ is a concentric ellipse.

Let CP, CD be semi-conjugate diameters of an ellipse,
«', y' the coordinates of P.
Then the equations to the tangents at P and D will be

a:a; ’ ’

yb—"{—l and yx' — 2y’ = ab;
therefore the equations to the perpendiculars drawn from 8§
and H on CD, CP, which are parallel to these lines, are

! x’
(@ + ae) %—y;ﬁ:(”

and (x—ae) 2 +yy =0.
And eliminating a'y’ to find the locus of @,

o — a'd

AL LA RS
the equation to a concentric ellipse.

L2
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8. Shew that the locus of the poles of all tangents to a
given circle, with respect to another fixed circle, is a conic sec-
tion, whose directrix is the polar of the centre of the first circle.

Employ the method of reciprocal polars to shew that, if three
ellipses have one common focus, and pairs of common tangents
be drawn to the ellipses taken two together, the three points of
intersection of these pairs of tangents lie in a straight line.

Corresponding to each ellipse is a circle,

..................... a tangent to each ellipse is & point in the
corresponding circle,

..................... each common tangent to two ellipses is a
point of intersection of the two correspond-
ing circles,

..................... intersection of the two common tangents is
the common chord of the two circles ;

and since three common chords intersect in one point, therefore
the three points of intersection of the pairs of common tangents
lie in one straight line.

10. Investigate formule for the transformation of coordinates
in passing from one system of three rectangular axes to another
having the same origin.

Shew that the equation of a surface yz + sz + ay = o’ may
be reduced to the form

oz — g ;— L a’.

The surface is evidently symmetrically placed with respect
to a line equally inclined to the three coordinate axes; if there-
fore such a line be one of the axes of a new system, the equation
will assume a symmetrical form with respect to the axis.

This will be effected if we first turn the axis of y and =
through 45° in their own plane,

or for y write

and for z write
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and then turn the axis of = and y through the angle cos"l‘/l—?’,

or sin”'4/3, in their own plane.

. . x — 2
t.e. for x write —jgl/—— ,

. V2 +y
and for y write VR

The result of the first substitution is
y" —_

2 .
+ xy N2 = o,

2
and of the second
(y+av2) 20@-y)—ayv2_2_ ,
6 3 2 !
2
or w,,_]/‘+z =a',

2

11, If A, B, C, be extremities of the axes of an ellipsoid,
and A4 C, BC be the principal sections containing the least axis,
find the equations of the two cones, whose vertices are 4, B,
and bases BC, AC respectively: shew that they have a
common tangent plane, and a common parabolic section, the
plane of the parabola and the tangent plane intersecting the
ellipsoid in ellipses the area of one of which is double that of
the other; and, if / be the latus-rectum of the parabola, , . of
the sections 4 C, BC, prove that

1 1,1
'P—ZT.+Z:,.
The equations of the base BC are
z’l
a!=0’ %—:-’-?:1 ..................... (1).

Let the equations of a generating line be

rT—a Yy =2

i = = —iiiiieeeessnsenssesanee (2),

at the point of intersection with BC (1) and (2) are simultaneous;
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Similarly, the equation of the cone, vertex B, is
& & (y=-b)r

Fre="7

These surfaces intersect where

& ¥y (z-a\' (y—b\’
25—+
=(_2\ (¥, 2_
_(b a)(b+a 2)s
therefore, where "5 = % ............................ (3),
or §+%=1 ........................... (4),
2y Py
where a=3 F=1-7

or the projection of the curve of intersection is a parabola, so is
therefore the curve itself, where
z +_% =1 2'=0,

or the plane denoted by (4) is a tangent plane, since it only
meets either surface in a generating line. Whence the two
properties are established. ’

The planes (3) and (4) are inclined at the same angle to the
plane of az, and the equations of the projections of their inter-
section with the ellipsoid, whose equation is

a:*y' -1,

b! 2
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. are - + =1 .. (5),
22" 2 z'
or 2= i—?, (22 o) N (6).
The half-axes of (5) are ~/2, ¢, and of (6) 3 «/2,

therefore one area is double of the other, and the same is true of
the areas of the equally inclined curves of intersection.
The secant (fig. 83) of the inclination of the plane (3) to
that of xz is
V ( al + b’)
a

and if DC be the parabolic section, MP an ordinate,
a N a®+ b
DM = (-2- - a:) Vi@ +8) ;

’

a
. s _ 2 .
o P = e DY
.1 a4+ ¥ l 1
. lr _"‘—4_ lu

Or we can shew the geometncal properties thus: The cones
have a common generating line 4B, and the plane through 4B
parallel to OC, which touches both sections BC and AC, is a
tangent plane to each.

Also, all plane sections parallel to DOC, since OD is parallel
to a generating line of each cone, are parabolic sections; there-
fore, DOC must be a parabolic section.

Again, all parallel sections of an ellipsoid are similar ellipses;
therefore, the section of the ellipsoid by DOC being equal in
all respects to the sections through OC parallel to B4, the
areas of the sections by DOC and the tangent plane through
AB are as AD' : o*, a being the half-diameter conjugate to 0D,
and AD? = o — AD, since the conjugate diameters are equal ;

o= 24D

and the areas are one double of the other.
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12. Prove that, if p, ¢, r, be the lengths of arcs of great

circles drawn from the angles 4, B, C, of a spherical triangle .

perpendicularly to the opposite sides,
sina sinp = sind sing = sinc sinr
_ = (1 — cos"a — cos"d — cos’c + 2 cosa cosb cosc)t.
By the formule of spherical trigonometry,
8inp = 8INC.8IMNB.ccreriiniiniriiiiiininieaninnes (1),
cosd = cosc.cosa + sinc.sina.cosB.......... (2).
From (1) and (2)
(co8d — cosc . cosa)* + sin’p . sin’a = sin’c. sin’a,
sin‘a . 8in"p = sin’c. sin’a — cos'd + 2 cosa cosd cosc — cos'c cos’a
=1 — cos’a — cos'd — cos’c + 2 cosa cosb cosc,
whence, by symmetry,
sina sinp = sind sing = sinc sinr

= {1 —cos’a — cos"'d — cos’c + 2 cosa cosd cosc}t.

The equations sina sinp = sind sing = sinc sinr may be
proved also thus.
From (1) and the analogous equation

gind = sina sinC,

sinp sinc sinB sinc sind sind
we have 0 S A S e =

sing sing sinC sina sinc sina
and therefore, by symmetry,

sina sinp = sind sing = sinc sinr.

TuEspAY, Jan. 17. 1}§...4.

4. Determine the motion of a planet in geocentric longitude,
and shew that all planets will sometimes appear stationary to
an observer on the earth.

.~
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If m be the ratio of the radius of the Earth’s orbit to that
of an inferior planet, » the ratio of their motions in longitude
considered uniform, shew that the elongation of the planet as
seen from the Earth, when the planet appears stationary, is

equal to
ta.n"( ];m’n’) .
m —1

Let 8, E, P, (fig. 84) be the positions of the Sun, Earth, and
planet at the time when the planet appears stationary, E’', P’
the positions of the Earth and planet immediately afterwards:
then EE’, PP’ may be considered coincident with the tangents
at £, P; and since the planet appears stationary from the Earth,
EP is parallel to E'P': also the orbits must be considered
circular, since the motion in longitude is uniform: produce the
tangents at E, P to meet in 7.

TP: TE:: PP : EE':: t PSP’ : m.L ESE'
21 mn.
But 7P: TE:: sinTEP: sin TPE :: cos SEP: — cos SPE,

—cos SPE
cos SEP ?

s 3 _ co8'SEP - cos'SPE
therefore 1 —m''= w0 SEP .

_SE _sinSPE
=8P = smSEP’
sin® SPE — sin® SEP
s’ SEP
_ cos'SEP — cos' SPE
= s SEDP ’
1 — m'n* _sin’ SEP
or m —1  cosSEP’

mn =

Also

m'—1=

— i
and SEP the elongation = tan™ «/ (lm*inr ) .
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5. Determine the motion of a particle acted on by given
forces, and constrained to remain on a given surface.

A particle is in motion on the surface whose equation is
2z = ¢(z,y), and is acted on by a constant accelerating force
J parallel to the axis of z; if v be the velocity of the particle,
and its path be always perpendicular to the direction of the
force, shew that, at any point of its path,

dz\* (dz\"*
P {(Zr,) + (d_g) }
PRy I L Ty
dx' \dy dedy de dy  dy* \dx
If R be the pressure of the surface on the particle, in the
direction of the normal whose direction-cosines are [, m, n, the
equations of motion are, M being the mass of the particle,

d‘
M_dt’_Rl
d‘
ME,-—Rm,
d’
——Rn+Mf,

but the path of the partlcle being always perpendicular to the

direction (:f the force, z is constant throughout the motion, and
% =0, ‘;—t,- = 0, and the equations become

d’
W=_f"=f%’
d*
y f_—fdy
Also, sinoeg=o, .
de\' | (dy\' _ dz dz  de dy _
(E> +(&') =v awd @ aty ="
and therefore
ds dz
dx dy dy_:F Y Iz

B G2y i 2 I3

e > =

A e oveseee—— . -
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. . . . dz do de dy _
Also, differentiating the equation = & + dy 7= 0, with
respect to ¢,
d’z (tl_z)’ g &% d'z dx dy d’z (dy
dx* dedy dt E dy* ( )
dz d'z + & dz d% —0;
tom Ty dt’
dy d'x d%

@ o g

m{“(%)-2¢%%%+%(%)} |
- +f{(i_z>v+ (Z_;)r}=0’

dz\*  (dz\")*
oo fEredy
Frde &) -2 e & d= &
dx’ " \dy dedy dx’dy ' dy* \dx
The different sign depends on the direction in which f is
estimated.

or substituting for

or

8. Define the principal axes of a rigid body, and shew that
for every point in space there exists a system of such axes.

Shew that in general there is only one point for which the
principal axes are parallel to those drawn through a given
point; but that, if the given point be in one of the principal
planes through the centre of gravity, there is an infinite number
of such points lying in an hyperbola which passes through the
given point.

Let the rigid body be referred to axes through the centre
of gravity, parallel to the principal axes through the point
whose coordinates are a, 8, «; therefore x, y, 2z, being co-
ordinates of a particle in

Em(x—a) (y—B) =0,
therefore, since Z(mx) = 0 = Z(my),
2 (maxy) = Maf3.
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If E, 9, & be coordinates of a point for which the principal
axes are parallel to the given axes,

2 (may) = MEn ;
therefore En=af
similarly, n¢ = By } ........................ ().
and : CE=va

If a, 3, and v be each different from zero,
=-a n=-—0, and {=—q;

or there is only one other point equally distant from &, and
in the line joining G' and the given point. |

But if they be not all different from zero, let y =03
therefore 3(myz) = 0,
and S(mzx) = 0; |
therefore xy is one of the principal planes through G': and i
in this case the equations (1) are satisfied by

{=0 and fp=af; ‘

therefore all points in the rectangular hyperbola represented by
those equations satisfy the required condition.

WEDNESDAY, Jan. 18. 1%...4.

3. If f(x) be a continuous function of x, shew that, when
x increases, f(x) increases or diminishes according as f'(x) is
positive or negative; deduce tests which are sufficient for dis-
tinguishing between the maximum and minimum values of f(x),
supposing them to exist for certain values of . '

Find the least triangle which can be described about a given
ellipse, having a side parallel to the major axis.
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The triangle (fig. 85) is evidently isosceles.

Take the side parallel to the major axis to touch the ellipse
on B,

Let a, b, be the } axes,
xy the coordinates of P, the point of contact of one of

the sides,
E the vertex.
ce=%,
¥y "
B'D z::B'E:;—y
2 2 2
b+ -b.-;é_:.'_.
Y Yy

2b:b—y;
area of triangle = B'D.B'E,

x b4y,
b-y" gy’
]
therefore z_: . (b +y ) is a minimum,
y \b-y
and b -y et b
therefore L4y’ is & minimum ;
y'(-9)

3 2 1
Er RS
changes sign from — to + as y increases;
therefore (4b—-2y)y —2(0"-y") =2b(2y-d)
changes sign from — to +,

therefore

which happens when Y=z

or CE = 2BC.

Otherwise. Since an equilateral triangle is the least triangle
circumscribing a circle, in which case the height of the triangle
is 38 times the radius, project both on a plane inclined to the
plane of the triangle through one side, and the projection of
the triangle is circumscribed round that of the circle, which
is an ellipse, and the height of the triangle is 3 times the
minor axis.



158 SENATE-HOUSE PROBLEMS AND RIDERS. [Jan. 18,

4. If 2*f(y) contain all the terms involving the highest
power of z in the rationalized equation of a curve, shew that
S(y) =0 is the equation of all the asymptotes parallel to the
axis of .

If the equation, arranged in the form of a series of homo-
geneous functions of descending order, be

a:’:f(‘:{:) + 29 (%) F—Y

and f(z) = 0 have two equal roots different from zero, each
equal to a; shew that, if » = 1, there is a parabolic asymptote
whose equation is o0
s _ . —2¢(a),
(y u) = f"(d) )
and, if » = 2, there are two parallel rectilinear asymptotes whose
equations are
—26(a)s

ymes {7

Divide the equation by 2", and the result is f(y) + terms
involving negative powers of z.

The curve is satisfied by the system of values
z=o and f(y) =
therefore, f(y) =0 is the equation of a series of all straight
lines parallel to the axis of x, which meet the curve at an

infinite distance, or is the equation of all the asymptotes parallel
to the axis of .

Let a be a root of f(z) =0, and let y =az + ¢t at every
point of the curve;

wf(a+£)+:v""¢ (a+£>+ ...... =0,
and f(a) + f'(a) = +f"( —)f—.+:?¢(a+—;)+...=o,

6>0<1.

If now £(z) = 0 have two roots = a,

f(@) =0 and f'(a) = 0;
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 f ( +6- ) ta+a:"¢(a+ )+ w=0.
If possible, let @ be taken indefinitely large.

I If r=l
F1@ 5+ ool =0,
— 224(a)
and o — 10 @) H

“ (y—ax)? =a:.——72,,%‘9

is the ultimate relation between « and y at an infinite distance.
Or the curve ultimately coincides with a parabola of which
y = ax is the equation of a diameter.

IL If r=2,

iyt ’
@)t =—e@;
R o 10
y-m - {7
is the equation of two straight lines which are asymptotes to
the curve.
To trace the curve whose equation is
wy (y—a) - ay’ = a’.
When z=0, y=—a,
x cannot be negative for positive values of v ;

# —a=0 is the equation of the asymptote parallel to the
axis of y (1), y =0 to that parallel to the axis of = (2).

Let y—x=t;
therefore xyt' — ay’ = a*;
therefore, when « and y are very large,

o't — ax’ = 0;
therefore (y—2)=

is the equation of a parabolic asymptote (3).



160 SENATE-HOUSE PROBLEMS AND RIDERS. [Jan. 18,

To find on which side of (1) the curve lies, retain terms
to order y';

therefore (x—a)y’ — 22"y = 0,
2
and r=a+ 7
Similarly for (2), ,
yz’ — 22y = a',
a‘
Y=

therefore the shape of the curve is that which is given in
fig. (86). °

5. If r, 6 be coordinates of a point in a plane curve, and
¢ the angle between the radius-vector and tangent at that
point, prove that
do
z .

8, H are two fixed points, and a curve is described such
that, if P be a point in it, the rectangle contained by SP
and HP is constant ; shew that the straight lines drawn from &
at right angles to SP and from H at right angles to HP meet
the tangent at P in points equidistant from P.

Let T, T" (fig. 87) be the points in which the straight lines
so drawn meet the tangent at P, SP=», HP=r'.

cos¢=%:, and sing =7~

Then cosSPTz%, cosHPT:%’—;,
SP r
ds
. HP 7
T '_'cosHPT'_ d_r_"
T ds

but, since 7' is constant,
dr' , dr

'I‘E"FT $=O,

S - Y
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!

r _ r
or z;—— i)

ds ds

PT = PT".

6. Trace the curve whose equation is

=1 - tané.
r
‘We find that
d_0_____1—tan0_ and r’f@————a
Tdr = 1+tan'0 dr = 1+tan'0’

when 0 =0, r=a, rj—f: 1, and the curve cuts the prime
radius at an angle g;

when 0>0<1Zr,-

r is positive and changes from 0 to o, and when 6 =£r-,

dd a ..
T’E =5 giving an asymptote;
™ ™

0>Z <§,

r is negative and changes from o to 0, and when 6 = g,

~ ?Tg =0, or the curve passes through the origin in a direc-

tion perpendicular to the prime radius;

0> g <,
r is positive and changes from 0 to a, when 0 =, r ‘fi—f =1,
and the curve again cuts the prime radius at an angle l—r

Since tana = tan(w + a), the remaining portion of the curve
from @ =m to @ =2m is precisely similar to that already dis-
cussed, and the form of the curve is that given in fig. 88.
‘ M
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O being the originy, 04 = 04’ =a,

0B=0B =,
0C=00C= 42,
AL the branch from 6 =0 to 0—1-
ks ks
MO ....cavnvvvieninnn. 0=z to 0=§,
1) 3 0=t 0=,
and so on for the other quadrants.

8. State between what limits the summation of dxdydz
should be performed, in order to obtain the volume contained
between the conical surface whose equation is &’ + ' = (a— 2)*
and the planes whose equations are # =2z and #=0; and find
the volume by this or any other method.

Integrate
from e=MQ=2x to 2= MP=a—(z'+y"), (fig. 89),
from y = — BN= — y/(a'—2az) to y =+ BN =+ +/(a*— 2ax),
R being the projection of 8 on 0AB,

and from =0 to w=OE=g.

The section of the cone by the plane #=2 is a parabola,

Being parallel to the opposite generating line.
The area of the base of the required volume

2
=-.2a. V ) .
henght ~/2 3
12 a a
therefore the volume required = 3320 2V
2a°

9}
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or, performing the integrals,
volume required = ffd:c dy {a—z— (' +3")}

e Ll G A T

=f'",zw{2(a_m) V(a" - 2az) ~ (a—2) v/(a"— 2a2)
0 _B’l.a—a:-l- i(a’—z’az)};

and, if 1—»—‘-z—=z’,
or —%”:zdz
s 1+2° (=1, 142"—22
_afozdz{ g %~ A = }
} . . 1+z
=azj {2z(1+z)—z(z’ 1)1, },
and fzdz(z—l)'l,lf: s@-1rL 1t

s g 2dz

_gf(z-l)'l_zi?

. l+z 1 22°  2°\t_

o [rre-iiEiegfu-era = g(e- T+ 7))
therefore volume reqmred

a2 2
z{§+3“
4¢3 9
@l 1 2q"
§{§+§}=?-

9. Give a geometrical interpretation of the sing;ﬂa.r solution
of a differential equation.
Investigate the singular solution of the equation

Sy'(%)“—2my%+ 9y — a* = 0,

1 2 1
§+§‘I5}
1

3

M2
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and shew that it is the envelope of a series of circles described
on the subnormal of a rectangular hyperbola as diameter.

V=28yp'— 2ayp + 9" — &' =0,

14
o = 19p — 2oy =0;

and eliminating p,
: zyp — 2zyp + 9y' — &' =0,
9" — o - % =0,
z* =8y’
v
Also @ = 160" —22p + 18y
= 18y;
therefore «' = 8y" is a singular solution.
The equation of a rectangular hyperbola being
-y =a,

the subnormal = § at a point (£, »).
The equation of a circle on this subnormal is
8E\' L .o (EY.
(=-3) +v=();
therefore, performing the operation for determining the locus of
the ultimate intersections,

4§ = 3x;
therefore the equation of the locus is
z\* . 92"
)+ =%
or 8y' = o,
the singular solution of the differential equation.
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10. Shew that the differential equation of all surfaces which
are generated by a circle, whose plane is parallel to the plane
of yz, and which passes through the axis of = and through two
curves respectively in the planes of 2z and xy, is

W+t +2(—yg) A +g) =0
Let the equations of the two curves be respectively
Y=0, 2=0(2)ccrieriiririncnnn. (1),
2=0, Y=P(@)ricririciiiiennrnn (2).
The equations of a generating circle
¥+7—-By—qz=0,
x=a;

and since this circle meets the curve (1),

7 (@ =m,
similarly (@) = 8;
therefore the equation of the surface generated is
Y+ —yY@y—P@z=0....... (3);
therefore 20+ 229 —Y(x) —p(®) g =0 cerreurrnnnn (4),
2+ 2¢" +2¢%t — P(@)t =0 cerrrnennnnn (5),

and eliminating the functions by cross-multiplication,

P+ t—2(y+29) yt+2(1+¢" +29t) (yg—2) =0;
therefore (+2)t+2(1+¢") (2—yq) =0.

11. Find the general functional equation to surfaces gene-
rated by the motion of a straight line which always intersects
and is perpendicular to a given straight line.

If the surface whose equation referred to rectangular co-
ordinates is

ax’+ by +c2' +2a'yz+2b' 2+ 2¢'wy + 24"+ 20"y + 2¢"2+1 =0,
be capable of generation in this manner, shew that

a+b+c=0, aa”+Bb5"+ oc® =2ab¢ + abe.
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If the equsation to the given straight line be
_y-b_z—c

I  m a
the general functional equation to such surfaces is

om - R

(Gregory's Solid Geometry, Art. 206),
= ¢(3) suppose

a+B(%+e(d)+

4 +B’( ) rol® )

Now, u, v being linear functions of =, y, 2, if the surface
be of the second order, this must become of the form'

A+ B~
v

?

?
a+B"
v

and the equation to the surface will be

(ke + my + nz) (A'v+ B'u) = Av + Bu,
or

(le+ my +n2) {4'(nx—lz)+ B'(ny—mz)— A’ (na—lc) —.B'(nb—mc)}
= Av + Bu.

This being coincident with the given equation of the second
order, we must have, A being some factor,

Aa=Anl, \b=DB'mn, Ae=— A'nl— Bmn;
therefore A(a+d+¢c)=0, or a+d+c¢=0,
since A =0 would destroy the whole.

The second condition may be obtained from the values of
the coefficients, but may be inferred from the fact of the ge-
nerators being all parallel to a fixed plane, and successive
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generators not intersecting, so that the surface must be a hy-
perbolic paraboloid, the condition for which is
aa”™ + bb" + cc* — abc — 2a'0'¢’' = 0.
Obs. The equation to this surface may be reduced to the
form y* — 2* = lr.

THURSDAY, Jan. 19. 13}..4.

5. INTEGRATE the equation

i)
%=w"%—2m‘%+2m"v.
2
Hence "%+%w—1=0’
dv v
wta="

v=my=0’sin(§+0),
where C and (' are arbitrary constants.

5. Obtain a general expression for () from the equation
Y@ +y(1-2)=c.
This equation is & particular case of the equation
Y(@) +ap(1—2) + (a—1) (&) =c......... (1),
when a =1, ¢(x) denoting an arbitrary function of .
In the equation (1) put 1 — for @: then ‘
Y(1—2a) +ay(z) + (a—1) p(1—2) =c...... (2).
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Eliminating ¢ (1 — ) between (1) and (2), we have
(@'—1) (=) + (a—1) {ap(1-2) - (@)} = (a—1) ¢

be) = o lo+ (e — ap(1—2)
Put a=1: then

¥(@) = ${$(z)- (1 -2) +d},
which is a general expression for  (z).

6. A lamina, in the form of a semi-ellipse bounded by the
axis minor, is moveable about the centre as a fixed point, and
falls from the position in which its plane is horizontal ; find the
pressure on the fixed point for any position of the lamina, and
determine the impulse which must be applied at the centre of
gravity, when the lamina is vertical, in order to reduce it to rest.

If this force be applied perpendicularly to the lamina at the
extremity of an ordinate through the centre of gravity, instead
of being applied at the centre of gravity itself, about what axis
will the lamina begin to revolve ?

If the axis minor had been a fixed axis, the pressure of the
lamina on the axis would, by symmetry, have passed through
the centre; therefore in the actual case, when the centre only
is fixed, there will be a pressure at this point, and the lamina
will revolve about the axis minor.

Let 0 be the angle described at a given time,
k the distance of the centre of gravity from the axis

minor,

MFE” the moment of inertia of the lamina about the axis
minor,

R, F, the pressures on the fixed point, parallel and per-
pendicular to the lamina ;

then the effective forces on a particle ém, at a distance » from

the axis, are o0 7o
m.r (E)’ and &m.r = ,
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respectively parallel and perpendicular to the lamina ; therefore,
by D’Alembert’s principle,

d b}
R = Mg sinf + E{Smr(jf)}

2
= My sin + Mh ("—") ..................... ),
dﬂ
F=Mgcosf—3 (sm o
= Mg cos@ — Mkzt,a .............. corsrasens 2);
S (3mg cosf.r) = (sm%g. oF
ACA
Mgh cos @ = ME® —3 JE e (8).
From (3) d"’) LAY SO e (4),
the constant being omitted, because %g = 0, when @ = 0; there-
P a6 d ',
ore, substituting for T and E , in (1) and (2), and ob-
2
serving that 4 = %mdk”:%,

R=Mgsin9(l+2;:,) qu1n0(1+;i§)

F = Mg cos@ (1 ]f ) My cos@ ( ::,)

Let X be the impulse which must be applied to the centre of
gravity, when the lamina is vertical, in order to reduce it to
rest.

Let @ be the angular velocity at this time; then, by (4),
_ 29k
k’? ?
and the effective impulsive force on any particle dm at a dis-
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tance r from the axis minor is &m.wr; therefore, reversing the
effective forces, and taking moments about the axis minor,

=3 (dmer.r)
= Mk,

/2
X= M— 2qk - M }\/ k

31r
=M,\/——8-_qa .

Suppose this force to act at the extremity of an ordinate
through the centre of gravity, and apply two opposite forces
each equal to it at the centre of gravity: one of these will
destroy the motion of the lamina, while the other, together with
the force acting at the extremity of the ordinate, will form a
couple in a plane perpendicular to the axis major of the semi-
ellipse. Since the plane of this couple is perpendicular to a
principal axis of the rigid body through the centre of gravity,
its effect, if the lamina were free, would be to make it revolve
about this principal axis; and since the body is constrained
only by having a point in this axis fixed, it will in fact begin
to revolve about the major axis.

7. A thin uniform smooth tube is balancing horizontally
about its middle point, which is fixed: a uniform rod, such
as just to fit the bore of the tube, is placed end to end in
a line with the tube, and then shot into it with such a hori-
zontal velocity that its middle point shall only just reach that
of the tube : supposing the velocity of projection to be known,
find the angular velocity of the tube and rod at the moment
of the coincidence of their middle points.

Let m denote the mass of the rod, m' that of the tube, and
2a, 24/, their respective lengths. Let v represent the velocity
of the rod’s projection, @ the required angular velocity.

Then the vis viva of the whole system is me’ initially:
at the moment of the coincidence of the middle points it is

1
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{ma’e’ + im'a™e’. But the altitude of the centre of gravity
is the same in both cases. Hence, by the principle of vis viva,

my' = jma'e® + jm'a"w",
o 3mv*

T ma® + ma®’

Fripay, Jan. 20. 9...12. ‘
1. THE position of a point in space being determined by the
polar coordinates »', &, ¢', where & is the angle through which
7' has revolved from a fixed line Oz, in a plane which has re-

volved through an angle ¢’ from a fixed plane zOx: shew that
the equation to the tangent plane at a point 8¢ of a surface is

:—: = diié[r{sinﬂ cosd — sin@' cosf cos(p—¢')}]+ siné’ %—‘-& . %
Let the equation to the plane be
L= A 6in0 cos + Being sing' + C cosf ..... (1),
this being perfectly general.
Since this passes through the point », 0, ¢,
L= Asind cosd + Bein sing + C cosf ... (2).

Also, since the plane has a contact of the first order with the
surface at the point », 6, ¢, we must have

a0 =8 = g}

hence ——% %: A cosf cosp + B cosl sinp — C sind...(3),
-},.%=—Asinesin¢+3sinecos¢_ ............ ().

From the equations (2), (3), (4) we may determine 4, B, C,
and therefore the plane (1). :
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By (2) and (3),

1. 1 d .
1 1 4 .
and by (4), —,—,.m£=—Asm¢+Bcos¢;
_1. 1 dr 1 sing dr
_;smﬂcos¢—?.¢—i‘—9ws0ws¢+;,.m.z$,
1. dr 1 cosd dr _
B--;_smﬂsm¢—— docosﬂsm =7 snb 3P
and again, by (2) and (3), we get
1 1 dr
0’=; cosd + +5-3p- .8iné.
The equation to the plane becomes
” . . dr sing dr
7—mn0'cos¢ (rsmooos docosﬂ ¢+ =5 d¢)

+sin0’sin¢'(rsin0sin¢—gocosﬂ ing — eos:.g‘_;

+ cos@ {rcosf + Z—; . 8inéd
=7 {cos8f cos® + sin @ sin & cos (¢ — ¢')}
+ % (6ind cos® - cosf sin® cos (- $)}

+ g5 g - wn($ = #)
= 2 [r {sinfcoad — cosdsin &' con ($— )]
+ 350 - sn (- §).

2. If = be an integer, shew that

1), 9™ B
27{?"}“6‘1“"“ 123...9n '

B, , being the »™ of Bernoulli’s numbers.
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Shew, by Bernoulli’s numbers or otherwise, that

1 2t 3 . 2
SR R R S e b
1 2! .
Let P FriEEL T ad inf.,
log,P= 10,0;.(1 +1,)+ g.{l +(1}),}+log.{1 a7 }+ - ad inf.
r'-3.(0)*+3.(1)°~...... b
1 11 11
....(?—5.544-'3-.56— ...... ),
1 11 11
_(?—5.3—‘-4'5.—3—...“.),

1 1 .1 1 1 .
=—-(2‘:§—§.EI ‘+3.27?— ...... admf),
__[2Bx’_1 #Bx’ (-1 2B, "

- 12“ ‘Tesat -t o Taam

Let this = F(r), taking
2B, (-1 2B, o~

F(a:)=——1.‘2—+... o 1o.2n T
o Fl@)=— 2;1?2'” + f‘ffl Foort (1) % _—
or zF'(x) = — B‘1(22w)’ 11;2(2;?; vee + (~ 1)"?’?‘—‘3(—?%: + e
= - ;‘” -+1-3,
by the definition of Bernoulli’s numbers.
or Fla) == gy 45— 1
__e+1 .1
-1 =z
g,
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~ F(@) = - log(¢" — ™) + logz + logC
e —e
= - log( On ) ;
and when 2 =0, F(z) = “C=2

F(m)=- log = log P,
or P= 2‘"._, .
er—e¢
Otherwise,
1
inf=——— (NN 0NN
8inf = oY) (¢ € .

Also sin0=0{1—(gr).} {1_(%)'} {1-(?%)'} .. ad inf;

AN o8N

Te0y(-1)

- (o (] 1 (L o4 (D)) ..ty

put 84/(—1) = =, and this gives
T ) 2) () o

27 1* 2* 3 .
or e'—e"=l"+1°2’+l'3’+1'"adm'ﬁ

hence

3. Define the terms convergent and divergent when applied
to a series of quantities real or imaginary.
Investigate a rule which is ordinarily sufficient to ascertain
whether a series is or is not convergent.
Are the following series convergent ?
3 9 n + 1 &t
T At
1 + @ cosa + &’ cos2a + &c., where x is real or imaginary.

+ ..., where « is real ;

Let u+u+ ctu +.

2n+l

1 "+ ...

stand for the series —a:+ a:’+ +
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.. a2 +8 nt+1
Then 1 Yant
en limit limit Cwpra e prar wernr L)

=aj’

the series is therefore convergent if « be less than 1.
Again, the series 1+ xcosa+ «*cos2a + ...

i8 less than the series 14+ axz+2*+...

Suppose = to be real: this latter series is convergent if =
be less than 1; suppose z to be imaginary, and let

z=a+pV(-1),
the series is convergent if a* + 8* < 1.

In these cases, therefore, the given series is convergent.

7. Solve the differential equation for the vibratory motion
of the air contained in an indefinite cylindrical tube; and shew
that when such motion is produced by a vibrating plate placed
at one end of a finite tube, of which the other end is open,
if the period of vibration have a certain relation to the length
of the tube, it is possible for the character of the vibrations
to remain permanently the same.

If such a tube be sounding its fundamental note, what would
be the effect of making a small aperture in the side of the tube,
first at its middle point, secondly a little nearer to the open end ?

Suppose the fundamental note to be produced by a tube
open at one end, and having a vibrating plate at the other;
each end of the tube is a loop, and the middle point is a node.

Suppose a small aperture to be made at the middle point;
then, in order to maintain small vibrations, we must make
the period of the vibrating plate half what it was: there will
now be three loops, one at each end and one in the middle,
and there will be two nodes between them; the tube will now
sound the octave above the fundamental note.

Suppose the aperture to be made a little nearer the open
end; and suppose, as before, the period of the vibrating plate
to be so adjusted. as to maintain small vibrations: there will
now be a loop at the plate and a loop at or near the aperture.
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The part of the tube between the plate and the aperture will
be affected more or less by the part between the aperture and
the open end; the loop, which would otherwise have been at
the aperture, will be forced to retire a little towards the plate,
but not so far as the middle point of the tube, so that the tone
of the note produced will be somewhat flatter than the octave
of the fundamental note; the regularity of the aerial vibrations
will not be so perfect as before, and consequently the note
will not be so musical.

The above account is founded on the hypothesis that
the open end is a loop; but, as is well known, it is found
by experiment that, in the case of a tube open at one end,
the whole system of loops and nodes is shifted a little nearer
the open end than the places assigned by theory. Hence, in
order to allow the perfect octave to be sounded, the aperture
would have to be made at a certain point a little nearer to
the open end than to the plate; if it be made still nearer the
open end, the note produced would be a flat octave as above
described : if the aperture were at the middle point of the tube
an imperfect note would be produced, somewhat sharper than
the octave.

8. Find the difference of retardation of the two waves pro-
duced by a thin lamina cut from a uniaxal crystal perpendicular
to its axis, when a ray of common light is incident nearly
parallel to the axis: describe the rings produced by interposing
such a lamina between a polanzmg and an analyzing plate,
the planes of incidence at the two plates being inclined at an
angle of 45° to each other.

If two such lamin, one cut from a positive and the other
from a negative uniaxal crystal, be placed together and inter-
posed, what must be the ratio of their thicknesses in order
that neither rings nor brushes may be visible?

In order that neither rings nor brushes may be seen, the
difference of retardation of the ordinary and extraordinary rays,
after passing through both plates, must be equal to zero;
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73 7]

k
. g
sin's — T"
2a'v

¢ —a < g
therefore T sin¢ = 0}
2av

2 2
therefore T:7'::2=° :c’—a’
a a

‘where T, T" are the thicknesses of the plates,
a, c; @', ¢ the constants of elasticity respectively.

Fripay, Jan. 20. 13}...4.

1. If f(p, g, 7y 8...) = 0, where p, g, , s ... are the distances
of any point in a curve from fixed points in its plane, or of
any point in a surface from fixed points, and if a set of forces
proportional to f'(p), f(¢), f'()..., act on the point, along
the distances p, ¢, 7, ..., prove that their resultant acts along
the normal at that point. '

If sinh:sinp::p":q", where A, u, are the respective
inclinations of p, ¢, to the normal at any point of the curve
f(p, ¢) =0, prove that, ¢ being a constant,

P‘-“ + q!.-ﬂ = cl—ﬂ.
Let =, y, #, be the coordinates of the variable point of the
surface. Then, if f(p, ¢, 7, 3,...) = ¢ (2, 3, 2) = »,

B fOZrrQ@e ..

= the sum of the components of f'(p), '(¢), ..,
parallel to the axis of .

Similarly, %, %, denote the sums of the components of

these derivatives parallel to y, 2.

Hence the direction-cosines of the resultant are proportional

% , % , Z—Z , and therefore the resultant is a normal.

In the example, (see tig. 90),
SP=p, TP=gq.

to
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Take &, T", such points in 8P, TP, that

8P: TP:f(p): g,
and complete the parallelogram PS'GT". Then the diagonal
P@ is the normal at P.

Henee ¢~ dnn "7

but &= (p)dp +fg)dg = 0:
hence P dp + ¢7dg =0,
pl-n + qx-n =™,

Cor. If n=0, p+ g=c, and therefore the curve is an ellipse.

2. Having given the following simultaneous differential

uations,
A dz _dR dy_dR
Fo& oG

where R=fr), =2+y"+ ...... ;
that t= rdr
prove tha - IVF@R+B) -4’
A, B being arbitrary constants.
dx d'z dy d% dR dx dR dy
2 F el (dzdt+@7ﬁ+ ...... ),
and P=2+y + ..
dr
raz—v=a:
dB _ . d
Also % =%
. dRdx dRdy
'(_i'):—;ii-*-@z-t-*- ......
dr dxz  drd
—f()(az—-i--%%y-i- ...... )
d
=f 05
. (dx\'  (dy\! _
'(E)*(Za‘)“‘ ...... =)+ B

=9R + B.
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&y &z _dR__dR
% VT Tl V&

=10 (= 5 - 9 %) =0

= constant ;

Also

dy

ST TYGE

(g B (e
or ('+y'+...) {(‘(%); (%>,+}—(m %f +y%+...)'=A’;

R s _ [ dx dy ‘ ' ‘_lf z
o PR+ B - A= (2 +y D r ) = (r TS
. t_f rdr
T IV RR+B) - 4%
2. Integrate the partial differential equation
g(l4+q)r— (p+g+2pg) s +p(l+p) t=0.

Employing Monge’s method of solving such equations, we
arrive at the equations

(gdy +pdz) {(1+9)dy + (1+p)da} = 0,

and q(1+q)dp dy + p(1+p)dg de=0.

If we use the equation (1+¢)dy + (1+p)de=0,

9dp —pdg =0, .. p=ag
and dy+do+pde+tqdy=0, .x+y+z=p;
.. a first integral is p— g ¢ (@ +y+2) =0;
.. from the equations dz =0 and dy = dx p(x+y +2),
z=vy and dy+doe=dr{l+¢(x+y+y)}, .~ 2=8+f(x+y+7);

.. the complete integral is @ = F(z) + f(@ +y + 2).

3. An annular surface is generated by the revolution of
a circle about an axis in its own plane; prove that one of
the principal radii of curvature, at any point of the surface,
varies as the ratio of the distance of this point from the axis
to its distance from the cylindrical surface described about the
axis and passing through the centre of the circle.
N2
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Let AB (fig. 91) be the axis of revolution, C' the centre
of the revolving circle in any position, P any point in the
circumference of this circle. Join CP; draw CN parallel to
BA, and NPM at right angles to AB.

One principal radius of curvature of the surface at P is
in the plane of the paper. The other principal radius at P,
in the plane through PC, at right angles to the plane of the
paper, is, by Meusnier’s theorem, equal to

PM PM.CP PM
cws¢ PN *PN°

4. Give sufficient equations for calculating the motion of
a right cone placed upon a perfectly rough inclined plane; and
find the moment of the couple exerted by friction on the cone.

Shew that the length of the simple isochronous pendulum,
when the cone oscillates about the lowest position, is

1%
3r sina sinB’
2a being the angle of the cone, » the radius of its base, 8 the
inclination of the plane, and % the radius of gyration round
a generating line,
Let A4 be the vertex of the cone, (fig. 92),

Az perpendicular to the inclined plane,

Ay horizontal,

AQGz, the axis of the cone,

G H perpendicular to AL the generating line in contact
at the time t. G'M perpendicular to Aez.

And let the friction on the generating line be resolved into
forces F, G in AL, and perpendicular to it, and the couple
whose moment is N in plane =4y,

AG=h, LAz = ¢,

@ = perpendicular velocity round AL,

o cosf = perpendicular velocity round Az,
A the moment of inertia round A4G=,.

| e o——
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By the principle of vis viva, since the slant side is an instan-
taneous axis,

Ml'e" = constant + 2Mg sina GM cosé......... (1),
and 4220 _ g . @).

Also, equating the two expressions for the velocity of @,

dp _ 3.
oM 32 = — wh sing;

k’cotﬂg—tf+gsinahsinﬂsin¢=0;

therefore, for a small oscillation, since A tanfB = ?;_r ,
a 3r sina sin
th +y9 T—W‘—ﬂ 9=0;
therefore the length of the simple pendulum
_ Y s
~ 3rsina sinB’
g sina %t cotB cosB
and N= A A sing.

In order to illustrate a difficulty in forming the equations for
determining the angular velocities about principal axes move-~
able in the body, we will proceed to determine all the forces,
without using the principle of vis viva, by the general equations.

The equations for determining all the forces may be formed
as follows :

R being the reaction of the plane through G, and L the
moment of the couple, to which the whole reactions on the
generating line can be reduced:

d'z _ x Y .
Md_t’_chosB—thosB+'Mysma ...... (1),
Yy _p_Y @
Mﬁ_icosﬁ-r chosB ................... (2),
0=R —Mjgcos..cceerruirierruconranannnn, (3).
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Let Gy, Gz, be axes perpendicular to LAz, and in the
plane G/, Gz fixed in the body, coinciding with Gy,, Gz, at
times ¢, and having this position at times ¢ + A¢, when the body
has turned through w,A¢ round Gz, ww,, o'0',, angular ve-
locities round these axes at time ¢;

- o, + Ad, = @, sin (w,Af) + (m, + ‘%’ At) cos(w,Al) ;

@, — o, = oAl + % At
do', dw

=5+ e

o Sp=Ttap,
Similarly,

B (t% + mnmﬂ) + (4-B) 0,0, = L - Fh SinB"'(5)’

B (di - 00,) + (B~ 4) 0,0, = N 03~ Gh...(6)

dt
and by the geometry of the motion,

@, =0 irennnnrerienii e e (7),
®; =@ COBB .errrninniiiiiiiireiiiiaaens (8),
o, =—- @8NP .cciiiiiiiiiii 9),
="hCo8B COBP ..e0vvrrnniriiniiiiannen (10),
Y=hcosBEing ....ooeiniiiininnnnnns (11),
% = — @D cerrreriereeereenreenee (12),

12 equations between F, @, R, L, N, z, y, w,, ®,, 0, ©, $, &.
By (1) and (2),

d'z d* .
M(‘”W_ yz%:)= Gh cosB — Mg y sina;
. MR cos’B %}: = Qh cos 8 — Mgh cosp sina sing.

-
[
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By (5), (6), (7),
4 ds’l cos8 — Bd"’ s ginB = @ sing,

or (4 cos'8 + Bein'8) %2 = G sing;
. (MF - MR sin'B) £ - — 0 tan@ sin 3,
and M sin’8 %‘”—_—— @htanBsin — Mgh tanf sin 8 sina sin g;

. Mk L = — _ Myh tanB sing sina sing,
dj 3r g sinB sina sing =0
p7 I i )

And, by (1) and (2),

M( ‘fi;‘ +yt¢iig) Fh cosB + Mgz sina,
o+ y' =R cos
i et s CAC)
- roa(3).

therefore ~ F = — Mh cosf3 (%%’) — Mg sina cosg,

t.e. the centrifugal force from Oz and resolved part of weight
= e F M
’ d'¢ .
G = Mh cosB -+ My sina cos ¢,

or @ is the resultant effective force and the component of the
weight perpendicular to the plane LAxz,

N=-4 ‘f;? cos’S,
R= Mg cosa;
b . dg\' 2
y (5), L =FhsinB - 4 (z_ﬁ) cotB cos’B,

whence all the forces are known.
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5. The form of a homogeneous solid of revolution, of given
superficial area, and described upon an axis of given length, is
such that its moment of inertia about the axis is 8 maximum:
prove that the normal at any point of the generating curve is
three times as long as the radius of curvature.

If ¢ be some constant quantity, then, the axis of = being
that of revolution,

u= [(y'de+yds) = [(g'+ Sy 1+ do.
Then, adopting the ordinary notation of the Calculus of

Variations,
V=0F+C,
C being a constant.
Hence ¢
¥+ Py (1+pR —”B—ﬁ ¥+ Ty = CeeD)

Again, the formula for the limits gives us the relation

yllpl' lpl =
Trp ¥ Trp ¥ =0

and therefore, 8y, and &y, being independent of each other,

y‘.p‘ 0 y‘ll i = 0
(1+p7 +p5

Now, by the equation
y ll 4 -
T+~ "
either p, =0 or y,=0: on the former hypothesis y, would be ar-
bitrary, which is evidently impossible. Hence y, =0; similarly
y,=0. Consequently the value of C in the equation (1) must

be zero: hence
¢ dy -9 da:

_d A _dy y
Ty #TT T

= 3y'
i (e —y**).*
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Hence the radius of curvature

(li—dﬁ:)s

s 9 _
o "y
ay \

Also the normal =y (1+p)} =3—:i,.

Hence, C being the centre of curvature and PG' the normal
at any point P of the generating curve,

P@ = 3PC.

6. Distinguish between secular and periodic variations. Are
secular variations ever periodic ?

The equations which connect the inclination and the longi-
tude of the nodes of the orbits, in the case of Jupiter and
Saturn, are of the form

tans sinQ = G sin (af +y) + H sin$,
tans cosQ = G cos(at + ) + H cosd.

For both orbits,
a=—25"5756, y=125°15'40", §=108°38' 40", and H=.02905,

G = — .00661 for Jupiter, and = .01537 for Saturn,

t being reckoned from A.D. 1700.
Prove the following circumstances of motion, that Jupiter’s

node regresses and Saturn’s progresses from a longitude 8+e— g

through the angle 2 ~ o in the time _2-;:‘, where ¢ is for each

planet the least positive angle which satisfies the equation
G = H cose; that they arrive simultaneously at their mean po-
sition; and that in this position Jupiter’s orbit has its maximum
and Saturn’s its minimum inclination.

Let Oz, Oy be rectangular axes, GOx=98, OG = H; and
let circles be described with centre G' and radii .00661 and
01537 (see fig. 93), '

0A, Oa

OB, 0B } tangents to the three circles respectively.
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Let OG meet the circles in 7" and §;
therefore for Saturn, e = BG O,
for Jupiter, e = AGS;

5 - (g —e) = GOz — GOB = B0z, for Saturn,

5+ (s—- ’5’) = GOz + GOA = A0S, for Jupiter.

Let G«' be parallel to Gz, and let a line revolving in the
positive direction from Ox' through az + o arrive at the position
G'Q produced backwards to P. Join 0@, OP; therefore, at
time ¢,

0Q =tani, QOz=Q, for Saturn,
OP = tani, POx = Q, for Jupiter.
As ¢ increases af + ¢y diminishes ;
therefore Q@GP revolves backwards;
therefore Saturn’s node advances from OB to 0b, the longitude
increases from 8+e—g through BOb or 2(%-—5) =7 — 2,

in the time é;——ié = _2—1; and Jupiter’s node recedes from 4Oz

to @Oz, the longitude decreasing from &+ ¢ — "% through 40a

or 2(e—§) = 2 — r, in the time :l-&.‘%=-_-2%.

The nodes arrive simultaneously at the mean positions whose
longitudes are G'Ox=3&; in which position Jupiter’s orbit’s in-
clination is 07, a maximum, and Saturn’s 08, a minimum.

Also, it is easily seen that the nodes in ¢ regress together
during the times that G'Q revolves from ¢ G to B@, produced
backwards, while at + o changes by the angle BGa, or the

difference between
o

7r r

7 ¢ and ¢ 3

for Saturn and Jupiter; t.e. for the time
' T—g—¢

—a ?
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during one revolution of @ during the time

2 — 2(e+¢)
-— a *
Otherwise.
. aQ 5e o o @
tand cosQ — + sec’s sin Q 7= aG cos(at+v),
..o dQ . i .
- tandsinQ —- + sec't cos = a@G sin(at+1y);
. . dQ
therefore tant v i aG cos(at+oy—Q) coovivrrinniinnnnns (1),
)
or ta.nzﬁ=aG{G+Hcos(at+fy— )}
= aGHf{cose + cos(at+y—8)} ......... (2
Also, tan" = G" + H"+2GH cos(at+y —§)...... (8).

In the case of Jupiter, aG*H is positive;
when «+y—38=m, %‘—; is negative ;

therefore Q is decreasing most rapidly, and tan< is a maximum,
G being negative, and Q = §; therefore this decrease takes
place while

by (2), at+ o — 38 changes from m+¢ to 7 —e¢,

and, by (1), at+ o — & changes from 3—; to ';_r;
. ™
or, ¢ being > 3

Q decreases from 8+(e—g) to 8—( —g);

therefore the node regresses from &+ ¢ — g through 2e — ,

arriving at the mean position 3, where ¢ is a maximum.

In the case of Saturn, a G'H is negative;

aa . ..
therefore at+eoy—-8=m, —; 18 positive,
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Q is increasing, and, G being positive, tan< is & minimum;
the increase takes place while

at + o — & changes from 7 +¢ to w—e¢,

af ++y— Q changes from 3?” to g;

e beingA<g, Q increases from 8—(%'— ) to 8+(q§r—e);

therefore the node progresses from & + & — g through = — 2s,

arriving at the mean position 8, where ¢ is a minimum.
The motion of the nodes is exhibited geometrically in fig. (93).

8. Draw the course of a small pencil of parallel rays, passing
at such an angle through a biaxal crystal cut with parallel faces,
that external cylindrical refraction takes place.

How may the constants a, 3, ¢, corresponding to the axes
of elasticity be obtained experimentally ?

If the two faces of a prism, formed of a biaxal crystal, be
perpendicular to each other, and one contain the two axes of
elasticity a, ¢, and the other 3, ¢; and if u,, u, be two refrac-
tive indices for the ordinary ray when the planes of refraction
are perpendicular to the axes of a and b respectively; shew

that D, the minimum deviation of the extraordinary ray, is

given by the equation
sinD = (2~ 1) ('~ 1).
Let 04, OB (fig. 94) be the projections of the faces contain-
ing (a, c) and (b, c) respectively,
QR, RS, ST, directions of normals to the extraordi-
nary wave front at incidence, 1* and 2 refraction,

) ¢'} the angles of { 1 } incidence and refraction
¥ 2nd !
TDq = D, the deviation,

u = velocity of wave in air,

v = velocity of extraordinary wave in the crystal ;

"
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therefore ¢ +yY = —275 ........................ (1),
D=¢+— 5ereencrnnnennnnns (2),
sing sing
T - P TTieermeneseneesenees (3),
sing _ siny/’
T s (4),
v" = a’ cos’d’ + b° o™’ .inniininnnnnn (5),
D = minimum .....coveiinninninnne (6),

By (5) and (1), o
9" = o sin®yY’ + &* sin’¢p’;
therefore, by (3) and (4),

u' = a’ sin®P + 5° sin’p .euriennninnnnnnn. (M3
therefore 0 = o siny cosy dy + b* sing cos¢ dp,
and by (2) and (6), 0=dy) +dyp;
therefore 0 = o’ sin 2y — &* sin 2¢,
and by (7), 2u'=d"+ 8" — a® cos2y — b* cos2¢;

< a4+ B — 20t = a® cos2y + B cos2¢,
0 =a’sin2y — 5" sin2¢;
<o (@8 20 = a* + b* + 2a%D* cos2 (¢ + ) ;
<o 20" {1 —cos2 (Y + @)} = 4(a®+8%) u® — 40,
a't® sin’ (Y + ¢) = (a* +8%) u* — o*;
< by (2), sin"D = cos* (Y + ¢)

v oW Wt

=l-a-ptaw






EXAMINATION PAPERS FOR THE
MATHEMATICAL TRIPOS 1854.

TuEsbAY, Jan. 3. 9...12,

1. THE compiements of the parallelograms, which are about the diameter
of any parallelogram, are equal to one another.

If X be the common angular point of these parallelograms, and BD
the other diameter, the difference of the parallelograms is equal to twice
the triangle BKD.

2. Divide a given straight line into two parts so that the rectangle con-
tained by the whole line and one of the parts shall be equal to the square
of the other part.

Produce a given straight line to a point such that the rectangle contained
by the whole line thus produced and the part produced shall be equal to the
square of the given straight line.

3. The opposite angles of any quadrilateral figure inscribed in a circle
are together equal to two right angles.

If the opposite sides of the quadrilateral be produced to meet in P, Q,
and about the triangles so formed without the quadrilateral circles be
described meeting again in R; P, R, Q will be in one straight line.

4. Describe an isosceles triangle having each of the angles at the base
double of the third angle.

Upon a given straight line, as base, describe an isosceles triangle having
the third angle treble of each of the angles at the base.

6. If four straight lines be proportionals, the rectangle contained by the
extremes is equal to the rectangle contained by the means.

EA, EA’' are diameters of two circles touching each other externally
at E; a chord 4B of the former circle when produced touches the latter
at C, while a chord 4'B’ of the latter touches the former at C': prove
that the rectangle contained by 4B, A'B’ is four times as great as that
contained by BC", B'C.

6. If a solid angle be contained by three. plane angles, any two of them
are greater than the third.

‘Within the area of a given triangle is described a triangle, the sides of
which are parallel to those of the given one. Prove that the sum of the
angles subtended by the sides of the interior triangle at any point not in

L 4
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the plane of the triangles is less than the sum of the angles subtended at
the same point by the sides of the exterjor triangle.

7. Prove that the rectangle contained by the latus rectum of a parabola
and the abscissa of any point in the curve is equal to the square on the
ordinate drawn to the axis.

If N be the foot of the ordinate, SY the perpendicular from the focus
on the tangent, and T the point where the tangent meets the axis produced,
NY is equal to 7Y.

8. Define the tangent to an ellipse, and shew that it makes equal angles
with the focal distances of the point of contact.

If NP be the ordinate of P, ¥, and Z, the points where the tangent at
P meets the perpendiculars from the foci, NY : NZ:: PY : PZ.

9. The tangent at a point P of an ellipse cuts C4, CB produced in 7,
¢ respectively, and PN, Pn are the respective perpendiculars from P upon
CA, CB; prove that CT'. CN = AC*, and that Ct. Cn = BC*.

Shew that the subnormal is a third proportional to C7 and BC.

0. The rectangle contained by the abscissee of the major axis of an
hyperbola is to the square on the ordinate as the square on the major axis
is to the square on the minor axis.

If A, M be the extremities of the major axis of an ellipse, PP a double
ordinate, and 4P, P’M be produced to meet in @; Q will lie in an hyper-
bola having the same axes as the ellipse.

11. Parallelograms, whose sides touch an hyperbola and its conjugate,
and are parallel to conjugate diameters, have the same area.

If CP, CD be conjugate semi-diameters, and through C a straight line
be drawn parallel to either focal distance of P, the perpendicular let fall
from D on this straight line will be equal to half the minor axis.

12. If two spheres exterior to each other be inscribed in a right cone
touching it in two circles on the same side of the vertex, and -a plane be
drawn touching the spheres and cutting the cone; shew that the section is
an ellipse, that the points of contact of the spheres with the plane are the
foci, and that the planes of the two circles contain the directrices.

TuespAY, Jan. 3. 1}...4.

484 72
1. DivibE 085 by 174 ,7 , and reduce the quotient to the form
1.0714285; and find what decimal of a guinea is equivalent to 2835 of a

pound sterling.

2. The capital of a firm consists of £713. 3s., £964. 17s., £2391. 3s.,
subscribed by three partners; divide £2231. among them in proportion to
their several capitals.
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3. Find the interest on £10,000 for four years at 3 per cent., compound
_ interest.

How many complete years will elapse before a sum of money has trebled
itself at 31 per cent. compound interest?

Given log (10350) = 4:0149400, log 3 = -4771213.

4. Find the highest common measure of
d-2+22+z+3,and 24+ 28 -2 -2

5. Find the sum of » terms of a geometrical progression, whose first
term and common ratio are given.

If 8, represent this sum, find the sum of §,, §,, S, ... §,.

6. Shew that a quadratic equation cannot have more than two roots,
and solve the following equations:

z+x+2z+3x_l_l
23" ¢ 2
£-a 2?+a 34

z‘+a‘+x’-a’ 15°
y+z—1 z+x——l- zty=
z' y’

7. If a, b, ¢,... be a series of quantities, and # be a quantity depending
on them in such a manner that 2 varies as @ when the rest are constant,
and that z varies as b when the rest are constant, and so on; shew
that, when they all vary, = varies as their product.

Apply this principle to the following case: assuming that the quantity
of work done at a sitting varies as the cube root of the number of agents
when the time is the same, and varies as the square root of the time
when the number of agents is the same; find how long three men would
take to do one-fifth of the work which twenty-four men can do in twenty-
five hours.

8. Prove that log(m x n x ) = logm + logn + logr-.
‘Why is log(1 +2 +3) equal to log1 + log2 + log3?
Given that log2 = -3010300,
log3 = 4771213,

find log(1080) and log(.0025).

9. Define the tangent of an angle, and shew from the definition that
tan(180°+ 4) = tan 4, for all values of 4.

10. Find the value of sin 18°.
In Euclid’s construction for determining an isosceles triangle, the

angles at whose base are double of the angle at the vertex, shew that
the common chord of the two circles is equal to the base of the triangle.

o
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11. Find A from the equation tan24 = 8cos*4 - cot 4.

If sin34 = n sin4 be true for any values of 4 besides 0 or a multiple
of 90°, shew that n must be less than 3 and not less than — 1. Solve the
equation when n = 2.

If cosf cosg =sin(a—B) sin(a+p),
and sin(0-¢) sin(0+ @) = 4 cosa cosB; find cosf, and cosd.
12. In any triangle 4B C, prove that
AB*= BC* + CA* - 2BC.CA cosC.
AD is drawn to meet BC, or BC produced, in D, so that 4D is
equal to 4C; shew that if the sum of AB and AC is n times BC, their

difference is 'l'm of BD.

“

13. Find the radius of the circle described about a triangle whose sides
are given.

Shew that the radius of the circle inscribed in an isosceles triangle can
never be greater than one-half of that of the circumscribed circle.

14. Two posts, 4B and CD, are placed at the edge of a river at a
distance 4AC equal to AB, the height of CD being such that 4B and
CD subtend equal angles at E, a point on the other bank exactly opposite
to A; shew that the square of the breadth of the river is equal to

T s and that AD and BC subtend equal angles at Z.

‘WEDNESDAY, Jan. 4, 9...12.

1. Two unequal forces act in parallel lines and in opposite directions
upon a rigid body moveable about a fixed point in their plane; shew that,
if there be equilibrium, the moments of the forces with respect to the
fixed point are equal.

Three straight tobacco-pipes rest upon a table, with their bowls, mouth
downwards, in the angles of an equilateral triangle, the tubes being sup-
ported in the air by crossing symmetrically, each under one and over the
other, so as to form another equilateral triangle; shew that the mutual
pressure of the tubes varies inversely as the side of the last triangle.

2, If three forces acting upon a particle keep it at rest, shew that the
forces are respectively in the ratio of the sines of the angles contained
by the other two.

A smooth circular rmg is fixed in a horizontal position, and a small
ring sliding upon it is in equilibrium when acted on by two strings in
the direction of the chords P4, PB; shew that, if PC be a diameter of
the circle, the tensions of the strings are in the ratio of BC'to AC.

If A and B be fixed points, is the equilibrium stable ?

4D .



9-12.] THE MATHEMATICAL TRIPOS 1854, 195

3. Define the centre of gravity of a system of heavy particles, and
shew that in every case there exists one and only one such point.

From this fact deduce the property that the lines joining the middle
poigts of opposite sides of any quadrilateral bisect each other.

4. Find the ratio of P to W in the single moveable pulley, when the
strings are not parallel.

If a weight W be supported by a weight P hanging over a fixed pulley,
the strings being parallel, shew that, in whatever position they hang, the
position of their centre of gravity is the same.

6. Describe the construction and graduation of the common steelyard.

Shew that, if a steelyard be constructed with a given rod, whose weight
is inconsiderable compared with that of the sliding weight, the sensibility
varies inversely as the sum of the sliding weight and the greatest weight
which can be weighed.

6. A rigid body, moveable round a fixed axis, is keptgn equilibrium
by two forces P and Q acting in a plane perpendicular to the axis; shew
that, if the body be twisted slightly round the axis,

P x P’s velocity = @ x Q's velocity.

Of what practical principle does this property furnish a proof in the
particular case proposed?

7. Describe one of the simple experiments which involve the principle
of the second law of motion, and shew how the probability of the law
may be inferred from it.

8. What is meant by a unit, and what is usually taken as the unit
of accelerating force?

If the force of gravity be taken as the unit of force, and a rate of ten
miles an hour as the unit of velocity, what must be the units of time
and space?

9. If a body be projected with the velocity » in the direction of a
uniform force f, and v be the velocity, and s the space described, at the
end of the time ¢, prove that -

v-u s

o=ut+§ﬂ',andthat-7-=o+“

The velocity of a body increases from ten to sixteen feet per second
in passing over thirteen feet under the action of & constant force; find
the numerical value of the force.

10. A body is projected in a given direction from the top of a tower,
determine its path, and find where it will strike the ground.

A plane is inclined at an angle of 45° to the horizen, and from the
foot of it a body is projected upwards along the plane, and reaches the
top with one fifth of its original velocity; where will it strike the ground

02

=1,
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11, Two balls of given masses and given elasticity are moving with
given velocities in the same direction; determine their motion after impact.

Two balls are moving in the same straight line, one of them only being
acted on by a force; if the force be constant and tend towards the ofher
ball, shew that the times which elapse between consecutive impacts decrease
in geometrical progression.

12. Prove that the time of falling in a straight line from the highest
point of a vertical circle to any point in the circumference is less than to
any point outside; and give a geometrical construction for the straight
line of quickest descent to the circumference of a vertical circle from a
given point within it.

Shew that the circumferences of two circles contain all points from
which the time of quickest descent to a given vertical circle is the same.

" ‘WEDNESDAY, Jan. 4. 13-4,

1. FIND the pressure at any depth below the surface of a uniform
heavy fluid.

If there be n fluids arranged in strata of equal thickness, and the
density of the uppermost be p, of the next 2p, and so on, that of the last
being np; find the pressure at the lowest point of the n™ stratum, and
thence prove that the pressure at any point within a fluid whose density
varies as the depth is proportional to the square of the depth.

2. What must be the unit of weight in order that the equation W= V§
may hold, ¥ being the weight of a homogeneous body whose volume is ¥
cubic feet, and specific gravity 8 in tables in which the specific gravity
of distilled water is 1.

Find the specific gravity of a mixture of given volumes of known
fluids.

8. Prove that the pressure of a uniform heavy incompressible fluid
on any surface is equal to the weight of a column of the fluid, the base
of which is equal to the area of the surface, and altitude equal to the depth
of the centre of gravity of the surface below the surface of the fluid.

A cylindrical vessel is filled with equal masses of two incompressible
fluids which do .not mix; supposing the whole pressures on the upper
and lower portions of the concave surface of the vessel to be equal, com-
pare their densities.

4. Prove that the resultant pressure of a fluid on the surface of a solid
immersed in it is equal to the weight of the fluid displaced, and acts
upwards in the vertical line through the centre of gravity of the fluid
displaced.

A rod of length a and density p is moveable freely about one end, which
is fixed at a depth ¢ below the surface of a fluid of density o; prove that

aiaa s
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the rod may remain at rest, when inclined to the vertical, provided that

c
Shew that such a position is one of stable equilibrium.

-’>l, and <-a—’.
P

6. Describe the experiment by which it is shewn that the pressure
of air at a given temperature varies inversely as the space it occupies.
State the law connecting pressure, density, and temperature, when all
vary; and if pipit,, ppt, p.psts be three corresponding pressures, den-
sities, and temperatures, shew that

Py _ P\, 4 (Ps_Bi\, 4 (P2 P\
b (Fu Ps) th (Pa P1)+ t’(l’x Pa) 0.
6. Describe the construction and action of Smeaton’s Air-Pump.
Supposing the upper valve of the barrel to open when the piston has
gone half through one of its ascents, what was the density of the air in
the receiver at the commencement of the ascent?

7. State the laws of refraction to which rays of light are subject. What
is the greatest apparent zenith distance which a star can have, as seen
by an eye under water.

8. A pencil of rays diverging from a point at a given distance from
the centre, is incident directly on a concave spherical refracting surface,
determine the distance of the geometrical focus of the refracted pencil
from the centre. '

An eye is placed close to the surface of a sphere of glass (# =%), which
is silvered at the back; shew that the image which the eye sees of itself
is £ of the natural size.

9. Find the position of the geometrical focus of a diverging pencil
refracted through a plate of glass.

A rod, inclined at any angle to a plate of glass, is seen by an
eye on the opposite side of the plate; shew that the length of the image
of the rod formed by geometrical foci is equal to the length of the rod.
Is the image, formed by the refraction at the first surface, of the same
magnitude as either?

10. Find the deviation of a ray of light refracted through a prism
in a plane perpendicular to the edge.

If rays in this plane are incident at one point of the prism in all di-
rections, shew that, if the refracting angle be greater than sin“i, rays
incident from that side of the normal which is towards the edge of the
prism will not pass through, and examine what rays will pass through.

11. Describe the construction of Newton’s telescope, and find its magni-
fying power.
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Two convex lenses have a common axis and equal focal lengths, and
their distance is two-thirds of the focal length of either; find a point on
the axis from which rays must diverge, in order that, after refraction
through both lenses, the emergent pencil may consist of parallel rays.
Trace the course of such a pencil.

12. Determine the angle subtended at the eye by the image of a short
object seen through a concave lens, the axis of which passes through
both the eye and the object.

A short-sighted person moves his eye-glass gradually from his eye
towards a small object: shew that the linear magnitude of the image
will keep increasing during the motion, and that the angle subtended
by the image at the eye will be least when the eye-glass has advanced
half way towards the object.

THURSDAY, Jan. 5. 9...12.

1. ExXPLAIN what is meant by the limit of a varying quantity or ratio,
and enunciate and prove Newton'’s first Lemma.

Two triangles, CAB, "AB, have a common angle 4, and the sum
of their sides about that angle the same in each; if C'B, C"B’ intersect
in D, and B’ move up to B, then in the limit DC: DB :: 4B : AC.

2. Define the circle of curvature at any point of a curve. If PQ be
an arc, and QR a subtense, the chord of the circle of curvature at P
parallel to QR is equal to the limit of the third proportional to QR
and PQ. Find the chord of curvature through the focus of an ellipse.

EF is a chord of a given circle and 8 its middle point; construct
the ellipse of which E is one point, 8§ one focus, and the given circle
the circle of curvature at E.

8. Shew that, in an orbit described under the action of a force tending
to a fixed point, the velocity at any point is inversely proportional to the
perpendicular from the centre of force on the tangent at that point.

A body is describing a parabola under the action of a force which
always tends to the focus, and a straight line is drawn from the focus
perpendicular to the tangent, and proportional to the velocity, at any point;
shew that the extremity of this straight line will lie in a certain circle.

4. Given the velocities and the directions of motion at any three
points of an orbit described under the action of a central force, find the
centre of force.

If the velocities at the three points be respectively parallel and pro-
portional to the opposite sides of the triangle of which they are the
angular points, the centre of force is the centre of gravity of the triangle.
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6. An ellipse is described under the action of a force tending to
the focus; find the law of force and the velocity at any point.

If, without changing the velocity, the direction of motion of the body
receive a very slight alteration, shew that the position of the major axis
will be altered, unless the body be at one extremity of the latus rectum
through the focus to which the force does not tend. (

6. Enumerate the principal steps which led Newton to conclude that
the Moon is retained in her orbit by the force of gravity.

Assuming that the Moon is retained in her orbit by the Earth’s at-
traction alone, and that, approximately, her orbit is circular, her period
about the Earth 27 days, the accelerating effect of gravity at the Earth’s
surface 32 feet per second, and the Earth’s radius 4000 miles, find the
distance of the Moon from the Earth’s centre.

7. Define the terms Declination and Right Ascension. Account for
the change of the Sun’s declination in the course of a year, and discuss
the consequent variations in the length of the day at a place between
the pole and the arctic circle.

8. Account for the Moon’s rising at different times on two successive
nights; at what places is it possible for the Moon to continue above
the horizon for more than twenty-four hours ?

If an observer be stationed on the Moon’s surface at the point nearest
the Earth, describe the principal phenomena relating to the Sun and
Earth which he would observe in one of his days. What circumstances
would lead him to the conclusion that the Earth’s apparent orbit was
inclined to the Sun’s?

9. Distinguish between a sidereal and a tropical year; and explain
the Gregorian intercalation of a day in certain years, assuming the length
of the tropical year to be 365.242218 days.

10. Describe the Transit Instrument, and give a method of detecting an
error of deviation. Will this method apply at places near the Equator ?

11. Explain the aberration of light, and shew in what direction the
error of aberration takes place.

‘What limit is there to the position of a place in order that at some
time in the day a star in the ecliptic may have its error of aberration
in a vertical plane?

12. Explain the method of determining the longitude by Moon cul-
minating stars.

What is the object of registering in the Nautical Almanac the time
of passage of the Moon’s semi-diameter across the Meridian?
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TBURSDAY, Jan. 5. 1...4.
PROBLEMS.

1. ABD, ACE are two straight lines touching a circle in B and C,
and, if DE be joined, DE is equal to BD and CE together; shew that
DE touches the circle.

2. O, 4, B, C, are four points arranged in order in a straight line, so
that 04, OB, OC, form an harmonic progression. Prove that, 4 and C
being stationary, if O move tawards 4, B will also move towards 4.

2 1 ]
8. If a, b, ¢, be positive integers, and a’, b=, & be in geometrical
2 1 &
progression, shew that a®, b#*", ¢, are also in geometrical progression.

4. If either of the two quantities 1+ 3™, 1 +3™%, is a multiple of 10,
prove that the other is also a multiple of 10, m and r being positive integers.

5. Find the value of tana or tang8 from the equations
tan(a + 8) = tana cotf8 + cota tang,
tan(a - B) = tana cotB - cota tanp.

6. If 4+ B+ C=90° shew that the least value of

tan'4 + tan’B + tan'C
is 1.

7. Lines, drawn through ¥, Z, at right angles to the major axis of
an ellipse, cut the circles, of which SP, HP are diameters, in I, J re-
spectively. Prove that IS, JH, BC, produced indefinitely, intersect each
other in a single point.

8. From any point 7, two tangents are drawn to a given ellipse, the
points of contact being Q, @': CQ, CQ, QQ, CT, are joined; ¥ is the
intersection of QQ, CT. Prove that the area of the rectilinear triangle

QCQ varies inversely as
(C’_V)i . (TV 4
TV CV) :

9. A piece of uniform wire is bent into three sides of a square 4 BCD,
of which the side 4D is wanting; shew that, if it be hung up by the
two points 4 and B successively, the angle between the two positions
of BC is tan™18.

10. A weight of given magnitude moves along the circumference of
a circle, in which are fixed also two other weights: prove that the locus
of the centre of gravity of the three weights is a circle. If the immoveable
weights be varied in magnitude, their sum being constant, prove that
the corresponding circular loci intercept equal portions of the chord join-
ing the two immoveable weights.

11. A ball of elasticity e is projectedAfrom a point in an inclined

e e L
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plane, and, after once impinging upon the inclined plane, rebounds to its
point of projection: prove that, a being the inclination of the inclined
plane to the horizon, and B that of the direction of projection to the in-
clined plane, cota.cotB=1+e.

12, Two heavy bodies are projected from the same point at the same
instant in the same direction, with different velocities; find the direction
of the line joining them at any subsequent time.

13. Three equal and perfectly elastic balls 4, B, C move with equal
velocities towards the same point, in directions equally inclined to each
other; suppose first, that they impinge upon each other, at the same
instant; secondly, that B and C impinge on each other, and immediately
afterwards simultaneously on 4; and thirdly, that B and C impinge
simultaneously on A just before touching each other; and let V,¥,¥, be
the velocities of 4 after impact on these suppositions respectively : shew that

V,=%V,, and that ¥V, =1V,

14. CP, CD, are two conjugate semidiameters of an ellipse described
by a body about a centre of force in the focus §: PP, DIV, chords of
the ellipse parallel to the major axis. Prove that, a, o', 8, 3, being the
angular velocities of the body about § at P, P, D, D, respectively,

1 1 = a constant quantity.

—_
(@)t (g}

15. Supposing the velocity of a body in a given elliptic orbit to be
the same at a certain point, whether it describe the orbit in a time ¢ about
one focus, or in a time ¢ about the other, prove that, 2a being the major
axis, the focal distances of the point are equal to

2at’ 2at
T AT A

16. Three candles are placed in a room, and the two shorter being

-lighted throw shadows of the third upon the ceiling; if the directions of

these shadows be produced, where will they meet?

17. Within a reflecting circle on the same side of the centre are two
parallel rays, one dividing the circumference into arcs which are as 3 to 1,
the other dividing it into arcs which are as 8 to 1; find the least value
of n such that, after each ray has suffered n reflections, they may be again

parallel.

18. One asymptote of an hyperbola lies in the surface of a finid; find
the depth of the centre of pressure of the area included between the im-
mersed asymptote, the curve, and two given horizontal lines in the plane
of the hyperbola.

19. A cone is totally immersed in a fluid, the depth of the centre of
its base being given. Prove that, P, P, P’, being the resultant pressures
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on its convex surface, when the sines of the inclination of its axis to the
horizon are s, ¢, &, respectively,
P@-¢)+P'(s-8)+ P*(s-9¢)=0.

20. Light emanating from a luminous circular disk, placed horizontally
on the ceiling of a room, passes through a rectangular aperture in the
floor: ascertain the form and area of the luminous patch on the floor of
the room below.

Shew that neither the shape nor the area of the patch will be affected by
any movement of the disk along the ceiling.

21. If ¢,, ¢, c,, be the lengths of the meridian shadows of three equal
vertical gnomons, on the same day, at three different places on the same
meridian, prove that the latitudes A, A, A,, of the places are connected
together by the equation

(e;—c,) (c-¢)* (- =0.

@ Bay -2 T fan(- A T tan(r, - A

MoNpay, Jan. 16. 9...12.

1. A sYSTEM of rigid bodies is under the action of no forces but their
weights, mutual reactions, tensions of inextensible strings, and pressures
on smooth fixed surfaces; prove that if the height of the centre of gravity
above a fixed horizontal plane be a maximum or a minimum, the system
will be in equilibrium.

Apply this principle to determine the position of equilibrium of two
equal uniform rods, connected by a smooth hinge at one extremity, and
resting symmetrically on two smooth pegs in the same horizontal line.

2. Determine the necessary and sufficient conditions that a system of
forces acting on a rigid body may have a single resultant.

A portion of a curve surface of continuous curvature is cut off by a
plane, and, at a point in each element of that portion, a force proportional -
to the element is applied in the direction of the normal; shew that, if
all the forces act inwards or all outwards, they will in the limit have a
single resultant.

8. A particle under the action of any forces rests on a surface whose
equation is given; determine the conditions of equilibrium, (1) when the
surface is smooth, (2) when it is rough.

Find the least coefficient of friction between a given elliptic cylinder
and a particle, in order that, for all positions of the cylinder in which
the axis is horizontal, the particle may be capable of resting at any point
vertically over the axis.

4. A heavy elastic string is suspended from one extremity, and stretched
by its own weight; determine its length when it is at rest.
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If a heavy elastic string rest upon the convex side of a smooth curve
in a vertical plane, shew how to determine the tension at any point.

5. If a particle be moving in any path, straight or curved, and, at the
time ¢, s be its distance measured along its path from a fixed point; shew

that %f: is a measure of the accelerating force in the direction of motion.

If the position of a particle moving in a plane be determined by the
coordinates p and ¢, p being measured from a fixed circle along a
tangent which has revolved through an angle ¢ from a fixed tangent,
investigate the following expressions for the components of the accele-
rating force along and perpendicular to p respectively, (the latter being
considered positive when it tends to increase ¢):

d'p_ _(dg\ d'¢ 1 df.dp dp\
@)@ 5 alw) (@)

6. State the laws which regulate the magnitude and the direction
of statical and of sliding friction.

Two equal bodies lie on a rough horizontal table, and are connected
by a string which passes through a fine ring on the table; if the string
be stretched, find the greatest velocity with which one of the bodies
can be projected in a direction perpendicular to its portion of the string
without moving the other body.

7. Find the differential equation to the path of a particle subject to
a force, which tends to a fixed centre, and is a function of the distance
from that point.

If there be several centres, the force towards each varying as the distance,
and a number of particles be projected in different directions from the same
point and with the same velocities, determine the curve which passes through
the position of each particle at the instant when it has a given velocity.

8. A heavy particle is suspended from a fixed point by a fine string;
find the time of a small oscillation in a vertical plane.

9. Having given the index of refraction between the two media A4
and B, and also between the two .4 and C, shew how to find that
between B and C.

The index of refraction (1) in & medium varies from point to point,
being a function of the distances # and y from two planes at right angles
to each other; a ray traverses the medium in a plane perpendicular to
these two planes; if log u =f (2, y), prove that the curvature of the path

f th i
of the ray varies as @) Z—f -7 %:

10. State the law determining the elastic force of a mixture of given
quantities of air and vapour. Define the Dew Point, and shew the im-
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portance of its determination. Why is & cloudy night unfavourable to the
deposition of dew?

The barometer stands at 29-88 inches, and the thermometer is at the
Dew Point; a barometer and a cup of water are placed under a receiver,
from which the air is removed, and the barometer then stands at -36 of
an inch: find the space which would be occupied by a given volume of
the atmosphere, if it were deprived of its vapour without changing its
pressure or temperature.

11. Determine the condition that a curve surface, immersed in fluid,
may have a centre of pressure; and shew how to find it, if this condition
be satisfied.

12. Describe the reading microscope of the mural circle. What are
“Runs”? Shew that the effects of the eccentricity and irregular form
of the pivot are eliminated by taking the sum of opposite Microscope-
readings corrected for Runs.

13. Determine the effect of precession on the declination of a given
star: explain the advantage of using the constants 4, B, C, D in applying
the correction for aberration, precession, and nutation.

14. What is the greatest value of the inclination of the Moon’s orbit
to the ecliptic, for which there would have been a lunar eclipse at every
opposition ?

Find the lunar ecliptic limits; and determine whether there was or
was not an eclipse of the Moon on the 31st of March 1847, from the
following data, selected from the Nautical Almanac:

The Sun's The Moon’s
Semidiam.| Longitude. | Semidiam. !Pmllaxl Longitude. | Latitude.
Mar. 31. Noon | 16'1”.3 [10°9'18”.3] 14'44”.3 |54’ 5”.0|185°6°16".2(1°10°27".1

Midnight! ...... | ...... .| 14'456”.8 |64'107.56/191°63'11".3|0°37'656".6
Apr.1. Noon | 16'1".0 |11°8'26".1

1847.

Apr. 1. Sun’s parallax 8”.58, longitude of Moon’s ascending node
199° 26’ .2.

MonNpay, Jan. 16, 12, 4.

. Ie & s by , L
G 9 9
fraction greater than unity, prove that
Pudny = Pualn = (- 1)"
Shew that the difference between the 1** and 5™ convergents is equal to
1 1 1 N,

—_—————  _——

9% G 99 Quals

.. be the successive convergents of a continued
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2. Prove that impossible roots enter rational algebraical equations by
pairs.
Shew that all the roots of the following equation are possible:
Ar Ar? Ag A}

+ + 4 oveenes + =1,
x-a, z-a, T-ay z-a,

3. Give Cardan’s method for the solution of a cubic equation. When
is Cardan’s method said to fail, and in what does the failure consist?

If a + B (v/-1) be a root of the equation 2* + gz + r = 0, prove that a
is a root of the equation 8z° + 2¢qz - r=0.

4. Apply Horner’s method to determine to four places of decimals the
root -of the following equation which lies between 1 and 2:

zt-22%+ 212 - 23 =0.
5. Prove that the series tana - 4 tan®a + £ tan®a - ...ad tnf. is equal to
nw + a, where n is zero or such a positive or negative integer as will make

nT + a lie between g and - —27'- .

Shew that, whatever positive integer m be, if ¢ = 2 1

2
m+)x’ $_¢—§¢a
is a very approximate solution of the equation tané = 6.

6. Investigate the condition of perpendicularity of two straight lines
whose equations are

Az + By+ C=0, A'z+ By+ C'=0.

Shew that, if the axes be inclined at an angle w, the condition that
the straight lines may be equally inclined to the axis of z in opposite
directions, is B B 9

Z + z = 4 COSw.

If, besides being equally inclined to the axis of z, the straight lines
pass through the origin and be perpendicular to one another, the equation
of the straight lines is

& 1 2zy cosw + y* cos2w = 0.

7. Investigate the equations to the tangents at the extremities of two
conjugate diameters of an ellipse whose equation is
2
steb
the co-ordinates of the extremity of one of the diameters being given.
In an ellipse SQ and HQ, drawn perpendicularly to a -pair of conjugate
diameters, intersect in Q; prove that the locus of Q is a concentric ellipse.

8. Shew that the locus of the poles of all tangents to a given circle,
with respect to another fixed circle, is a conic section, whose directrix is
the polar of the centre of the first circle.
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Employ the method of reciprocal polars to shew that, if three ellipses
bave one common focus, and pairs of common tangents be drawn to the
ellipses taken two together, the three points of intersection of these pairs
of tangents lie in a straight line,

9. Investigate the equation to a plane. Find the equation to a plane
which passes through two parallel lines denoted by the equations

z-a y-b z-¢ z-a y-bV z-¢

] m n ' ] m n

10. Investigate formule for the transformation of co-ordinates in pass-
ing from one system of three réctangular axes to another having the
same origin.

Shew that the equation of a surface yz + 2z + zy = a* may be reduced
to the form

f_f+f
2

11. If 4, B, C, be extremities of the axes of an ellipsoid, and 4C, BC
be the principal sections containing the least axis, find the equations of
the two cones whose vertices are 4, B, and bases BC, 4 C respectively :
shew that they have a common tangent plane, and a common parabolic
section, the plane of the parabola and the tangent plane intersecting the
ellipsoid in ellipses the area of one of which is double that of the other;
and, if / be the latus rectum of the parabola, I, J, of the sections 4C, BC,
prove that 1 1 1

b3 = l-:.- + —17 B
12. Prove that, in a spherical triangle,
cosa = cosd cose + sind sine cos 4,

where b and ¢ are each less than 90°; and extend it to the case where
one of these sides is greater than 90°

Prove that, if p, ¢, r be the lengths of arcs of great circles drawn from
4, B, C perpendicularly to the opposite sides,
sina sinp =sinbd sing = sinc sinr = (1 - cos’a — cos™ - cos’c + 2 cosa cosb cosc)l.

=a'

TuEsDAY, Jan. 17. 9...12
PROBLEMS.
m
1. Ir C denote generally the number of combinations of m things s
3

m
together and (6' be taken to denote unity for all values of m ; prove that, if

r n r-ln-1 r.24-.2 r-.8n-3 1n-r+1 n-r
8§=1.C+2. C+3. C+4. C+......r.C + C,
r r r-1 r-2 r-3 1 0

n+ln n-l
then :§+§+»§u§'+...+8=l+2+3 +ot(r=1P4nt+ (n+ 100
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2. Straight lines 4a, BB, Cy, are drawn from the angular points
A, B, C, of a triangle to bisect the opposite sides in a, B, «y, O being the
point of intersection of the three lines. If the radii of the circles inscribed
in the triangles BOa, COa; COB, A0B; A0y, BOy; be represented by
Gg Gy by, b,; ¢, ¢4 respectively; prove that

1 1,1 1,1 1,
aﬂ a" b‘Y a L] B

3. P is a point in a branch of an hyperbola, P a point in a branch
of its conjugate, CP, CP, being conjugate semi-diameters. If 8, &', be
the interior foci of the two branches, prove that

S'P-SP=A4AC- BC.

4. On any chord of a parabola as diameter is described a circle cutting
the parabola again in two points; if these points be joined, shew that the
portion of the axis of the parabola included between the two chords is
equal to its latus rectum.

5. If r=f(0) and y=f (;) be the equations to two curves, f(6) being

a function which vanishes for the values 6,0, and is positive for all values

between these limits, and if .4 be the area of the former between the limits
6=6, 6=6,

and M be the arithmetic mean of all transverse sections of the solid

generated by the revolution, about the axis of z, of the portion of the

latter curve between the limits z = a0,, z = af,; shew that

o 27

T6,~6,""

6. A brick is divided by a plane, passing through one corner, and
making an angle of 45° with the length of the brick; find the position
of this plane in which the two parts are the most nearly equal

7. If r, v, be the radii of curvature of an involute and evolute at
corresponding points (2, ¥), (£, ¥'), prove that
rdz’' + rdy =0, rdy Frdz=0;
and shew that, the involute being an ellipse of which the semi-axes are

a, b, the greatest value of ';J is equal to

16-2)

8. Trace the curve whose equation is

2t - ¢t
y’:

z(z-a)’
first supposing a to be less than ¢, then equal, then greater; and shew
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how the three forms of the curve pass into each other, when the value
of a is supposed to increase gradually through the value c.

9. SPHQ is a quadrilateral, P and Q being points in an ellipse of
which § and H are the foci; if Q be fixed while P moves, find the locus
of the centre of gravity of the perimeter of the quadrilateral.

10. From an external point P two tangents are drawn to an ellipse
'f + !bL"— 1. Supposing the locus of the centre of gaavity of the triangle,

mcluded between the two tangents and the chord of contact, to be an
ellipse f'— + ": 1, find the equation to the locus of P.

What must be the relation between 4, b, a,, b,, in order that the locus
of P may be an ellipse P

11. The radii vectores of any series of points in the path of a particle,
moving about a centre of force, being in arithmetical progression, the times
of arriving at these points, reckoned from a given epoch, form another
arithmetical progression. Find the equation to the path.

12. In any machine in which two weights P and W are suspended by
strings and balance each other in all positions, let P be replaced by a
weight Q equal to pP; if in the ensuing motion W and Q move vertically,
find the tensions of these strings, neglecting the friction of the machine
and the masses of its several parts.

13. There are generally two directions in which a projectile may be
projected with given velocity from a point 4, so as to pass through another
point B; shew that one of these directions is inclined to the vertical at
the same angle that the other is inclined to the line 4B. Hence shew
that the locus of points, for which a given sight must be used in firing
with a given charge of powder, is the surface generated by the revolution,
about the vertical, of the path of the bullet obtained by aiming at the
zenith with the given sight, and with the given charge of powder.

14, A prism whose base is a given regular polygon is surmounted by
a regular pyramid whose base coincides with the head of the prism; find
the inclination of the faces of the pyramid to its axis in order that the
whole solid may contain a given volume with the least possible surface.

15. An ellipsoid is intersected in the same curve by a variable sphere,
and a variable cylinder: the cylinder is always parallel to the least axis
of the ellipsoid, and the centre of the sphere is always at one focus of a
principal section containing this axis. Prove that the axis of the cylinder
is invariable in position, and that the area of its transverse section varies
as the surface of the sphere.

16. An elastic tube of circular bore is placed within a rigid tube of
square bore which it exactly fits in its unstretched state, the tubes being
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of indefinite length; if there be no air between the tubes and air of any
pressure be forced into the elastic tube, shew that this pressure is propor-
tional to the ratio of the part of the elastic tube that is in contact with
the rigid tube, to the part that is curved.

17. 04, OB, are any equal arcs of two given great circles of a sphere,
intersecting in O. 4 and B are joined by an arc of a great circle, and
also by an arc of a small one described about O. Find the area of the
lune included between the two joining arcs.

If 04 =\ and 4 0B = 2w, prove that the lune is greatest when

tanw - w
coe’X = ) tanw °

18. The ridges of two roofs are at right angles to each other, and the
inelination of each roof to the horizon is @; the shadow of a chimney falling
upon them makes angles a and 8 with their ridges; shew that

cos’0 = cote cotf.

19. The hour angles of two stars being ¢, ¢, and the azimuths a and ',
when a ~ o’ has for a moment a stationary value; prove that the latitude
M of the place of observation is given by the formula
sin2a.cote — sin 2. cot e’

sin) = c082a — cos2a’

20. A thin hollow ring, of which the plane is vertical, and which con-
tains a bead, is placed upon a smooth horizontal plane: prove that the
bead, having been placed near the lowest point of the ring, will oscillate
isochronously with a perfect pendulum the length of which is equal to

pa
mip'
a being the radius of the ring, u its mass, and m the mass of the bead,

21. A uniform rod, not acted on by any forces, is in motion, its ends
being constrained to slide along two fixed rods at right angles to each
other in one plane. Prove that, during the whole motion, the wrenching
force at any point of ‘the moving rod varies as the product of the distances
of the point from the two fixed rods.

TUESDAY, Jan. 17. 1}..4.

1. ExpLAIN the formation of focal lines in the reflection or refraction
of a small oblique pencil.

A small pencil of diverging rays is incident on a prism at a given dis-
tance from the edge, the axis of the pencil being perpendicular to the
edge; find the positions of the primary and secondary foci.

1)
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If the given distance be small, and the axis be incident at such an
angle as to pass through the prism with minimum deviation, shew that
the primary and secondary foci nearly coincide, and thence explain the
necessity of certain precautions in order to obtain a pure spectrum in
the decomposition of light by a prism.

2. What is meant by a secondary spectrum? A compound object-glass
is to be formed of two lenses in contact; shew that, if, when the lenses
are ground, achromatism is nearly but not quite secured, the defect may
be remedied by slightly separating the lenses.

The refractive indices, corresponding to the letters D and F in the
orange and blue, for certain kinds of crown and flint glass, are

Crown glass......1.5279, 1.5344,
Flint glass ......1.6351, 1.6481;

twenty inches is to be the focal length of the proposed object-glass;
find the focal lengths of the two lenses which, placed in contact, unite
these lines.

3. Investigate a formula for calculating the first two tables in the
Nautical Almanac by which the latitude is determined from observations
of the Pole Star out of the Meridian.

‘What is the nature of the correction contained in the third table ?

4. Determine the motion of a planet in geocentric longitude, and
shew that all planets will sometimes appear stationary to an observer on
the Earth.

If m be the ratio of the radius of the Earth’s orbit to that of an inferior
planet, n the ratio of their motions in longitude considered uniform, shew
that the elongation of the planet as seen from the Earth, when the planet
appears stationary, is equal to

a 1 - m'n
tan \/( m' -1 )

5. Determine the motion of a particle acted on by given forces and
constrained to remain on a given surface.

A particle is in motion on the surface whose equation is z =@ (2, y),
and is acted on by a constant accelerating force f parallel to the axis of z;

if v be the velocity of the particle and its path be always perpendicular to
the direction of the force, shew that, at any point of its path,

dz\' (dz\"\?
o {(d—x) * (7_.,)}
S ?z(dz az d_zfq}édz"
dz \dy) drdy dz dy "~ dy* (E)
6. Investigate the general equations of fluid motion; and deduce
from them the differential equation of the surfaces of equal pressure, when
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a heavy elastic fluid is contained in a closed vessel, rotating with unform
angular velocity about a vertical axis, and is at rest relatively to the vessel.

How is the constant to be determined in integrating for the pressure at
any given point?

7. Explain the effect of the Sun’s disturbing force upon the position of
the line of nodes of the Moon’s orbit, when the line of nodes is in quad-
ratures; and shew that the horary motion of the line of nodes is to that
of the Moon as ) )

~ 8m® cos (0 — mO) sin(0 -~ N)sin(mbf - N): 1,

N being the longitude of the mode, 6 that of the Moon, and m0 that of
the Sun.

8. Define the principal axes of a rigid body, and shew that for every
point in space there exists a system of such axes.

Shew that in general there is only one point for which the principal
axes are parallel to those drawn through a given point; but that, if the
given point be in one of the principal planes through the centre of gravity,
there is an infinite number of such points lying in en hyperbola which
passes through the given point.

9. The equation for the projection of the Moon’s radius vector on
the ecliptic is

ﬂ+u—£_£d._u_2(ﬁ+u M
de* TR R dO do* ) I

P 3t (w\(a\ 1+ 3 cos2(0-6)
and w1~ (5 (3) =2

calculate that part of evection in the value of @ which is due to the radial
force only.

Explain this term in connexion with the elliptic inequality,

&l
2¢ sin(gpt - a) + vy sin2 (¢pt - a).

WEDNESDAY, Jan. 18, 91...12}%,
PROBLEMS.

1. THERE are n points in space, of which p are in one plane, and there
is no other plane which contains more than three of them; how many
planes are there, each of which contains three of the points?

2. A bag contains nine eoins, five are sovereigns, the other four are
equal to each other in value; find what this value must be, in order that
the expectation of receiving two coins at random out of the bag may be
worth twenty-four shillings.

P2
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8. Having given that u, v, and ¢ are functions of the independent
variables z and y, and that one of the equations for determining them is
-’ transform this equation into one in which z and z shall be
the independent variables.

4. Trace the curves whose equations nretan’§+ tan'%: 1; and
yy-='-ay=a

5. Find the value of F’ tan™{m +/(1 - tan’r)}dz; and shew either from
[
your result, or from the area of the former of the two curves proposed in

the preceding question, that r' tan™ V(1 - tan'z)dz is equal to -17 nearly.
v e

6. Determine the form of the function f(6) from the equation

J(26) = cos6f (6);
with the condition £(0) = m.
Apply the result to find the centre of gravity of a circular are.

7. A rod is marked at random at two points, and then divided into
three parts at those points; shew that the probability of its being possible
to form a triangle with the pieces is 1.

Again: a piece is cut off the end of a rod, and the remainder is cut into
two pieces at random; shew that the probability of its being possible to
form a triangle with the pieces is in this case loge2 - 1.

8. One helix rolls upon another, (the inclination of the curve to the
axis being the same in both,) in such a way that the osculating planes of
the two curves at the point of contact coincide, find the curve traced out
by a point in the rolling curve. -

9. 4, B, C are three fixed points, and P a point which moves first
half way to 4, then half way to B, then half way to C, then half way to
A again, and so on for ever; shew that from whatever position P start,
its path approximates to the perimeter of a certain triangle whose area is
one-seventh of the area of the triangle 4 BC.

10. A string has a heavy particle at one end, and a small smooth ring
at the other; a loop, formed by passing the particle through the ring,
surrounds a fixed rough horizontal cylinder, the string being in one plane
perpendicular to the axis: find the limiting positions of equilibrium; and
shew that in every position of equilibrium the three angles at the ring
2 loga2‘

will be all obtuse unless the coefficient of friction exceed T
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11. Two parallel vertical walls are one smooth and the other rough,
and between them is supported a hemisphere with its curved surface in
contact with the smooth wall, and a point in its rim in contact with the
rough wall; find the pressures on the walls, and the least coefficient of
friction consistent with equilibrium.

12. A body moves under the action of a force whose direction always
touches a given plane curve, shew that, so long as the curvature is con-
tinuous, the areas, which it sweeps out about the moving point of contact,
are not proportional to the times.

13. A body describes a cycloid under the action of a force, which in
every position of the body is directed towards the centre of the corre-
sponding generating circle; find the law of the force and of the motion
of the centre of force.

14. A surface of the second order circumscribes a tetrahedron, and each
face of the tetrahedron is parallel to the tangent plane at the opposite
angular point; shew that the centre of the surface coincides with the
centre of gravity of the tetrahedron.

15. A horizontal cylinder revolves with uniform velocity about its axis,
and an endless chain, passing round it, revolves with it in such a manner
that the form of the chain in space is always the same; shew that the form
of the curve is independent of the velocity.

16. An inclined plane is fixed on a table, and from the foot of it a
body is projected upwards along the plane with the velocity due to the
height A; after passing over the top of the plane the body strikes the
table at a distance z from the foot of the plane; shew that, if the length
of the plane be J, and a its inclination to the horizon be less than i, the

greatest value of ¢ for given values of 4 and a is .L, and corre-
cot 2a sina cosa
sponds to the value /=24

cosu

17. A slender ring, moveable in a vertical plane, has a fixed rough
cylinder passing through it, the axis of the cylinder being perpendicular
to the plane of the ring; the ring whirls round in its own plane so as
always to be in contact with the cylinder, and to roll on it without sliding :
if 7,7, be the velocities of the centre of the ring when in its highest and
lowest positions respectively, and if P be the point of contact, O the centre
of the ring, when the tendency to slide is greatest, and OA a vertical
drawn downwards through O, shew that

3
cosPO4 =2 ;' 5, .

Explain the result when V' > 3V;%
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18. A cylindrical vessel is moveable about a horizontal axis passing
through its centre of gravity, and is placed so as to have its axis vertical;
if water be poured in, shew that the equilibrium is at first unstable; and
find the condition which must be satisfied, in order that it may be possible
to make the equilibrium stable by pouring in enough water.

19. Given the directions of three plane mirrors in space, construct a
straight line, such that, if light from it be reflected by the three mirrors
in succession, the third image shall be parallel to the straight line.

20. Shew that, in latitude 60° on the 21st of March, the setting sun
is visible for about 69 seconds longer from the top than from the bottom
of a tower 66 feet high, taking the earth’s radius 4000 miles and neglecting
the effect of refraction.

21. Shew how to determine graphically the path of the centre of
graduation of a mural circle, by observing the differences between the
readings of any three microscopes, (severally corrected for runms,) for
various positions of the instrument.

WEDNESDAY, Jan. 18, 1}...4.

1. PRovE Leibnitz’ Theorem,

d"(uw) d" dud*'v n(n-1)d’ d** d"u
@ ‘T @It T e T
Ifx'—+zz—":+y=0, shew that
dnﬂ
z’dzm+(2n+1)zwl+(n +1)

2. If y be a function of z, and z, y be given functions of r and 6, shew
how to transform an expression involving z, y, :—i, % <ee... into one
involvi o dr d'r
involving r, 6, =5, —z5 ...

cry

If z=r cosb, y =r sin6, shew that _d":=1 ir

dy r do
z -

3. If f(z) be a continuous function of z, shew that, when 2 increases,
JS(#) increases or diminishes according as f'(z) is positive or negative;
deduce tests which are sufficient for distinguishing between the maximum
and minimum values of f(x), supposing them to exist for certain values
of a.

Find the least triangle which can be described about a given ellipse,
having a side parallel to the major axis.
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4. If z» f(y) contain all the terms involving the highest power of =
in the rationalized equation of a curve, shew that f(y) = 0 is the equation
of all the asymptotes parallel to the axis of z.

If the equation, arranged in the form of a series of homogeneous functions
of descending order, be z"f (%) + z"'¢(%) +..=0, and f(z) =0 have
two equal roots different from zero, each equal to a; shew that if-r=1,
there is a parabolic asymptote whose equation is

= 2¢(a)
~az)=z ;
(y-as)=2—05
and, if =2, there are two parallel rectilinear asymptotes whose equa-
tions are
= ax t r Z %(a) i.
y \ F(a)

5. If r, 0 be co-ordinates of a point in a plane curve, and ¢ the angle
between the radius-vector and tangent at that point, prove that

dr . do
cos¢=£, and sm¢_r78.

S and H are two fixed points, and a curve is described such that, if P
be a point in it, the rectangle contained by SP and HP is constant; shew
that the straight lines drawn from § at right angles to SP and from H
at right angles to HP meet the tangent at P in points equidistant from P.

6. Trace the curve whose equation is

2 -1- tane.
r
7. Find the values of the following integrals,
dz de [i= dO . 2a
being <1), | 2"+/(2az -2*)dr,
~6 ' f ’ f i p (¢ being f
fﬂz" z +13) (1-::')3 , ltecos o

8. State between what limits the summation of dzdydz should be
performed, in order to obtain the volume contained between the conical
surface whose equation is z* + y* = (a-2)* aud the planes whose equations
are z = z, and z = 0; and find the volume by this or any other method.

9. Give a geometrical interpretation of the singular solution of a dif-
ferential equation.
Investigate the singular solution of the equation
dy\' Y ot
Sy’(a) - 2zy =t 9y* -2*=0,
and shew that it is the envelope of a series of circles described on the
subnormal of a rectangular hyperbola as diameter.
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10. Shew that the differential equation of all surfaces which are
generated by a circle, whose plane is parallel to the plane of yz, and
which passes through the axis of r and through two curves respectively
in the planes of sz and zy, is

W+ t+2(s-yg)(1+¢") =0.

11. Find the general functional equation to surfaces generated by the
motion of a straight line which always intersects and is perpendicular to
a given straight line.

If the surface, whose equation referred to rectangular co-ordinates, is

ar* + by + o’ + 2a'ys + 2z + 2Ty + 2a"2 + 2W'y + 2¢"2 + 1 = 0,
be capable of generation in this manner, shew that
a+b+e=0, aa® + b + oc = 2a°b'¢ + abe.

THURSDAY, Jan. 19. 9...12.

PROBLEMS.

1. Two circles of radii r, v, touch a straight line at the same point
on opposite sides: a circle, of which the radius is B and of which the
straight line is a chord, touches both the former circles. Prove that the
length of the chord is equal to

4R
(r ¥ (r’ i’

)+ ()

r

2. Prove that, n being any positive integer, and e the base of Napier’s

logarithms,

r

o> P

3. From a focus § of a conic section A RQPA three radii vectores SR,
8Q, SP, are drawn, the angles PSQ, QSR, bemg invariable. Prove that
the tangent at P intersects the chord RQ in a pomt of which the locus
is another conic section.

Supposing e to be the eccentricity of the original conic section and ¢’
of the conical locus, shew that, if / RSQ = 24, and LQSP =8,

O cost 2
e 2 2

P ,a+B a+ﬂ

4. Tangents PP, PP, are drawn from a point P to touch the ellipse

1*%‘L

™
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at points P, P. Supposing the harmonic mean between the abscisse of
the points P, P*, to be equal to that between their ordinates, shew that
the locus of P consists of four arcs of a curve of the third order.

Trace the curve and shew that, when @ = 3, the curve degenerates into
a straight line and an ellipse.

6. The distances of the successive angular points of a plane polygon
from a given point O within its area are given Supposing the polygonal
area to be the greatest possible, prove that, C.,, C,, C,,,, being any three
consecutive angular points, no two of which are in a line with O, the line
C,., C,,, is perpendicular to the distance OC,.

6. A rectangular column is formed by placing a number of smooth
cubical blocks one above another, the base of the column resting upon a
horizontal plane. All the blocks above the lowest are then twisted in the
same direction about an edge of the column, first the highest, then the
two highest, and so on, in each case as far as is consistent with equilibrium.
Prove that the sum of the sines of the inclinations of a diagonal of the
base of any block to the like diagonals of the bases of all the blocks above
it is equal to the sum of the cosines.

7. A uniform chain of length / hangs over two fixed points, which are
in a horizontal line: from its middle point is suspended by one end another
chain of equal thickness and of length /. Supposing each of the two
tangents of the former chain at its middle point to make an angle 6 with
the vertical, find the distance between the two fixed points.

Shew that the value of @ can never exceed that given by the equation

.0 _1-V
bl il e &
a'z* by* . .
8 If — - a’)’ - b’)‘-l’ and if, for any assigned values of z and g,

the expression o { z* ' Y }

Y- (-0

has only one value, prove that
a'z + by =4 (a*- )"

9. A great circle of a sphere intersects two given great circles, drawn
through a point O, in points 4, B, such that the product of tan 04,
tan OB, is invariable. If P be the intersection of this circle with the
consecutive one of the series of circles described according to the same
law, prove that cot'OP « sin POA . sin POB.

10. Investigate an equation for the form of the floats in the paddle
wheels of a steam vessel in order that they may enter the water without

splashing.
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If u = Aw, where u = the velocity of the vessel, w = the angular velocity
of the wheels, and A = the height of the centres of the wheels above the
water, shew that the floats of each wheel must have the forms of arcs
of involutes of a concentric circle touching the water level.

11. A hollow vertical polygonal prism, open at both ends, rests upon
a horizontal plane. Every two contiguous faces are moveable about their
common edge. Supposing the prism to be in equilibrium, when filled
with fluid, prove that

& _ & &
Sne,” sna,” sna "

a,, a,, a,, ... being the angles of a transverse section 4,4.4,...4,.4,, and
€y €y Cyy ... denoting the lines 4,4, 4,4, 4.4, ...

Hence shew that there will be equilibrium when the points 4,, 4,, 4,,...
lie all in the circumference of a circle.

12. A filament of fluid oscillates in a thin cycloidal tube of uniform
bore the axis of the cycloid being vertical and its vertex downwards.
Supposing the filament to be placed initially with its lower end at the
lowest point of the tube, find the pressure at any point of the filament at
any time.

Shew that the pressure is 8 maximum, during the whole motion, at the
middle point of the filament.

13. A ray experiences a series of reflections between two plane in-
clined mirrors. Prove that all the segments of the ray, produced in-
definitely, are tangents to every one of an infinite series of spheres.

14. A narraw self-luminous rectangular lamina is placed with one end
at the edge of a circular plate: the lamina is at right angles to the plate
and its plane passes through the centre of the plate: find the whole
illumination on the plate.

If the length of the lamina be equal to the diameter of the plate, its
intrinsic brightness and breadth being given, prove that the illumination
varies as the diameter of the plate.

15. Prove that an infinite number of plane centric sections of an hyper-
boloid of one sheet may be drawn, each possessing the following property,
viz. that the normals to the surface at the curve of section all pass through
two straight lines lying in the same plane with the two possible axes.

Shew that these centric planes envelope the asymptotic cone, while the
two straight lines envelope an ellipse.

16. Prove that the envelope of a sphere, of which any one of one
series of circular sections of an ellipsoid is a diametral plane, is a spheroid
touching a sphere, described on the mean axis of the ellipsoid as diameter,
in a plane perpendicular to any one of the same series of circular
sections.
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17. The Sun’s centre, in proceeding from Aries to the Summer Selstice,
Ppasses, when at a distance ¢ from the Solstice, through the zenith of a cer-
tain place. Prove that, supposing the Earth’s orbit circular and the plane of
the eqnator invariable in position, it will not again pass exactly through the
zenith of this place in moving from the Solstice to Libra, unless

n denoting the ratio of the Earth’s angular velocity about its axis to its
angular velocity about the Sun.

18. Deternime u, , from the equation

¢ :;;. Ugyo s = Al

where A affects z only; and, having given the expressions for u,, , : Uss o0
0

shew how to determine the values of the arbitrary functions which appear
in the result.

fu,=az+d and d ,,o—ar" shew from your formule that

e =da. 77 (04 ),

a', r, p, being constant quantities.

19. Determine the differential equation to a family of curves which
possess the following property: if we take in one of the curves any
three points P, P', P", so related that C*, C", the centres of curvature at
P, P, lie respectively in the ordinates PM, P’M’, produced if necessary,
the ratio of M'M" to MM’ shall be invariable.

Shew from your result that the elastica, the equation to which is

a*dx
dy = (—c‘_x,)* ’
is an individual of the family.

20. A small heavy insect, placed at an end of the horizontal diameter
of a thin heavy motionless ring, which is moveable about its centre in
a vertical plane, starts off to crawl round the ring so as to describe in
space equal angles in equal times about its centre. Determine its
velocity relatively to the ring in any position.

21, A series of perfectly rough semicylinders are fixed, side by side,
upon their flat faces directly across a straight road of constant inclination.
Determine the inclination of the road in order that a rough circular inelastic
hoop, just starfed downwards from the summit of one of the cylindrical
ridges, may travel directly along the road with a uniform mean veloaity.

22, A brittle rod 4B, attached to smooth fixed hinges at 4 and B,
is attracted towards a centre of force C acording to the law of nature.
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Supposing the absolute force to be indefinitely augmented, prove that
the rod will eventually snap at a point E, the position of which is defined
by the equation

. a-f

sin

2
’
sina.+ﬁ

2
where a, 8, denote the angles BA C, A BC, respectively,

23. A vessel, of given capacity, in the form of a surface of revolution
with two circular ends, is just filled with inelastic fluid which revolves
about the axis of the vessel, and is supposed to be free from the action
of gravity: investigate the form of the vessel that the whole pressure
which the fluid exerts upon it may be the least possible, the magnitudes
of the circular ends being given.

Shew that, for a certain relation between the radii of the circular ends,
the generating curve of the surface of revolution is the common catenary.

24. If a, B, v, be the direction-cosines of one of the two lines of
vibration of the plane front of a wave in a biaxal crystal, and o, 8, 7,
those of either of the two lines of vibration of a plane front intersecting
the former plane front at right angles and passing through the line
(a, B, %), prove that .

%l(b'—c’)-p%(c‘—a') +%(a’—b’) =0,

@-0F  (@-aF, (@-F)
o " BE T W

THURSDAY, Jan. 19, 1}...4.

1. Ir a and b be two numbers prime to each other, shew that, when
a, 2a, 3a, ... (b-1)a are divided by b, the remainders are all different
from each other; and shew that there is an infinite number of positive
integral solutions of the equation az - by =c, when a and b are prime
to each other, and ¢ is & whole number.

Shew that, if m and n are prime to each other, the equations 2™-1=0
and 2" - 1 = 0 have no common root but unity.

cosLAEC =

and that 0.

2. Shew that the area of a spherical triangle varies as the excess of the

sum of its angles above two right angles; and prove Llhuillier’s theorem,
E 8, 8-a, 8-b _s-c¢
tan?— ¢(tan§ tan T tanT taﬂ'—2-').

8. If straight lines, represented by u,=0, %,=0, u, =0, %, =0, taken
in ordes, form a quadrilateral, and a, b, ¢, d, be such that au,+bu,+cu,+du,
vanishes for all values of z and y, shew that the curve of the second order,
represented by the equation Au,u, + pun, =0, circumscribes the quadri-
lateral, and that A\bu, = uau, represents a tangent to the curve.

ey
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4. The variable parameter in an equation u =0 to a family of curves
being represented by a, prove that, if there be a cusp in their envelope,
its coordinates will satisfy the three equations

du d*u
¥=0, ==0, =5=0..

Apply this theorem to find the cusps of the curve which envelopes
the family of lines represented by the equation

x y_

—+ =—=c

cosa sia
5. Integrate the differential equation
d
Ty, 29,9,

" z dz" &
Obtain a general expression for Y-(z) from the equation

Y@+ Y(l-z)=c.

6. A lamins, in the form of a semi-ellipse bounded by the axis minor,
is moveable about the centre as a fixed point, and falls from the position
in which its plane is horizontal; find the pressure on the fixed point
for any position of the lamina, and determine the impulse which must
be applied at the centre of gravity, when the lamina is vertical, in order
to reduce it to rest.

If this force be applied perpendicularly to the lamina at the extremity of
an ordinate through the centre of gravity, instead of being applied at the
centre of gravity itself, about what axis will the lamina begin to revolve ?

7. Enunciate and prove the principle of Vis Viva, shewing that it will

not be true unless the expression
Em(Xdz + Ydy + Zdz)
is a perfect differential or zero.

Describe the nature of those forces which disappear from this expression,
and of those which render it a perfect differential. What kind of forces
would render it not a perfect differential ?

A thin uniform smooth tube is balancing horizontally about its middle
point, which is fixed; a uniform rod, such as just to fit the-bore of the
tube, is placed end to end in a line with the tube, and then shot into
it with such a horizontal velocity that its middle point shall only just
reach that of the tube: supposing the velocity of projection to be known,
find the angular velocity of the tube and rod at the moment of the
coincidence of their middle points.

8. Investigate the differential equation for the Moon’s latitude.
‘What are the points which require particular attention in obtaining
approximately the Moon’s latitude in terms of her longitude P
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9. Prove that, in the planetary theory,

dR _dR dR
B dw 't E

For what purpose is this transformation made ?

10. In the shutter of a dark chamber there is a small rectangular
aperture, covered symmetrically by a convex lens; homogeneous light
diverges upon the lens from such an external point in its axis that after
refraction its geometrical focus lies in the opposite wall of the chamber;
investigate the character of the bands formed on the wall in the neigh-
bourhood of the geometrical focus.

State the dynamical principle in virtue of which you are at liberty to
adopt the method of summation, as employed in this and similar problems.

FRIDAY, Jan. 20. 9...12.

1. The position of a point in space being determined by the polar
coordinates s0'¢y¥, where ¢ is the angle through which s has revolved,
from a fixed line Oz, in a plane which has revolved through an angle ¢
from a fixed plane 20z; shew that the equation to the tangent plane at
a point r6¢p of a surface is

,-'_ i . . sin® sin(¢p-¢@') dr

7T [r (sin@ cos& - sin & cosf cos(Pp-@)}] + o a5

2. If 2 be an integer, shew that
1 n
= () e a0 Tl

B, , being the n'™ of Bernoulli’s numbers.

Shew, by Bernoulli’s numbers or otherwise, that

1* 2 3 . 27
P17 2%+1°3F+1 -

3. Define the terms convergent and divergent when applied to a series
of quantities real or imaginary.

Investigate a rule which is ordinarily sufficient to ascertain whether
a series is or is not convergent.

Are the following series convergent?

3 2n + 1

5 7 9 .
§z+5z‘+l—0z’+l—iz‘+...+mz"+..., where z is real;

1 + & cosa + z* cos2a + &c., where z is real or imaginary.

4. If f(x) be finite for all values of z between I and -7, prove that,
whatever be the form of the function, the following equation holds for
all values of z included between these limits,

Fl@)= -21-1 f oL % = {[ " cos ’—‘"—“"'l'—_ﬂ Sz,
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and deduce the formula,

re0-3 ([ et 1)

5. What is meant by the potential of an attracting mass with respect
to any point? If 7 be the potential with respect to a point whose co-
ordinates are a, b, ¢, shew that

av ' av N av

da*  db*  dc
according as the point is extraneous, or forms part of the attracting mass,
p in the latter case being the density of the mass at the point @, b, c.

A uniform circular lamina attracts a point situated in a line drawn
perpendicularly to it through its centre; shew that

V= 2r{y(a+a) - 2),

a being the radius of the lamina, and z the distance of the point from it;
and deduce the resultant attraction exerted by the lamina upon the point.

=0, or -d4mp,

6. In the Planetary Theory, when the disturbing function is developed
preparatory to the determination of the perturbations in longitude and
radius vector, shew that p ~ ¢ is the order of the principal term in which
pn — gn’ is the coefficient of ¢; assuming that this law holds for u, «/, and
for powers and products of powers of » and w.

‘What terms must be reserved for examination as likely to be of im-
portance ?

7. Solve the differential equation for the vibratory motion of the air
contained in an indefinite cylindrical tube; and shew that when such
motion is produced by a vibrating plate placed at one end of a finite tube,
of which the other end is open, if the period of vibration have a certain
relation to the length of the tube, it is possible for the character of the
vibrations to remain permanently the same.

If such a tube be sounding its fundamental note, what would be the
effect of making a small aperture in the side of the tube, first at its
middle point, secondly a little nearer to the open end?

8. Find the difference of retardation of the two waves produced by
a thin lamina cut from a uniaxal crystal perpendicular to its axis, when
a ray of common light is incident nearly parallel to the axis: describe the
rings produced by interposing such a lamina between a polarizing and
an analyzing plate, the planes of incidence at the two plates being inclined
at an angle of 45° to each other.

If two such lamine, one cut from a positive and the other from a
negative uniaxal crystal, be placed together and interposed, what must
be the ratio of their thicknesses in order that neither rings nor brushes
may be visible?
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FRIDAY, Jan. 20, 11...4.

1. Ir f(p, ¢y 7» 8,...) = 0, where p, g, r, 8,... are the distances of any
point in a curve from fixed points in its plane, or of any point in a surface
from fixed points, and if a set of forces proportional to f*(p), f" (g)...act
on the point, along the distances p, g, r ..., prove that their resultant acts
along the normal at that point.

If sin\ : sinp :: p*: ¢*, where A\, u, ave the respective inclinations of
» ¢ to the normal at any point of the curve f(p,¢) = 0, prove that, ¢
being a constant, P g =

2. Having given the following simultaneous differential equations,
d'z dR d'% dR
E = -d—z- » 7,7- = Ey—-, ......

where R=f(r), r=2'+y"+...;
t= f i 4, B being arbitrary constants.
vir’(2R+ B)- 4%’ 7
Integrate the partial differential equation
ql+Q)r—(p+q+2p9)8 + p(1 +p) t= 0,

3. Prove that the radius of curvature of an oblique section, at any
point of a surface, coincides with the projection, upon the plane of the
section, of the radius of curvature of the normal section through the same
tangent line.

An annular surface is generated by the revolution of a circle about an
axis in its own plane; prove that one of the principal radii of curvature,
at any point of the surface, varies as the ratio of the distance of this point
from the axis to its distance from the cylindrical surface described about
the axis and passing through the centre of the circle.

prove that

4. Give sufficient equations for calculating the motion of a right cone
placed upon a perfectly rough inclined plane; and find the moment of the
couple exerted by friction on the cone.

Shew that the length of the simple isochronous pendulum, when the
cone oscillates about the lowest position, is

4%
3r sina sing’
2a being the angle of the cone, r the radius of its base, 8 the inclination
of the plane, and % the radius of gyration round a generating line. ’
5. Ifu= f Vdz has a maximum or minimum value, prove that
N—‘%+‘%Z-...=0.

How must this equation be modified when the result of some given opera-
tion performed upon the variables and their extreme values is given ?
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The form of a homogeneous solid of revolution, of given superficial area,
and described upon an axis of given length, is such that its moment of
inertia about the axis is a maximum : prove that the normal at any point
of the generating curve is three times as long as the radius of curvature.

6. Distinguish between secular and periodic variations. Are secular
variations ever periodic?
The equations which connect the inclination and the longitude of the
nodes of the orbits, in the case of Jupiter and Saturn, are of the form
tand sinQ = G sin(at + ) + H sing,
tant cosQ = G cos(at + &) + H cosé.
For both orbits,
a=- 255156, «=125°15 407, &=103°38'40”, and H =.02905,
G = - .00661 for Jupiter, and = .015687 for Saturn,
t being reckoned from A.D. 1700.

Prove the following circumstances of motion, that Jupiters node re-
gresses and Saturn’s progresses from a longitude &4 ¢ — 37 through the
angle 2¢ ~ 7 in the time -_—2%, where ¢ is for each planet the least positive
angle which satisfies the equation G'=_H cose; that they arrive simul-
taneously at their mean position; and that in this position Jupiter's orbit
has its maximum and Saturn’s its minimum inclination.

7. Assuming that the angular accelerating force, exerted by the Sun
on the Earth, about a diameter of the Earth’s equator at right angles to
the line joining the centres of the Earth and Sun, varies as sinSP cosSP,
where P is the Earth’s pole, and § the Sun’s centre; investigate the solar
precession of the equinoxes.

8. Draw the course of a small pencil of parallel rays, passing at such
an angle through a biaxal crystal cut with parallel faces, that external
cylindrical refraction takes place.

How may the constants &, b, ¢ corresponding to the axes of elasticity
be obtained experimentally ?

If the two faces of a prism, formed of a biaxal crystal, be perpendicular
to each other, and one contain the two axes of elasticity 4, ¢, and the
other b, ¢; and if p,, u; be two refractive indices for the ordinary ray
when the planes of refraction are perpendicular to the axes ¢ and b respec-
tively ; _shew that D, the minimum deviation of the extraordinary ray,
is given by the equation

sin'D = (ua' -1) (' - 1).

THE END.
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FISHER.—The Goth and the Saracen: a Comparison
between the Historical Effect produced upon the Condition of Mankind by
the Mahometan Conquests and those of the Northern Barbarians. By E. H.
FISHER, B.A. Scholar of Trinity College, Cambridge. Crown 8vo. 1ls. 6d.

FORD.—Steps to the Sanctuary; or, the Order for Morning
Pnya!. set forth and explained in Verse. By JAMES FORD, M.A., Pre-
dary of Exeter Cathedral. Crown 8vo. cloth, 2s. 64.

FROST.—The First Three Sections of Newton’s Principia.
With Notes and Problems in illustration of the subject. By PERCIVAL
FROST, M.A. late Fellow of St. John’s College, Cambridge, and Mathe-
matical Lecturer of Jesus College. Crown 8vo. cloth, 10s. 6d.

GILL.—The Anniversaries. Poems in Commemoration of
Great Men and Great Events. By T. H. GILL. Fecap. 8vo. cloth, 5s.

GODFRAY.—An Elementary Treatise on the Lunar Theory.

) ‘With a brief 8ketch of the History of the Problem up to the time of Newton,
By HUGH GODFRAY, M.A. of 8t. John’s College, Esquire Bedellin the
University of Cambridge. 8vo.cloth, 5s. 64.

GRANT.—Plane Astronomy. -
Including Explanations of Celestial Ph , and Descrip of Astrono-
mical Instruments. By A.R.GRANT, M.A., one of Her M:jesty’u In-
spectors of Schools, late Fellow of TrinityCollege, Cambridge. 8vo.boards, 6s.
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HAMILTON.—On Truth and Error: Thoughts, in Prose and

Verse, on the Principles of Truth, and the Causes and Effects of Error.
By JOHN HAMILTON, Esq. (of 8t. Ernan’s), M.A. 8t. John's College, Cam-
bridge. Crown 8vo. cloth, 5s.

HARE.—Charges delivered during the Years 1840 to 1854.
‘With Notes on the Principal Events affecting the Church during that period.
ByJULIUS CHARLES HARE, M.A. sometime Archdeacon of Lewes, and
Chaplain in Ordinary to the Queen. With an Introduction, explanatory
of his position in the Church with reference to the parties which divide it,
8 vols. 8vo. cloth, 1i. 11s. 6d.

HARE.—Miscellaneous Pamphlets on some of the Leading

Questions agitated in the Church during the Years 1845—51. 8vo. cloth, 12s.

HARE.—The Victory of Faith.
Second Edition. 8vo. cloth, 5s.

HARE.—The Mission of the Comforter.
. Second Edition. With Notes. 8vo, cloth, 12s.

HARE.—Vindication of Luther from his English Assailants.

Second Edition. 8vo. cloth, 7a,

HARE.—Parish Sermons.

Second Series. 8vo. cloth, 12,

HARE.—Sermons Preacht on Particular Occa.smns.
8vo. cloth, 12s.
*4* The two following Books are included in the Three Volumes of Charges, and
may still be had separately.

HARE.—The Contest with Rome.

‘With Notes, especially in answer to Dr. Newman’s Lectures on Present Position
of Catholics. Second EBEdition. 8vo. cloth, 10s. 64.

HARE.—Charges delivered in the Years 1843 1845, 1846.
Never before published. With an Introducti 1 y of hu position
in the Church with reference to the parties which dunde it. 6s. 6d.

HARE.~—Portions of the Psalms in English Verse.

Selected for Public Worship, 18mo. cloth, 2s.6d. -

HARE.—Two Sermons preached in Herstmonceux Church,
on Septuagesima Sunday, 1855, being the Sunday after the Funeral of the
Venerable Archdeacon Hare. By the Rev. H. VENN ELLIOTT, Perpetual
Curate of St. Mary’s, Brighton, late Fellow of Trinity College, Cambridge,
and the Rev. J. N. SIMPKINSON, Rector-of Brington, Northampton,
formerly Curate of Herstmonceux. 8vo. ls, 6d.

HARDWICK.—Christ and other Masters.

A Historical Inquiry into some of the chief Parallelisms and Contrasts
between Christianity and the Religious Systems of the Ancient World. With
special reference to prevailing Difficulties and Objections. By the Ven.
ARCHDEACON HARDWICK. Part I. INTRODUCTION. PaRT II. THE
RErie1oNs oF INpra. Part III. Tue RELIGIONS oF CHINA, AMERICA,
AND OcEANICA. Part IV. REL1GIONS oF EGYPT AND MEDO-PERSIA. 8vo.
cloth. 7s. 6d, each part.
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HARDWICK.—A History of the Christian Church, during
the Middle Ages and the Reformation. (A.D. 590-1600.)
By Archdeacon Hardwick. Two vols. erown 8vo. cloth, 21s.
Vol. I. History from Gregory the Great to the Excommunication of Luther.
‘With Maps.
Vol. 1I. History of the Reformation of the Church.
Each volume may be had separately. Price 10s. 64.
#,* These Volumes form part of the Series of Theological Manuals.

HARDWICK.—Twenty Sermons for Town Congregations.

Crown 8vo. cloth, 6s. 6d.

HAYNES.—Outlines of Equity. By FREEMAN OLIVER
HAYNES, Barrister-at-Law, late Fellow of Caius College, Cambridge.
Crown 8vo. cloth, 10s.

HEDDERWICK.—Lays of Middle Age, and other Poems.
By JAMES HEDDERWICK, Fcp. 8vo. 5s.

HEMMING.—An Elementary Treatise on the Differential
and Integral Calculus. By G. W. HEMMING, M.A. Fellow of St. John's
College, Cambridge. Secomnd Edition. 8vo. cloth, 9s.

HERVEY.—The Genealogies of our Lord and Saviour Jesus
Christ, as contained in the Gospels of St. Matthew and 8t. Luke, reconciled
with each other and with the Genealogy of the House of David, from Adam to
the close of the Canon of the Old Testament, and shown to be in harmony with
the true Chronology of the Times. By Lord ARTHUR NERVEY, M.A.
Rector of Ickworth. 8vo. cloth, 10s. 6d.

HERVEY.—The Inspiration of Holy Scripture.

Five 8 preached before the University of Cambridge. 8vo. cloth, 3s. 6d.

HOWARD.—The Pentateuch; or, the Five Books of Moses.
Translated into English from the Version of the LXX. With Notes on its
Omissions and Insertions, and also on the Pagsages in which it differs from
the Authorised Version.w By the Hon. HENRY HOWARD, D.D. Dean f
Lichfield. Crown 8vo. cloth. GExNxsis, 1 vol. 8¢. 6d.; Exopus AND LEV1-
TICUS, J vol. 10s. 64.; NUMBERS AND DEUTERONOMY, 1 vol. 10s. 6d.

HUMPHRY.—The Human S8keleton (including the Joints).
By GEORGE MURRAY HUMPHRY, M.D. F.R.S., Surgeon to
Addenbrooke’s Hospital, Lecturer on Surgery and Anatomy in the Cambridge
University Medical School. With Two Hundred and Sixty Illustrations
drawn from Nature. Medium 8vo. cloth, 17. 8.

HUMPHRY.—On the Coagulation of the Blood in the Venous

System during Life. 8vo. 2s. 6d.

INGLEBY.—Cutlines of Theeretical Logic.

«.. Founded on the New Analytic of 81r Wirriax Hamirron. Designed for
Text-book in Schools and Colleges. By C. MANSFIELD INGLEBY, M.A.,
of Trinity College, Cambridge. In fcap. 8vo. cloth, 3s. 6d.
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JAMESON.—Analogy between the Miracles and Doctrines
. of Scripture. By F. J. JAMESON, M.A,, Fellow of St. Catharine’s College,
Cambridge. Feap. 8vo. cloth, 2s.

JAMESON.—Brotherly Counsels to Students. Four Sermons

preached in the Chapel of St. Catharine’s College, Cambridge. By F. J.
JAMESON, M.A. Fecap. 8vo. limp cloth, red edges, 1s. 64.

JUVENAL.—Juvenal, for Schools.
With English Notes. By J. E. B. MAYOR, M.A. Fellow and Assistant
Thutor of 8t. John’s College, Cambridge. Crown 8vo. cloth, 10s. 6d.

KINGSLEY.—Two Years Ago.
By CHARLES KINGSLEY, F.8.A. Rector of Eversley, and Chaplain in Ordi-
nary to the Queen. Second Edition. $ vols, crown 8vo. cloth, 14. 11s. 64.

KINGSLEY.—“ Westward Ho!” or, the Voyages and Adven-
tures of 8ir Amyas Leigh, Knight of Burrough, in the County of Devon, in
the Reign of Her Most Glorious Majesty Queen Elizabeth., New and
Cheaper Edition. Crown 8vo. cloth, 6s.

KINGSLEY.—Glaucus; or, the Wonders of the Shore.
New and Illustrated Edition, corrected and enlarged. Containing
beautifully Coloured Illustrations of the Objects mentioned in the Work.
Elegantly bound in cloth, with gilt leaves. 7a. 6d.

KINGSLEY.—The Heroes: or, Greek Fairy Tales for my
Children, With Eight Illustrations, Engraved by Wunymrer. New
Edition, printed on toned paper, and elegantly bound in cloth, with gilt
leaves, Imp. 16mo. 5s.

KINGSLEY.—Alexandria and Her Schools: being Four Lec-
tures delivered at the Philosophical Institution, Edinburgh. With a Preface
Crown 8vo. cloth, 5.

KINGSLEY.—Phaethon; or Loose Thoughts for Loose

Thinkers. Third Edition. Crown Svo.bouds, 2s,

KINGSLEY.—The Recollections of Geoffry Hamlyn.

By HENRY KINGSLEY, Esq. 3 Vols, 1. 11s. 63,

LATHAM.—The Constructlon of Wrought -Iron Bndges,
embracing the Practical Ap i of the Principles of Mech
‘Wrought-Iron Girder Work. ByI H. LATHAM, Esq. Civil Engineer. svo
cloth. With numerous detail Plates. 15s.

LECTURES TO LADIES ON PRACTICAL SUBJECTS.
Third Edition, revised. Crown 8vo. cloth, 7s.6d. By Reverends F. D,
MAURICE, CHARLES KINGSLEY, J. L. DAVIES, ARCHDEACON
ALLEN, DEAN TRENCH, PROFESSOR BREWER, DR. GEORGE
JOHNSON, DR.SIEVEKING, DR. CHAMBERS, F. J. STEPHEN, Esq.,
and TOM TAYLOR, Esq.
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LITTLE ESTELLA, and other TALES FOR THE

YOUNG. With Frontispiece. Royal 16mo. extra cloth, giit leaves, 5s.

LUDLOW.—British India; its Races, and its History,
down to 1857. By JOHN MALCOLM LUDLOW, Barrister-at-Law. 2 vols.
fcap. 8vo. cloth, 9s.

LUSHINGTON.—La Nation Boutiquiére: and other Poems,
chiefly Political. With a Preface. By the late HENRY LUSHINGTON,
Chief Secretary to the Government of Malta. Poimnts of War. By
FRANKLIN LUSHINGTON, Judge in the 8upreme Courts of the Ionlu\
Isles. In 1 vol.fcap Svo. cloth, Ss,

LUSHINGTON.—The Italian War 1848-9, and the Last
Italian Poet. By the late HENRY LUSHINGTON, Chief Secretary to the
Government of Malta. With a Biographical Preface by G. 8. VENABLES.
Crown 8vo. cloth, 6s. 6d.

MACKENZIE.—The Christian Clergy of the first Ten Cen-
turles, and their Influence on European Civilization. By HENRY
MACKENZIE, B.A. Scholar of Trinity College, Cambridge. Crown 8vo.
cloth, 6s. 6d

MANSFIEL".-Paraguay, Brazil, and the Plate.
‘With a Map, a1d numerous Woodcuts. By CHARLES MANSFIELD, M.A.
of Clare College, Cambridge. With a Sketch of his Life. By the Rev.
CHARLES KINGSLEY. Crown 8vo. cloth, 12s. 6d.

M'COY.—Contributions to British Palsontology; or, First De-
scriptions of several hundred Fossil Radiata, Articulata, Mollusca,and Pisces,
from the Tertiary, Cretaceous, Oolitic, and Palmozoic Strata of Great Britain.
With numerous Woodcuts. By Frxpericx McCoy, F.G.S., Professor of
Natural History in the University of Melbourne. 8vo. cloth, 9.

MASSON —Essays, Biographical and Critical; chiefly on the
Eng Poets. By DAVID MASSON, M.A. Profeuor of English
Literature in University College, London. 8vo. cloth, 12s. 64.

MASSON.—British Novelists and their Styles; being a
Critical Sketch of the History of British Prose Fiction. By DAV1D MASSON,
M.A. Crown 8vo, cloth, 7s. 6d.

MASSON.—Life of John Milton, narrated in Connexion
with the Political, Ecclesiastical, and Literary History of his Time, Vol. I.
with Portraits. 18s.

MAURICE.—Expository Works on the Hely Scriptures.
By FREDERICK DENISON MAURICE, M.A., Chaplain of Lincoln’s Inn,
L—The Patriarchs and Lawgivers of the 01d Testament.
Second Edition. Crown 8vo. cloth, 6s.

This volume contains Discourses on the Pentateuch, Joshua, Judges,
and the beginning of the First Book of Samuel.
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MAURICE.—Expository Works on the Holy Scriptures.
By FREDERICK DENISON MAURICE, M.A., Chaplain of Lincoln’s Inn.

IL.—The Pro 'Phets and Kings of the 0ld Testa.ment.
Secon: Editlon Crown 8vo. cloth, 10s, 6

‘This vol Di onS8 11. nndl[ ,» KingsI.andII.,
Amos, Joel, Hosel, Isaiah, Micah, Nahum, Eabnkkuk, Jeremiah,
and Ezekiel.

III.—The Gospel of St.John; a Series of Discourses.
Second Edition., Crown 8vo. cloth, 10s. 6d.

IV.—The Epistles of St.John; a Series of Lectures on

Christian Ethics, Crown 8vo. cloth, 7s. 6d.

MAURICE.—Expository Works on the Prayer-Book.
I.—The Ordinary Services.
Second Edition. Fecap. 8vo. cloth, 5s. 64.

II.—The Church a Family. Twelve Sermons on the

Occasional Services. Fcap. 8vo. cloth, 4. 64.

MAURICE.—What is Revelation? A Series of Sermons
on the Epiphany; to which are added Letters to a Theological Student on the
Bampton Lectures of Mr. MANSEL. Crown 8vo. cloth, 10s. 6d.

MAURICE.—8equel to the-Inquiry, “ What is Revelation ?”
Letters in Reply to Mr. Mansel’s Examination of ¢ Strictures on the
Bampton Lectures.” Crown 8vo. cloth, 6s.

MAURICE.—Lectures on Ecclesiastical History.

8vo, cloth, 10s. 64.

MAURICE.—Theological Essays.

Second Edition, with a new Preface and other additions. Crown 8vo.
cloth, 10s. 6d.

MAURICE.—The Dectrine of Sacrifice deduced from the
Scriptures. With a Dedicatory Letter to the Young Men’s Christian Associa-
tion. Crown 8vo. cloth, 7s. 6d.

MAURICE.—The Religions of the World, and their Relations
to Christianity. Third Edition. Fcap. 8vo.cloth, 5s.

MAURICE.—On the Lord’s Prayer.
Third Edition. Fcap. 8vo, cloth, 2a. 6d.

MAURICE.—On the Sabbath Day: the Character of the

‘Warrior; and on the Interpretation of History. Feap. 8vo. cloth, 2s.6d.

MAURICE.—Learning and Working.—8ix Lectures on the
Foundation of Colleges for Working Men, delivered in Willis’s Rooms,
London, in June and July, 1854, Crown 8vo, cloth, 5s.
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MAURICE.—The Indian Crisis. Five Sermons.

Crown 8vo. cloth, 2s. 6d.

MAURICE.—Law’s Remarks on the Fable of the Bees.
Edited, with an Introduction of Eighty Pages, by FREDERICK DENISON
MAURICE, M. A, Chaplain of Lincoln’s Inn. Fcp. §vo. cloth, 4s. 6d.

MAURICE.—Miscellaneous Pamphlets:—
I.—Eternal Life and Eternal Death.

Crown 8vo. sewed, 1s. 6d.

IL—Death and Life. A Sermon. 3t femssiam €. B. M,

8vo. sewed, 1s.

III.—Plan of a Female College for the Help of the Rich

and of the Poor. 8vo, 6d.

IV.—Administrative Reform.
Crown 8vo. 3d.
V.—The Word “Eternal,” and the Punishment of the
Wicked. Fifth Thousand. 8vo. ls.
VL—The Name “Protestant:” and the English Bishopric

at Jerusalem. Second Edition. 8vo.3s.

VII.——'l;hotllghts on the Oxford Election of 1847.
vO. 18,

VIIL—The Case of Queen’s College, London.

8vo. la. 6d.

IX.—The Worship of the Church a Witness for the

Redemption of the World. 8vo. sewed, ls.

MAYOQR.—Cambridge in the Seventeenth Century.
2 vols. feap. 8vo. cloth, 13s.
Vol. I. Lives of Nicholas Ferrar.
Vol. II. Autobiography of Matthew Robinson.
By JOHN E. B. MAYOR, M.A. Fellow and Assistant Tutor of 8t. John's
College, Cambridge.
*.% The Autobiograph? of Matthew Robinson may be had separately, price 5s. 6d.

MAYOR.—Early Statutes of St. John’s College, Cambridge.
Now first edited with Notes. Royal 8vo. 18s.
*,® The Pirst Part is now ready for delivery.

MAXWELL.—The Stability of the Motion of Saturn’s Rings.
By J. C. MAXWELL, M.A. Professor of Natural Philosophy in the Uni-
versity of Aberdeen. 4to, sewed, 6s.

MOORE.—A New Proof of the Method of Algebra commonly
called * Greatest Common Measure.,” By B. T. MOORE, B.A., Pellow of
Pembroke College, Cambridge. Crown 8vo, 6d.



MACMILLAN & CO.’8 PUBLICATIONS, 11

®, .

MORGAN.—A Collection of Mathematical Problems and
Examples. Arranged in the Different Subjects progressively, with Answers
to all the Questions. By H. A, MORGAN, M.A., Fellow of Jesus Col-
lege. Crown 8vo. cloth, 6s. 6d.

MORSE.—Working for God, and other Practical Sermons.
By PRANCIS MORSE, M.A. Incumbent of 8t. John's, Ladywood, Bir-
mingham. Second Edition. Fcap. 8vo. cloth, 5s.

NAPIER.—Lord Bacon and Sir Walter Raleigh.
Critical and Biographical Essays. By MACVEY NAPIER, late Editor
of the Edindurgh Review and of the Encyclopedia Britanni Post 8vo.
cloth, 7s. 6d.

NORWAY AND SWEDEN.—A Long Vacation Ramble in

1856. By X and Y. Crown 8vo. cloth, 6s. 64.

OCCASIONAL PAPERS on UNIVERSITY and SCHOOL

MATTERS; containing an Account of all recent University Subjects and
Changes. Three Parts are now ready, price 1s. each.

PARKINSON.—A Treatise on Elementary Mechanics.
For the Use of the Junior Classes at the University, and the Higher Classes in
Schools. With a Collection of Examples. By 8. PARKINSON, B.D. Fellow
and AssistantTutor of 8t.John’s College, Cambridge. Crown 8vo. cloth, 9s. 6d.

PARKINSON.—A Treatise on Optics.

Crown 8vo. cloth, 10s. 6d.

PARMINTER.—Materials for a Grammar of the Modern
English Language. Designed as 8 Text-book of Classical Grammar for thé
use of Training Colleges, and the Higher Classes of English Schools. By
GEORGE HENRY PARMINTER, of Trinity College, Cambridge; Rector
of the United Parishes of 8S.John and George, Exeter. Foap. 8vo.cloth, 3s. 6d.

PEROWNE.—" Al-Adjrumiieh.”
An Elementary Arabic Grammar. By J.J.S. PEROWNE B.D. Lecturer
in Divinity in King’s College, London, and Exami Cbaplain to the
Lord Bisltop of Norwich. 8vo. cloth, 5s.

PHEAR.—Elementary Hydrostatics.
By J. B. Phear, M.A. Pellow of Clare College, Cambridge. Second
Edition. A jed by I Examples, with the Solutions.
Crown 8vo, cloth, 52, 6d.

PHILOLOGY.—The Journal of Sacred and Classical Philology.

Vols, Ito IV. 8vo. cloth, 124. 6d. each.

PLAIN RULES ON REGISTRATION OF BIRTHS AND

DEATHS. Crown 8vo. sewed, 1d.; 94. per dozen; 5s. per 100.

PLATO.—The Republic of Plato.

Translated into English, with Notes. By Two Fellows of Trinity College,
Cambridge, (J. L1. Davies M.A., and D, J. Vaughan, M.A.) Second
‘Edition. 8vo. cloth, 10s, 6d.
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PRAYERS FOR WORKING MEN OF ALL RANKS:
Earnestly designed for Pawmily Devotion and Private Meditation and Prayer
Fcap. 8vo. cloth, red Jeaves, 22. 64. Common Edition, 1s. 8d.

PRINCIPLES of ETHICS according to the NEW TESTA-

MENT. Crown 8vo. sewed, 2s.

PROCTER.—A History of the Book of Common Prayer: with
a Rationale of its OMices. By FRANCIS PROCTER, M.A,, Vicar of Witton,
Norfolk, and late Fellow of St. Catherine’s College. Fourth Edition,
revised and enlarged. Crown 8vo, cloth, 104, 6d.

4% This forms part of the Series of Theological Manuals.

PUCKLB —An Elementary Treatise on Conic Sections and

y. Wlth a tion of Fasy Ex les pro-

grenively ar d, especially designed for the use of Schools and Beginners.

By G. HALE PUCKLE, M.A,, Principal of Windermere College. Second
Bdition, enlarged and improved. Crown 8vo. cloth, 7s. 6d.

RAMSAY.—The Catechiser's Manual; or, the Church Cate-
chism {llustrated and explained, for the use of Clergymen, Schoolmasters,
and Teachers. By ARTHUR RAMSAY, M.A. of Trinity College,
Cambridge. 18mo. cloth, 3s.64.

REICHEL.—The Lord’s Prayer and other Sermons.
By C. P. REICHEL, B.D., Professor of Latin in the Queen’s University ;
Chaplain to his Excellency the Lord-Licutenant of Ireland; and late Don-
nellan L in the Uni ity of Dublin. Crown 8vo. cloth, 7s. 6d.

ROBINSON.—Missions urged upon the State, on Grounds
both of Duty and Policy. By C. K. ROBINSON, M.A. Fellow and Assistant
Tutor of 8t. Catherine’s College. Fcap. 8vo. cloth, 3s.

ROWSELL.—THE ENGLISH UNIVERSITIES AND THE

- ENGLISH POOR. Scrmons Preached before the University of Cambridge.
By T.J. ROWSELL, M.A. Incumbent of St Peter’s, Stepney. Feap. 8vo.
cloth limp, red leaves, 2s.

RUTH AND HER FRIENDS. A Story for Girls.
With a Frontispiece. Third Edition. Royal 16mo. extra cloth, giltleaves, 5s.

SALLUST.—Sallust for Schools.
With English Notes. Second Edition. By CHARLES MERIVALE,
B.D.; late Fellow and Tutor of St. John’s College, Cambridge, &c., Author
of the ‘¢ History of Rome,” &c. Fcap. 8vo. cloth, 4s. 64d.

‘THE JUGURTHA” AND “THE CATILINA " @AY BE HAD SEPARATELY, price 2s. 6d.
RACH IN CLOTH.

SANDARS.—BY THE SEA, AND OTHER POEMS,
By EDMUND SANDARS, of Trinity Hall, Cambridge. Fcap. 8vo.
cloth, 4s. 6d.

SCOURING OF THE WHITE HORSE; or, The Long
Vacation Ramble of a London Clerk. By the Author of * Tom Brown’s
8chool Days.” Ill d by Doxre. Bighth Thousand. Imp. 16me.
cloth, elegant, 8s. 6d.
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SELWYN.—The Work of Christ in the World.

Sermons preached before the University of Cambridge. By the Right Rev.
GEORGE AUGUSTUS SELWYN, D.D. Bishop of New Zealand, formerly
- Fellow of St. John’s College. Third Editiom. Crown 8vo. 2.
SELWYN.—A Verbal Analysis of the Holy Bible.
Intended to facilitate the translation of the Holy Scriptures into Foreign
Languages. Compiled for the use of the Melanesian Mission. Small folio,
cloth, 14s.
SIMPSON.—An Epitome of the History of the Christian

Church during the first Three Centuries and during the Reformation. With
Examination Papers. By WILLIAM SIMPSON, M.A. Third Edition.
Fep. 8vo. cloth, 5s.

SMITH.—City Poems.

By ALEXANDER SMITH, Author of *‘ A Life Drama,” and other Poems.
Fcap. 8vo. cloth. 5a.

SMITH.—Arithmetic and Algebra, in their Principles and
Application: with numerous systematically arranged Examples, taken from
the Cambridge Examination Papers. By BARNARD SMITH, M.A., Fellow

of St. Peter’s College, Cambridge. Seventh Edition. Crovm 8vo.
cloth, 10s. 6d.

SMITH.—Arithmetic for the use of Schools.
New Edition. Crown 8vo. cloth, 4s. 6d.
SMITH.—A Key to the Arithmetic for Schools.

Crown 8vo. cloth, 8¢, 6d.

SﬁOWBALL.——The Elements of Plane and Spherical
Trigonometry. By J. C. SNOWBALL, M.A. Fellow of 8t.John’s College,
Cambridge, Ninth Edition. Crown 8vo.cloth, 7s. 64.

SNOWBALL.—Introduction to the Elements of Plane Trigo-

nometry for the use of Schools. Slecond Edition. 8vo. sewed, 5s.

SNOWBALL. — The Cambridge Course of Elementary
M

hanics and Hyd ics. Adapted for the use of Colleges and Schools.
With numerous Examples and Problems. FPourth Edition. Crown 8vo,
cloth, 5s.

SWAINSON.—A Handbook to Butler's Analogy.
By C. A. SWAINSON, M.A. Principal of the Theological College, and
Prebendary of Chichester. Crown 8vo. sewed, 2s.

SWAINSON.—The Creeds of the Church in their Relations
to Holy Scripture and the Conscience of the Christian. 8vo. cloth, 9a.

SWAINSON.—THE AUTHORITY OF THE NEW TESTA-
MENT; The Conviction of Right and other Lectures, delivered
before the University of Cambridge 8vo. cloth, 12s.

TAIT and STEELE.—A Treatise on Dynamics, with nume-
rous Examples. By P, G. TAIT, Fellow of 8t. Peter’s College, Cambridge,
and Professorof Mathematics in Queen’s College, Belfast, and W, J.8STEELE,
late Fellow of St. Peter’s College. Crown 8vo, cloth, 10s. 6d.

TAYLOR.—The Restoration of Belief.

By ISAAC TAYLOR, Esq., Author of “The Natural History of Enthu.
siasm.” Crown 8vo. cloth, 8s, 6d.
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CHURCH HISTORY: DURING THE MIDDLE AGES AND THE
REFORMATION (a.p. 590—1600). By ARCHDEACON HARDWICK.
‘With Four Maps, 2 vols. Crown 8vo. cloth, price 10s. 6d. each.
THE COMMON PRAYER: ITS HISTORY AND RATIONALE. By
FRANCIS PROCTER. Pourth Edition. Crown 8vo. cloth, 10s. 6d.
HISTORY OF THE CANON OF THE NEW TESTAMENT. By
B.F. WESTCOTT. Crown 8vo. cloth, 12s. 6d.
#,* Others are in progress, and will be announced in due time.
THRING.—A Cons Book.
Compiled by the Rev. WARD THRING, M.A. Head Master of Up-
pingham Grammar School, late Pellow of King’s College, Cambridge. Fcap.
8vo. cloth, 2s. 6d.
THRING —The Elements of Grammar taught in English.
Edition. 18mo. bound in cloth, 2s.
THRING.—The Child’s Grammar.
Being the substance of the above, with Examples for Practice. Adapted for
Junior Classes. A New Bdition. 18mo. limp cloth,ls.

THRING.—Sermons delivered at Uppingham School.
Crown 8vo. cloth, 5.

THRING.—School So
A Collection of Songs for S8chools. With the Music arranged for four Voices.
Edited by EDWARD THRING, M.A., Head Master of Uppingham School,
and H. RICCIUS. Small follo, 7s. 6d.

THRUPP.—Antient Jerusalem: a New Investigation into the
History, Topography, and Plan of the City, Environs, and Temple. Designed
principally to illustrate the records and prophbecies of Scripture. With Map
and Plans. By JOSEPH FRANCIS THRUPP, M.A. Vicar of Barrington,
Cambridge, late Pellow of TrinityCollege. 8vo. cloth, 15s.

THUCYDIDES, BOOK V1. With English Notes, and a Map.
By PERCIVAL FROST, Jun. M.A, late Fellow of 8t. John's College;
Cambridge. 8vo. 7s. 6d.

TODHUNTER.—A Treatise on the Differential Calculus.
With numerous Examples. By I. TODHUNTER, M.A., Fellow and
Assistant Tutor of St. John'’s College, Cambridge. Third Edition.
Crown 8vo. cloth, 10s. 6d.

TODHUNTER.—A Treatise on the Integral Calculus.

With numerous Examples. Crown 8vo. cloth, 10s. 8d.
TODHUNTER. — A Treatise on Analytical Statics, with
numerous Examples. Second Bdition. Crown 8vo. cloth, 10s. 64.
TODHUNTER.—A Trea.tlse on Conic B8ections, with
numerous Examples. Second Edition. Crown 8vo. cloth, 10s. 6d.
TODHUNTER.—Algebra for the use of Colleges and Schools.

Crown 8vo. cloth, 7s. 6. Second Edition.
TODHUNTER.— Plane Trigonometry for Colleges and

Schools. Crown 8vo. cloth, 5s,

TODHUNTER.—A Treatise on Spherical Trigonometry for

the Use of Colleges and Schools. Crown 8vo. cloth, 4s. 6d.
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TODHUNTER.—Exzamples of Analytical Geometry of Three

Dimensions. Crown 8vo. cloth, 4s.

TOM BROWN’S SCHOOL DAYS.
By AN OLD BOY. Seventh Edition. Fcap. 8vo. cloth, 5,

TRENCH.—Synonyms of the New Testament.
. By The Very Rev. RICHARD CHENEVIX TRENCH, D.D. Dean of West-
minster. Fourth Edition. Fcap. 8vo. cloth, 5s.

TRENCH.—Hulsean Lectures for 1845—46.
CoxteNTs. 1.—The Pitness of Holy Scripture for unfolding the 8piritual Life
of Man. 2.—Christ the Desire of all Nations; or the Unconscious Pro-
phecies of Heathendom. Fourth Edition. Foolscap 8vo. cloth, 5s.

TRENCH.—S8ermons Preached before the University of Cam-

bridge. Fcap. 8vo. cloth, 2. 6d.

VAUGHAN.—Notes for Lectures on Confirmation. With
suitable Prayers, By C. J. VAUGHAN, D.D., Head Master of Harrow
8chool. Third Edition. Limp cloth, red edges, 1s. 6d.

VAUGHAN.—St. Paul's Epistle to the Romans.
The Greek Text, with English Notes. By C, J. VAUGHAN, D.D. 8vo.
cloth, 7s. 6d.

VAUGHAN.—MEMORIALS OF HARROW SUNDAYS.
A Selection of Sermons preached in Harrow School Chapel. By C. J.
. VAUGHAN, D.D. With a View of the Interior of the Chapel. Crown 8vo.
ecloth, red leaves, 10¢. 6d.

VAUGHAN.—Sermons preached in St. John’s Church,
Leicester, during the years 1855 and 1856. By DAVID J. VAUGHAN, M.A,
Fellow of Trinity College, Cambridge, and Incumbent of St. Mark’s, White-
chapel. Crown 8vo, cloth, 5s. 6d.

VAUGHAN.—Three Sermons on The Atonement. With a
Preface. By D. J, Vaughan, M.A. Limp cloth, red edges, 1s. 6d.

WAGNER.—Memoir of the Rev. George Wagner, late of St.
8tephen’s, Brighton. By J. N. SIMPKINSON, M.A, Rector of Brington,
Northampton. Second Edition. Crown 8vo. cloth, 9s.

WATSON AND ROUTH.—CAMBRIDGE SENATE HOUSE
PROBLEMS AND RIDERS. For the Year 1860. With Solutions by H.
W. WATSON, M.A. and E. J. ROUTH, M.A. Crown 8vo. cloth, 7, 6d.

WESTCOTT.—History of the Canon of the New Testament
during the First Four Centuries. By BROOKE FOSS WESTCOTT, M.A.,
Assistant Master of Harrow School; late Fellow of Trinity College, Cam-
bridge. Crown 8vo. cloth, 12s. 6d.

#4* This forms part of the Series of Theological Manuals.

WESTCOTT. — Characteristics of the Go%gel Miracles.
Sermons preached before the University of Cambridge. ith Notes. By
B. F. WESTCOTT, M.A., Author of ¢ History of the New Testament
Canon.” Crown 8vo. cloth,h 6a.

WHEWELL—THE PLATONIC DIALOGUES FOR
ENGLISH READERS. By W. WHEWELL, DD. Vol. 1. Feap. 8vo.
cloth, 7s, 6d, .
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WHITMORE.—Gilbert Marlowe and Other Poems.

With a Preface by the Author of ‘‘Tom Brown’s Schooldays.” Feap, 8vo.
cloth, 3s. 6d.

WILSON.—The Five Gateways of Knowledge.
By GEORGE WILSON, M.D., F.R.S.E., Regius Professor of Technology in
the University of Edinburgh. Second Edition, Fcap.8vo. cloth, 2. 6d.
or in Paper Covers, 1s.

WILSON.—The Progress of the Telegraph.

Feap. 8vo. ls.

WILSON.—A Treatise on Dynamics.
By W. P. WILSON, M.A., Fellow of 8t. John’s, Cambridge,and Professor of
Math ics in the Uni ity of Melbourne. 8vo. bds. 9, 64d.
WOLFE—ONE HUNDRED AND FIFTY ORIGINAL
PSALM AND HYMN TUNES. For Four Voices. By ARTHUR
WOLFF, M.A., Fellow and Tutor of Clare College, Cambridge. Oblong
royal 8vo. extra cloth, gilt leaves, 10s. 6d.

WORSHIP OF GOD AND FELLOWSHIP AMONG MEN,
A Series of Sermons on Public Worship. Fcap. 8vo, cloth, 8. 6d.
By F. D. Maveice, M.A, T. J. RowsxiLL, M.A. J. LL. DaviEs, M.A.
and D. J. VaveraN, M.A.

WRIGHT.—The Iliad of Homer.

Translated into English Verse by J. C, WRIGHT, M. A. Translator of Dante.
Crown 8vo. Books I.—VI. 5s.

WRIGHT.—Hellenica; or, a History of Greece in Greek,
as related by Diodorus and Thucydides, being a First Greek Reading
Book, with Explanatory Notes, Critical and Historical. By J. WRIGHT,
ML.A,, of Trinity College, Cambridge, and Head-Master of Sutton Coldfield
Grammar School. Second Edition, WiTHE 4 VOCABULARY. 12mo.
cloth, 3¢. 6d.

WRI&ET.—D&vid, King of Israel.

ings for the Young. With Six 1Ilustrations after SCHNORR. Royal
16mo. extra cloth, gilt leaves, 5. .

WRIGHT.—A Help to Latin Grammar;
or, the Form and Use of Words in Latin. With Progressive Exercises.
Crown 8vo. cloth, 4s. 6d.

WRIGHT.—The Seven Kings of Rome:
An easy Narrative, abridged from the First Book of Livy by the omission of
difficult passages, being a First Latin Reading Book, with Grammatical
Notes. Fcap. 8vo. cloth, 8s.

WRIGHT.—A Vocabulary and Exercises on the “ Seven
Kings of Rome.” Fcap. 8vo. cloth, 2s. 6d.

*+* The Vocabulary and Exercises may also be had bound up with * The Seven

Kings of Rome.” Price 5s. cloth.
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Volume J. is now ready, handsomely bound in cloth, price 7s. 6d.
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