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PREFACE

ONE of the purposes for which the Board of Mathe-
matical Studies was established, was to communicate to
Students “ correct views of the nature and objects of the
Mathematical Examination;” and, in furtherance of this
purpose, the Board has, from time to time, defined more
strictly the limits of the subjects of examination, and in-
formed the Students of the nature of the work which was
required from them.

The Moderators and Examiners conceive that they are
further promoting this object by giving to future Candidates
for Mathematical Honors an opportunity of examining the
Solutions of the Problems and Riders proposed at the last
Examination as prepared by the Proposers themselves, and
thus of ascertaining still more clearly the nature of the
examination to which our Mathematical Students have been

ordinarily subjected.

" Cambridge, May 6th, 1857,






SOLUTIONS OF SENATE-HOUSE PROBLEMS
AND RIDERS

FOR THE YEAR EIGHTEEN HUNDRED AND FIFTY-SEVEN.

THURSDAY, Jan. 8, 1857. 1 to 4.

1. THREE circles, 4, B, C, (fig. 1) intersect in a common
point, the other intersections of (B, C), (C, 4), (4, B), being
a, B, vy, respectively. If b, ¢, be points in B, C, respectively,
such that d, a, ¢, lie in a straight line, prove that a, the inter-
section of by, ¢8, produced, lies in the circle 4.

Since the sum of the angles of a triangle is equal to two

right angles, we have
at+b+c=m;

and, since two opposite angles of a quadrilateral inscribed in
a circle are together equal to two right angles, we have also,
I being the common point of intersection of the three circles,

b+yla=m, c+alB=mr.
From the above three equations we see that
yla+alB=m+a:
but Bly+vla+alB=2m:
hence 4 Bly+a=m,
and therefore the point a must lie in the circle 4.
This theorem was communicated to Liouville’s Journal de

Mathématiques by M. A. Miquel; Tome Troisiéme, année 1838.
’ B
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2. Shew that the sum of all the harmonic means, which
can be inserted between all the pairs of numbers the sum of
which is n, is

3 (n*=1).

Let 2 be one number: then n— a will be the other
number of the pair; and, if H be the harmonic mean be-
tween them,

‘ H=2w(¢;—m);
therefore, =H = ; 2 (nx— ')
= % {n[1+2 +.ot(n—1)]-[1"+2'+... 4+ (n— 1)’]}
2 (n—1) (n—=1)n(2n—1
‘Z{"‘” T 2.2 )}
=”31{3n 2 +1}
=1 (1)

3. Eliminate 6 between the equations

2 = 00804 C0B20....cueeeeernn, (1),

@1‘2 al

=8in0+48in26........oevineinnnnenns (2).
Squaring and adding the equations we have
;i:+ %—:=2+2 cosd ;
and, from (1), §+ 1=cosf (1+2 cosh)
NN 2 9y
i@t 5-1) G ).

Hence (:i: + ‘1{:) ( + ‘g, 3) 2§=0.
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4. From a point on the side of a hill of constant inclination
+ the angle of elevation of the top of an obelisk on its summit
is observed to be a, (fig. 2), and, a feet nearer to the top of
the hill, to be 8; shew that, if % be the height of the obelisk,
the inclination of the hill to the horizon will be

~[a sinasinf
co8 {Z .m} .

Let x be the distance from the second place of observation
to the top of the obelisk:

sina cos@
then =h :

ETCED R
_a sina sin 3
therefore cosf = i sm(B —a) a)’
_i[a sina sinfB
and 0—-—008 {}l' m)} .

5. Each of three circles, within the area of a triangle,
touches the other two, touching also two sides of the triangle:
if @ be the distance between the points of contact of one of
the sides, and b, ¢, be like distances on the other two sides,
prove that the area of the triangle, of which the centres of
the circles are the angular points, is equal to

i(bﬂcﬁ+cﬁaﬂ+aﬁ S)i.

Let o, ¥, ¢, be the radii of the three circles, their re-
spective centres being 4, B, C.

Then, (fig. 8), &' + ¢ being the hypotenuse of a right-angled
triangle, one side of which is &' — ¢’ and the other is equal to a,

=B+ — (b —c)=dbc:

similarly V=4ca, =4a'b.
Hence e 2d, =2V, @b _ 2¢'.
a b c
Let BC=a, CA=b, AB=c,.
Then a=b+c, b=c+ad, ¢=d+0¥,

B2
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and consequently,

a+b+c=2(+b+c),

b+ ¢ —a,=2d,

¢, +a,—b =20,

a +b—c=2c.

Hence the area of the triangle ABC is equal to
{@bc (a'+ b + )},

a5,

=1 (0°" + ¢'a* + ab*)h.

6. The acute angles, which the distances of two points of
an ellipse from the same focus make with the respective tangents
at the points, are complementary to each other: prove that
the square on the semi-axis minor is a mean proportional be-
tween the areas of the two triangles, of which the two points
are the respective vertices, and the distance between the foci
the common base.

Shew that the problem is impossible unless the axis minor
is less than the distance between the foci.

Let P, P, (fig. 4) be the two points, and ¢, ¢, the inclina-
tions of the focal distances of P, P, respectively, to the tangents
at P, P'. Let A, 4', be the areas of SPH, SP' H, respectively.

Then A=48P.HP.sin2¢
_ SY.HZ.sin2¢=BC,

PR .cot.
Similarly, putting 4’ for 4 and § 7 — ¢ for ¢, we have
A'=BC".tan¢.
Hence A:BC*::BC*: 4.

The greatest value of either 4 or 4’ is 4 SH.BC': hence,
that the problem may be possible,
BC*<}SH*.BC*
or 2BC < SH.
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7. CP, CD, (fig. 5), are two conjugate semi-diameters of an
ellipse: Rr is a tangent parallel to PD: a straight line C1J
cuts at a given angle PD, Rr, in I, J, respectively: prove
that the loci of I, J, are similar curves.

Let the tangents at P, D, meet in a point T': join CT,
cutting Rr and the ellipse in @ and the chord PD in N. Then,
by a property of the ellipse, PCDT is a parallelogram.

By similar triangles,

CI:CJ::CN:CQ...ccccuvvvvnrinennn. 1):
also, by a property of the ellipse,
CN:0Q:: CQ: CT,
and therefore, since CT=2CN,
20N =C@Q"cccuvvvrenrrrnnnnnn. (2).

By (1) and (2), we see that
CI*:CJ*:: CN*: O@
1 : 2
hence CI is to CJ in a constant ratio, and therefore the loci of
I, J, are similar curves.

8. A fine string ACBP, (fig. 6), tied to the end 4 of a
uniform rod 4B of weight W, passes through a fixed ring at
O, and also through a ring at the end B of the rod, the free
end of the string supporting a weight P; if the system be in
equilibrium, prove that

AC:BC:: 2P+ W: W.

The equilibrium will not be affected if we suppose the
weight P to be placed at B. Let G, on this supposition, be
the centre of gravity of W and P: then, 2a being the length

of AB,
2P+W  pa0 W
Prw TUECPyrwe
The system being in equilibrium, CG must be vertical.
Since the forces along 4 C, BC, are each equal to P, they must

AG =a.



6 SENATE-HOUSE PROBLEMS AND RIDERS. [Jan. 8,

make equal angles with the vertical line CG, or their resultant
would not, as is necessary for equilibrium, act in the direction
GC. Hence

AC:BC:: AG:BG::2P+ W: W.

9. A picture is hung up against a rough vertical wall by
a string fastened to a point in its back, so that the picture
inclines forwards: apply the principle of the triangle of forces
to find the inclination of the string to the wall, when its tension
is the least possible.

Let W = the weight of the picture, (fig. 7), R = the hori-
zontal reaction of the wall, F'= the friction, which acts vertically
upwards, 7= the tension of the string. Also, let § be the
angle at which the string is inclined to the wall, and a be
the angle which S, the resultant of F' and R, makes with the
wall.

Since there is equilibrium, S, 7, and W, pass through the
same point; and, by the principle of the triangle of forces,

T sina

W~ sn(a+96)’
a being such an angle that

cota=

Hence T will be least when sin(a+6) is greatest and sina
least. But sin(a+6) is greatest when a+6=4w; and sina

—_

is least when the ratio 7 18 greatest, or when the picture is

on the point of sliding. Hence, if tane be the coefficient of

friction between the wall and the picture, we shall have
a=4mr—e, O=¢, and T=3%W.sece,

when T has its least value.

10. A lamina, cut into the form of an equilateral triangle,
is hung up against a smooth vertical wall by means of a string
attached to the middle point of one side, so as to have a corner
in contact with the wall; shew that, when there is equilibrium,
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the reaction of the wall and the tension of the string are inde-
pendent of the length of the string, and that, if the string
exceed a certain limit, equilibrium in such a position is im-
possible.

Let ABC (fig. 8) be the lamina, having the corner B in
contact with the wall, 4D the perpendicular from 4 on BC,
ED the sustaining string, G the centre of gravity of ABC.
Then, if W be the weight of the lamina, 7' the tension of the
string, and R the reaction of the wall, the directions of 7, W, R
‘must pass through a point.

Let F be the point through which they pass.

Since, in the quadrilateral BDGF, each of the angles
BDG@, BF@, is a right angle, a circle may be described about
it. Therefore the angle BFD = the angle BGD = 60°, and the
string DE is inclined at an angle of 30° to the wall, whatever
be its length. Hence, from the triangle EBF, which has its
sides parallel to the directions of the forces T W, R,

T . 2 RB__ .. 1.
W:sec?)() =73’ W—tanéo =73’
also 70 = S2IBD .14 therefore ED — 2BD sin EBD.

Now the greatest value of sin EBD is 1; and therefore the
greatest length of string, which is consistent with equilibrium,
is the length of a side of the triangle.

11. A ball is projected from the middle point of one side
of a billiard table, so as to strike in succession one of the sides
adjacent to it, the side opposite to it, and a ball placed in the
centre of the table; shew that, if ¢ and & be the lengths of
the sides of the table, and e the elasticity of the ball, the incli-
nation of the direction of projection to the side a of the table
from which it is projected must be

tan™ {é 1+ 2e}

a' 146’
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Let ¥ be the velocity of projection, and @ the required
inclination. Then the

velocity perpendicular tothe side from which the ballstarts=Vsin6;
......... parallel B . YA

Now, since V'sin6 is not affected by the first impact, and
is altered in the ratio of e to 1 by the second, we have, if 7
be the time till the ball is struck,

b 30 b 1 4
=yt * sV ens = Vama (L) (I
Also, since V' cosf is not affected by the second impact, and is
altered in the ratio of ¢ to 1 by the first, we have

__3%a o a1 1
T= Vcosﬁ"‘ eV 030 = V oosd (§+§é) ...... 2).

Hence, equating (1) and (2),

b 1+2e

tanB—_-_._ ,

a l+e

and 0= tan“{é 1 "'2‘3} .
a l+e

12. A perfectly elastic ball is projected at an inclination B
to a plane inclined to the horizon at an angle a, so as to
ascend it by bounds; find the inclination to the plane at
which the ball rises at the n™ rebound, and shew that it will
rise vertically if cotB=(2n+1) tana.

By the second law of motion we may consider separately
the motion of the ball parallel and perpendicular to the plane.

Hence, if T'be the time till the n™ rebound,

T 2V sinB + 2V sinB
gecosa g cosa
2VsinB
" g cosa ’
and the velocity along the plane at the ™ rebound
=V cosB~gsina.T
=V cosB—tana.2nV sinp.

=N
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Hence, if 6 be the inclination of the ball’s path to the plane
at the 2™ rebound,

tan6 VsinB

=V cosB—2nV smnf.tana

_ tan8
" 1—2n tana.tanf’

If the ball rises vertically, = 7 —a, and

cota = tanf3
" 1—2n tana.tanB’
Hence cota— 2n tanB =tan S,
and cotB=(2n+1) tana.

13. A string, charged with n+m+1 equal weights fixed
at equal intervals along it, and which would rest on a smooth
inclined plane, with m of the weights hanging over the top,
is placed on the plane with the (m+1)™ weight just over the
top; shew that, if a be the distance between each two adjacent
weights, the velocity which the string will have acquired, at
the instant the last weight slips off the plane, will be

{nag}.

Since there is equilibrium, when m weights hang over the
top of the plane, we have, a being the inclination of the plane
to the horizon,

(n+1) g sina=myg,

. m
and therefore sing = i i

Suppose the (m+1r)"™ weight has just passed over the top
of the plane with the velocity v,: the acceleration of the string
will be

(m+7)—(n—r+1)sina
m+n+1
- (m+7)(n+1)—(n+1-7r)m
(m+n+1)(n+1)
r
nr1?
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Hence, if v,, be the velocity of the string when the

(m+r+1)" weight has just passed the top,

v —v’,+2ag—i— ‘

T n+1"
And, giving to r the values 1, 2, 3 ...... n, successively, and ‘
observing that v, =0, we have the equations
1
vy =209 —7»
2 1
vs’—‘v:=2ag ntl?
n
Ven = 0y =20g =3
. 1+2+...4+n
=nag;
and therefore v,,, = (nag)t.

Rem. The preceding solution requires that the velocity of
each weight should not be altered in passing over the top of
the plane, and that the weight should not shoot off the plane.
These conditions will be satisfied, if we suppose the string to
pass through an indefinitely short circular tube at the top of
the plane, the curvature of which is such that the tangents at
the extremities of its axis are in the directions of the ascending
and descending portions of the string.

14. A perfectly elastic ball is projected with a given velocity
from a point between two parallel walls, and returns to the
point of projection, after being once reflected at each wall;
prove that its angle of projection is either of two complemen-
tary angles.

Let V be the velocity and @ the angle of projection, ¢ the
time of flight, a the distance between the walls.

Then, the vertical movement not being affected by the

horizontal impacts,
2V sinf = gt.
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Also, the elasticity being perfect, the magnitude of the whole
horizontal motion is the same as if the walls had not existed:

hence
V cosf.t=2a.

From the two equations we see that

sin20=2%,

a result which proves the proposition.

15. A particle is attracted towards one centre of force and
repelled from another, both forces varying as the distance:
prove that, if the absolute intensities of the forces are equal,
the path of the particle is a parabola.

Let P be the particle, 4 and B the centres of force: then
the two forces acting on P are represented by AP, PB: the
resultant of these two forces is represented by AB. Hence
the resultant force is constant in magnitude and invariable
in direction. Hence, if the particle be projected at any incli-
nation to AB, it will describe a parabola.

16. When a body arrives at a point P of an elliptic orbit,
which it is describing about one focus S, the centre of force is
suddenly transferred to the other focus H: supposing the orbit
to remain the same as before, prove that, x denoting the
absolute force in the former, and u’ in the latter case,

pip s 8P HP,
Let v be the velocity at . Then

, HP,

AO.’U _F'.;S.—P‘

. 8P

3.130 AO.'U =M ’H-—?.
Hence wip s SPE: HP:

Aliter. The velocity at P being the same before and after
the transference of the centre of forces and the orbit being
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the same, the deflection must be the same for both centres of
force: hence the normal component of the force must be the
same in both cases: hence, ¢ being the inclination of either
focal distance to the normal, and F, F" the two central forces

at P, . Fcosp=F" cosgp,
F=F, '
B |
SP*~ HP*’
or pip s SP: HP.

17. A solid triangular prism, the faces of which include
angles a, B, v, is placed in any position entirely within an
inelastic gravitating fluid: if P, @, R, be the pressures on the
three faces, which are respectively opposite to the angles a, 3, 1,
prove that

P coseca + Q cosecB + R cosecry
is invariable so long as the depth of the centre of gravity of
the prism is unchanged.

The centre of gravity of each face of the prism is in the
transverse section of the prism which bisects its length. Let
a, b, ¢, be the sides of this section, and o/, &', ¢/, the depths of
its angular points. Let / be the length of the prism.

Let A represent each of the equal fractions

e b e
sina’ sinB’ siny’
then P=gpal. b ;-c

= 4gpI\ sina (b’ + ¢'),
P coseca=gpl\ (b' +¢).
Similarly Q cosecB=}gplA (¢ + a),
R cosecry = 4gpI\ (@' + 0').
Hence P coseca+ @ cosecB+ R cosecy=gpl\ (@' +b' +¢)
=3gplnh,
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where 4 is the depth of the centre of gravity of the transverse
section, that is, of the prism.
Hence, if % be constant,

P coseca + Q cosecB + R cosecy
is constant.

18. A heavy sphere is placed in a vertical cylinder, filled
with atmospheric air, which it exactly fits. Find the density
of the air in the cylinder when the sphere is in a position of
permanent rest.

Let IT' be the pressure of the air at any point of the lower
hemisphere, IT be the pressure of the air at any point of the
upper hemisphere, W the weight of the sphere, and a its
radius.

Then, since the pressure is uniform over each hemisphere,
the resultant vertical pressure upward is equal to IT x area of
projection of the hemisphere on the horizontal plane

=I'wra";
and the resultant vertical pressure downwards = ITma".
Hence, since there is equilibrium,
W=ma' (II' -10);
but, if p, p, be the densities of the internal and external air

P
p I’
therefore W =IIma* (% - 1) ’

whence p’ is known.

If & be the density of the sphere, o the density of mercury,
and 4 the height of the barometer for the pressure II,

4 sga® = gahma (£ — )
we have 37rSga =gohma (P 1),

8
s

Qo -
e

and therefore ﬁp =14
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19. A solid formed of two co-axial right cones, of the same
vertical angle, connected at their vertices, is placed with one
end in contact with the horizontal base of a vessel; water is
then poured into the vessel: shew that, if the altitude of the
upper cone be treble that of the lower, and the common density
of the spindle four-sevenths that of the water, it will be upon
the point of rising when the water reaches to the level of its
upper end.

Let &, 3k, be the altitudes of the lower and upper cones,
a, 3a, the radii of their bases, p, o, the densities of the fluid
and spindle, P, P, the downward and upward pressures of the
fluid upon the spindle.
Since P is the vertical pressure of the fluid upon the lower
cone
P=mgpa® (4h— §h);
and, since P must be equal to the weight of the fluid displaced
by the upper cone,
P'=mgp.9a°h:
also, if W be the weight of the spindle,
W=mgo (9a°k + }a’k).

Since the spindle is on the point of rising,

P' =P+ W;
hence 9p=Y4p+ %o,
16p =280,
and a=+4p.

20. A fish is floating in a cubical glass tank filled with
water, with its head in one corner and its tail towards the one

diagonally opposite; describe the appearance which will be

presented to an eye looking towards the corner in the direction
of the length of the fish, and in the same horizontal plane
with it.

Since the distance of the image of a point in the diagonal
from either face of the cube is to the distance of the point in
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the ratio of 1 to p, where p is the index of refraction from
air into water, the effect of the glass on the position of the
image not being taken into account, the image of the diagonal

will be inclined to the face at an angle ta.n“ll—b or 29°.18,

taking the value of wu to be 1-335.

Hence each side of the fish will appear inclined at an angle
29°.18" to the adjacent face of the tank, and the appearance
will be presented of two fishes joined at the head, and inclined
to each other at an angle 31°.24".

21. Two rays emanate from a point in the circumference
of a reflecting circle, in the plane of the circle: supposing that
their 2™ points of incidence are coincident, prove that the angle
between their original directions is any one of a series of n—1
angles in arithmetical progression.

First suppose the two rays to emanate on opposite sides of
the diameter through their starting point.

Let 6, ¢, be the angles which their original directions make
with this diameter. Then, A being a positive integer, we must

have
n(m—20) +n (7 —2¢)=\.2m,

n—»\
0+¢= — .
Thus 6 + ¢ may have any one of the values
n—1 n—2 n—38 ™
™y T, Ty veverones —.
n n n n

If the original directions are on the same side of the diameter,
n(m—20)—n(r—2¢)=N\.2m,

whence : ¢—0=%'1r,

and therefore ¢ — 6 may have any one of the values

T 2 3r n—1
— — —y terees T
' w?! y

the same series of values reversed.
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22. A luminous globe falls from a point above the Earth’s
surface in a dark night: shew that it will look like a bright
falling column, elongating as it descends.

If ¢, ¢, c,, be the lengths of the apparent column at the
ends of times ¢, ¢, ¢,, from the commencement of the fall, prove

17 "2) 8)
that, gravity being considered constant, and the resistance of
the air being neglected,

t, (c,—¢c)+t,(c,—¢c)+t(c,—c)=0.

Let 7 represent the duration of the impression of light on
the eye. Then, if s be the space described by the globe at
any epoch of the motion in the time 7, the globe will, at the
end of the time 7, look like a luminous column of length s.
Since s increases as the time of the fall increases, the apparent
column will continually elongate.

Again, since the velocity acquired by the globe in the time
t,—7is g (t,— 7), we have

¢, =g (t,—7)T+497,

whence ;‘; =t —4r:
similarly ;—"r =t,— 47,
c
ﬁ_ =t —}7

Hence Y (cs - cs) A (cs - c‘) +1, (61 - ca) =0.




(17 )

TuespAy, Jan. 20. 9t 12.

1. ELIMINATE z, ¥, 2, between the equations
:Z+£=a’ f.'..a_::b’ §+2_/=c.
2y x 2 y =

Squaring and adding the equations, we have

2 2 2
§+%+%+§+§+%+6=J+F+&
Multiplying them together,
2 £ 2 2 ¢
SHptatatats
Hence, subtra.ctmg the latter of these equations from the former,
@+ b+ —abe=4.

+ 2 = abe.

2. From a bag containing a counters, some of which are
marked with numbers, b counters are to be drawn; and the
drawer is to receive a number of shillings equal to the sum
of the numbers on the counters which he draws; if the sum
of the numbers on all the counters be n, what will be the value
of his chance ?

Let the value of any counter, as indicated by the number
marked upon it, be denoted by C,; then the whole number of
combinations of b counters in which this counter occurs will be

(@=1)......(a=b+1)
1.2....6-1) -
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therefore its value in all the drawings will be

Hence the value of all the possible drawings will be

(a=1)...... (a—b+1) (@=1).cccf@=b+1) ...
T2 51 (00 o —qg gy nohillings;
and the number of such possible drawings will be
ala-1)...... (a—b+1)
1.2...... b

hence the value of the chance = value of all possible drawings

DUMDETL eeeevvviiniininiinnennenns

| J—

=" shillings.

3. O is the middle point of a given straight line 44’,
(fig. 9): BOB' is a straight line perpendicular to A44':
P, P, are two points in the plane of 44', BB': perpendiculars
from P’ upon AP, A'P, cut A4’y in C, (', respectively: if
00, 0C', be equal to each other and of given magnitude,
prove that the distances of P, P/, from BB’ are in a constant
ratio.

Let OA, OB, be taken as axes of x, y, respectively: let
OA=a, 0C=c. Then, , y, being the coordinates of P, the
equations to the perpendiculars through P’ are

= (a—2)(@—0),
and yy=—(a+a) (@' +c):
at the intersection P’ of these two perpendiculars,
(a=2) (@ ~ &) == (a +) (& +0),
and therefore 2ax’ = — 2c,
or d:xii—c:a,

a result which proves the proposition.
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4. The foci of a given ellipse 4 lie in an ellipse B, the
extremities of a diameter of 4 being the foci of B: prove that
the eccentricity of B varies as the diameter of 4.

Let PCP, (fig. 10), be a diameter of the ellipse (4), 44’
being its axis major, and § either of its foci.
By a known property of the ellipse,

SP+ 8P = A .ovevercrerran. (1).

Since P, P, are the foci of the ellipse (B), the relation (1)
shews that the major axis of (B), which passes through &S, is
equal to AA’', the major axis of (4). Hence the eccentricity
of B is equal to the ratio of PP’ to 4A4', and therefore varies
as PP,

5. C is the centre of an ellipse, (fig. 11), G the foot of a
normal at any point P, and O the corresponding centre of cur-
vature: find the distance of P from the axis minor, in order
that the area of COG may be the greatest possible.

If @, y, be the coordinates of P, then, as may be seen in
elementary treatises on the Differential Calculus, the distance
of O from the major axis is equal to

a'e"
B
hence the area of COG is equal to
la
2 b4 2'/’ e m’
and therefore varies as zy°.
Put w=acos y=bsin£
2’ 2

then the area CO@G varies as

cor .0
oc sing. (1 — cos )
o sin¢ — § sin2¢p.
c2
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Hence, when the area is & maximum,

cos —cos2¢ =0,

and therefore ¢=tim:
hence z=a cos(2—ﬁ=}a;

[Jan. 20,

that is, P's distance from the minor axis is equal to a quarter

of the major axis.

6. The corners of a leaf of a book are turned down so as
to meet and to make the length of one crease always n times
that of the other; shew that each corner will describe a portion

of the curve

@y + (e — )} =n* (c - 2)* (@ + 4",

the outer edge of the leaf, the length of which is ¢, being taken

as the axis of x, and the lower edge as the axis of .

Let AB be the outer edge of the leaf, (fig. 12), CD, C'D’,
any pair of creases, and P the point of meeting of the corners:

let AC=a, BC'=d, AM=x,
AD=b, BD'=V, MP=y.
From the triangle PCM,
y’+ (w_a)s=au’

2
and therefore a=% 2-; ¥ .
Also, since PD=AD,
@'+ (b~-y)' =¥,
and therefore b= M .
2y

Similarly d=%ﬂi, P Gl 2:”’

And since, by the question,
a* + V=t (ai + b’),
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we shall have, substituting,

e = &9 - &G9)
and therefore  2* (§* + (c —2)")’ =n* (c — )" (" +3*)",
the required locus.

7. A heavy ring is suspended from a point by any number
of equal strings attached to it symmetrically; and another ring
of the same weight but of smaller radius is in equilibrium when
resting on the strings at their middle points; if R, r, be the
radii of the rings and 27 the length of each string, shew that

4R'—8Rr + 3r' - 30'=0.

Let the strings be » in number, and let the tension of each
string be T, the inclinations to the vertical of its upper and
lower portions 6 and ¢, and W the weight of each ring.

Then, for the equilibrium of the lower ring, resolving the
forces vertically, we have

al cosp—W=0;
and, for the equilibrium of the system,
nT cos§-2W=0.
Hence COBO =2 COBP ..euverrrririniraninnen (1).
Also, from the geometry, we have
r=[lsinf, R—-r=Ising;
whence, substituting in (1) and squaring,

1—f=4{1—(R_’)g},

fl r
4R —8Rr+3r—-3F=0.

and therefore

8. A thread without weight carrying a heavy bead has its
extremities fastened to two points in the same vertical line;
if the bead and thread be made to revolve uniformly about
this line with an angular velocity o; shew that, when the
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bead is in equilibrium relatively to the thread, its distance
below the horizontal plane midway between the points of
attachment of the thread will be

g U

wﬂ‘lﬂ__aﬁ’

21 being the length of the thread, and 2a the distance between
the points of attachment.

Let 8 H, (fig. 13), be the points of attachment of the thread,
O the point midway between them, and P the position of the
bead, the plane of the paper being the plane in which S, H, P,
lie at any instant.

The bead is held in equilibrium by its weight, the tensions
of the string, and the centrifugal force.

Since the length of the string is invariable, P is a point in
the ellipse of which the centre is C and the foci S and 7; and
the normal P@& is the direction of the resultant of the tensions
of the portions SP, HP, of the string. Let ¢ be the eccen-
tricity of this ellipse, « the abscissa of P. Hence the triangle
PG@M has its sides parallel to the directions of the equilibrating
forces, and therefore, if m be the mass of the bead,

QY _ my
PM ~ me*PM?’
and GM::(‘%;
hence w=e’x+%,,
1
and therefore m:(%,, -
~9 r
S

9. A flexible chain, the ends of which are united, hangs
over two pegs, in a horizontal line, in the form of two festoons;
if P, P, be the tensions at the vertices of the festoons, and a, o,
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the inclinations of the festoons to the horizon at either peg,
prove that the weight of half the chain is equal to

Ptana + P’ tana'. ‘
Prove also that the weight of a piece of the chain, equal in

length to the distance between the vertices of the festooms, is
equal to P~ P'. .

Let A (fig. 14) be either peg, C, C', the vertices of the
two festoons: let 7' be the tension of the chain at A4, W the
weight of the whole chain.

Then, for the equilibrium of AC, we have, resolving hori-

zontally, T cosa = P.
Similarly, for the equilibrium of A,
T cosa’ = P.

Again, resolving vertically for the equilibrium of the whole
chain, we have
W=2Tsina+ 27T sina'.
From the above three equations, we see that
4+ W = P tana + P tana'.
Again, by a property of the catenary, m being the mass of

a unit of length of the chain, and A, %/, the depths of O, (',
below the horizontal line through the pegs,

T— P =mgh,
T—P =mgh':
hence P—P =mgk'—h)

= the weight of a length CC'
of the chain.

10. A triangular lamina has a small ring at each of its
angular points, which slides on a smooth wire occupying the
position of the circle circumscribing the triangle; determine
the motion of the triangle when the wire is held in any posi-
tion, and find the time of a small oscillation when the wire
is so held that the triangle is nearly in its position of stable
equilibrium.
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Since the wire is smooth, the directions of the mutual
actions between it and the rings will pass through the centre,
O, of the circle; and the lamina will oscillate about an axis
through O, perpendicular to its plane.

Hence, if a = the inclination of the plane of the lamina to

the vertical,
h = the distance of its centre of gravity, @, from O,
k = its radius of gyration about an axis through @,
@ = the inclination of O@ to its lowest position at

the time ¢,
the equation of motion will be
‘fl:f =- h’gﬁ cosa sind,

integrating, (Z: ng_k—k, cosa(cos§ — cos ),
if @ = B initially, which determines its angular velocity in any
position.
If the triangle be held nearly in its position of stable equi-
librium, @ is small, and the equation of motion becomes
a0 h
E’_ +h,'—'?|_—7;2 cosa.0=0,

2
and the time of a small oscillation = = (k ;};k’ seca)‘.

11. Shew, by aid of the formule
2cot2z = cotx — tanz, 2cosec2z = cotzx + tanz,
that if tana:=ala:+aw’+asm‘°+ ...... ,

_1 ¢zzl 5
then cotm—w g -y 1a:° _la: ...... ,

1 2—1a 2-la, ., Z-1lg
and cosecr=_ + o5— F @+ JFP+ 55 g &t
Since x cotz =1, when # =0, and cotz = — cot(—z),

W6 may assume

cotm=£+Alw+A,;d'+ ...... +4 a:"’" ...... ;

M+l
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and therefore, changing x into 2,

1

cot2z = o— + A2x + A2%° + ...... +4,,,2"™ o
but 2 cot2x = cotx — tanw,
and therefore, substituting,

1 .

zF 2420 +24,.2°%° +......+ 24, 272" 4 ......

1
=+ (A, —a)z+ (4, —a) @ +.....+ (4,,,, = ,.) & F e

Equating the coefficients of 2™ in these two identical series,
we get
2142 .
2™ 4, .. =4,.-a

)

whence A4, =- T’gg'ﬁ:_l .

And giving to n the values 0, 1, 2, 3,...... successively, we have
cotw == — gz — @ —......

=_+(1_ ’ll)x+(an—§;——1)$a+ ......
_l+2,— aa:+24_2am’+ :
=2t A&+ oy 07 Feent

1,2 -1,
therefore cosec2w—ﬂ+ 7% =T %

and changing 2z into w,

2-1 o 22-1 2
P12 T I 1P

cosecax = L +
z
12. Circles are described upon the radii vectores of the
loop of a lemniscate as diameters, passing through the pole;
find the locus of their ultimate intersections, and shew that its
area is double that of the loop.
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Taking, as the equation of the lemniscate,
7" = a* cos20,
the equation of one of the circles described as required, will be
p = a cos(¢p — 0) cost20.................. (1),

p and ¢ being the current coordinates.

Hence, in the consecutive circle, we must have, differen-
tiating with respect to 0,

0 = sin(¢p — 6) cos?20 — cos(¢p— 0) .—::—)%220;-’,
therefore tan20 = tan(¢ — 6),
or 0= % ;

and the equation of the required locus is, substituting in (1)
and squaring,
2¢

a__ 9. 859
p'=a cos’ 5.

37
Also  the area required = % f P

=a i‘rcoxa|23$. (1 - sin’2—;-’) dé

=a2

= double the area of the loop.

13. A semicircular tube of very small bore containing an
elastic string fastened to one of its extremities is revolving with
a uniform angular velocity w about a vertical axis through
that extremity perpendicular to its plane, and the string in its
stretched state subtends an angle a at the centre of the circle
the radius of which is a; shew that, if the modulus of elas-
ticity be the weight of a length 7 of the unstretched string,

and lg = 4a’w’cos’ % , the unstretched length of the string will be

T+ a

a
2 ot
@ cos 3 log tan 1




9-12.] PROBLEMS. 27

Suppose the string, which in its stretched state extends
over the arc Ap (fig. 15), to have extended in its unstretched
state over AP; and let

LAOP=0, POQ =80, T = tension at p,
LtAOp =¢, pOg=238p, T+ 8T=........... g,

P@ being an element of the string, which is stretched into pg.
Also, let m be the mass of a unit of length of the unstretched
string and = the modulus of elasticity.
For the equilibrium of the element pg, we have, resolving
the forces, which act upon it, parallel to the tangent at p,

(7+8T) cosdp — T + madf cos 2. %, 20 sin 2 =

hence, proceeding to the limit,

‘%’ + A DG =0 e ().

But, since the elementary arc ad6 is stretched into ad¢ by
the tension 7,

o¢p — 86 - T
EY oy
and, in the limit,
9% _4 +
do
. d’¢ 1 arT
Hence 7 et
ma'w?

———;——simﬁ, from (1);

Multiplying by 2 d¢o and integrating,

2
% =0+—— ma’e” cos¢.

When ¢ =a, T'=0, and d—¢=1:

2
d¢ 1+2maw

hence (cos ¢ — cosa).
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But = =mlg
=4ma’m’cos’g,
2§
d¢, B cos —2-
and therefore 2= —mg .
®2
Hence ie——cosg ﬁ-
d 2 l—tan’i’
4
. sec’<£ sec’%
=}cos§ 3 + 3
1+t8.nz 1—tan Z
1+tan$
and, integrating, 6=C +2cosg log .
l—tan%’

When 6=0, ¢ =0, and therefore C=0; and, when ¢ =a, the
corresponding value of a6 will be the unstretched length of
the string ; and therefore

the unstretched length = 2a cos - log tanTHE,

4

14. Two spheres, the molecules of which attract according
to the law of the inverse square, were originally in contact;
if W, W', W", be the labouring forces which have been ex-
pended in pushing them asunder in the line of their centres,
when the distances between their centres are respectively
a, a/, a"; prove that

v B e (- e -2 o

Let =, «/, be simultaneous distances of the centres of the
spheres from their original point of contact: then, m, m', being
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the masses of the spheres, the corresponding labouring force

is equal to
fmm’{ dz + de’ }
(@+a) * (z+a)
_mm,fd(w+a:')
h (z+2)
, (1 1
= mm (5— ac+ac')’
where ¢ i8 a constant.
(1
Hence W =mm (2——),

and therefore
WD ew(d-Yew o)
a a a a a a

15. Normals to an ellipsoid through a curve traced on its
surface intersect a principal plane in a circle of given radius;
prove that the projection of the curve on the plane encloses
an invariable area.

Let z, y, 2, be the coordinates of any point of the curve.
The equations to the normal are

, A
(@-a)3=~9=(E~27
‘When 2' =0, we have
a'-d , b=

!
x —3 w I ——— .
s 5 Y b

Let » be the radius of a circle in the plane of xy, through
which the normal passes, and 4, %, the coordinates of its centre.
Then for the equation to the projection of the curve on
the plane of zy, we have
r=(@' -k +(y k)

= (a";c’ x—k) + (bgb;,c’y—k)",
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which represents an ellipse the area of which is equal to

a’b'r
(ai__ c!) (b*_ cﬂ) .

16. A curve is traced upon a terrestrial globe, of such a
form that the longitude of any point is equal to its north polar
distance; prove that the whole length of the curve between
the north and south pole is equal to the meridian distance
between the north and south poles of an oblate spheroid, the

eccentricity of which is Vlé and axis equal to the diameter of
the globe.

Let a be the radius of the globe, and @ the longitude of any
point of the curve which is traced upon it: then the whole
length of the curve between the north and south pole is equal to

f (a*d6 + a* 5in* 6. d6)
—a f (1 +sin*6)} d6.

Again, the meridian distance between the north and south poles
of the spheroid, o', &', being the semi-axes of the meridian, and
¢ the eccentric angle of any point, is equal to

[ tat@ con) +1a@ sing)yp
j: (a” sin’ ¢ +b" cos® $)k dp
bf(1+ =B sin ¢) b
=¥ f (1+ s oin')' dp.

The two distances are therefore equal if 25’ =2a, and e= 1

Vi
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17. A closed vessel in the form of a right cone is placed
with its base on a horizontal plane: supposing it to be filled
with fluid through a small orifice at its vertex, prove that the
horizontal tension of the vessel at any point varies as the area
of the circular section through the point.

The ordinary formula connecting the pressure and tensions
at any point of a vessel filled with fluid is

t t
.P=;.+7_.:1

where 7, 7', are the principal radii of curvature at the point.
In the present instance, one of the radii of curvature is in-
finite: hence, putting »' =,

t
p=:.

Now p varies as the depth of the point below the vertex and
therefore as the radius of the circular section. Also, by Meu-
nier’s theorem, the radius of the circular section is equal to
7 cosa, where @ is the semi-angle of the cone; and therefore
r varies as the radius of the circular section. Hence pr, which
is equal to ¢, varies as the square of the radius, or as the area
of the circular section.

18. A luminous point is placed at one of the foci of a semi-
elliptic arc bounded by the axis major; prove that the whole
illumination of the arc varies inversely as the latus rectum.

Let the equation to the ellipse be referred to the focus as
pole, the prime radius vector coinciding with the major axis.
Then the illumination of an arc ds is equal to

. ds . cosine of angle of incidence

¥ ¥

vdo

.dsds

a8,

S|
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and, ¢ denoting the semi-latus-rectum, the illumination of the
whole arc is equal to

%’f (1+ eicosﬂ) do

- '(e+esine)

[}

ol ol

Ty
and therefore varies inversely as the latus rectum.

19. A homogeneous globe is placed upon a perfectly rough
table, very near to a centre of force in the surface of the
table, the law of attraction being that of the inverse square;
prove that the square of the time of an oscillation varies as
the volume of the sphere.

Let a represent the radius of the globe, m its mass; let »
be the distance of its centre, and « of its point of contact with
the table from the centre of force, at any time ¢; and let o
denote its angular velocity. Then, x4 being a constant quan-
tity,

m(%+§a’m‘) =0—2mf§,'dr
but, the rolling being perfect,
da*
W = a"m’,
7 do? 2u
hence v constant + -
= const + 2_“
= const. CETIL

2
= const. — ’:: nearly ;

dzx  5u

and therefore Z1122=0
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which shews that ¢, the time of oscillation, is equal to
w

EE?;

1a’

or that £ varies as o’ and therefore as the volume of the globe.

20. An inelastic ball, of given radius, is dropped from the
window of a carriage, travelling uniformly along a level road,
upon the wheel, which it hits at the highest point: determine
the subsequent motion of the ball relatively to the carriage,
the rim of the wheel being perfectly rough.

Since the bal, at the instant of being dropped, has the
same horizontal velocity as the carriage, the motion of the
ball, relatively to the carriage, will be the same as if it were
dropped upon the wheel revolving uniformly about the axle
at rest.

Let o be the angular welocity of the wheel so revolving,
a, b, the radii of the wheel and ball, ¥, @', the relative hori-
zontal and angular velocities of the ball immediately after the
impact, I the impulsive friction, M the mass of the ball and
k its radins of gyration about a diameter.

Then ¥ = é,
__ I
T MR
the angular velocity of the ball being estimated in the same
direction as that of the wheel.

And, since the point of contact is instantaneously at rest,
relatively to the wheel,

’
(]

¥ — bo' = aw = u, if u be the velocity of the carriage,
therefore, substituting,

. o2 2.,
= b,+k,u—;(-u,51ncek’=gb,
JE R ).
CTTERRYT TR
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The ball will leave the wheel immediately after the impact,
if the curvature of the parabola, which it would proceed to
describe if free, be not greater than the curvature of a circle of
radius @ + b; and, since the radius of curvature of the parabola
at its vertex is equal to

% lat. rect.

(horizontal velocity)*

the ball will leave the wheel if
44

49 ¢

or if u be not less than %{g(a+d)}.

If the velocity of the carriage be less than %{g(a+3)}}, the
ball will proceed to roll upon the wheel.

At the time ¢ after the impact, let F be the rolling friction,
¢ the angle through which the ball has rotated, P, fig. (16),
the point in contact with the wheel, CAQ the angle through
which the wheel has turned, P4Q =6.

The equations of motion of the ball, relatively to the carriage,
are

be not less than a + 5,

F .
dn—{(ag;tb—)a}=—ﬂ+gsm0,
¢ _ Fb
af T ME?

and, since there is perfect rolling,
d.(a+%).0 b do
t

u
—- =aw, where w=—.
a

dt d

Hence, differentiating and substituting, we have

F s .
ﬂ= m*.g sm0,

2

and, therefore, (a+b) %;g = —y—_b’_-—k; g siné.
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Multiplying by 2 %z and integrating,

de 25"
(a+ b) d—t,=0—mg0080.
Now, at the commencement of motion, § =0, %%S =w', and
therefore
(a+b) %f:aw-’l— bo'
=U- a u.
dF 4

Whence  (a+d) + _1,?9 g (1 - cosb).

# Y atrd
‘When the ball flies off the wheel, the centrifugal force just

balances the resolved part of its weight along the radius;
therefore

(a+8) %—f—: =g cosf,
and the angle 6 is given by the equation,

u' 10
_Ea+b+7g(1—cos€),

4 4 10
g+t T
«’, by the previous condition, being less than 543 g (a+b).

g cosd

whence cos 6

D2
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WEDNESDAY, Jan. 21. 9 o 12.

1. SHEW that the circle, which cuts orthogonally three
given circles lying in a plane, has its centre at the radical
centre of these circles.

Since the radical centre of the three circles is the inter-
section of the three radical axes of the circles, taken two and
two; and since the radical axis of two circles possesses the
property that from every point of it pairs of equal tangents
may be drawn to the circles; therefore, from the radical centre,
when it lies without the three circles, we may draw six equal
tangents to the three circles. Hence the circle described with
the radical centre as centre and with one of these tangents as
radius will pass through the points of contact of the other five;
and, since its radii drawn to the points of its intersection with
the three circles are tangents to these circles, it will cut the
circles orthogonally.

When the radical centre lies within any of the three circles,
no circle can be drawn cutting them orthogonally.

asin’d+bein’$p _ bsin’d 4 csin’d _ csin’d + asin’p
beos*d +ccos'd ~ ccos’d +acos’d  acos’d+ b cos’p’
then will @’ +b° + ¢® = 3abe.
Let each of the ratios be equal to »: then

_(a+b+0) (sin’0 + sin’p)

(a+ b+ c) (cos’d + cos’p)
_ sin’@ + sin’p
" cos*d+cos’p

2. If
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Now a 8in*0 + b sin’p =7 (b cos’d + ¢ cos’¢),
and therefore, a+b&— (a +br) cos’@— (b+cr) cos’p =0:
similarly, b+c—(b+cr) cos’d—(c +ar) cos’p=0,
c+a—(c+ar) cos’d —(a+ br) cos’p=0.
Eliminating cos’ and cos’¢ by cross multiplication, we have
(@+8){(6+er) (a+br) = (c+ar)}
+(B+c){(c+ar) (b+cr)—(a+br)}
+(c+a){(a+br) (c+ar)—(b+cr)}=0.
Effecting the multiplications, the expression becomes
r(l—7)(a®+ 8"+ ¢’ —3abc) =0;
and since 7 (1 —7) involve 6 and ¢ only, if the equations hold

for given particular values of & and ¢, so that »(1—r) is con-
stant, we must have

a’+ b° + ¢* = 3abe.
Since @ +8°+ ¢’ ~8abec=(a+b+c) (a* + 8"+ ¢* — bc — ca — ab)
=Ha+b+¢){(b-0)'+(c—a) + (a—B)},

we see further that, if the quantities a, b, ¢, be real, this relation
leads to

a=b=c.

3. A parabola slides between two rectangular axes; find
the curve traced out by any point in its axis; and hence shew
that the focus and vertex will describe curves of which the
equations are

PP =a (@ 4y, P @y + i) =,
4a being the latus rectum of the parabola.

Let ASP (fig. 17) be the position of the axis of the parabola
at any instant, 4 being its vertex and § its focus, ¢ the angle
which 48P makes with Oz, and x, y, the coordinates of P, a
point in the axis: let SP=§, 0S8=p, £ 80z=0.

Then x=p cosf + § cos,

y=p sinf + € sing.
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But, since Oz, Oy, are tangents to the parabola at right angles
to each other, O is a point in the directrix OM; and, since the
tangent makes equal angles with OS and OM, we have

L8OM=20, ¢+0=1}w, and 2a=p sin26.

a .
Hence z= 5+ Esind.....covnninnnnninns (1),

e
Multiplying (1), (2), by sin6, cos6, respectively, squaring and
subtracting, we have
«* 8in’0 — y° cos’0 = 2a¥ (sin’0 — cos’d) + E* (sin*0 — cos'd)
= (2a§ + £°) (sin’6 — cos*d),

L7 yﬁ - 2a§ _ E‘
therefore sin*0 = TSk E)
And since, from (1),

o 8in’6 = (@ + £ sin’f)’,
we have for the required locus, substituting for sin"é its value,
¥'—2E-§ Y -2E-F |1
Py —2(2eE+E) {a+E'w"+y’—2 (2a€ + E‘)} !
or
o*(y'—20E—£') @+ y'— 40 —28)={ax’ +(a+ §)y" - §(E+ 2a)'}".
For the focus, £ =0, and therefore ‘
oy (@ +y')=d" (@ +57),
or oy =d (' +3').
For the vertex, £ = — a, and therefore
@ (4 +a') (@ + ¥ + 20") = @* (& + &),
or 'y (* + y' + 8a’) =a’.

4. Shew that, if in the equation
ax’ + by’ + 2cxy — f=0,

the parameter f alone vary, the focus of the conic represented
will lie in either of two straight lines; if, either a or & vary,
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the other coefficients remaining constant, the focus will lie in
a rectangular hyperbola; and, if ¢ alone vary, the focus will
lie in the curve

ab (¢ +y') — (" + 0) @'y + fla—b) (2"~ ¥) =

Defining the focus as a point, such that the lines joining it
to the two imaginary points on a circle at infinity shall both
touch the curve, (Vide Salmon’s Higher Plane Curves, p. 119),
we have to determine p so that the line

z+yv(=1)=p,
may touch the conic

ax® + by' + 2cxy = f.
Eliminating  between these equations, we get
p—a—2cv(-1)} g+ 20 {c~av(-1)jy +ap'-f=0,
which must have equal roots in y; therefore
{o-a—2ev(-1)} (ap’=f) =p* {e—av(- 1)},

and P=f= b:_%a},/ CD,

Therefore, since  and y, the coordinates of the focus, are
connected by the equation

-5 -
fe+yy(-1p =7 222N,
we have x’—y"=f.c?:a5 ..................... (1),
zy=f. v ,_ab ..................... (2),

for the determination of those coordinates.

If the parameter f alone vary, we have, eliminating f be-
tween (1) and (2), as the locus of the focus,

a- b

which is the equation of two straight lines.
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Also, since, from (2), ab=¢"— £——; ’

we have, from (1), x*-y*=‘:c—«’/(a=- ab).

Hence, eliminating b, if the parameter b vary, the locus of the
focus is
—y= (el
-y ” (a c"+my) y

and therefore ac (' —y") + (¢'~ a") ay —fc =0,

which is the equation of a rectangular hyperbola.
Similarly, if the parameter a vary, the locus of the focus is

ab (' —y") + (' = b") xy —fe=0.
o -b
Again, since, from (1), ’=ab+f. z;t:_z}' ’
we have, eliminating ¢ from (2), when ¢ alone varies,
3 Y 2 —b
zy*.f*(:,_y,) —f (ab+f.:,_y,),
or  ab(af+y)— (@ +B) 2y +fa—b) (- ) =0,

as the locus of the focus.

5. A right vertical cylinder with circular ends carries a
hand upon its upper face, equal in length to a radius of the
end, and moveable about an axis coincident with the axis of
the cylinder: the extremity of the hand is attached by a fine
elastic thread to a point in the circumference of the lower end
of the cylinder; and, when the thread is vertical, it is stretched
to its natural length: if the hand be made to revolve through
any angle a, and then let go, find its angular velocity in any
subsequent position; and shew that, if the angle of displace-
ment, a, be very small, the time of an oscillation will be

« @
”f., [GEYALE
where n is constant.
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Let OP, (fig. 18) be the position of the hand at the time ¢,
AB the initial position of the string, AB=1[, OP=a, L BOP=6.
Now, if the cylinder be unwrapped, 4P will be a straight line,
and ABP a triangle, right-angled at B. Hence the length of
the string at the time ¢ is equal to

O+ a’¢);
and therefore, if 7' be the tension of the string at the time ¢,
and w its modulus of elasticity,
T_(C+dFE-1
« 1

Hence, if MZ%® be the moment of inertia of the hand about

the axis, the equation of motion will be

M# T8 = TaconBPA
a . ab
LA, 1
=TIV T T r LN
Multiplying by 2 %7, and integrating
6 ,
me %o wl{ﬁ" 2—(z*+aa~)i}

‘When the motion commences, let § =a; then

0=C-=% {a’—? L (z*+a*a*)i} .
do’ “ 2,9 2
and Mk'ﬁ—w 7 (@ = O) — 2= {(I* + oo’ — (I' + a’G7)H} 5
which gives the angular velocity of the hand in any position.
If a be very small, 8 will be very small; hence, expanding
and neglecting powers of a and @ above the fourth, we have,
approxima.tely,

e 1a* , 1la* ,
Mk"——w—(a — o) 2w{l+2-—l— el 21""““81*0‘}

—w——: (a*— 6,



42 SENATE-HOUSE PROBLEMS AND RIDERS. [Jan. 21,

and therefore the time of a small oscillation is equal to

"f: (@ =% fae*) '

6. A narrow smooth semicircular tube is fixed in a vertical
plane with its vertex upwards; and a heavy flexible string,
passing through it, hangs at rest; shew that, if the string be
cut at one of the ends of the tube, the velocity, which the
longer portion of the string will have attained when it is just
leaving the tube, will be

(ag) {2 =5 (- o)}
I being the length of the longer portion, and a the radius of
the tube.

Let C, D, (fig. 19) be the ends of the tube, 4 PB the position
of the string at the time ¢; let 2.C0A=60, LCOP=¢, Q a
point in the pendent portion of the string, D@Q=§. Then, by
D’Alembert’s principle, we have, m being the mass of a unit
of length of the string,

2ma8¢( da¢+gcosqb)+2m8f( £ g)=0.

But, since the string is always stretched, we have

dE d¢
c@ dt i

also the limits of ¢ are  and 6, and those of £ are l—a (7w —6)
and 0. Hence the equation of motion becomes

4o "
al W:g(l—ar+ aB)—agfe cospdep

=g ({—am + ab) + ag sind.
Integrating, we have

ll-i—g._0+2g(l am) 0 + agf — 2ag cosf.




N
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‘When 6=0, 02—?: 0; and, when 0=, a i—lg is the required
velocity ; hence, if v be that velocity,
0=C—-2ay,
5 v'=C+2g(l— am)w + agn” + 2ag,
3
and therefore v =(ag)t {27:- - % (v — 4)} .

Aliter. We may use the principle of vis-viva to obtain the
value of v.

Let y be the height of the centre of gravity of the string
above CD at the commencement of the motion, y' the value
of y when the string has attained the velocity v: then

ml' =2mlg (y - y').

But mly =mam. i_a —m (l—am). }(l.— am),
and mly' =—ml.}l.
Hence W'=g{4a’ - (l—am) +T;

¥
and therefore v=/(ag) {27:- - ‘—; (7" — 4)} .

7. If a, b, ¢, &, ¥, ¢, be the cosines of the inclinations of
the faces of a tetrahedron, @ and o', b and %', ¢ and ¢/, belonging
respectively to the edges which do not meet; shew that

1+a'a” + 0" + " =a" + 8"+ "+ 0"+ 8" + ¢
+ 2a'be + 2b'ca + 2¢'ab + 2a'b'c
+2bcb'c’ + 2caca’ +2aba’d’.
Let F,, F, F,, F,, be the areas of the four faces of the

tetrahedron ; then, projecting each set of three faces upon the
fourth successively, we obtain the equations,

F,= aF+ bF,+ cF,
F,=VF,+aF,+ oF,
F,=¢F,+dF,+bF,
F =cF,+bVF,+aF,
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Putting F,=aF, F,=yF, F,=zF, and arranging, we have

2 8
ax+bytca= 1.iiviirnnnnnnne (1),
Vztay— 2 =—C.vviveriinnencennes (2),
Cx— Yy +adz2=—b cccevuriuniniannns (3),
z—Cy—bz= @.cvireirirurnen. (4)-

Hence, substituting for # its value from (2), we obtain
=1+ (a+cb)z+ (b+ca)y=0,
btca +(c+ab)x+ (a"-1)y=0,
at+ch+ (b"—1)z+ (' +ad)y=0.
Eliminating @, y, from these equations by eross multiplication,

we get
(¢*=1) {(¢'+ a®)"— (a*~1) (4" - 1)}

+(b+ca) (3" —1) (b+ca) - (c'+a'd) (a+ cb')}
+(a+cb') {(a+cb') (@™ —1) — (b +ca) (¢ +a'd)} =0,
or (*—1)(c+ab)+(3"—1)(b+ca)+ (a®—1) (a+ cb)
=(c"—1)(@"—1) " —=1)+ 2 (a+cb) (b+ca') (¢ +a'b);
whence, effecting the multiplication, we obtain
14+’ + 8"+ =a'+ b0+ +a” + 0™ + ¢
+ 2a'bc + 2b'ca + 2¢'ab + 2a'b'c’
+2bcb'c + 2cac'a’ +2aba’t’.
8. Shew that the determination of the circular sections of the
cone

g+§+§=q
may be made to depend upon the solution of the cubic equation
abep® — (& + 50"+ ¢") p*'+4=0;
and that the circular sections of the cone
Beioer o)+ Yeres
are parallel to the planes
ax+by +cz =0, §+%+*=0.



9-12.] PROBLEMS. 45

Let the equation of the sphere on which the circular sections
lie be
Z+y+2+ar+ By+yz+8=0............ (1).

The equation of the cone, when combined with that of the
sphere, must become the equation of two planes; and therefore,
“if I, myn; I',m, n'; be proportional to the direction-cosines of
these planes, we must have, conversely
(et my+ nz+d) (le+m'y+n'z+d) — p (ayz+bzz+ cxy)=0...(2),

as the equation of the sphere. Hence, comparing it with
equation (1), we get
l'=mm =nn'=1,

mn' +m'n=pa, nl+n'l=pb, Im'+Tm= pec.
Substituting for 7', m', %/, the last three equations become

4+l = pa... (8), 7—;+7£‘=p.b....;.(4), —+’£;'—=/.w ...... (5)-

If we subtract the sum of the squares of these three equa-
tions from their product, as in page 17, we shall eliminate 7, m, »,
and obtain the equation

abop® — (@ + 0+ ¢") W'+ 4=0,
for the determination of u.
We have also, from the equations (3) and (4),

L Lwbeir- 1),

and therefore, since
I _» m _m
A A n m’
the circular sections will be parallel to the planes
b+ V(b -}z +4 {ua+V(wa'-4)}y+2=0..(6),
Fub— Vb —4)}x+3 {pa—V(p'a'—4)}y+2=0...(7).
If the equations of the cone be

b ¢ c . a a b
Gri)w+ Grd)=r(Gra)a=o

™ o bty (e~ )
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the equations (3), (4), (5), become

m n b ¢\ n 1 c a I m a b
f+;,=*‘(‘+z)’"+‘="(‘+‘)’“+7="(z+‘);

n e { n a ¢)'m a

whence p =1 and [, m, n, are proportional to @, b, ¢, and there-

fore I'y m', 7', to (—1, %, %, and the planes (6), (7), take the forms
= z, ¥9,.%2_
ax + by + cz =0, 2t3t.=0

9. Shew that, if
a=0, B=0, y=0,
be the equations of three planes which form a trihedral angle,
the equation of a cone of the second order, which has its vertex
at the angular point and touches two of the planes at their
* intersections with the third, is

' —kaB =0;

"and that the equation of a surface of the second order enveloped

by the cone is
&+ u (7" — ka) = 0,

& = 0 being the equation of the plane of contact, and px being
constant.

Shew that if the enveloping cone of a series of ellipsoids
be the asymptotic cone of a series of hyperboloids of two sheets,
the curves of intersection of any ellipsoid with the series of
hyperboloids will lie in planes parallel to the plane of contact
of the cone and ellipsoid.

Since the equation
F—lkaB=0..cccco.eerur...... JRTPOS (1),

involves the variables to the second order, and results from the
elimination of the arbitrary parameter ! between the equations

k
v—la=0, 7‘7:3=0;

and since these equations represent a straight line passing
through the angular point aBvy; we see that (1) is the locus of
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a straight line passing through the angular point, and therefore
is the equation of a cone of the second order.

Also, if we combine the equation (1) with either of the equa-
tions =0, 8=0, it becomes 4*=0. Hence the planes a =0,
B=0, meet the cone in two coincident lines ; therefore they touch
the cone, and y = 0 passes through their lines of contact with it.

Again, since the equation

St (o —haB) =0 eerrererrrnnnnn. (2),

is of the second order, and since, if we combine it with the
equation (1), it becomes 8" =0, we see that the cone meets this
surface in two coincident plane curves, the equations of which
are
v — kaf8 = 0, 3=0;

and therefore, (2) is the equation of a surface of the second
order enveloped by (1), 8 = 0 being the equation of the plane
of contact.

If p=—m% (2) may be put under the form
(8+ mey) (8 — my) +mkaf =0,
which results from the elimination of the parameter ! between
the equations

&+ my + mla=0, 8—m'y—m]-lfﬁ=0,

and therefore represents a ruled surface of the second order.
If p be positive, (2) cannot be resolved into plane factors, and
therefore cannot have a straight line coincident with it..

Since the plane of contact of an hyperboloid with its asymp-
totic cone is at infinity ; and since this condition is analytically
expressed by making the equation, which results from com-
bining the surface with its asymptote, become

constant = 0,
we have for the equation of the hyperboloids of which (1) is
the asymptotic cone,
£&+ py'— ka) =0,
where c is constant, the upper and lower signs belonging to
the hyperboloids of two sheets and of one sheet respectively.
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If we combine the equations

& +u (v —kaB) =0......(3), &+ u* (v = kaB) =0......(4),
+

we obtain S=4c ,%; ,

which, for all values of u and ', represents planes parallel to

the plane =0; and hence any one of the surfaces represented

by equation (3) will instersect all the surfaces represented by

equation (4), in planes parallel to the plane 8=0.

10. A rigid spherical shell is filled with homogeneous in-
elastic fluid, every particle of which attracts every other with
a force varying inversely as the square of the distance: shew
that the difference between the pressures at the surface and at ‘
any point within the fluid varies as the area of the least section |
of the sphere through the point.

Let r be the distance of any particle P of the fluid from
the centre of the shell; and through P describe a sphere con-
centric with the shell. The fluid exterior to this sphere exerts
no resultant attraction on P, and the resultant attraction of the
fluid within the sphere is the same as if it were condensed into
the centre. Hence, if p be the pressure at P, a the radius of
the shell, and p’ the pressure at its surface,

dp=— %rr’. g dr, p being constant,
4
=-3 wurdr,
and hence p=C— gvrpr’.
When r=a, p=p'; and therefore
, 2
p-p=3zmpu(d -7

= g p % area of the least section through P.

11 A uniform beam is revolving uniformly in a vertical
plane about a horizontal axis through its middle point; and,
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at the instant it is passing through its horizontal position, a
perfectly elastic ball, the mass of which is one-third that of
the beam, is projected horizontally from a point vertically above
the axis, so as to hit the beam at one extremity, then te re-
bound to the other, and so on for ever, bounding and rebound-
ing along the same path; shew that if O be the angle, on each
side of its horizontal position, through which the beam revolves,
6 will be given by the equation
6 tand=1.

Let m, 3m, be the masses of the ball and beam, and 2a the
length of the beam.

Since the ball always describes the same path, the direction
of its motion, when it impinges upon the beam, must be per-
pendicular to the beam, and the motion of both ball and bea.m
must be Just reversed at each impact.

Let v, v, be the velocities of the ball immediately before
impact and at the instant compression ceases, — w, ', the an-
gular velocities of the beam at the same epochs, and I the im-
pulsive pressure during compression; we have

v V=
w4 Ia
OETOT o

I a
=—m+m, simce k’=§;

and since the ball and the extremity of the beam are, at this
instant, moving with the same velocity,

v=a0';
therefore - —=—a0+—,

m m
and 2 £='v + ao.

m

Hence, at the instant restitution ceases, the velocity of the ball
=p—-2 —I~
m

=—aw,
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and the angular velocity of the beam
ma

v
a

b

and consequently, if v=oaw, the motion of both ball and beam
will be reversed after each impact.

But, if 2¢ be the time which elapses between any two suc-
cessive impacts,

l=w.t,
acosf@=vsinb.t
=qaw sinf.¢
= af sin6,
and therefore ftanf=1.

12. A homogeneous sphere, of elasticity e, rotating uni-
formly about a horizontal diameter, falls upon a perfectly rough
inclined plane through such a height % that its angular velocity
is not affected by the first impact, and then proceeds to descend
the plane directly by bounds; if », be the velocity of the sphere
along the plane after the »™ impact, shew that

: . 10 e—¢"
u, = (2gh)} sina (1 + —,7 . lTe) 3
and that the range which the sphere describes upon the plane
before it ceases to hop will be

. e 4 &
. 4hsma(——1_e), (1—"_1'1—4-3)’
a being the inclination of the plane to the horizon.

Since the angular velocity of the sphere is not affected by
the first impact, if w, , be its vertical and angular velocities,
at the instant when it impinges, and « its radius, we shall have

w'=29h, aw=usina.
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Let F,,, be the tangential impulse on the sphere during the
(n+1)™ impact; v,, v,,,, the velocities of the sphere along the
plane immediately after the »™ and (n+1)™ impacts; o, o,,,,
its angular velocities at the same epochs; then, since there is
perfect rolling,

: u, =aw,, uM =aw,,,.

Now, if ¢, be the time of the ™ bound, the veloclty of the
sphere along the plane, at the instant before the »™ impact,

will be equal to
u,+gsina.t,

. 2d"ucosa
=u_+gsing. ———
g cosa
=u,+ 2¢"u sina;
. F

therefore u,, =u,+2¢"usina — T}ﬂ ,
a-nd w » +F a

= ‘l[k" !

M7 being the moment of inertia of the sphere about a diameter.
Hence, since there is perfect rolling,

a’ F
. 3 ntl o
a0+ 3 M
therefore (1 + )F =u,— aw, + 2¢"u sina,
kﬂ M n )
F 2
d ntl . " QF
an I =7 2¢"u sma.
H. ’ ’ . . 4, .
ence U, = U, + 2 u &R0 — - €U BMa,
and %, — U, = — cusina
Integrating, u,=0- -172 wsina le e
‘When =1, a,=u sina;
. 10 . e
therefore usma=0—7usma T

E2
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and u, = usina+170 using el—e

= (2¢gk)sinag (l + 10 il_—e;) .

Also, if B, be the range described upon the plane between
the #™ and (n+ 1)™ impacts,

B =ut + % gsina ¢’

u sin (1 L1 10 e— ') 2¢™u + 1 sina (2e"u)“
= 7T1-¢) g 29 g

_ o Wsina 10 e _10 1y L),

=2 g {(1+7 ——l_e)e +(1 T 1= )e },
and therefore, the whole range described, which is the sum
of all the values of B, from n=1, to n=00, will be

4k sina {(1+ )22" '+(1—$ 1_1e) zfe"'}
=44 sina {(l+170 1e—e)1—i_e+(l'l79 1176)1_%}
=4ksina‘(1+e){ e+ +(l —-e— 10) 1:_6}

)-

. e 4
= thsina 2 (1-7 5
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THURSDAY, Jan. 22. 9t 12,

1. IF p, p', be the reciprocals of the perpendiculars from the
centre of an ellipse upon SP, HD, where S, H, are the foci
respectively nearest to P, D, the ends of two conjugate semi-
diameters, prove that, b being the reciprocal of the semi-axis

minor,
(pp' - 7!
(p-0)'+(2'-0)
is a constant quantity.

Let, in the first place, b represent the semi-axis minor,
and p, p', the perpendiculars from C upon SP, HP, (fig. 20).
Let z, y, be the coordinates of P. Then, since twice the
area of the triangle CSP is equal to either (a—ex)p or to

aey, we have
—eHP_,Y
(1 e a) E=¢%"
Similarly, g Y ga:, being the magnitudes of the coordi-
nates of D,
e P _.”
(1 e b) 5 =¢7"
Obtaining — a.nd‘z from these two eq ahons, we see that
HEED

Yy
and be (pp b’)

I
l‘ﬁl'-‘ 'EI»-
e-|»- e~|
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Squaring the last two equations, adding, and attending to
the equation to the ellipse, we have

E
1 1\* 1 1
(;-z) +(;‘z)

a result which shews that, the symbols 3, p, ', being now used
to denote the reciprocals of b, p, ', the expression

(pp =B
(p—0y+(p' -0

is invariable.

2. If forces P, Q, R, acting at the centre O (fig. 21) of a
circular lamina along the radii 04, OB, OC, be equivalent to
forces P, ¢, R, acting along the sides BC, C4, AB, of the
inscribed triangle, prove that

PP Q@  R.R
Bo Y cataB=

Since the sum of the moments of P, ¢, E, about any
point must be equal to the sum of the moments of P, @, R,
about the same point, we have, taking moments about 4, B, C,
successively,

0.

AABC ACOA AAOB

P. .BG =.R. 00 ‘—Q° O.B 7

ABCA ., AAOB . ABOC
@~z =F oz B0
, ACAB_, ABOC , ACOA.
B.—5 =995 ~ P01

multiplying these equations by P, @, R, respectively, and
adding, we have
' PP Q.Q R.R

B0t oat a5 ="

3. A fine thread just encloses, without tension, the circum~
ference of an ellipse: supposing a centre of force, attracting
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inversely as the square of the distance, to be placed at one
of the foci, prove that the sum of the tensions of the thread
at the ends of any focal chord is invariable, and that the normal
pressure on the ellipse at any point varies inversely as the cube
of the conjugate diameter.

Let PSP (fig. 22) be any focal chord: let ¢ be the tension
at P; let SP=7r, SP'=+": then, ds being an indefinitely small
arc Pp, and ¢ the inclination of the tangent at P to SP, we
have, resolving along the tangent the forces which act on ds,

t+dt=t+;’3,.ds.oos¢,
dt=:7:dr,
t=0-£,
r

Now the attraction of the central force tends to draw every
element of the thread towards the nearer apse; hence the
tension of the string must be zero at the nearer apse, that is,
t=0 when r=a (1 —e¢): hence

0=C-~- (l—e)’

and therefore t= { - -1-}
(] 1 —-e) r
Let ¢ be the tension at P': then

iy S R L A
penee mmlaig = (A
but, by a property of the ellipse,
1.1 .
7Tall=¢&)"
- 2 2
hence H.t—ﬂ'{a(l—e)—a(l—e')}
2pue = a constant.

“a(l=d)
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Again, N denoting the normal pressure between the ellipse
and the thiread at P, we have, resolving along the normal the
forces which act on ds,

Nds =t siny+ & sing. ds,

where 4 is the angle between the normals at P, p. Hence,
p denoting the radius of curvature at P,

t .
N=—+:—;sm¢).

Np—t+2—r, .2p sin¢

—t+2r, PV,
oD v OO
No—=t+ 5. —
-k __B_r r (2a¢ — r)
a(l—e) r 22 o
3 BB, T
=ai-9 Eep(e-7)
Bk
T afl—e) 2a
u(l+e)
T 2a(l—¢)’
and therefore N o< (CD)™.

4. Prove that the eccentricity of a section of an ellipsoid,
made by a plane through its least axis, varies inversely as the
distance, from this axis, of the point in which it cuts a cen-
tric circular section.

Let COC' (fig. 23) be the least axis, P the point in which
the section CPC' cuts the circular section BPB'. Let @ be
the intersection of the curve CPC' and the plane of 04, OB:
join OQ and draw PN at right angles to 0Q. Let ON=v,
PN=2z, and e= the eccentricity of the section OPC".

2 £ 2
Then l—e’—gq——% O—N,—c’(l 'z_u):

[/
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but, b being the radius of the circular section, OP=5: hence

and therefore e —,

5. 04', OB, are two quadrants on the surface of a sphere,
at right angles to each other: a great circle cuts them in 4, B,
respectively: from A4', B’, through any point P of the great
circle, are drawn arcs B'PM, A'PN, cutting OA', OB', in M, N,
respectively: if PN=¢, PM=+, LOAB=2:, LOBA = p, prove
that

sin’A.cos’¢p — 2 cosA cosp sing sinyr + sin’u cos®Yr=1.

Let AP=qa, BP=S: then, AMP, BNP, AOB, being right-

angled triangles, we have, by Napier’s rules,

BINA.BIDA =8INY «evrerenrennrennnnns (1),
sinB.8inp =8IN¢ ..ccvvneriiniinnenns ),
coth.cotpp=0co8(a+B) corerenrennrans (3).

Multiplying the equations (1), (2), (3), together, and dividing by
gina sinB3, we have
cosA.cosu =sin¢ sinyr (cota cotS—1),
(cos\ cosp + sin ¢ sinvyr)’
= (cosec’a — 1) (cosec’ 8 — 1) sin’¢p sin*yr
= (sin*A — sin*y) (sin*s— sin*$), by (1) and (2),
and therefore
cos*M cos’p + 2 cosN cosy sing sinv
=gin’\ sin’p — sin*\ sin’ ¢ — sin’p sin®y,
(1 —sin™\) (1 — 8in®x) + 2 cos\ cosp sing sinvr )
=sin"\ sin’x — sin®A (1 — cos® ) — sin’ u (1 — cos’ ),
8in®A cos®¢p — 2 cos\ cosp sing siny + sin*p cos’r=1.
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6. If a polygon of a given number of sides be inscribed
in the orbit of a planet, such that all its sides subtend equal
angles at the Sun, prove that the sum of the angular velocities
of the planet about the Sun, at the angular points of the
polygon, is independent of the position of the polygon.

If » be the distance of the planet from the Sun and o its
angular velocity about the Sun at any moment, "o =%4. Hence,
the equation to the orbit being

=1+ e cosd,

h BN~}

we have o—;:—’ %=1+2e cos @ + }e' + §¢* cos20.

Hence the sum of the angular velocities will be constant if,

a being equal to 2;, each of the series

8,=cosf + cos(f+a) + cos(0+2a)+...+ cos{f+(n—1)a},
8, =c0820 + cos(20 + 2a) + cos8(20 + 4a) +...+ cos{20 + (n — 1) 2a},

is independent of 6.
Now sin(0+ g) —sin(ﬁ - g) =2 sing cosf,

sin(0+ 3“) - sin(a + g) =2 sing cos (0 + a),

2 2
sm(0+§2g) —sin(8+%a) =2 sing cos (6 + 2a),

.........................................................

sin{0+(2n— 1) g} - sin{0+(2n—3) g} =2¢in? cos{0+(n—-l) a} .

. a . a) . a
Hence  2.sin 3-4= sm{a + (2n—1) §} —sin (0 - §)

| =sin<0— E) —sin(ﬂ— :—:) =0.
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Thus s, =0, and, similarly, s,=0. Hence

&
% I(w)=n(1+4¢),
B (1+3¢), the value of 2 (w), being independent of 6.

7. A uniform homogeneous wire PAP’, of which 4 is the
middle point, is bent into the form of an arc of a loop of the
lemniscate of which 4 becomes the vertex: prove that the
resultant attraction on the wire, arising from a centre of force
at the node O, attracting according to the law of the inverse
square, varies as

1 1 \¢
(W B 524—*) :

If A denote the resultant attraction, then, the equation to

the lemniscate being 7* =a* cos2d, we have

A=;&f§;’0080

cosd (dr' 4
=[Lf—r-—. (?— +dg‘) .
But, from the equation to the curve,
2 logr =2 loga + log cos26,

and therefore d_r =— Em_?ﬂ .
r cos 26

Henco =% (;‘:’;;), (B 1) a6
_ p [*cos8dB

e °(cos28)*

B sind

o ([[=2 a0}

dé.
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Baut, from the equation to the curve,

. gp_a' =1

sin*0 = 7

~ Nt

hence Aocg—ri)—

1 1 \}

= (o - o)
8. A small light is placed at the.focus of a perfect reflector
in the form of a paraboloid of revolution: prove that the bright-
ness, due to reflection, at any point within the volume of the

paraboloid, varies inversely as the square of the focal distance
of the end of the diameter through the point.

Let P, P, (fig. 24) be any two points, in the generating
parabola, indefinitely near to each other: let S be the focus:
join 8P, SP', and draw PQ, P'@, parallel to the axis, to meet
any ordinate in @, ¢, respectively. Take R, R, in SP, 8P,
respectively, so that SR =c¢= SR. Then, if SP=r and
L PSP' =d#, the volume generated by the revolution of RSE'
about the axis of the parabola is equal to

f rd0dr.2mr sin 0

= 2qr 8in 640 fr’dr

= §wc’® sin 0d6.
Also, if y be the ordinate of P, the area of the annulus gene-
rated by the revolution of Q@' about the axis is equal to
2mrydy.
Hence the brightness at @ varies as
$mc® sinfdo
2wy dy
mdida, where « is the abscissa of P,

sin0d0
&
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but ! 1408, ¥ —sinds:
r ”*

hence the brightness at Q varies as 5 .

9. A hollow homogeneous cylinder, of given material, which
is perfectly brittle and incompressible, is partially inserted into
a fixed horizontal tube just wide enough to admit it: prove that
the greatest length which the free portion of the cylinder can
have, without snapping off, varies as the square root of the
radius of its external surface.

Let p denote the tenacity of the material of the cylinder,
a the radius of its internal and a' of its external surface, ¢ its
free length when it is on the point of snapping off. Let r be
the distance of any point in the mouth of the tube from its
centre, @ the inclination of r to the line drawn vertically
upwards from the centre of the mouth.

Then the moment of the tenacity, to prevent snapping off,
about the lowest point of the mouth, is equal to

p]'frdodr(a’+r cosf)

L 2 ] 8 8
=,,,f. dﬂ(a'.a ;a +2 ;a cosﬁ)
[

= pma (a” — da').

Again, p being the density of the material of the cylinder,
the moment of the weight of the cylinder about the same point,
i8 equal to

gp.me(a® — a'). }e.

Hence, when the cylinder is on the point of snapping off,

¢’ (a” — @) = uwd (o™ — a'),
JP

and therefore ¢ o« a't.

10. A centre of force, repelling inversely as the square of
the distance, lies below the surface of a homogeneous inelastic
fluid, which is also acted on by gravity and is at rest: the
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intensity of the force, at a point in the surface of the fluid
vertically above its centre, is equal to that of gravity: prove
that the external surface of the fluid has a horizontal asymp-
totic plane, and that the centre of force is environed by an
internal cavity, the summit of which is at the external surface
of the fluid.

Find the volume of the cavity in terms of its length.

Let P, (fig. 25), be any point in the fluid, O the centre of
force: let OP=r, p=the pressure at P, p=the density of
the fluid. Let zz’' be a vertical line through O, and Oy be
horizontal.

Then, for the equilibrium of the fluid, we have
d,
—E = gdm + :“7 dr,

P_ o _E
p gz r+0‘

Let A be a point, vertically above O, in the surface of the fluid,
at which the intensity of the central force is equal to that of

gravity: then, if 04 =a, f',, is equal to g: also p=0 when
z=—a: hence
a’
%= ga:—T‘q+0,
0=-ga— ag +C,

The equation (2) represents a surface generated by the revo-
lution of a curve consisting of the two portions HABAK and
HLK, HK being a horizontal asymptote.

From (2) we readily see that OB=a(v2—1), and thus
AB=ax?2. Also AV=2a, AL=a(y2+1).

The portion HLK of the curve must be rejected, because,
as the equation (1) shews, p is negative when « + 2a is negative.
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In order that there may be fluid at any point, 9% must be
positive: hence, by (1), we must have

2
x+ 2a

this shews that 4B and also HAKYV are free from fluid.

Thus we see that there is no fluid above the infinite arcs
AH, AK, and that the point O is within a cavity. The volume
of the cavity is equal to .

wf :’”’ y'dz

a(/2-1) a* .
=7 {_ z+2 3= }

-a

r>

.
.

= {a”—%a’-—- i _::/2 -3’ (v2— 1)’}
=ma' {§—(vV2-1) - {542 -7)}
=4ma® (3 —24/2).

Let AB=c: then as2=c: hence the volume of the cavity
is equal to

2mc
o 6-242)

11. A carriage is travelling along any level road: prove
that the sum of the squares of the shadows cast on the ground
by any two spokes of a wheel, which are at right angles to
each other, varies during the journey as the square of the secant
of the Sun’s zenith distance.

Prove also that, if the road run due east and west,

sing = ___ta.n20
~tan2z’

a being the azimuth and z the zenith distance of the Sun, and
6 the corresponding inclination of a spoke to the horizon when
its shadow is greatest or least.
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The shadow of a spoke on the ground will be the same as
on a horizontal plane through the centre of the wheel. We
will suppose such a plane to receive the shadow.

Let OP (fig. 26) be a spoke, O the centre of the wheel:
let PN, a vertical line, meet the horizontal plane through O
in N: let OP be the shadow on this horizontal plane. Join
ON, PP', P'N, and draw P'O', at right angles to ON produced.
Let .LNP O =a, and L NPP' =2, t PON=0. Then, a being
the length of the spoke OP, and ¢ of its shadow OP,

¢'=(acosf)" + (asinf tanz)® — 2a cos @ . a sin 6 tanz cos (§+ a) )
%: = sin*f tan®z 4 cos*@ + sina . sin26. tanz......... (1).

Let ¢’ be what ¢ becomes when 8 is replaced by &+ 6:
then i
¢ = cos’0 tan' + sin®0 — sina. sin20. tanz......... (2).

S

From (1) and (2), we see that
¢ + c* =a'sec’s,
which shews that, whether the road be winding or straight,
¢" + ¢* varies as the square of secz.

Again, from (1),

2
%‘—i— —sec’z = (1 —tan"z) cos20 + 2 sina sin20 tanz:

when ¢ is a maximum or minimum, for given values of a and z,
0 = (1 —tan'2) 8in20 - 2 sina cos 20 tanz,

tan20

and therefore sing = —— ,
tan2z

where, if the road run due east or west, a is the Sun’s azimuth.

The following is a different solution of the problem:

Let O (fig. 27) be the centre of the wheel, 04, OB, ver-
tical and horizontal radii, 4C, CB', their projections upon the
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horizontal plane, OP another radius inclined at an angle 8 to

the horizon, CQ its projection, QN the projection of PM: then
CB'= 0B, QN= PM =O0Pcos0,
CA=0Atanz, CN=O0M tanz=0Psinf.tanz.

Now if a line bisect a set of parallel lines, its orthogonal
projection will bisect the projections of the parallel lines. Hence,
since radii of a circle at right angles to each other bisect each
the system of chords parallel to the other, they will be projected
into conjugate diameters of the ellipse which is the projection
of the circle. Therefore CA, CB', are conjugate semi-diameters
inclined at an angle 7 —a; and, if o', &', be the lengths of the
shadows of any other spokes at right angles to each other, we

have
a®+b" = AC*+ B' (", by a property of the ellipse,

=r"tan’z + ", r being the radius of the wheel,
=" sec’z.
Again, CP=CN*+QN*+2CN .QN cos ACB’
=+"8in"0 tanz + 7* cos"0 + 2" sin O cos @ tanz sina ;
and CQ is to be a maximum or & minimum by the variation
of 0; therefore the value of 8 will be given by the equation,
0 = 2(cos’0 - sin’@) tanz sina — 2 (1 — tan*z) sin@ cosf:
2 tanz . 2 sin 6 cos 0

whenco T—tans "%~ e’ — s’
. tan20
and sing = ——.
tan 22

12. 04, OB, 00, are meridians on a surface of revolution,
passing through three points 4, B, C, which are connected
together by the shortest arcs BC, CA, AB: BC cuts OB, OC,
at angles A, A,; C4 cuts OC, O4, at angles A, A,; and 4B
cuts OA4, OB, at angles A\, \,: prove that

sin), . sin ), . sinA, =sin), . sin\, . sin\,,
Let P, Q, (fig. 28), be two points, indefinitely near to each

other, on the shortest arc between any two proposed points
F
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on the surface. In the arc 0Q take ¢ such that the arc Og
is equal to the arc OP. Let y = the distance of PQ from the
axis of revolution, d¢p = the angle between the planes of OP,

0@, and Qg = ds.
Then PQ =ds' + y*d¢’,
and therefore, since s must be some function of y,

= {f0 L+ v} s
= (Bfl) + )by whero p= 35

Under the condition of the problem, we must make

[+
a minimum.
By the formula of the Calculus of Va.rlatlons
V=Fp+8,

where B is a constant, we have
(Pf1) + 9 = + B,
¥ =8{pf(y)+ ¥}

y=F(y+ 7 ¢) ........................ 1)
But, if 6 denote the angle between PQ, Qg, °
yd$ =tanf.ds:
hence, from (1), y* = B*" cosec’d,
ysinf=4.

By this result it appears that, if @, b, ¢, be the respective
distances of the points 4, B, C, from the axis of revolution,

b sinA, = ¢ sinA,,
¢ 8InA, = a 8sin\,,

a sin\, = b sin),,
and therefore
sin), . sin, . sinA, =sin, . sin}, . sinA*

® Yor this problem and also for problem (6) the Junior Moderator is
indebted to Mr, R. L. Ellis of Trinity College.
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13. A little animal, the mass of which is m, is resting on
the middle point of a thin uniform quiescent bar, the mass of
which is ' and the length 2a, the ends of the bar being
attached by small rings to two smooth fixed rods at right angles
to each other in a horizontal plane: supposing the animal to
start off along the bar with a velocity ¥, relatively to the bar, -
prove that, 0 being the inclination of the bar to either rod,
the angular velocity initially impressed upon the bar will be

equal to
3m V'sin20

3m+4m’’  a

Let 4B, (fig. 29), be the bar, OAx, OBy, the rods; 0 the
angle BAO, m the mass of the little animal, m' the mass of
the bar, & the radius of gyration of the bar about its middle
point @, o the initial angular velocity of the bar.

Since the impulses on the system pass through the inter-
section C' of the normals to the rods at 4, B, the algebraic
sum of the initial moments of the momenta of the system about
this point must vanish. Now the sum of the initial moments
of the momenta of the particles of the rod about C is equal to
m'ow (a’+k"). Again, the velocity of G is perpendicular to
OC and is equal to aw, and therefore the initial velocity of the
little animal in this direction is equal to

aw — V 8in20:

hence the moment of the momentum of the little animal about ¢

is equal to
m (aw — V 8in20) a.

Hence m'w (a®+%")+ m (aw—Vsin28)a=0
b
 3m Vsin20
3m+4am' @

[ )]

14. A narrow tube, in the form of a common helix, is wound
round an upright cylinder, initially at rest, which is pierced

® A solution of this problem, based on the same physical conception, was
given by one of the Candidates in the Senate-House Examination.
~ F2
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by two smooth fixed rods, parallel to each other and horizontal :
supposing a molecule to be placed within the tube, at a point
of which the distance from the axis of the cylinder is parallel
to the rods, find the velocity of the cylinder when the molecule
arrives at any proposed point of the tube.

Prove that, m, m', being the masses of the molecule and
cylinder, the velocities which the cylinder has acquired, at the
successive arrivals of the molecule at points most distant from
the plane in which the axis of the cylinder moves, will have
their greatest values when, a being the inclination of the helix
to the horizon,

m'
m+m'’
. Let Oz, (fig. 30), be the line of motion of the centre C of
the base of the cylinder: let Oz be a vertical line. Let P
be the place of the molecule at any time ¢ Draw the vertical
line PN to meet the circumference of the base of the cylinder
in N: draw NM at right angles to Oz and join NC.
Let OM=«, MN=y, PN=2, OC=a', LtOCN=6. Then,
by the principle of Vis Viva, if ¢ be the initial value of 2,
do  dy*  de , dz” '
(dt" dz: + dt") + m' = =mg (c—2) euuee (1).
By the Principle of the Conservation of the Motion of the
Centre of Gravity,

tan*a=

da: , d’
ma+ m' 7S URTTICIIR PR (2);
also, from the geometry, if a be the radius of the cylinder,
—x=acosl.....ccceeurrurann.nn. (8),
¥y =asnb...iiiiinnnnne.. (4),
c—z=abtana....cc.ooeuunnnnnnn, (5)
From (2) and (3), we have
da ma . ,df
F= i sin 6 Tprrrreeeeeeeeeeens -(6),
da' ma . odf
and T = — m sin —d?.' .................... (7).
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From (1), (4), (), (6), (7), there is

{m cos’@ + m' + (m + m') tan'a} %—3: = %—g (m+m') 0 tana,
and therefore, by (7),

de® _ m'a 290 tana sin"0
df  m+m' mcos’d+m +(m+m)tan'a’

If 0=(2n+1) g, A being an integer,

de®  m'a  (2A+1)mg tana
df  m+m' m + (m+m) tan'a’
and therefore % is & maximum by the variation of a when

m' + (m +m') tan’a — 2 (m +m') tan’a = 0,
or when tan'a = ——,,
m+m
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TuespaY, Jan. 6. 9 to 12.

1. PARALLELOGRAMS upon the same base, and between the
same parallels, are equal to one another.

ABC 1is an isosceles triangle, of which 4 is the vertex:
AB, AC, are bisected in D and E respectively, BE, (D,
intersect in F': shew that the trlangle ADE is equal to tbree
times the triangle DEF.

Join AF, (fig. 31), meeting DE in &. Then, since the tri-
angle is isosceles, the triangle AFD is equal to the triangle
AFE, and the triangle GFD to the triangle GFE.

Now AAED=ABED, since base 4D =base DB;
thatis, 244GD=ABFD+2ADFQ@.
But AAFD = ABFD, since the bases 4D, BD, are equal,
or AAGD+ADGF=ABFD.
Hence 244GD=AAGD+ADGF+2ADFG,

or AAGD=3ADGF;
and therefore
AAED = 3ADEF

2. In any triangle, the square on the side subtending either
of the acute angles is less than the sum of the squares on the
gides including this angle, by twice the rectangle contained
by either of these sides, and the straight line intercepted be-
tween the acute angle and the perpendicular drawn to this
side, produced if necessary, from the opposite angular point.
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The base of a triangle is given and is bisected by the centre
of a given circle, the circumference of which is the locus of
the vertex: prove that the sum of the squares on the two
sides of the triangle is invariable.

Let AB, (fig. 32), be the base of the triangle, O the centre
of the circle, C the vertex of the triangle. Join C4, CB, CO,
and draw CM at right angles to AB.

Then
square' on A C=square on 04 + square on 0C
+ twice rectangle 04, OM:
also square on BC + twice rectangle 0B, OM
= square on OB + square on OC,
or  square on BC + twice rectangle 04, OM

=square on 04 + square on OC.
Hence

square on A C + square on BC
= twice square on O4 + twice square on 0C
=an invariable magnitude.

3. The opposite angles of any quadrilateral figure inscribed
in a circle are together equal to two right angles.

Prove also that the sum of the angles in the four segments
of the circle exterior to the quadrilateral is equal to six right
angles.

Let ABCD (fig. 33) be any quadrilateral in a circle. Join
AC.

Then, by the proposition,
the angle in exterior segment 4B+ 24 CB=2 right angles,
ANd .oiiiiiininieiier e AD + £ ACD =2 right angles.

Hence the sum of the angles in the two exterior segments
AB, AD, together with the angle BCD, =4 right angles; and,
similarly, the sum of the angles in the two exterior segments
CB, CD, together with the angle BAD, =4 right angles.
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Hence the sum of the angles in the four exterior segments,
together with the angles BAD, BCD,=8 right angles. But the
angles BAD, BCD =2 right angles, by the proposition. Hence
the sum of the angles in the segments is equal to six right
angles. :

4. Inscribe a circle in a given triangle.

Circles are inscribed in the two triangles formed by drawing
a perpendicular from an angle of a triangle upon the opposite
side, and analogous circles are described in relation to the two
other like perpendiculars: prove that the sum of the diameters
of the six circles together with the sum of the sides of the
original triangle is equal to twice the sum of the three per-
pendiculars.

Draw AP, (fig. 34), at right angles to the base BC of the
triangle ABC. Let the circle, inscribed in the triangle ABP,
touch 4P, BP, AB, in M, N, E, respectively.

Then AP+ BP=AM+ MP+ BN+ NP

=AE + MP+ BE+ MP

= .AB 4 twice the radius.

’

Hence, 4, denoting the diameter of the circle,
A4,+ AB=AP+ BP.

Similarly, 4, denoting the diameter of the circle inscribed in

the triangle ACP,
A.+ AC=AP+CP.

Hence A, + A, + AB+(CA=24P+ BC.

Similarly, B, B,, and C,, C,, denoting analogous diameters
in relation to the two other like perpendiculars of the triangle

ABC,
’ B.+ B, + BC+AB=2BQ+ C4,

and C,+C,+ CA+BC=2CR+ AB.

Hence, adding, and taking equals from equals,
A,+A.+B.+B,+(,+C,+BC+CA+ AB=2(4P+ BQ+CR).
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5. Similar triangles are to one another in the duplicate
ratio of their homologous sides.

Any two straight lines, BB', C(C', drawn parallel to the
base DD’ of a triangle ADD', cut AD in B, C, and 4D in
B, ¢': B(C', B'C, are joined: prove that the area ABC’ or
AB'C varies as the rectangle contained by BB', CC'.

Area ACB': area ABB':: AC: AB, by Euclid (V1. 1),

::CC': BB, by Euclid (V1. 4).
But, by Euclid (v1. 1),
CC': BB’ :: rectangle BB', C(C' : square on BE'.
Hence
area ACB' : area ABB' :: rectangle BB', C(C’ : square on BB,
whence
area ACB' : rectangle BB', O(C' :: area ABB' : square on BB'.
But, by Euclid (v1. 19),
area ABB' « square on BB':
hence area ACB' « rectangle BB', CC':
so also area ABC' « rectangle BB', CC".

6. If two parallel planes be cut by another plane, their
common sections with it are parallel.

A triangular pyramid stands on an equilateral base, and
the angles at the vertex are right angles; shew that the sum
of the perpendiculars on the faces from any point of the base
is constant.

Since the angles at the vertex are right angles, each plane
face forming the vertex is at right angles to the other two.

Let BAC (fig. 35) be the equilateral base and D the vertex.

Then, since BA=BC, and BD is common, and the angles,
BDA, BDC, are right angles, AD = DC, and, similarly, = BD.

Now let P be any point in the base. Through P draw a
plane parallel to BDC cutting the planes BDA, CDA, in
ba, ac. 'Then, by the proposition, da, ac, are respectively
parallel to BD, DC. From P draw Pm, Pn, perpendiculars
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to ac, ab, respectively. Then Pm, Pn, aD, are the perpen-
dicular distances from P on the three faces, and Pm is parallel

to DB. .
Therefore the triangle Pmc is similar to the triangle BDC.
Hence Pm =mc,

Pm + Pn=ac=ad, since ac is parallel to DC,
and therefore Pm + Pn+ aD=AD, and is constant.

8. Prove that, in the parabola, SY*= 8P.SA.

A circle is described on the latus rectum as diameter, and
a common tangent QP is drawn to it and the parabola: shew
that SP, 8¢, make equal angles with the latus rectum.

Let 8 (fig. 36) be the focus, SL the semi-latus-rectum.
Through @ draw QRE(Q', parallel to the axis of the parabola,
meeting SL in B and SP in ¢. Produce PQ, meeting the
axis in 7. Then, since ST is equal to SP and §Q is common,
and the angle SQT is equal to_the angle SQP, hence T'Q=QF,
and therefore SQ' =@ P.

But, by the proposition, since 8@ is the perpendicular from
8 on the tangent at P,

. S8¢'=8P. 84,
or 484 = 8P.8A4, since SQ=284;
hence SP=484=28¢Q,
and therefore 8¢ =38P= 89,

and therefore, evidently, since QR is perpendicular to SL,
the angle QSL is equal to the angle PSL.

9. Prove that the focal distances of any point of an ellipse
make equal angles with the tangent at the point.

P@ is a normal to an ellipse, terminating in the major axis;
the circle, of which PG is a diameter, cuts 8P, HP, in K, L,
respectively : prove that KL is blsected by PG and is per-
pendicular to it.

Let O (fig. 87) be the point of intersection of P@, KL.
Join KG, LG.
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Then, in the triangles KPG, LP@, t KPG =t LPQ, and,
since PQ is a diameter, ZPKQ =/ PLG; also, PG is common
to both triangles. Hence, by Euclid (1. 26), PK=PL, GK=GL.
Again, in the triangles POK, POL, PK= PL, PO is common,
and £KPO=.LPO: hence, by Fuclid (1. 4), KO=LO0. More-
over, in the triangles POK, POL, PK= PL, tOPK=(OPL,
and PO is common: hence, by Euclid (1. 8), LPOK=,POL,
that is, P@ is perpendicular to KL.

10. The perpendiculars from the foci of an ellipse upon the
tangent meet the tangent in the circumference of a circle.

Prove also that if from H a line be drawn parallel to SP,
it will meet the perpendicular SY in the circumference of a
circle.

Let SP (fig. 38) be produced to meet the perpendicular from
H upon the tangent at P in H'. Draw HP parallel to SP,
meeting 8Y in P. Then SH'HP' is a parallelogram and
HP =SH'=2A4C. Therefore the locus of P is a circle with
centre H and radius equal to the major axis.

11. If tangents be drawn at the vertices of the axes of an
hyperbola, the diagonals of the rectangle so formed are asymp-
totes to the four curves.

Prove that a perpendicular, drawn from the focus of an
hyperbola to the asymptote, will intersect it in the directrix.

Let CT (fig. 39) be an asymptote, SY a perpendicular
from the focus S upon CT. Draw YE at right angles to CS.

Since C7) an asymptote, is a tangent, therefore Y is a point
in the circle the centre of which is C and radius equal to CA:
hence

CY=CA.
But 08:CY::CY:CE:
hence 0S8:04 ::CA:CE:

consequently E is a point in the directrix.



(7 )

TuUESDAY, Jan. 6. 14 to 4.

4. PROVE a rule for extracting the square root of a com-
. pound algebraical quantity.

Shew that, if
z' +ax’ + b’ + cx +d
be a complete square, the coefficients satisfy the equation
¢~ ad'd=0.

Isit nect;ssa.ry that the coefficients satisfy any other equation ?
Extracting the square root of
o'+ 02’ +- b2’ +cx+d
in the usual manner, we have the following operation ;
2+ ar’+ b +ce+d
z* m"+gm+%<b—a{)
22+ 3@ . a2+ b

5-Dfore-1o-3
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Now, if the expression be a complete square, this remainder
must vanish; and, that it may vanish for general values of z,
we must have

a 2
c—é(b—%—) T SO (1),
1 aﬂ 2
d—z(b—z) R 2);
2
whence, eliminating 4 — %—, we obtain
F=ad=0 evrrerreeereererreens (3).

The coefficients must satisfy the equations (1) and (2), and
therefore either of these equations together with the equation
(8) which results from them.

6. Find the number of permutations of » things taken r
together.
If the number of permutations of n things taken r together
be denoted by the symbol
"B
shew that the number of such permutations, in which p par-
ticular things occur, will be
"P,."7P,_,.
Let the p particular things be removed ; then there will be
n — p things remaining, which will admit of
(n=p)(n—p-1)..[n—p—(r—p)+1]
1.2...(r—p)
combinations with »—p things in each group. Now, if the
p things be restored to each group, we shall have
(n-p)(n—p—-1)....n—r+1)
1.2...(r—p)
combinations of n things, taken » together, in which p particular
things occur; and, since each group admits of 1.2...» permu-
tations, the corresponding number of permutations will be
(n—p)...(n—r+1)
1.2...(r—p) !

1.2...» %X
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or r(r—=1)..(r—p+1)x(n=p)(n-p-1)...(2~7r+1),

or "P,."?P_.

8. Define the sine of an angle, and prove from your
definition that for all values of 6 numerically less than ur,
gin (7 — 6) =sin 6.

Trace the variation in sign of the expression

cos (7 sin#).cos(w cosb),

as @ varies from 0 to ;

cos(7r sinf) is positive from §=0 to 6=%r,
. ™ T

... negative ...... 8—§~... 0—-5,

cos (7 cos f) ... negative ...... 6=0 ... 0=§,
a0 ™ ™

.. positive ...... 0=§ ...0=§;

therefore the product ... negative ...... 0=0 ...0 =%r,
o ks ™

.. positive ...... G_E' .0—-§,
. ™ ™

... negative ...... 0-5 0—5.

9. Find an expression for all the angles which have the
same sine. Hence, if sin36 be given, find the number of
values of tan@ which will be generally obtained ; and illustrate
the result geometrically.

Let a be the least positive angle, the sine of which is the
given sine;
then » 30=nm+(—1)".a.

nr+(—1).a .

and tanf =tan 3
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Now n is of one of the forms 3r, 3r+1; and from these several
forms we obtain

tanﬂ:ta.n{r'rr+ (= 1)'.g}=i~tang, as r is even or odd,

ta.n0=tan{r1r+7r—:—(—gﬂ}= tan T s )

A ]

tan0=tan{m—w}=—fanwia .................. H

3

there are therefore, in general, six different values.

11. Determine the expression for the cosine of an angle of
a triangle in terms of the sides, and deduce the expression
for the sine. '

If 6 and ¢ be the greatest and least angles of a triangle,
the sides of which are in arithmetic progression, prove that

4 (1 —cos0) (1 —cos¢) = cosf + cos .

Let a—b, a, a+b, be the sides of the triangle;
@'+ (a—b)' — (a+d)*

then cosf = % (@=b)
_ a—4b
" 2(a-b)?
and similarly cos¢ =§‘—l(:—_;_1% .
Hence (2cosf—1)a = (2 cosf —4) b,

(2cosp—1)a=(4—2cos¢) b;
2cosf—1 cosf—2
2cosp—1 2—cosg’

whence 4 cosf.cosdp — 5 (cosf +cos ) + 4 =0,

and therefore 4 (1—cosd) (1 —cos¢)=cosé + cos¢.

and therefore

12. A quadrilateral can be inscribed in a circle; find the
tangent of half of one of its angles in terms of its sides. If
a circle can be inscribed in the quadrilateral, shew that the fourth



80 SENATE-HOUSE PROBLEMS AND RIDERS. [Jan. 6,

root of the product of its sides is a mean proportional between
its semi-perimeter and the radius of the inscribed circle.

If a circle can be inscribed in the quadrilateral, the sums of
its opposite sides are equal, and therefore, if a, b, ¢, d, be the
lengths of the sides 4B, BC, CD, DA,

a+c=b+d.

Let » be the radius of the inscribed circle: then it is easily

shewn that )

A B
a=r (cot§-+ cotE) ’

c D
c=r (cot§ +cot—2—) H

therefore a+c=r(cot42—4+cot~g+cot§.+cot€>.

But tan’é = M;(:ﬂ = 2‘2

and ta.ng, &ec. are given by similar forms; therefore

e/ (@) /B y/5) )
ad + bc+ ab +cd

V(abed)
S i/

¥ (abed)’

=7r.

whence
V(abed) = (a-+)
=r. (semi-perimeter).
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WED&ESDAY, Jan. 7. 9 to 12.

1. AssuMiING that the resultant of two forces, acting at a
point, is represented in direction by the diagonal of a parallel-
ogram, the sides of which represent the forces in direction and
magnitude; shew that the diagonal will also represent the
resultant in magnitude.

Shew that within a quadrilateral, no two sides of which are
parallel, there is but one point, at which forces, acting towards
the corners and proportional to the distances of the point from
them, can be in equilibrium.

Let ABCD (fig. 40) be the quadrilateral, and suppose P
such a point that the forces represented in direction and mag- -
nitude by PA, PB, PC, PD, are in equilibrium. Bisect 4B
in m, and CD in n; and join Pm, Pn; Pm, Pn, are the semi-
diagonals of the parallelograms, the sides of which are P4, PB,
and PC, PD, respectively, and therefore will represent in mag-
nitude and direction the resultants of the forces represented by
PA, PB, and by PC, PD. Hence Pm, Pn, must be equal to
each other and in the same straight line, or 2 must be the
middle point of the line joining the points of bisection of two
opposite sides of the quadrilateral. And since, by a known
theorem, the lines joining the middle points of the opposite sides
of a quadrilateral mutually bisect each other, there is one such
point and one only.

2. Shew that if three forces acting in one plane hold a body
in equilibrium, they either pass through a point or are parallel
to each other.

G
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A heavy equilateral triangle, hung up on a smooth peg by
a string the ends of which are attached to two of its angular
points, rests with one of its sides vertical ; shew that the length
of the string is double the altitude of the triangle.

Let ABC (fig. 41) be the triangle, 4, B, the points of
attachment of the string, and consequently BC the vertical
side, £ the peg. Draw AD perpendiculat to BC, and take 4G
two-thirds of AD; G is the centre of gravity of the triangle.

Since the triangle is held in equilibrium by the tensions
of the string acting along AE, BE, and by its weight acting
through @, the directions of these forces must pass through
the same point F; and, since the tension of the string is the
same throughout, the vertical through G must bisect the angle
AEB.

Produce EB to meet 4D produced in F, and join G'B; then,
in the triangles A GE, FGE,

right 2 A GE=right - FGE, . AEG = (FEG,

and the side £G is common ;- therefore 4 G=GF, and AE=EF.
But AG@=2GD; therefore GF=2GD; and, since GE and
DB are parallel, EB= BF, and AE=2EB.
Also, since G and B are the middle points of 4F and EF,
GB is parallel to AE.

Hence . tBEG=tAEG=tEGB;
.and therefore EB=BG=AG@=%AD.
And the length of the string, which is 4 E together with EB,
=3EB
=24D.

3. Find the relation of the Power to the Weight in the
single moveable pully, when the strings are not parallel. .

An endless string hangs at rest over two pegs in the same
horizontal plane, with a heavy pully in each festoon of the
string: if the weight of one pully be double that of the other,
shew that the angle between the portions of the upper festoon
amust be greater than 120°.
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Let W, 2W, be the weights of the pullies; 20, 2¢, the incli-
nations of the portions of the upper and lower festoon, (fig. 42);
T the tension of the string, which is the same throughout.

For the equilibrium of the upper pully, resolving vertically,
we have

W=2Tcos8;

and similarly for the lower pully, '
2W=2Tcos¢.
Hence 2 cos = cos .

Now ¢ can never be zero, and consequently cos¢ must be
always less than 1; therefore cos must be less than 4, or @
greater than 3, and consequently the angle between the por-
tions of the upper festoon greater than 120°.

5. Define the centre of gravity of a heavy body; and de-
termine the position of the centre of gravity of a pyramid on
a triangular base.

Find the centre of gravity of the solid included between two
right cones on the same base, the vertex of one cone being
within the other; and determine its limiting position if the
vertices approach to coincidence. _

Since the cones which bound the solid have the same base,
their volumes will be proportional to their altitudes; and there-
fore, if A, &', be those altitudes, and « the height of the centre
of gravity of the solid above the common base, we shall have

R T
@(h=K)+ 7. K =7.h;
N 1R R
whence m_ih——_}f’
=} (h+4);

and, when the vertices of the cones approach to coincidence, A’
approaches to A as its limit, and consequently x to }4.

6. State the laws of friction; and explain what is meant
by the term ¢ coefficient of friction.’
A uniform rod is held at a given inclination to a rough
horizontal table by a string attached to one of its ends, the
G2
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other end resting on the table; find the gréa.test angle at which
the string can be inclined to the vertical without causing the
end of the rod to slide along the table.

Let AB (fig. 43) be the rod, G its centre of gravity, W its
weight, R the vertical reaction of the plane, ¥ the friction, BC
the string, inclined at an angle 6 to the vertical, 8 the angle
‘which the rod makes with the plane.

Also, let S be the resultant of B and F, a the angle which

its direction makes with the vertical, so that tana = % .

Since there is equilibrium, the direction of 8 must‘ pass
through O, the intersection of the string and the vertical
through G' a.nd therefore

_——___-_. __—___
.

AG sina BG 8in @
But, since the rod is uniform, 4 & = BG, and therefore
cos(a+B) cos(G—,B)

sina sinf ?
whence cot@ = cota — 2 tan .
Now 0 has its greatest value when cot@ is least, and there-

. . B. .
fore when cota is least, or the ratio % 18 least, that is, when

the end of the rod is on the point of sliding. Hence, if tane
be the coefficient of friction between the rod and the plane,
we have a=e, and cotf =cote— 2 tanp,

for determining the value of 6.

If the string be held on the other side of the vertical, the
end of the rod will tend to slide in the contrary direction, and
we must replace ¢ in the formula by —e. If @ be the corre-

" sponding value of 6, we shall have
cotd =cot(—e) — 2 tanB,
or .cot(— @) =cote +2tangB.

Hence the greatest angle at which the string can be in-
clined to the vertical, will be when the string and the rod
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are on opposite sides of the vertical, in which case the in-
clination will be
cot™ (cote + 2 tan 8).

7. Define uniform motion and uniformly accelerated motion,
and explain how they are measured.

If f be the measure of a uniform acceleration, when ¢ mi-
nutes and a feet are taken as the units of time and space,
and f’ the measure of the same acceleration, when o' feet are
taken as the unit of space, find the number of minutes in the
unit of time.

If the motion of a point be uniformly accelerated, its ac-
celeration is measured by the increase of the velocity in a
unit of time, the velocity being referred to the same unit.

Hence, in the case proposed, taking ¢ for the unknown
unit, .

the velocity per ¢ minutes added in ¢ minutes = fa (in feet);

.............. per minute  ...cceeerrnineniieiiees = %,
AN iiiieeiieeniiiniee e one minute = —j; ,

.............. per ¢ minutes ...cceceeiiieiennnenn, = _fa

........................................... t' minutes ='f7.t";

and therefore, since f'a’ also represents (in feet) the velocity
per ¢ minutes acquired in ¢ minutes,
'I

f —fa tﬁ)

whence t=t @:)

8. State the second law of motion; and apply it to prove
that a force, of uniform intensity and direction, acting on a
given particle originally at rest, produces a uniform accelera-
tion of its motion.
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State the convention with respect to units which is necessary,
"in order that the equation P= Mf may represent the relation
between the numerical measures of force, mass and accelera-
tion; and supposing the unit of force to be 5lbs. and the unit
of acceleration, referred to a foot and a second as units, to
be 3, find the unit of mass.

It appears, as the result of experimental facts, that P o« Mf,
and therefore that P=CMf, the constant C' depending on the
units assumed. The equation P= Mf implies that the unit of
mass is the mass of a body in which the unit of force produces
the unit of acceleration, that is, two of the units being given
the assumption that C=1 defines the third.

Liet m measure the mass of a body whose weight is 5lbs.

Then, since a force 5lbs. produces in m an acceleration g,
where g, referred to a foot and a second as units, is 32'2 ap-

. . . . 1 .
proximately, and since, when P is given, fo o it would

produce an acceleration ‘1’ in a mass gm, and therefore an
gm
~§‘ .
Hence the unit of mass required is to m as ¢ is to 3, and

acceleration 3 in a mass

is therefore the mass of a body the weight of which is ?% x 5lbs.

or 53-5lbs. nearly.

Taking 10000z. as the weight of a cubic foot of water,
the volume of water representing the unit of mass will be
535 x 16 107

3000 or o= th of a cubic foot.

9. An elastic ball 4, moving with a given velocity on a
smooth horizontal plane, impinges directly on a ball B of the
same radius, at rest; determine the velocity of each after the
impact, indicating at what points of your reasoning any law
of motion or other result of experiment is assumed.

Shew that, if B afterwards impinge perpendicularly on
a smooth wall, the original distance of which from the
pearest point of B is given, the time, which elapses between
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the first and second impact of the balls, will be independent
of their radius.

If % be the given distance, and « the distance from the wall
of the nearest point of B when it meets the ball 4, and if d
be the diameter of B, the space over which 4 has moved in
the interval between the two impacts
) =d+h—x—d=h—=.
Hence, if v, v’ be the velocities of 4 and B at first,

ZLT + iv—, = the time contemplated = h_—g;
ev v

an equation which shews that x, and therefore the time, is
independent of the diameter.

10, Shew that a particle, projected in any direction not
vertical, and acted upon by gravity only, will describe a
parabola.

" An inclined plane passes through the point of projection;
find the condition that the particle may impinge perpendicularly
on the plane; and, in that case, shew that its range on the
plane is equal to

2v* sina

g "1+ 3sin'a’
where v is the velocity of projection, and a the inclination of
the plane to the horizon.

If the particle fall perpendicularly on the plane, the vertical
plane of its path must be perpendicular to the plane, and there-
fore perpendicular to the horizontal line in the plane through
the point of projection.

Let 0 be the angle which the direction of prOJectlon makes
with the plane, then the time of flight

' _ 2v.sinf
~ g.cosa’
and the velocity parallel to the plane being in this time de-
stroyed, we have

2v.8inf
cosa

0=v.co80—g.sina. ,
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or 2.tan @ = cota;

_v'.cos”d

" 2g sina

_ 1

" 29 sina "1+ % cot’a
_20 sina

T g "1+3sin'a’

and the range

t1. Two given weights are connected by an inextensible
string, which passes over a smooth pully; determine the motion
of each weight and the tension of the string.

The system being initially at rest, find the weight which,
let fall at the beginning of the motion from a point vertically
above the ascending weight, so as to impinge upon it, will
instantaneously reduce the system to rest. Will the system
afterwards remain at rest?

Let P and Q be the two weights, P being greater than @;
and let the weight R at the time ¢ impinge vertically on @; then

the velocity of Q. at the instant before impact being %%g.yt,
and of R, gt, the impulsive action on B
R
==.gt=1Rt,
q g y

if the system, and therefore R, be supposed to be reduced
instantaneously to rest.
Hence, since @ is reduced to rest, the impulsive tension

of the string 9 P-g
=& =9 Pre
P-Q
=(2-0-35g) "
and, since this impulsive tension reduces P to rest, it also
_P P-q gt.

=9 P77
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Therefore, equating these values, we obtain
R=P-¢Q,
and the system will obviously remain at rest. It may be

noticed that the principle of the comservation of the motion
of the centre of gravity would give this result at once.
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WEDNESDAY, Jan. 7. 1} to 4.

-

1. G1vE the meanings of the several symbols which are
employed in the formula p=gpz.

If one second be the umit of time, what must be the unit
of length, in order that the above formula may give the pressure
in pounds, supposing the unit of volume of the standard sub-
stance to weigh 161bs.?

The unit of weight understood in the formula p=gpz, is
the g™ part of the weight of a unit of volume of the standard
substance,

th
= (Y of 161bs., by the question
g ) DY q ’

=1lb., by the question;
therefore, g must be equal to 16.

But, when one foot and one second are taken as the units
of length and time, g =32 nearly; therefore, if the unit of time
be still one second, the unit of length must be nearly 2 feet,
in order that g may be equal to 16, ¢.e., in order that the unit
employed in the formula p =gpz may be one pound weight.

4. A body of given volume is immersed totally in a given
fluid; find the magnitude and direction of the resultant fluid
pressure.

A body is floating in a fluid; a hollow vessel is inverted
over it and depressed: what effect will be produced in the
position of the body, (1) with reference to the surface of the
fluid within the vessel, (2) with reference to the surface of the
fluid outside ?
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By depressing the vessel the density of the air within the
vessel is increased.

Now before depression, the weight of air displaced, together
with the weight of water displaced, is equal to the weight of
the floating body.

Suppose the body in the same position relatively to the
surface of the fluid within the vessel after depression as before.

Then the resultant fluid pressure on the body is equal to the
weight of water displaced together with the weight of air dis-
placed; but the weight of the same volume of air is greater
when the vessel is depressed than before ; therefore the resultant
fluid pressure upon the body, supposed in the same position
relatively to the surface of the fluid after depression as before,
would be greater than the weight of the body, and therefore
the body, if free to move, will rise relatively to the interior
surface.

Whether it will rise or sink, with reference to the exterior
surface, will depend upon the relation between the density of
the body, of the fluid, and of the compressed air, and therefore,
in order to determine the effect in any particular case, it would
be necessary to know the volumes of the vessel and of the body.

5. Describe the Diving Bell,.and find the volume of the
air in the bell at any depth below the surface.

If P be the weight of the bell, P’ of a mass of water the
bulk of which is equal to that of the material of the bell, and
W of a mass of water the bulk of which is equal to that of
the interior of the bell, prove that, supposing the bell to be
too light to sink without force, it will be in a position of un-
stable equilibrium, if pushed down until the pressure of the
enclosed air is to that of the atmosphere as W to P— P'.

Conceive the bell to be depressed to a certain depth below
the surface of the fluid. Let u = the volume of the interior
of the bell which is free from water, v = the volume of the
whole interior of the bell, = the depth of the surface of the
water in the bell below the surface of the fluid, % = the alti-
tude of a water barometer, and p = the density of water.
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Then, by Boyle’s hw,

v

Also, if the bell be in equilibrium,

P=gou+ P

hv
=z’_)'_ +P, by(1),

v+ P
y—z—p h+a) 9P

=L’,.W+P,
p

p being the pressure of the atmosphere and p' of the air enclosed
in the bell.
r__w_

Hence p=P-P"
If the bell be depressed lower, the displaced water being less
than in the position of equilibrium, the bell will sink: if the
bell be elevated, the displaced water being greater, the bell
will rise: thus the position of equilibrium is unstable.

~ '7. Find the geometrical focus (1) of a pencil of rays in-
cident directly. upon a plane refracting surface, and (2) of a
pencil incident directly upon a refracting plate.

A ray, passing through a point @, is incident upon a re-
fracting plate; ¢ is the intersection of the emergent ray, pro-
duced backwards, with the normal to the plate through @:
if the angle of incidence be equal to tan™u, and ¢ be the
thickness of the plate, prove that

Q= W w ! 2

Let QRST (fig. 44) be the path of the ray.

Let ¢ = the angle of incidence on the plate, ¢’ = the angle
of first refraction, ¢ = the tluckness of the plate, 4 = the index
of refraction.
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Draw RE, parallel to Qg, to intersect Sg in E. Then,
since 87, the emergent ray, is parallel t6 QR, the incident
ray, we see that

—RE=RG.n(®—4¢)

: _, =9
cos¢’ sing

=¢(1—tan¢’ cot¢).
.But tan¢ =pu, and sing =y sin¢’; hence

cosp=sing’, ¢'=}r—¢,

and therefore tan¢' =cotp = ’% .
2 _ .
Hence Qq=p'“,1.t.

8. A ray of light passes through a prism in a plane per-
pendicular to its edge: shew that, if ¢ and 4 be the angles
of incidence and emergence and ¢ the refracting angle of the
" prism, the deviation is equal to

-1, or y—¢-1
according as the incident ray makes an acute angle with the
face of the prism towards the thicker end or the edge. Under
what convention will these expressions for the deviation be all
represented by ¢4+ —1, and with this convention for what
value of ¢ will 4 change sign?

If the ray be incident between the normal at the point of
incidence and the thicker end, it may emerge on either side
of the normal at the point of emergence. Now, taking the
notation given in the question,

the deviation at the 1st surface = ¢ — ¢,

........................ 2nd....coo =Y —';
therefore the total deviation (being always from the edge)
=¢—-¢'+ (¥ -¥)

=1y~ (d'+¥),
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the positive or negative sign being taken according as the
emergent ray lies on the thicker-end or thinner-end side of the
normal,

or the total deviation in this case = ¢+ — <.

If the ray be incident between the normal and the thin end,
the deviation at incidence will be ¢ — ¢’ towards the edge,
................... emergence ........ ¥ — ' from ............
and the total deviation from the edge =vr—'—(¢p— ') =+— ¢ <.

If it be agreed to consider angles measured from the normal
towards the thicker end as positive, and those measured towards
the thinner end negatlve, all these expressions will be mcluded
in the formula ¢ + 4 — 7.

The value of Y will change sign at that value of ¢ which
gives the incidence on the second surface direct; <.e. which
gives ¢’ =1.

But sing=u sing’ =p sin<;
therefore, the value of ¢ required =sin™u sin<.

9. Explain the formation of an image by reflection, and
find the magnitude and position of the image of a given object
placed before a plane mirror.

_The faces of two walls of a room, meeting at right angles,
are covered with plane mirrors; shew that a person will be
able to see but one complete image of himself in either wall.

Let CA, CB, (fig. 45) be the intersections of the walls
with a horizontal plane through P, any point of the observer.
Draw Pn, perpendicular to CB and produce it to P, taking
n P, =nP: P, is the first image of P formed by reflection at CB.

Join PC and produce it. Through P, draw P P, perpen-
dicular to 4 C and meeting 4 C produced in », and PC in P,.

Then, since Pn, =n P,

1™ 1
PC= CP,and Pn,=Pp,;
therefore P, is the image of P, reflected at CA4, and similarly

it may be proved to be the image of the image of P at C4
formed at CB.
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Therefore all rays from a given point will after two reflec-
tions, whether first reflected at CA4, or OB, diverge from a
common focus.

There will then be two first images, one formed by reflection
at each wall and visible to the observer looking directly into
either mirror; and one common second image visible to the
observer looking towards the edge. Also, since the second
images of all points of the observer in a vertical plane through
the intersection of the walls and the eye of the observer lie in
this plane, part of the second image of the observer will lie to
the right of this plane and part to the left, and these two parts
will be visible, the one in the right hand mirror and the other
in the left. Hence part only of the second image will be visible
in either wall. Moreover, since no rays reflected from CA, as
from P, can fall on CB, and none reflected from CB, as from P,
can fall on C4, P, is the last image that can be formed of P.

Hence no more than one complete image of himself can be
visible to the observer, whether he looks directly into either
mirror or towards their common edge.

10. A diverging pencil of rays is incident directly upon
a concave spherical refractor: find the geometrical focus of
the refracted pencil.

A short object is placed perpendicularly on the axis of the

refractor, and at a distance from it equal to ;:.j:’ Jf being the
focal length: prove that the linear magnitude of the virtual
image is half that of the object.

Let PQ (fig. 46) be the object, C the centre of the refractor:
let CA be the radius through @: join CP. Let ¢ be the image
of Qand p of P. Let AQ=u, Ag=v. Then

-1 1
v r u
-1
but u=;{, and?:”'—‘,
whence also “w=—

p—1
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hence

and therefore Yoo = —

11. Describe the human eye as an optical instrument.
‘When a pencil of rays is refracted through the eye, at what
point of its passage does it experience its principal modification
of form; and what is the most probable hypothesis in regard
to the change of configuration of the eye by which it adjusts
itself to distinct vision at different distances?

An eye is placed close to a sphere of glass, a pertion of the
surface of which, most remote from the eye, is silvered: prove
that, assuming eight inches to be the least distance of distinct
vision, the eye cannot see a distinct image of itself unless the
diameter of the sphere be at least ten inches in length.

Let A (fig. 47) be the position of the eye, B of the silvered
portion of the sphere, @ of the image of the eye after reflec-
tion of rays at B, and ¢’ of the image of Q after the refraction
of rays into the air. Let AB=2r, BQ=u, AQ =w.

1 1 2
Then '2';+;=;,
u=3r, AQ=4r:
2 -1 1
also —'=§ +_,
v r 4r
1 1 9 5
T T x T H T
=5
==

Hence vision will be indistinct unless v be at least equal to
8 inches: hence, the least value of 2r, for distinct vision, is
10 inches. ‘
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THURSDAY, Jan. 8. 9 0 12.

1. ENUNCIATE and prove Newton’s fourth Lemma.

Apply this Lemma to shew that the volume of a right cone
is one third of that of the cylinder on the same base and of the
same altitude. :

Let the triangle 4BC (fig. 48), and the rectangle CD gene-
rate by revolution round A4 C the cone and cylinder.
Let P, Q, be two points near each other; then the volume
generated by the rectangle PN is equal to
. PM*. MN;
and that generated by Pn is equal to
7T (QN'— PM*) . AM
=a.(QN+PM).mn.AM.
But MN:mn=AM: PM;
therefore the ratio of these volumes
=PM:(QN+ PM)
=1:2, ultimately, when P and @ coincide.

Hence, by Lemmas III. and IV., the volumes generated
by the triangles ADB, ACB, are in the ratio 2:1, and there-
fore the wolumes of the cone and cylinder are in the ratio
1:3.

2. Enunciate Lemma XI., and prove it when the subtenses
are parallel.
H

o sa
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An arc of continmous curvature PQ¢', is bisected in @Q;
PT is the tangent at P; shew that ultimately, as ¢ approaches
P, the angle @' PT is bisected by QP.

Draw QT, @ T, parallel subtenses; produce 7'Q to meet
PQ in R, and join PQ. Then, by the Lemma,

QT :QT:: PT™: PT" ultimately,

:: (arc PQ')*: (arc PQ)*
4l .
But QT :RT:: PT': PT:: PQ': PQ, ultimately,
122:1;
therefore BT=2Q7T, RQ=TQ: i
also PR:PT:: PQ: PT"::1:1, ultimately;
therefore ~ PR: PT::RQ: TQ, ultimately;

or, ultimately, TPR is bisected by PQ.

4. State and prove Proposition I.

Will the velocity of the body or the rate at which areas
are swept out about the centre of force be affected by any
sudden change in the law of force?.

A body moves in a parabola about a centre of force in the
vertex ; shew that the time of moving from any point to the
vertex varies as the cube of the distance of the point from the
axis of the parabola.

Let A (fig. 49) be the vertex of the parabola, P any point
in it, and 7' the point in which the tangent parallel to AP
meets the axis; then the time from Pto 4

o« curvilinear area APQ
o pa.rallelogmm PT
o« 4 T x PD

« AT*, since PD*=1446.Q7,

o« ANi
« PN®.
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6. If any pumber of bedies revolve in ellipses -about :a
.common centre, and the centripetal force varies inversely as
the square of the distance; the squares of the periodic itimes
are proportional to the cubes of the major axes.

A particle moves in an ellipse about the centre -of force
in the focus 8: when the particle is at B, the extremity .of
the minor axis, the centre of farce is changed to §' in
SR, so that 8'B is one-fifth of SR, and the abseolute farce is
diminished to one-eighth of its original value; shew that the
periodic time is unaltered, and that the new minor axis is two-
fifths of the old.

Let the accemted symbols denote the elements of the
mew orbit. Then, since the velocity of the particle is un~
_«clianged,

2p

o
2'8

> RB
3

2u’
> ¥

#herefore the particle will canfinme to describe an ellipse.

s wly=do)+ (G- o)

, wo_p (10 1),
or ' 4078 (AG A'O',)”
therefare 40 = :4?0-';;

ar the new major axis is one-half of the old.
B2
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Again, by the proposition,

40"
P T o AcCt 1
PAC g 40 ~8%g=l
In
and therefore the periodic time is unaltered. .
Hence 2w AC.BC _ 2w A'C'.B'C' _ 27 AC.BC'
k I3 2K )

or B'C': BC:: 2k : k.

But %' : 4 :: perpendicular from S’ on the tangent : perpen-
dicular from &8, that is, as }.to 1;

therefore B'C:BC::%:1.

7. Define the term, “ zenith” and explain some method for
determining the zenith of a given observatory.

How would an increase in the Earth’s velocity of rotation
affect the latitude of a given place, supposing the form of the
Earth to remain unaltered ?

The latitude of a given place i» the angular distance of the
zenith of the place from the equator.

Now an alteration in the velocity of rotation of the earth
would alter the direction of the vertical at any place, and there-
fore, altering the position of the zenith, would alter the latitude.
An increase in the velocity of rotation would cause an increase
of the latitude of a given place.

8. What conditions must be satisfied in order that the
transit instrument may be in accurate adjustment?

Shew how, by aid of this instrument, the difference in right
ascension of two stars may be determined; and state the prin-
cipal astronomical assumptions on which the truth of this deter-
mination depends.

The principal assumptions made are that the Earth revolves
uniformly about an axis which is fixed in direction, and that
the stars are fixed relatively to each other.
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9. Explain the phrases ¢ mean solar time” and * equation of
time”.

Shew that in the month of February the equation of time is
additive.

Account for the fact that the time of the Sun’s setting as
given in the ordinary Almanacs is not the latest on the longest
day?

The equation of time due to eccentricity can be shewn to
be additive from perigee to apogee, ¢.e. from the beginning of
January to the beginning of June.

The equation of time due to obliquity can be proved to be
additive from a Solstice to an Equinox, and therefore from
Dee. 21 to March 21. Therefore the effect due to both causes
is additive in February, and therefore the total equation of
time is then additive.

The time of the Sun’s setting is given in the ordinary
Almanacs in mean time, and therefore, as at the longest day
the daily increment of the equation of time is greater than the
daily decrement in the Sun’s declination, it follows that the
mean time of the Sun’s setting is not greatest when the true
time is so, that is, on the longest day.

10. Prove that generally the apparent place of a star will
depend upon the ratio of the velocity of the Earth in her orbit
to the velocity of light.

Find the least diurnal velocity of rotation of-the Earth,
which will render sensible to an observer at the equator the
aberration due to this cause, the least appreciable angle being
1"

The greatest value of the aberration

velocity of the earth

= velooity of Tight x the unit of circular measure;

therefore, if 27z be the least angle of diurnal rotation required
" 27z . 4000 180°

=24 % 60 x 60 x 190000 ° 7 ?
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taking 4000 miles as the radius of the Earth, and 190000 miles.
per second as-the velocity of light;

2xxx4x18
therefore 1= By gve Tl

3x19 :
and. w=—g =3%;

or the earth must revolve rather more than three times as fast
as it does at present.

11. Describe the apparent motion: of the Moon among the
stars, and the real motion of its centre of gravity about the
Sun, illustrating the latter description by a figure.

‘What is inferred from the fact that, with slight variations,
the same portion: of the Moon’s surface is always presented to
the Earth? How much should the: Moon’s rate of rotation
about its centre of gravity be increased,. in. order that its whole
surface might be seen in the course of one orbital revolution ?

It will be easily seen, that, if the moon’s axis be supposed
at rest, the unseen portion of its surface would be presented to
the eye by a half-rotation, that is, by a rotation through 180
degrees. If then, in the course of an orbital revolution, the
Moon were to rotate on its axis through 540°, instead of 360°,
the whole of its surface would be seen. The rate of rotation
should therefore be increased in the ratio 3:2.

12. Explain the method of determining the longitude by
means of Lunar' Distances.

On January 1st 1855, at the mean time 9 hrs. 42 min. 8 secs.
P.M., the distance of a Arietis from the Moon’s centre was
calculated from observations to be 45°30'16"”: at noon and at
3 P.M. Greenwich mean time, the distances are 44°56' 11", and
46° 23' 39" respectively : find the longitude of the place of obser-
vation. '

Subtracting 44° 56’ 11" from 46°23' 39" it appears that the
Moon’s distance increases by 1°27'28” or 5248" in 3 hours.

Also 45°80' 16" — 44° 56" 11" = 34’ 5" = 2045".
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Therefore the time from noon, at Greenwich, at which the Moon’s
. . o ant 1on 204D .

distance is 45° 30" 16 =218 <3 hours, or 1hr. 10 min. 8 sec.

very nearly. )

The difference of the times at the two places, when the
Moon’s centre is at the same distance from the star, is there-
fore 8hrs. 31’ 594", and multiplying by 15, this gives the
difference of longitudes, 127° 59' 521" ; and, the time being later,
the place of observation is East of Greenwich.



Moxpay, Jan. 19. 9 to 12.

1. DEFINE a couple, and find the condition that two couples
acting on a body in the same plane may hold it in equilibrium.

Find the moment of the couple which is sufficient to sustain
a right cone, with its vertex on a rough plane of given inclina-
tion and its base parallel to the plane; -the roughness of the
plane being. just sufficient to prevent the vertex from sliding..

Let a be the inclination of the plane, % the altitude of the
cone, W its weight, B the normal reaction of the plane, and
pR the friction. ‘

Let L be the moment of the couple sufficient to sustain the
cone on the required position; then the cone will be held in
equilibrium by the couple L and the forces W, R, uR. Hence,
taking moments about the vertex of the cone, and resolving
the equilibrating forces parallel and perpendicular to the plane,
we have

L+W.3hsina=0,

W sina — uR =0,

W cosa— R=0;

therefore tana = u,
and L=—4hk sina.W.

3. A heavy string of umiform density and thickness is
suspended from two given points; find the equation of the
curve in which the string hangs when it is at rest.

Compare the curvatures at the lowest points of two cate-
naries formed by an inextensible and by an extensible string,
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the tension at the lowest point of each catenary being 7, and
the modulus of elasticity w.

In the catenary formed by the inextensible string, if m be
the mass of a unit of length, 7+ 8¢ the tension at each extremity
of the lowest element of the string, &s the length of the element,
and 30 the angle between the normals at its extremities, we
have, resolving vertically,

2 (1 + o) sin82—a=mg$s;

and therefore, if ¢ be the curvature at the lowest point,

Similarly, if 4’ be the mass of a unit of length of the stretched
string, and ¢’ the curvature, at the lowest point,
¢=t9,

T
But, if x be the mass of a unit of length of the string before
it is stretched, and 8o the length of the element which is
stretched into ¢’ by the tension 7, we have

w'da' = uda,
i 8'-8c T,
an S  w’
therefore ;4'=—"'-—
T,
1+ =
w
~g
and c'=-J7.
1+-
w
Hence c:c'::m(l+£):p;

and, if the mass of a unit of length of the inextensible string
be the same as that of the extensible before it is stretched,

c:c’::l+1:1.
w
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4. A particle of mass m describes a plane curve under the
action of forces of which the components parallel to the tangent
and normal are m.T and m.N: shew that

d’s 1 (ds\"

T = W’ .N = ; (E) .
If ¢ be the angle which the tangent at any point of the
path makes with a fixed line, the differential equation of the

path will be @
d
Z (¥ «75) =2T.
From the proposition .
Np = (“E )
ds  (ds\"
or N Ea = (—t H
' d ds\ d (ds\'dt
d’s
=2 255
d ds
therefore A (N (771;) =2T;

which, being a relation not involving ¢, is the differential equation
to the path. '

5. A heavy particle, suspended from a fixed point by an
elastic string, makes vertical oscillations in & medium of which
the resistance varies as the square of the velocity: determine
the velocity of the particle for any position, neglecting the
weight of the string and supposing the motion to commence
when the string is unstretched, and the particle to have no
initial velocity.

Deduce the greatest extension of the string, supposing the
motion to take place in a vacuum.

If a be the unstretched length of the string, w the modulus
of elasticity of the string, % the coefficient of resistance of

-
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the medium, m the mass of the particle, 7 the tension of the
string, and z the extension at the time ¢, the equation of motion
of the descending particle will be

d*(a+=) T, dot
@ YTa k@

@

a

but

T .
w’

and therefore the equation of motion becomes
dz dx" w

=t k—3 7 —g=0.
. dx .
Multiply by 2™ 7 and integrate ; then
L dc  w z 1 g
Ny ek (T T ) ke _
% Y mat (k 2k’) A C.
At the commencement of motion, =0, %a; = 0, therefore
= 1 _g

C= ma 2K k'

2 _g w wr [ W g

wd G =ft e ™ (G )

whence the greatest extension will be found by putting '%: 0,

that is, from the equation
2amlkg (1 — &) — 2kwa + w (1 — &)
2amk’
The value of  for a vacuum will be obtained by finding the
Jlimiting form of this equation when %= 0.
Now, differentiating the numerator and denominator twice
with respect to k, and then putting 2= 0, (1) becomes

=0urerrenn, (1).

8amgx — 4wz’ =0:

dam -

hence =0, or x=2 'ﬂ.a,
w

which is the greatest extension of the string in a vacuum.
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6. Two particles connected by a stretched inextensible string
are constrained to move in a fine curvilinear tube in a vertical
plane: determine the motion.

If the tube be cycloidal, the axis of the cycloid being vertical
and the vertex upwards; shew that the tension of the string
is constant throughout the motion.

Let T be the tension of the string supposed stretched
throughout, ! its length, m, m', the masses of the particles -
P and P, xy, @'y, the coordinates of P and P’ respectively, the
axis of the cycloid being taken as the axis of z, and the vertex

being the origin.
Then the equations of motion of P and P’ are
d’s da
m W =mg 78 FTeiiiiiiinennnas (1),
a8, de
E’- = m_q d? - T ................... (2),
and g —8=l.iiiiiicrriiniininniiann, (3);

therefore, multiplying (1) by m', (2) by m, and subtracting,
we get, by virtue of (3),
' — ' dx
(m' 4+ m) T—mmg.(zg - 78) .
Bat, since the curve is a cycloid,
& =ax;
de 23 dx 24
therefore, TG = o
and _ mmg 2.(—3)
m+m'’' a
m !

=2m+m,.;.my,

= constant.

8. A body floats in a fluid: determine the position of its
metacentre with reference to a vertical plane of displacement
dividing the body symmetrically through its centre of gravity.
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A cylindrical diving bell is suspended with its axis vertical
at a depth such that the water rises half way up the bell:
find the least distance of the centre of gravity of the bell
from the centre of its upper surface, consistent with the con-
dition that the equilibrium may be stable with reference to
an angular displacement of the axis.

Let C (fig. 50) be the centre of the upper surface of the bell,
CD the axis of the bell, G the centre of gravity of the bell,
which must be in CD since CD is vertical; and let H be the
centre of gravity of the fluid displaced.

Suppose the bell slightly displaced, as directed by the
question ; then the common surface of the water and air within
the bell will still be horizontal, and the volume of water dis-
placed will be unaltered; and therefore, the direction of the
resultant of the fluid pressure will be vertical, and will pass
through a point 7 in the axis of the bell, such that

Ak
Hm==

where A%* is the moment of inertia of the transverse circular
section of the bell about a diameter, and V is, half the volume
of the bell.

The forces now acting on the bell are all vertical, viz.—
W the weight of the bell, through @,

W iiiiiinnniinnnnns fluid, the volume of which = } that of the
bell, through m,

T .... tension of the rope= W— W', at C;
therefore,.for stable equilibrium, W.CG> W'.mC,

' >W.imH+HC);
now, if a be the radius of the-bell, 25 its height,

Al imat &
we have Hm_—f—m_fb’
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therefore the condition for stability is that
,fa’ b
W.0G> W (ZZ*‘)’

2
,a' +2b0°
>W —5
. . W' o'+ 208
and the required least distance = Wi

9. A small pencil of rays is incident obliquely on a plane
refracting surface; find the positions of the primary and
secondary foci of the refracted pencil.

If the pencil consist of common light, shew that the primary
foci of the pencils of different colours will lie on a curve of
the third order.

Let the intersection of the primary plane with the refracting
surface be taken as the axis of g, (fig. 51), and the normal to the
surface through the point of incidence A as the axis of z;
and let AM=a, Am=2, MQ=5, mq,=y.

Employing the usual notation, we have

LAk T (1),

v, ©

"Hence, substituting for u its value from the relation sin =y sin ¢/,

2 —il.‘ii’ sy,
Y, cos ¢_ sin¢ru co8 ¢ H
:therefore v} u! cos’¢= s 9, cos’d’
' ' using ‘v smg ’
2 2
s 3 x
sor (a:'+y’)%=»(a +bl);';

.and the required locus is
a'y (2 + y') =2" (a" + "),
:a curve of the third order.
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Monpay, Jan. 19. 13 to 4.

3. PrOVE that the base of Napier’s system of logarithms is
incommensurable.

Prove also that it cannot be a root of a quadratic equation
the coefficients of which are rational.

Take any quadratic
ar’—cx+b=0,

where a is a positive integer, and b, c, integers, either positive
or negative.

Assume that x=e¢: then

_ ae+be’ =c,
whence

1 ! b( LI S )—c.
("‘ tiatias™t )+ 1t1e 1237 )

Multlplymg both sides by 1.2.3...n, we find

L(H L ) —b——(l——L+ )—
n+1 n+2 "7 :t'n+l nt+2 7 e

4 being an integer. -

But we can always make’ t —b— posmve, by taking n even

in 1.2.3...n, when b is negative, and odd when b is positive.

If » be exceedingly great, the left-ha.nd member of the
equation, being an exceedingly small positive quantity, will
lie between 0 and 1, while the right-hand member is integral;
which is impossible. Hence the truth of the proposition is
established. -

Liouville: Journal de Mathématiques, tome cinquidme, p. 192.
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4. Prove that impossible roots enter rational equations by
pairs. . .
If e+ be a root of the equation

' +pa T+ p T+ px"t .+ p, =0,
prove that
p, sina + p, sin2a + p, sin3a +...+ p, sinna =0.

Dividing the proposed equation by «", and then putting

e for x, we have )
14 p 6™ 4 p e 4 p ™ 4 p e =0,

1+p, {cosa — /(- 1) sina} + p, {cos2a — /(— 1) sin2a}

+ p, {cos8a — /(—1) sin3a} +...+ p, {cosna — /(—1) sinna) =0,
and therefore, equating the impossible terms to zero, we have

2, sina+p, sin2a + p, sin3a +...+ p, sinna=0.

7. Shew that the equations
x=asec, y=>tandg,

represent an hyperbola, and give a geometrical interpretation
of the angle ¢.

If P, @, be points in the one, and P, @, in the other of
two confocal hyperbolas, and if the values of ¢ at P, @', be
respectively equal to those at P, Q; prove that PQ is equal
to P'Q.

Let the coordinates of P, @), be, respectively,
a secp a secyr| |
btang)’ |btany)’
and those of P, @ respectively,
{a’ sec¢ a secx]r}
b'tang)’ (' tany) "
PQ*=(a sec —a’ secy)' + (b tand — &' tan)",
P' @ =(a secy—a’ sece)’® + (b tanyr — &' tan¢)’,

Then
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and therefore .
PQ'-P Q= a’ (sec’d — sec’y) + a* (sec’r — sec’d)
+ b* (tan® ¢ — tan’r) + b* (tan’yr — tan’ep)
= (@) (tan* ¢ — tan') + (a"+5") (tan'fr — tan’§),
whence, since a* + b* = a" + 5", we have

PQ*—P@Q'=0, PQ=P4Q.

8. State Napier’s rules for the solution of right-angled
spherical triangles, and prove them for the case in which the
complement of the hypotenuse is the middle part.

If three arcs of great circles AP, B, CR, intersect at right
angles the sides BC, C4, 4B, in P, @, R, respectively, prove
that they all pass through the same point O, and that

tandP tanB@Q tanCR
tanOP’ tan0Q’ tanOR’
are respectively equal to
cos 4 _ cos B " cosC
cos B.cos(’ cosC.cos 4’ cosA.cos B’

Let the arcs BQ, CR, (fig. 52) intersect AP in O', O, re-
spectively.

1+

sinCP
_sinCP.cot CBR
- cos BC
_ tanAP.cotC.cotB
- cos.BC ’
tand4P
ten 0P = tan B tanC cos BC':
but co8.4 =—cos.B cosC +sin B sin C cos BC,
cos A
) tanA4P cos 4
hence

tanOP 14 cosB.cosC’
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Interchanging B, C, and writing O for O,
tan 4P cos 4

tanO'P 1 cosC.cos. B’

Hence O coincides with O.

9. Find the polar equation of the tangent at a point of the |
conic section

2 =1+e cosé.
,
Find the polar equation of the straight line through the foot
of the directrix perpendicular to the tangent, and shew that

the locus of its intersection with the radius vector at the point
of contact is a circle.

Let ; =4 cos0+ B sin § be the equation of the straight line

required ; then, .since it is perpendicular to the tangent, the
equation of which is

%:e cos 8 + cos (0 — a) = (e + cosa) cos @ + sina sin b,

we must have
A (e + cosa)+ B sina=0.
Also, since it passes through the foot of the directrix, the coor-

dinates of which are (c 0) ,

;’
e=A4;
therefore B=-— e e+ cosa) ,

sina
and the equation is

e . .
; = {sin(a—0)—e sin 0}.

At the point of intersection of this line with the radius vector
of the point of contact, # =a; and therefore
c

r=——

e’

-
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The point of intersection is therefore on the other side of the
focus and at a constant distance from it.

11. Shew that through any point of the surface
¥y 2 2

two straight lines can be drawn, entirely coincident with the
surface.

Prove that the points on the surface, the straight lines
through which, coincident with the surface, are at right angles
to each other, lie in a plane parallel to the plane yz, and at
a distance from it equal to

;-0
2

If the straight line

x—a _y—B z-—vy
I  m  a

_ lie wholly in the given surface, we must have

VO '
A =0
mB n {
T E s =0 (A);
B v _ 2a
T a0
‘whence l:m:n::a( ’—g—g):;tb:c,

. giving two gets of values for the ratios of the direction cosines.

The two lines thus determined are therefore at right angles if
] /9’ '7’ ] _
- Qa (—b—,i—-'g;)—b +c’—0,
or, from the third of the equations (A), if
_a=-8
T 2a

12
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12. Investigate the positions of the centric circular sections
of an ellipsoid.

If 6, ¢, be the inclinations of the normal of a centric plane
section of the ellipsoid

1 1 YA A
#(p-p) t e (e p) =
to the normals of the planes of the circular sections, find the

equation of the trace of the plane of the section on the plane
of zz.

Generally, the equation of the plane centric sections of an

ellipsoid
2 2
f‘n + %c + z_’ = 11
1 1 1
. c, (a'—b"\}
is z=ia—‘ (‘;‘,_c‘,) N (1).

and therefore Lot ==t

Hence the equation (1) becomes

' Z+2=0.iiceereinirniirnennennenes (2)
Let the equation of the required plane be
le+my+nz=0...ccceevrvrinnnnes (3).

Then, by the question,
l+n=42.c080, l—n=x2.co8¢,
and therefore the equation of the required trace is
le +nz=0=(cosd + cos$p)  + (cos 6 — cos ) 2,

or (2 + ) cosf = (2 — ) cos.
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THURSDAY, Jan. 20. 1} to 4.

2. EXPLAIN the nature of the difficulty which prevents the
formation of a completely achromatic combination of lenses.

A pencil of light is refracted, centrically, and with small
obliquity, through two thin lenses in contact; find the condi-
tion of achromatism. If such a combination be used as a
microscope, determine which of the lenses has the greater dis-
persive power.

The position of the geometrical focus of a pencil refracted
through the two lenses is given by the equation
| 1_1.1.
w fi A’

and the condition of achromatism is

1_
v

Su, 1 Sw, 1
=+ 1~ =0
w—1 f; F'a_lj; !
o, w
or 4+ F2=0;
A A

hence £, and f, are of contrary signs.
If the combination be used as a microscope,

v > u and therefore ! < l;
v o u

1 1 1 o .
‘therefore — 4= or -« (1 ——‘) 18 negative.
FAF A AR 8
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Let £, refer to the convex lens; then 1 —g_—‘ is positive and
2
therefore w,> w,, i.e. the concave lens has the greater disper-

sive power.

5. A particle, acted upon by given forces, moves on a given
smooth surface; shew how to determine its motion, and the
pressure on the surface.

If the surface be a smooth cone, placed with its axis vertical
and vertex downwards, and if gravity be the only force acting,
shew that the differential equation of the projection on the hori-
zontal plane of the path of the particle, is

d'u . o _ gsinacosa

d_og + % 81N = '——}:;,;‘-,— 3
where u is the reciprocal of the distance of the particle
from the axis, @ the angle between this distance and a fixed

vertical plane, & constant, and a the semi-vertical angle of the
cone.

Let P (fig. 53) be the position of the particle at the time ¢,
PN=r, its distance from the axis, ON =z, and let 6 be the
angle between the planes ONP, ONA.

Then, if PG be the normal at P, LGPN = a, and the equa-
tions of motion are

d*r do\* R 3
d_t.__’.(—d—t) =—EOOSG?
dé
’I"‘—Jt———-k,
ds B
7 = fma—g ,
Also - 2 = r cota.

Eliminating B from the first and third of the above equa-
tions, and taking account of the second and fourth, we get
3, 2

dr ., .
E’_—s‘na.ﬁz—ysma‘maa
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. 1 lr dr h du

But, if r=- §=d-—0;’=_h¢_1§’
d'r B d'u . g U
and therefore 3?=-F'¢W=_hu 7

Hence, by substituting for Z—:: and reducing, the given equa-

tion is at once obtained.

7. Investigate the equations of fluid motion, referred to
rectangular axes.

An elastic fluid, not acted upon by any impressed forces,
flows uniformly through a cylindrical tube; compare the pres-
sures of the fluid for two different velocities, and hence explain
the following experiment.

To one end of a tube is fitted a plane disc which is capable
of sliding on wires projecting from the end of the tube in
directions parallel to the axis: if the disc be placed at a small
distance from the end, and a person blow steadily into the
other end, the disc will remain nearly stationary.

Assuming the motion in the cylindrical tube to be rectilinear,
the equation of steady motion is

do__1d__x b

Y%= o de= " pda’

where a is the distance from a fixed point in the axis of a
section of the tube, x a constant, and v the velocity of the

particles of fluid passing through the section.

vﬂ

Hence lc.logp=0’—§;
and, if p=p' when v="1,
P_.

U

it appears from this equation that if v be increased, p is dimi-
nished. The pressure of atmospheric air in motion is therefore
less than that of the same air at rest, if the change caused by
variations of temperature, consequent on motion, be neglected.
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This explains, in the experiment detailed, the apparent
anomaly that the disc is not driven off by blowing through the
tube. In general the disc will oscillate slightly about a position
near the end of the tube.

The experiment may be performed easily by fastening a
straw with sealing-wax to a piece of cardboard having a small
hole in it. If a piece of paper be placed over the hole and the
experimenter blow through the straw, the paper will bend so
as to allow the egress of the air, but will not be detached from
the card.

10. Assuming the following equation for determmmg the
Mocon’s longitude,

dw P
’yﬂ +u= Bai?
where hP = -;{; - ”;;: 5 [1+ 38 cos{(2 —2m) §—28}],

find the term of the second order, in the expression for 6, of
which the period is one year.

Considering only the effect of this term, and assuming
¢ =44 and sinmmw=1%, find approximately in minutes the dif-
ference between the greatest and least periodic times of the
Moon..

The value of 6 obtained from the given equation is

0 = pt — 3me' sin(mpt + B—E) ;
therefore fif =p {1 — 3m’ cos(mpt + B — £)}.

Hence the greatest angular veloclty of the Moon = p(l + 3m e’),
188t .oeviiueeieeiniirnirretir e =p(1 - 3m').

Therefore, considering these angular velocities constant for a
month, we shall have

_ 27 _ 27 2
the longest month = 7aA—) = p (1 + 3m’), nearly,
2 2

the shortest ....... =
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and the required difference = ]—21,—7{ m'e ;
but %:f = a mean month = 28 days, say;

therefore the difference = 6 x 28 x 24 x 60 X 15 X 15 X ¢% minutes

_6x28x24

169 minutes

= 23 minutes nearly.
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‘WEDNESDAY, Jan. 21. 1} ¢ 4.

3. SHEW that the values of @, which render ¢(z), a con-
tinuous function of x, a maximum or a minimum, are given by
the condition that ¢'(x) for such values, vanishes or is infinite;
and shew how to distinguish between a maximum and a mini-
mum.

Determine in each case the sign of ¢"(x) for values of a
very nearly equal to those which make ¢'(x) infinite.

If ¢(x) be a maximum when z=a, and if ¢'(a)=00, it is
clear, since ¢'(x) is positive for values of x less than « and
negative for values greater than a, that ¢'(z) increases to+ o,
as « increases to a, and, when x is greater than e, increases
from —oo: therefore ¢"(x) is positive for values of x nearly
equal to a.

And similarly, if ¢(a) be a minimuin when x=a, ¢'(a)
being infinite, ¢" (a) is negative for such values.

The figures (54, 55) will illustrate these two cases; for, if
y=¢(x) be the equation of a curve, it is clear that, in the first
figure, tan PTZ, i.e. ¢' (), increases algebraically, as = increases,
on each side of the point 4, and that the reverse is the case in
the other figure.

4. Give some definition of an asymptote of a curve, and
employ it to shew how to determine the asymptotes of polar
curves.

If the equation of the curve be

u=1=F(0),
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shew that there may be as many asymptotes as there are
unequal roots of the equation f(6)=0: and that, if a be one
of these roots, the equation of the corresponding asymptote
will be
u=f"(a) sin(f —a).
Let a be a single root of the equation f(6)=0: then a will

not satisfy the limiting equation f'(0)=0, and therefore ﬁ
cannot be infinite.

But — ]%9_) is the length of the subtangent at the point
u, 0; therefore, when 6 =a, since »=0 and f’l(a—) is finite, the
radius vector is infinite, and the subtangent is finite, and the
value a for @ corresponds to an asymptote. Hence to every
unequal root of f(6)=0 belongs an asymptote of the curve
u=f(0).

But, if a were one of two or more equal roots of f(6)=0,
1

—— would be infinite, .e.

S'(a) '

the subtangent would be infinite, or there would be no asymp-
tote.

Therefore there can be no more asymptotes to the curve,
u=/f(0), than there are unequal roots of f(#) =0. Since diffe-
rent roots may give the same direction and the same subtangent,
we cannot say that there must be, but only that there may be,
as many asymptotes as there are unequal roots.

f'(a) would be zero, and therefore

5. Find the magnitude and position of the circle which has
the closest possible contact with the curve y=#(x) at a given
point; and shew that it generally cuts the curve at the point.

Prove that the chord of curvature, parallel to the axis of z,
of the curve

is constant, and that
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approximately represents the evolute of this curve for the part
near the origin.

The length of the chord of curvature parallel to the axis

of 2 is
d\NF dy
0 W _g {1 +(Z) } iz
SR BT
da’ dz
dy\"\ dy
- @)%
“y
dxi
Now if sec‘?—/=e;,
. a
i 2
tanZ sec‘g '7331::8“’
d
or Z—Z:cot%,
dy_ 1 ydy -
therefore T8 = — g reosects —
(1 +cot"‘Z) %
and the length of the chord =2 f———
- msec’%.d—z

= 2a, a constant.

Let £, n, be the coordinates of the centre of curvature and
¢ this chord. Then

fowtl, n=y—2.%

=TTz, N=Y 2°dy’

or E=x+a, 'r)=y—atan‘:{
-1
R

neglecting powers of ‘g above the third.




-—i-
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Therefore, near the origin,

YP=—28a", xz=E-—a;
z
and substituting in secz =¢% we get
y e
. sec (Ejl)) =e¢®,
a

which therefore represents the evolute for the part near the
origin. '

6. Investigate the analytical conditions for the existence
of multiple points in a curve of which the equation is =0,
u being a rational function of # and y; and shew how the
degree of multiplicity may be determined.

Prove that, if
du | d’u

&ty =
at a double point, the coordinates of which are x, y, the two
branches of the curve are at right angles to each other; and
that, if the point be the origin, the equation of the tangents
to the branches will be

', , a*
7 ) +2 k=0,

0,

£, 1, being current coordinates of the tangent.

At a double point the values of % are given by the equation

(Luy "
dy\* dedy) dy | do
gy 2o
dy* dy'
and therefore, if 8,, 0,, be the directions of the two tangents
T o
tand,.tanf, = %
'
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which is the condition that the two branches may be at right
angles.
The equation of the two tangents through the origin is

(n—tan0,.§) (n— tané,. £) =0,

or 7'~ (tand, +tanf) fn +tanb, tan 6, =0...... (1);
d’
but tanf, tanf,=—1, tané, +tanf, =_2d:ci

ay

whence (1) becomes
du |, d’
d—; (n' = &) +2 (dz———;y) 7§ =0.

8. Find the equation of the locus of tangent lines at a point
(@, y, 2) of a surface, the equation of which is u=f(z, y, 2) =0.
Common tangent planes are drawn to the ellipsoids

2t @
AT AN Y

shew that the perpendiculars upon them from the origin lie in
the surface of the cone
(a*—a®) &'+ (" —0") y* + (' — ™) 2'=0.
The equation of the tangent plane at the point (xy2) of the
first surface, is
fo oy b,

2 + b’ c’
which may be transformed into
I+ my + nE=1'a" + m'D* + n'e’,

where [, m, n, are the direction-cosines of the normal.
If this be also a tangent plane of the second surface,

I'a* + m*B® +n'c* = l’a™ + m*0"* + n'c".
But, if (x, y, 2) be the coordinates of a point in the perpen-
dicular on the plane from the origin,

and therefore (o’ —a™)a*+ (0*'—0") y'+ (¢'— ") 2" =0.
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9. Shew how to integrate the equation
d
d—i +Py=¢,

P and @ being functions of .

The normal at a point P of a curve meets the axis of =
in @, and the locus of the middle point of PG is the parabola
y'=lr; find the equation of the curve, supposing it to pass
through the origin.

If O be the origin, and (xy) the coordinates of P; then
0@ (fig. 56) =x+y %, and the coordinates of the middle
point of PG are

| P oprn®
Hence 2—5(2‘“‘.’/%):
therefore y=4l(z+1)+C;
and, since the curve passes through the origin,
0=40"+C.

Hence the equation is
P=4l(x+1-1).

10. Prove that the differential equation of the surfaces
generated by a straight line which passes through the axis
of z and through a given curve, and which makes a constant
angle a with the axis of 2, is

dz  dz y
haind == H
dm“/dy (@ + ")} cota.
Let 24 270

Il m n

@

be the equations of one of the generating lines, I, m, n, being
its direction-cosines: then
n=cosa, and I’+m'=sin’a.
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From the above equations

m n
y=7@ z=9+7%;

. m sin’a
and if 7= =174 )
we have y=px, 2z=q+xcota (1+u")}

Hence, eliminating @, 7, and z between these equations and the
equations of the curve, we obtain
v OF

n

but ,u=';—i, vy=z—lw=z—oota(a:’+y’)*;

)
Differentiating this equation with respect to « and y separately,

the function may be eliminated and the result will be the given
equation.

{!
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‘THURSDAY, Jan. 22, 13} to 4.

1. ONE plane curve rolls on another, the planes of the
two curves coinciding, and their convexities being opposed to
each other: if », »/, are the radii of curvature of the fixed and
rolling curves respectively, at their point of contact, p the dis-
tance of any point P.in the moving plane from the point of
contact, a the angle between p and the common normal to the
two curves, prove that the corresponding radius of curvature
of P’s path is equal to

1 1

~+ =

r 7
T 1 cosa "
_+_,___.~ .
r o r P

Shew also that the directions of motion of all the points in the
moving plane, fixed relatively to the rolling curve, which at
any instant are going through points of inflection in their
respective paths, pass through a single point.

Let A (fig. 57) be the point of contact of the fixed and
rolling curves at any instant: let AB be an elementary arc
of the rolling curve, each point of which, during the next
element of time, comes into contact with a corresponding point
of the elementary arc AB' of the fixed curve. Let A'F' be
the new position of the line AP, fixed in the rolling area, at
the end of the element of time: let O be the intersection .of
AP, A'P. '

X
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Produce P4, P'B’, to meet in C. Then, since 4, B, are
respectively motionless, at the beginning and at the end of the
element of time, CP, CP’, are normals at the ends P, P, of
the elementary arc PP'. Draw AM at right angles to CP'.
Let the arc AB=c=AB'.

Now the angle between the normals at 4, B, of the rolling

curve, is equal to ;—i, and that between the normals at 4, B,

of the fixed curve is equal to —:—, - Hence, while rolling takes
place from A4 to B', every line, fixed relatively to the rolling
. curve, revolves through an angle ;—i + ;: hence
(POP =%+ S,
. ror
and therefore, OP being normal to PP,

PP =0P(S+2)=p(2+5), timately.

Again, by similar triangles,

CcP PP
4~ AM’
cp PP

and therefore 1P~ PP — A"

But, a being ultimately the inclination of CB' to the ‘normal
at B,
AM = ¢ cosa:
e ¢
cp * ("r + F)
P p(g+£,)—ccosa,
r

r

hence

and therefore CP, the radius of curvature of P’s path, is equal to

11
-+
r

7
T .1 cosa ™
._+—-,_ e
r r P
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An expression for the radius of curvature of P’s path, sub-
stantially the same as this, is given in Jullien’s Problémes de
Mécanique Rationelle, tom. 1, p. 184.

At a point of inflection of P’s path, CP= o : hence

’

p= cosa,

r+7r

or the locus of a point of inflection is a circle of which the
diameter AB is normal to the fixed or rolling curve at 4

!

and is equal to %}r,, the motion of P being in the direc-
tion BP.

6. A free rigid body, the mass of which is m, is at rest:
its moments of inertia about the principal axes through its
centre of gravity are 4, B, C: supposing the body to be struck
by an impulsive force B through its centre of gravity, and by
an impulsive couple &, prove that it will revolve for an instant
about an axis, the velocity of which is in the direction of its
length and is equal to

LX MY NZ
T Bom T Om
T Ty
B
X, Y, Z, being the components of R, and L, M, N, of G, along
the prmcxpal axes.
If 6 be the inclination of R’s dxrectxon to the spontaneous
axis, prove that

LX MY NZ
AR"BR'OR
L M*  N*\$
(E tEt ?ﬁ)
See Walton’s Mechanical Problems, Second Edition, p. 519.

cosf =

K 2
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Fripay, Jan. 23. 9 to 12.

1. Ir a=0, B=0, y=0, be the equations of the sides of
a triangle, shew that the equation of a conic touching the sides
of the triangle is

If a=0, B=0, y=0,

a B v a B v a B, v
—4+=42=0, =+L5+L=0, =+T +1I=0
a‘l bl cl ? e b! c! ! 8 b& cl ’

be the equations of the sides of a hexagon which circumscribes
a conic, shew that

a, (bncl - 'csbs) +a, (bscl - cubx) t+a, (blc: - clbi) =0.
If the line '
=0

>

2424
a

S IR

touch the conic
(la)t + (mB)} + (ny)t =0,

the equation which results from combining them, must be the
equation of two coincident lines. Hence the left-hand side of
the equation

Win(Cat+lp)=
(et + ()Y (S a+5 8) =0
‘must be a complete square in « and B; therefore

'(l+n3) (m+n%)=lm,

and la 4+ mb 4+ nc=0.

B
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Now the three sides of the hexagon a=0, 8=0, y=0, touch

the conic
(la)t + (mB)} + (ny)t=0;
and that the other three sides

2By 2B Y o 2
a Tt =0 +b+cl o a,+

1 1 1 2

ST
&R
]
>

also may touch it, we must have
la, + mb, +nc, =0,
la, + mb, + nc, =0,
la, +mb, +nc,=0;
whence, eliminating /, m, n, by cross multiplication, we obtain
a, (be,—cb,) +a, (be,—cb,) + a,(bc,—cd,)=0,

as the necessary condition.

2. Transform the triple integral f f f £(a, B, 7) dadBdy into
one in which z, , #, are the independent variables, having given
a=F (x,9,2), B=F, (2,92, v=F,(ny,>).

If w=yz, PBy=z:x, yz=uy,
shew that

[[[fe 8,9 dndsiy=s [[[£(£, %, ) dndyae.

The formula for the transformation of the given triple
integral is, (Todhunter’s Integral Calculus, p. 245 et seq.),

[[[#(@ 8, %) dadgay
—f/fF(w,y, ?) {dx (dy'%—%'gd—f)
dB dy da da dy
+da;(dy'dz"d_y'%)

dy (da dB dB da
+%(@.$—@.%—>}dxdydz.
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Now, in the given example,

2 2x
a=%, B—;r 7=?;
da gz de_ oz dx_ g
therefore 7n =10 2 e
B_ 2z dB_ _m dB_ z
de =~ y' dy  y' dz y'
dy_ oy dy_ oz dy_ @y
dx 2’ dy z) dz 2

whence, substituting, we obtain
ff/f(“) B, 'Y)dadﬁd'y=4ffff(%?7 %1 %)dxdydz.

3. Shew how to integrate the equation of differences,
Upin +.p1uz+n—1 +.. ’+_pnuz =f(17)’

where p,, p,, ... p,, are independent of .
Shew that a solution of the equation

uzm 'um—l' "ua:ﬂ 'uz =a (um + u'z+n—l +eoot uz+l + uz)’

is included in that of

ua:t—n+l - uz = 07

and is consequently

w,=Ca"+ Ca” +...+ C,,a™>,
where « is one of the imaginary (n+1)™ roots of unity, the
n+ 1 constants being subject to an equation of condition.

In the equation

Uy U ge e Uy U, = (U, Uy oot Uy +1,).0(1),

change @ into  + 1: then

Uppnoe Uy o Uy = (U F U oot Uy +,,)e00(2) 5

u, o0t Vriet Tk

2t
subtracting (1) from (2), we have

Upin* Yosen—1°* * Uy (um+n+l - uz) =a (um+1 - uz)!

or (umu - uz) (ua:+n'uz+n—l' sl — a) =0.
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Hence a solution of the equation (1) is included in that of

Upimir — Uy =0 errinininiiiininnnnn (3),

the auxiliary equation of which is
z!H-l — 1 o= 0 ;
and, if « be one of the imaginary roots of this auxiliary equa-
tion, since the remaining roots may be put into the forms
oy & aty ... a",
the solution of (3) will be
u,=00a"+Co"+...4 C, o™ e (4).
But, since the integral of the equation (1) can contain only =
constants, the » + 1 constants of (4) will be subject to the equa~
tion of condition amongst the constants, which arises from sub-
stituting the values of w, u,, ... u, derived from (4), in

o,y =0 (u,+u,_ et u +w).

4. Shew how to find the differential equation of a class of
surfaces, which cuts at right angles all the surfaces represented

by the equation
Sf(2, 9,2 a)=0,

where a is an arbitrary parameter.
If the class of surfaces have an envelope, shew how we
may find it without solving the differential equation.

The equation of condition in this case is

14pp +97 =0ceeeiiiniinnniinnnnin. (1),
where p/, ¢, are the partial differential coefficients of ¢ found
from the equation

NAC ) N | S 2),

and p, ¢, are similar partial differential coefficients in the class
of surfaces of which the differential equation is sought.

Now the equation (1) will generally contain the parameter a,
by eliminating which between the equations (1) and (2), we
obtain the differential equation sought.

Suppose, for example, we obtain from the equation (1)

a=F(x,y,2,p,9);
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then the required differential equation will be

flzy, 2, F (2, 9,2,p, 9)} =0
If the class of surfaces represented by the general integral
of the differential equation have an envelope, its equation will
be the singular solution of the differential equation, and there-
fore will be found by eliminating p and ¢ between the equations

_o. T_o ¥_
f=0 2 =0, ="

5. Disturbances are excited in the air contained in a cylin-
drical tube of given length by a plate vibrating isochronously
at one end, the other end being closed: assuming expressions
for the velocity and condensation at any point, find the time
of vibration, in order that a musical note may be produced;
and determine the points in the tube at which openings may
be made without affecting the pitch.

Bupposing' a vibrating plate also at the closed end, how
must the time of vibration of the first plate be modified, and
how must the times of vibration of the two plates be related,
that musical notes may be produced?

En the first part of the question the time of vibration is
determined from the condition that at the closed end there is
no velocity, or that the closed end corresponds with a node,
whilst at the vibrating end there is a loop.

If there be a vibrating plate also at the closed end there
must be a loop there instead of a node ; and therefore the tlme of
vibration of the first plate must be modxﬁed to satisfy this con-
dition; ¢.e., if 7 be the length of the tube and v be the velocity

. e 11 .
of sound, the time of vibration must be ) where » is some

integer. So, the time of vibration of the second plate must be
given by the same formula, and if the two plates vibrate in

times obtained by giving any integral value to = in %%,

musical notes will he produced.
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Fripay, Jan. 23. 13} to 4.

1. INVESTIGATE formul® for the determination of the um-
bilici of surfaces.

Prove that the radius of normal curvature of the surface
xyz = a’ at an umbilicus is equal to the distance of the umbilicus
from the origin of coordinates.

The formula for the determination of the umbilici of surfaces,
given in Gregory’s Solid Gleometry, p. 264, second edition, are

P U

=v+ WYTI(VU'—Ww'—Uu')

=w+ %(Ww’— U — W),
P being defined by the relation
P=U"+V'+W"
Taking the equation ayz =a’, we have
U= yz, V= a2z, W=uay;

u =0, v =0, w=0;

v =z, v =y, w =z,
Hence £=_£=;zﬁ‘=_g
P x Y z
a’ a* a®

whence also #* =y =2"; and therefore, by the equation to the
surface,
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P

Hence —=—a.
P
But P =y2 + ' + 2y
= 3a':
hence = i—:: = 3a’.

But since, at an umbilicus, &' =y* = 2" =a’, 34" i3 equal to
the square of the distance of an umbilicus from the origin of
coordinates. Hence the proposition is established.

2. Integrate the equations.

du  du  du d'u
E+@§—JZ—2+2M=WZ ............ (1),

u,, .8inzd —u, .sin(x+1) §=cos(w—1) § —cos(3z+1) §...(2);
and find a general value of ¢(x) from the equation
¢ (m’z) — (a +b) ¢ (mx) + abdp (x)=cx ............ (8)-

(1) The equatiou may be written
{(é—i + %)'_' (%)2} U =xYz;
therefore  w=— LAY 2 3. Y2
@ T
T Qe o
— (d%)-z{wyz +2. (%)‘" . z}

z -
-~ + complementary function.

The complementary function is best obtained by a different
arrangement of the operating symbols: thus

d - z(L. 2
(L dYom o g
— -z 2—a);

ll
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therefore

(- (DY o=+ 2 - &Y sty-me-a
/fda d

=¢ E'Z)fez(’%-%)c[)(y—:z:, z—x) de

2(3.8
=" %) [4g,0— 20y
o2 _1’.)
=\ WY (2 —22) +x (3 2)}
=$ -2 2-2)+x(y—a2+a),
which is therefore the complementary function.

By changing the forms of the operating functions, apparently
different results may perhaps be obtained, but it will be found
that all such results are identically the same when proper
account is taken of the complementary function.

(2) Since

cos(x—1)0—cos3(x+1)§=2sin2x0.sin(x+1)0
=4 sinz0 sin(x + 1) 6 coszb,

the equation may be put in the form

uzﬂ — uz —_ 0.
@t 1)0  smad o0
U, o
therefore ey Rl TR coszf
sin (mﬁ - g)
. = 2 . 7 + 0.
sin
2
(8) Let x=u, and mx=u,;
therefore u,,, —mu, =0,
and u = am’ =wx,

“e_ 2
um—-am —mw,
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the equation then becomes
b ) — (a+B) b (0,,) + abp (1) = caom,
or if ¢ () =0,
v,,,— (@ +b) v,,, + aby,=cam’,
or, according to the usual notation,
(D - a) (D —b) v,=cam".

cam’

Hence v.=m + A.a"+ B.b.
But zlogm= log%’l ’
n_ _loga x\ .

and log(a®) =2.loga= Tog m log (E) ;

loga

logm
therefore ) a"=(‘£) : ,

a

_ cx

*7 (m—a) (m—?)
It must be observed that the constants here involved are

¢ Finite Difference’ constants; thus, a, 4, B, do not change

when 2 is changed into 2+ 1.

and ¢ (2)= + C.2%8n 4 (' glo8md,

3. State and prove the principle of Vis Viva, and describe

the different kinds of forces which do not appear in the equation
of Vis Viva.
A circular wire ring, carrying a small bead, lies on a smooth
horizontal table; an elastic thread, the natural length of which
is less than the diameter of the rmg, has one end attached to
"the bead and the other to a point in the wire; the bead is
placed initially so that the thread coincides very nearly with
a diameter of the ring; find the Vis Viva of the system when
the string has contracted to its natural length.

Let 4 be the point of the ring to which the thread is
fastened, and P the position of the bead at any time during
the motion.
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The forces acting horizontally on the ring, are the tension
(7) at 4 and the action at P in direction of its centre; and
the forces acting on the bead are the temsion at P, and the
reaction at P.

The virtual velocities of the action and reaction at P are
clearly equal and opposite, but the displacement of the bead
resolved in the direction AP consists of two parts, one the same
as the displacement of A4 resolved in that direction, and the
other due to the contraction of the thread, and, relative to 4,
in the direction of the tension at P. The resultant ¢ virtual
moment” of the tensions in the system is therefore 7' (the con-
traction of the thread), and the Vis Viva therefore, if AP=r,

=2f T (~dr)

2w [°
=— .fa (r—a)dr
w
=2 (c—a),
where ¢ is the diameter of the ring, a the natural length of the
thread, and w the modulus of elasticity.

4. If V be a given function of z, y,j—i, %, ... find the

conditions that f Vdiz, between given limits, may be a maximum

or minimum.

‘When a particle is attracted towards a fixed centre of force
and moves in the brachistochrone, prove that the area described
round the centre of force varies as the ¢ action.”

Let r, 6, be the polar coordinates of the path of the particle,
and v its velocity at any time ¢#. Then the time of describing -
any arc is equal to

JLESCC Y XS

v r v
Now v is a function of »: thus, under the integral sign, the
do

only unconnected variables are » and o

: hence, the path being
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brachistochronous, we know by the Calculus of Variations, that
the differential coefficient of

Lo Z)

with regard to i must be constant, that is, that

dr
d0
T

——a constant,

or @ = constant :
- vds

hence - fr’dﬁ o« |vds

o« f v'dt,

that is, the area varies as the action.*

6. Define the potential function ¥, and shew that, at any

point (2, y, z), external to the attracting mass, it sa.hsﬁes the
equation
av . av dv

iyt

Hence prove that, if S be any closed surface to which all
the attracting mass is external, dS an element of S, and dr
an element of the normal drawn outwards at d5S,

f—dso

the integral being taken throughout the whole surface S.

® For this rider as well as for the rider to the first question of the after-
noon’s paper of January 22, the Junior Moderator is indebted to Mr. R. L.
Ellis, of Trinity College.
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If dxdydz be an element of the space within the closed
av a'v 4av
surface, it follows, since the equation T r +a =0
holds for all points within the surface, that

fﬁ(d"V d*V duy)dxdydz_

The transformation of thls equation, which is here required, is
given by Professor Stokes in the Cambridge and Dublin Mathe-
matical Journal, Vol. 1v. p. 201.

7. Assuming the formule
la+mB+nry=0,
l m n

a(vz_as) =,3(v"—b’) = 'y(,us_cx) ’

investigate the equation of the wave-surface in a biaxal crystal.

Prove that the direction of the vibration at any point of
this surface coincides with the projection of the distance of the
point from the centre of the surface upon the tangent plane
at the point.

In the investigation of the equation of the wave-surface
(see Griffin’s T'reatise on Double Refraction) we establish the
formulee

- - v'=c 2=om
F—a &=l s_bs'y—m’ "
whence
- A._;’—/r’I v’——r’
vl—m:r, 3%, vm .7/=7,z_b2 ¥ v z—r"—c’ z
Hence the formule
l m n

a(v—a) BW-b) yv—0)
give us the relations

@ Y z

a(,ra_as) =B(r’—b’) = ly(’r“—c"),
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and therefore
vl—z vm—y wm—z
a B v
which formule, vl, vm, vn, being the coordinates of the end of
the perpendicular v from the origin on the tangent plane,
establish the truth of the proposition.
Stenarmont : Liouville, Journal de Mathématiques, tome VIIL
P- 372. année, 1843.
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TuEsSDAY, Jan. 6. 9—12.

1. PARALLELOGBAMS upon the same base, and between the same pa-
rallels, are equal to one another.

ABC is an isosceles triangle, of which A4 is the vertex: 4B, AC,
are bisected in D and F respectively ; BE, CD, intersect in F': shew that
the triangle ADE is equal to three times the triangle DEF.

2. In any triangle, the square on the side subtending either of the
acute angles is less than the sum of the squares on the sides including this
angle, by twice the rectangle contained by either of these sides, and the
straight line intercepted between the acute angle and the perpendicular
drawn to this side, produced if necessary, from the opposite angular
point. .

The base of a triangle is given and is bisected by the centre of a given
circle, the circumference of which is the locus of the vertex: prove that the
sum of the squares on the two sides of the triangle is invariable.

3. The opposite angles of any quadrilateral figure inscribed in a circle
are together equal to two right angles.

Prove also that the sum of the angles in the four segments of the circle
exterior to the quadrilateral is equal to six right angles.

‘4, Inscribe a circle in a given triangle.

Circles are inscribed in the two triangles formed by drawing a perpen-
dicular from an angle of a triangle upon the opposite side, and analogous
circles are described in relation to the two other like perpendiculars: prove
that the sum of the diameters of the six circles together with the sum of the

L
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sides of the original triangle is equal to twice the sum of the three perpen-
diculars.

5. Similar triangles are to one another in the duplicate ratio of their
homologous sides.

Any two straight lines, BB, CC", drawn parallel to the base DI’ of a
triangle A D], cut AD in B, C, and AD' in B, C’: BC', B'C, are joined:
prove that the area 4 BC” or AB’'C varies as the rectangle contained by
BE,.CC".

6. If two parallel planes be cut by another plane, their common sections
with it are parallel.

A triangular pyramid stands on an equilateral base, and the angles at the
vertex are right angles; shew that the sum of the perpendiculars on the
faces from any point of the base is constant.

7. SP is the focal distance, PT the tangent, and PG the normal of any
point P of a parabola: state the characterjstic property of the tangent, and
shew that SP=8T7T=SG, and that the subnormal of P is equal to the semi-
latus rectum.

If the triangle SP@ is equilateral, prove that SP is equal to the latus
rectum.

If the ordinate of a point P bisects the subnormal of a point P, prove
that the ordinate of P is equal to the normal of P,

8. Prove that, in the parabola, S¥*=S8P. S4.

A circle is described on the latus rectum as diameter, and a common tan-
gent QP is drawn to it and the parabola: shew that SP, §Q, make equal
angles with the latus rectum.

9. Prove that the focal distances of any point of an ellipse make equal
angles with the tangent at the point.

PG is the normal to an ellipse, terminating in the major axis; the circle,
of which PG is a diameter, cuts SP, HP, in K, L, respectively: prove that
KL is bisected by P@, and is perpendicular to it.

10. The perpendiculars from the foci of an ellipse upon the tangent meet
the tangent in the circumference of a circle.

Prove also that if from H a line be drawn parallel to SP, it will meet
the perpendicular SY in the circumference of a circle. !

11. If tangents be drawn at the vertices of the axes of an hyperbola, the
diagonals of the rectangle so formed are asymptotes to the four curves.

Prove that a perpendicular, drawn from the focus of an hyperbola to
the asymptote, will intersect it in the directrix.

12. Shew that all sections of a right cone, made by planes parallel to
a tangent plane of the cone, are parabolas, and that the foci lie on a cone
having with the first a common vertex and axis.
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TuespAy, Jan. 6. 1%...4.

1. THE imperial gallon contains 277:27 cubic inches, and a cubic foot
of water at its maximum density weighs 62'421bs.; find the weight of a
pint of water correctly to two places of decimals.

2. Supposing the cost of digging a trench to vary as the depth to
which it is sunk and the quantity of earth taken out, and that the cost
of digging a trench 3 feet broad by 8 feet deep is 9 pence per yard,
what should be the cost of digging a trench 120 yards long, 5 feet broad,
and 10 feet deep ?

3. Define a fraction; and from your definition prove a rule for adding
together two fractions with different denominators.
Add together the fractions,
a® - be b —ca ¢t - ab
(@+b)(@a+ec)’ (btec)(d+a)’ (c+a)(c+d)’
4. Prove a rule for extracting the square root of a compound alge-
braical quantity.

Shew that, if +ar® +b +oz+d
be a complete square, the coefficients satisfy the equation
¢t-a'd=0.

Is it necessary that the coefficients satisfy any other equation? -

5. Solve the equations,

% (.1.' - ‘_;) - % (z - ;1) + % (z - ‘—5') = 0................(1)

(z-1)(z-2)(-3)-(6-1)(6-2)(6-8)=0............... 2)
z+y m
m tzoy P70 .
-y m 1 «(3).

6. Find the number of permutations of n things taken r together.

If the number of permutations of n things taken r together be denoted
by the symbol

"Pr;
shew that the number of such permutations, in which p particular things
occur, will be ’ : '
*Pp PP, p.
7. Define a logarithm, and find log, 3125.
Prove that log, N =log,b.log; N; and, having given log,,2 = ‘301030

and log,,7 = ‘845098, find log,,98, and log,q, V (:—3‘:—6)
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8. Define the sine of an angle, and prove from your definition that
for all values of 6 numerically less than a, sin(r - 6) = sin6.
Trace the variation in sign of the expression cos(x sin®).cos ( cos@),

as @ varies from 0 to g.

9. Find an expression for all the angles whieh have the same sine.
Hence, if sin36 be given, find the number of values of tan® which will
be generally obtained; and illustrate the result geometrically.

10. Prove the formula:

cos(A — B)=cosA.cos B +sin4.sinB,

A being greater than B, and each angle less than 90°.
Also shew that
cosa + cosB +cosqy + cos(a+ B+ ) =4 cos} (B +q).cosd(y+a).cos}(a+B),

and
sine + 2 sin3a + sin5¢ _ sinda

8inda + 2 sinda + sin7« sinda

11. Determine the expression for the cosine of an angle of a triangle
in terms of the sides, and deduce the expression for the sine.

If 0 and ¢ be the greatest and least angles of a triangle, the sides of
. which are in arithmetic progression, prove that

4 (1 - cosf) (1 - cos®) = cosf + cos¢h.

12. A quadrilateral can be inscribed in a circle; find the tangent of
half of one of its angles in terms of its sides. If a circle can be inscribed
in the quadrilateral, shew that the fourth root of the product of its sides
is a mean proportional between its semi-perimeter and the radius of the
inscribed circle.

‘WEDNESDAY, Jan. 7. 9...12.

1. AssuUMING that the resultant of two forces, acting at a point, is repre-
sented in direction by the diagonal of a parallelogram, the sides of which
represent the forces in direction and magnitude; shew that the diagonal
will also represent the resultant in magnitude.

Shew that within a quadrilateral, no two sides of which are parallel,
there is but one point, at which forces, acting towards the corners and
proportional to the distances of the point from them, can be in equilibrium.

2. Shew that if three forces acting in one plane hold a body in equi-
librium, they either pass through a point or are parallel to each other.

A heavy equilateral triangle, hung up on a smooth peg by a string
the ends of which are attached to two of its angular points, rests with
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one of its sides vertical; shew that the length of the string is double the
altitude of the triangle.

3. Find the relation of the Power to the Weight in the single moveable
pully, when the strings are not parallel.

An endless string hangs at rest over two pegs in the same horizontal
plane, with a heavy pully in each festoon of the string; if the weight of
one pully be double that of the other, shew that the angle between the
portions of the upper festoon must be greater than 120°

4. Find the ratio of the Power to the Weight in the Wheel and Axle,
in order that there may be equilibrium.

Explain the meaning of the terms ¢mechanical advantage’ and ‘effi-
ciency’, as applied to machines; and shew that, in the Wheel and Axle,
what is gained in power is lost in velocity.

5. Define the centre of gravity of a heavy body; and determine the
position of the centre of gravity of a pyramid on a triangular base.

Find the centre of gravity of the solid included between two right
cones on the same base, the vertex of one cone being within the other;
and determine its limiting position if the vertices approach to coincidence.

6. State the laws of friction; and explain what is meant by the term
‘coefficient of friction’.

A uniform rod is held at a given inclination to a rough horizontal table
by a string attached to one of its ends, the other end resting on the table;
find the greatest angle at which the string can be inclined to the vertical
without causing the end of the rod to slide along the table.

7. Define uniform motion and uniformly accelerated motion, and ex-
plain how they are measured.

If f be the measure of a uniform acceleration, when ¢ minutes and a feet
are taken as the units of time and space, and f the measure of the same
acceleration, when a’ feet are taken as the unit of space, find the number of
minutes in the unit of time.

8. State the second law of motion; and apply it to prove that a force, of
uniform intensity and direction, acting on a given particle originally at rest,
produces a uniform acceleration of its motion.

State the convention with respect to units which is necessary, in order
that the equation P = Mf may represent the relation between the numerical
measures of force, mass and acceleration; and supposing the unit of force to
be 61bs. and the unit of acceleration, referred to a foot and a second as
units, to be 3, find the unit of mass,

9. An elastic ball 4, moving with a given velocity on a smooth hori-
zontal plane, impinges directly on a ball B of the same radius, at rest;
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determine the velocity of each after the impact, indicating at what points of
your reasoning any law of motion or other result of experiment is assumed.

- Shew that, if B afterwards impinge perpendicularly on a smooth wall,
the original distance of which from the nearest point of B is given, the
time, which elapses between the first and second impact of the balls, will
be mdependent of their radius.

10. Shew that a particle, projected in any dlrectxon not vertical, and
acted upon by gravity only, will describe a parabola.

An inclined plane passes through the point of projection; find the con-
dition that the particle mdy impinge perpendicularly on the plane; and, in
that case, shew that its range on the plane is equal to

2¢'  sina

g "1+ 3sin%a’
where v is the velocity of projection, and a the inclination of the plane
to the horizon.

11. Two given weights are connected by an inextensible string, which
passes over a smooth pully; determine the motion of each weight and
the tension of the string.

The system being initially at rest, find the weight which, let fall at the
beginning of the motion from a point vertically above the ascending weight,
80 as to impinge upon it, will instantaneously reduce the system to rest.
‘Will the system afterwards remain at rest ?

12. A seconds pendulum is carried to the top of a mountain 3000 feet
high ; assuming that the force of gravity varies inversely as the square of
the distance from the Earth’s centre, and that the Earth’s radius is 4000
miles, find the number of oscillations lost in a day.

Also determine how much the pendulum must be shortened in order
that it may oscillate seconds on the mountain.

‘WEDNESDAY, Jan. 7. 11...4.

1. Give the meanings of the several symbols which are employed in
the formula p = gpa.

If one second be the unit of time, what must be the unit of length, in
order that the above formula may give the pressure in pounds, supposing
the unit of volume of the standard substance to weigh 16 lbs, P

2. Prove that the pressure of a fluid on any surface is equal to the
weight of a column of the fluid, the base of which is equal to the area
of the surface, and altitude equal to the depth of the centre of gravity
of the surface below the surface of the fluid. -
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The inclinations of the axis of a submerged solid cylinder to the vertical
in two different positions are complementary to each other; P is the diffe-
rence between the pressures on the two ends in the one, and P in the
other position: prove that the weight of the displaced fluid is equal to

(P*+ P

3. Describe an expetiment to shew that the pressure of a given mass
of air at a given temperature varies as its density. How is this ratio to be
modified when the temperature, as well as the density, varies?

A volume of air of any magnitude, free from the action of force, and
of variable temperature, is at rest: if the temperatures at a series of points
within it be in arithmetical progression, prove that the densities at these
points are in harmonical progression.

4. A body of given volume is immersed totally ina given fluid; find
the magnitude and direction of the resultant fluid pressure.

A body is floating in a fluid; a hollow vessel is inverted over it and
depressed: what effect will be produced in the position of the body, (1)
with reference to the surface of the fluid within the vessel, (2) with re-
ference to the surface of the fluid outside ?

5. Describe the Diving Bell, and find the volume of the air in the
bell at any depth below the surface.

If P be the weight of the bell, 7 of a mass of water the bulk of which
is equal to that of the material of the bell, and # of a mass of water the
bulk of which is equal to that of the interior of the bell, prove that, sup-
posing the bell to be too light to sink without force, it will be in a position
of unstable equilibrium, if pushed down until the pressure of the enclosed
air is to that of the atmosphere as W to P - P.

6. Explain the principle of the common Barometer. Given the pressure
of the air at a given time on a square inch, shew how to find the height in
inches of the barometric column.

Why is the rising or falling of a barometer generally an indication
of coming fair or foul weather? Why is a sudden fall a sign of a coming
gale?

7. Find the geometrical focus (1) of a pencil of rays incident directly
upon a plane refracting surface, and (2) of a pencil of incident directly
upon a refracting plate.

A ray, passing through a point Q, is incident upon a refracting plate;
g is the intersection of the emergent ray, produced backwards, with the
normal to the plate through Q: if the angle of incidence be equal to
tan”u, and ¢ be the thickness of the plate, prove that

Qq = - -ut.
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8. A ray of light passes through a prism in a plane perpendicular to
its edge: shew that, if ¢ and ¥ be the angles of incidence and emergence
and ¢ the refracting angle of the prism, the deviation is equal to

pry-ior ¥-p-i
aceording as the incident ray makes an acute angle with the face of the
prism towards the thicker end or the edge. Under what convention will
these expressions for the deviation be all represented by ¢ + y» - ¢, and
with this convention for what value of ¢ will ¥ change sign?

9. Explain the formation of an image by reflection, and find the mag-
nitude and position of the image of a given object placed before a plane
mirror.

The faces of two walls of a room, meeting at right angles, are covered
with plane mirrors: shew that a person will be able to see but one com-
plete image of himself in either wall.

10. A diverging pencil of rays is incident directly upon a concave.
spherical refractor: find the geometrical focus of the refracted pencil.
A short object is placed perpendicularly on the axis of the refractor,

and at a distance from it equal to "{ » J being the focal length: prove that
the linear magnitude of the virtual image is half that of the object.

11. Describe the human eye as an optical instrament, When a pencil
of rays is refracted through the eye, at what point of its passage does it
experience its principal modification of form; and what is the most pro-
bable hypothesis in regard to the change of configuration of the eye by
which it adjusts itself to distinet vision at different distances?

An eye is placed close to a sphere of glass, a portion of the surface of
which, most remote from the eye, is silvered: prove that, assuming eight
inches to be the least distance of distinct vision, the eye cannot see a
distinct image of itself unless the diameter of the sphere be at least ten
inches in length. .

12. Describe Galileo’s telescope, and trace a pencil of rays through it.
State what would be the effect on the image—

(1) of increasing the size of the object-glass} eye-glass unaltered;

(2) ” focal length
8; ” ;;i:lofeg:t:ye'gms } object-glass unaltered.
”

THURSDAY, Jan. 8. 9...12.

1. ENUNCIATE and prove Newton’s fourth Lemma.
Apply this Lemma to shew that the volume of a right cone is one
third of that of the cylinder on the same base and of the same altitude.
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2. Enunciate Lemma XI., and prove it when the subtenses are
parallel.

An arc of continuous curvature PQQ/, is bisected in Q; PT is the
tangent at P; shew that ultimately, as @ approaches P, the angle Q' PT
is bisected by QP.

3. Shew that, if a subtense be drawn from the extremity of an arc
of finite curvature, in any direction, the chord of curvature parallel to
that direction is the limit of the third proportional to the subtense and
the are.

Hence find the chord of curvature through the focus at any point of
an ellipse; and prove that half this chord is a harmonic mean between
the focal distances of the point.

4. State and prove Proposition I.

Will the velocity of the body or the rate at which areas are swept
-out about the centre of force be affected by any sudden change in the
law of force?

A body moves in a parabola about a centre of force in the vertex;
shew that the time of moving from any point to the vertex varies as
the cube of the distance of the point from the axis of the parabola.

6. A body is revolving in an ellipse, find the Iaw of centripetal force
tending to the centre of the ellipse.

Shew that the time in which any given area will be swept out by
the radius vector is independent of the eccentricity of the ellipse, if the
area of the ellipse be given.

6 If any number of bodies revolve in ellipses about a common
centre, and the centripetal force varies inversely as the square of the
distance; the squares of the periodic times are proportional to the cubes
of the major axes.

A particle moves in an ellipse about the centre of force in the focus
S§: when the particle is at B, the extremity of the minor axis, the centre
of force is changed to & in SB, so that §'B is one-fifth of SB, and
the absolute force is diminished to ome-eighth of its original value; shew
that the periodic time is unaltered, and that the new minor axis is
two-fifths of the old.

7. Define the term, “ zenith” and explain some method for determining
the zenith of a given observatory.

How would an increase in the Earth’s velocity of rotation affect the
latitude of a given place, supposing the form of the Earth to remain
unaltered ?

M
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8. What conditions must be satisfied in order that the transit in-
strument may be in accurate adjustment ?

Shew how by aid of this instrument the difference in right ascension
of two stars may be determined; and state the principal astronomical
assumptions on which the truth of this determination depends.

9. Explain the phrases “mean solar time” and * equation of time.”

Shew that in the month of February the equation of time is additive.

Account for the fact that the time of the Sun’s setting as given in
the ordinary Almanacs is not the latest on the longest day.

10. Prove that generally the apparent place of a star will depend
upon the ratio of the velocity of the Earth in her orbit to the velocity
of light,

Find the least diurnal velocity of rotation of the Earth, which will
render sensible to an observer at the equator the aberration due to this
cause, the least appreciable angle being 1”.

11. Describe the apparent motion of the Moon among the stars, and
the real motion of its centre of gravity about the Sun, illustrating the
latter description by a figure.

‘What is inferred from the fact that, with slight variations, the same
portion of the Moon’s surface is always presented to the Earth? How
much should the Moon’s rate of rotation about its centre of gravity be
increased, in order that its whole surface might be seen in the course of
one orbital revolution ?

12, Explain the method of determining the longitude by means of
Lunar Distances.

On January 1st 1855, at the mean time 9 hrs. 42 min. 8secs. .M.,
the distance of a Arietis from the Moon’s centre was calculated from
observations to be 45° 30’ 16”: at noon and at 3 P.M. Greenwich mean
time, the distances are 44° 56' 117, and 46" 23’ 39" respectively: find the
longitude of the place of observation.

THURSDAY, Jan. 8. 1..4.

1. THEEE circles, 4, B, C, intersect in & common point, the other
intersections of (B, C), (C; 4), (4, B), being, a, B, v, respectively. If
b, ¢, be points in B, C, respectively, such that b, a, ¢, lie in a straight
line, prove that g, the intersection of by, ¢B, produced, lies in the circle 4.

2. Shew that the sum of all the harmonic means, which can be inserted
between all the pairs of numbers the sum of which is n, is

3 (n*-1).
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3. Eliminate 6 between the equations

L cosf + c0s 20,
a
¥ - in0 + sin26.

4. From a point on a hill-side of constant inclination the angle of
elevation of the top of an obelisk on its summit is observed to be a,
and, a feet nearer to the top of the hill, to be 8; shew that, if A be
the height of the obelisk, the inclination of the hill to the horizon will be

. f¢ sinasinB
cos {h'__—sin(ﬁ—a) .

5. Each of three circles, within the area of a triangle, touches the other
two, touching also two sides of the triangle: if a be the distance between
the points of contact of one of the sides, and &, ¢, be like distances on
the other two sides, prove that the area of the triangle, of which the
centres of the circles are the angular points, is equal to

1 + da® + "B,

6. The acute angles, which the distances of two points of an ellipse
from the same focus make with the respective tangents at the points,
are complementary to each other: prove that the square on the semi-
axis minor is a mean proportional between the areas of the two triangles,
of which the two points are the respective vertices, and the distance be-
tween the foci the common base.

Shew that the problem is impossible unless the axis minor is less than
the distance between the foci.

7. CP, CD, are two conjugate semi-diameters of an ellipse: T¢ is &
tangent parallel to PD: a straight line C4J cuts at a given angle PD, T,
in I, J, respectively: prove that the loci of I, J, are similar curves,

8. A fine string 4CBP, tied to the end 4 of a uniform rod 4B of
weight W, passes through a fixed ring at C, and also through a ring
at the end B of the rod, the free end of the string supporting a weight
P: if the system be in equilibrium, prove that

AC:BC::2P+W:W.

9. A picture is hung up against a rough vertical wall by a string
fastened to a point in its back, so that the picture inclines forwards; apply
the principle of the triangle of forces to find the inclination of the string
to the wall, when its tension is the least possible.

10. A lamina, cuf into the form of an equilateral triangle, is hung
up against a smooth vertical wall by means of a string attached to the
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middle point of one side, so as to have a corner in contact with the
wall; shew that, when there is equilibrium, the reaction of the wall and
the tension of the string are independent of the length of the string,
and that, if the string be beyond a certain length, equilibrium in such
a position is impossible.

11, A ball is projected from the middle point of one side of a billiard
table, so as to strike in succession one of the sides adjacent to it, the
side opposite to it, and a ball placed in the centre of the table; shew
that, if @ and b be the lengths of the sides of the table, and ¢ the elasticity
of the ball, the inclination of the direction of projection to the side a
of the table from which it is projected must be
51+ 20}

tan™ - .
a 1l+e

12. A perfectly elastic ball is projected at an inclination 8 to a plane
inclined to the horizon at an angle a, so as to ascend it by bounds;
find the inclination to the plane at which the ball rises at the n™ rebound,
and shew that it will rise vertically if

cotf =(2n + 1) tana.

13. A string, charged with n+ m +1 equal weights fixed at equal
intervals along it, and which would rest on a smooth inclined plane,
with m of the weights hanging over the top, is placed on the plane
with the (m + 1)™ weight just over the top; shew that, if a be the distance
between each two adjacent weights, the velocity which the string will
have acquired, at the instant the last weight slips off the plane, will be

nag)t.

14. A perfectly elastic ball is projected with a given velocity from
a point between two parallel walls, and returns to the point of projection,
after being once reflected at each wall; prove that its angle of projection
is either of two complementary angles.

15. A particle is attracted to one centre of force and repelled from
another, both forces varying as the distance: prove that, if the absolute
intensities of the forces are equal, the path of the particle is a parabola.

16. When a body arrives at a point P of an elliptic orbit, which it
is describing about one focus S, the centre of force is suddenly trans-
ferred to the other focus H: supposing the orbit to remain the same
as before, prove that, u denoting the absolute force in the former, and
& in the latter case,

prp i SP: HP,
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17. A solid triangular prism, the faces of which include angles q, B, v,
is placed in any position entirely within an inelastic gravitating fluid:
if P, Q, R, be the pressures on the three faces, which are respectively
opposite to the angles a, 8, v, prove that

P coseca + Q cosecf + R cosecey
is invariable so long as the depth of the centre of gravity of the prism
is unchanged.

18. A heavy sphere is placed in a vertical cylinder, filled with atmo-
spheric air, which it exactly fits. Find the density of the air in the
cylinder when the sphere is in a position of permanent rest.

19. A solid formed of two co-axial right cones, of the same vertical
angle, connected at their vertices, is placed with one end in contact
with the horizontal base of a vessel : water is then poured into the vessel;
shew that if the altitude of the upper cone be treble that of the lower,
and the common density of the spindle four-sevenths that of the water,
it will be upon the point of rising when the water reaches to the level
of its upper end.

20. A fish is floating in a cubical glass tank filled with water, with
its head in one corner and its tail towards the one diagonally opposite;
describe the appearance which will be presented to an eye looking to-
wards the corner in the direction of the -length of the fish, and in the
same horizontal plane with it.

21. Two rays emanate from a point in the circumference of a reflecting
circle, in the plane of the circle: supposing that their n** points of incidence
are coincident, prove that the angle between their original directions is any
one of a series of n — 1 angles in arithmetical progression.

22. A luminous globe falls from a point above the Earth’s surface
in a dark night: shew that it will look like a bright falling column,
elongating as it descends.

If ¢, ¢, ¢4 be the lengths of the apparent column at the ends of times
ty by, ty, from the commencement of the fall, prove that, gravity being con-
sidered constant, and the resistance of the air being neglected,

ti(cg - e)+ 8 (s ¢)) + (e, - ¢)=0.

Mox~NDpaY, Jan. 19. 9...12,

1. DEFINE a couple, and find the condition that two couples acting
on a body in the same plane may hold it in equilibrium.

Find the moment of the couple which is sufficient to sustain a right
cone, with its vertex on a rough plane of given inclination and its base
parallel to the plane; the roughness of the plane being just sufficient to
prevent the vertex from sliding.
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2. Assuming that any system of forces acting upon a rigid body may
be reduced to a resultant force and a resultant couple, find the relation
which must subsist among the forces that these resultants may be equi-
valent to a single force.

When this condition is satisfied, find the locus of a point in the body
by fixing which the body will be held at rest.

3. A heavy string of uniform density and thickness is suspended from
two given points; find the equation of the curve in which the string
hangs when it is at rest. '

Compare the curvatures at the lowest points of two catenaries formed
by an inextensible and by an extensible string, the tension at the lowest
point of each catenary being =, and the modulus of elasticity .

4, A particle of mass m describes a plane curve under the action of
forces of which the components parallel to the tangent and normal are
m.T and m.N: shew that

d's 1 (ds\
T = -d—t‘, N = ; (a—t) .

If ¢ be the angle which the tangent at any point of the path makes
with a fixed line, the differential equation of the path will be

ad (., ds
a(V3)-or

5. A heavy particle, suspended from a fixed point by an elastic string,
makes vertical oscillations in a medium of which the resistance varies as
the square of the velocity: determine the velocity of the particle for any
position, neglecting the weight of the string and supposing the motion
to commence when the string is unstretched, and the particle to have
no initial velocity.

Deduce the greatest extension of the string, supposing the motion to
take place in a vacuum.

~

6. Two particles connected by a stretched inextensible string are con-
strained to move in a fine curvilinear tube in a vertical plane: determine
the motion. '

If the tube be cycloidal, the axis of the cycloid being vertical and the
vertex upwards; shew that the tension of the string is constant through-
out the motion.

7. Every point of a fluid at rest is acted upon by impressed forces
the resultant of which always tends to a fixed centre: prove that at a
point, the distance of which from the fixed centre is 7,

dp = - pFdy,

——s
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where p is the pressure at the point, p the density, and F the resultant
of the impressed forces, referred to a unit of mass.

If the resultant force varies as »™, and the fluid be homogeneous and
of given mass, shew that the pressure on a diametral plane varies as p™.

8. A body floats in a fluid: determine the position of its metacentre
with reference to a vertical plane of displacement dividing the body
symmetrically through its centre of gravity.

A cylindrical diving bell is suspended with its axis vertical at a depth
such that the water rises half way up the bell: find the least distance
of the centre of gravity of the bell from the centre of its upper surface,
consistent with the condition that the equilibrium may be stable with
reference to an angular displacement of the axis.

9. A small peneil of rays is incident obliquely on a plane refracting
surface; find the positions of the primary and secondary foci of the
refracted pencil.

If the pencil consists of common light, shew that the primary foci of
the pencils of different colours will lie on a curve of the third order.

10. Obtain an equation for determining the equatoreal interval of a
given wire and the mean wire of a transit instrument by observations on
the transit of the pole star.

Explain how the determination of this value for all the wires enables
an observer to find the time of transit across the mean wire, when the
time across some of the wires is not noted.

11. Describe Flamsteed’s method of determining the position of the
first point of Aries, mentioning the astronomical instruments required for
the purpose.

Monpay, Jan, 19. 11...4.
1. SHEW that, if
A+ Bz + Cz* +...= a6 + bz + cz* +...
for all values of z, and if the coefficients do not increase without limit,
i A=a, B=b, C=c¢, &c.
Find the sum of the series .
. 14+ 24 + 3 +...4 n';
and prove that, when # is indefinitely increased,
B 02 (r") 2 8: 6.
2. Expand (cos6)™ in a series of cosines of multiples of 6, n being a

positive integer. Hence deduce the expansion of (sin@)™ in a series of
cosines of multiples of 6.
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3. Prove that the base of Napier’s system of logarithms is incom-
mensurable.

Prove also that it cannot be a root of a quadratic equation the coeffi-
cients of which are rational.

4. Prove that impossible roots enter rational equations by pairs.
If ¢*/V be a root of the equation
"+ pa™t 4 pat + pa™ .t p, =

prove that
p, sina + p, 8in2a + p, sinda +...+ p, sinna = 0.

5. Describe Horner’s method of approximating to the roots of equa-
tions; and apply it to find the cube root of 37 to four places of decimals.

6. Find the expression for the distance of a given point from a straight
line of which the equation is given.

The distance of a point (z,, y,) from each of two straight lines, which
pass through the origin of coordinates, is &; prove that the two lines are
represented by the equation

(zy - zy,)* =
2ty :

7. Shew that the equations
z=asecp, y=>tang,
represent an hyperbola, and give a geometrical interpretation of the angle ¢.
If P, Q, be points in the one, and P, Q/, in the other of two confocal
hyperbolas, and if the values of ¢ at P, @, be respectively equal to those
at P, Q; prove that PQ’ is equal to Q.

8. State Napier’s rules for the solution of right-angled spherical triangles,
and prove them for the case in which the complement of the hypotenuse is
the middle part.

If three arcs of great circles 4P, BQ, CR, intersect at right angles
the sides BC, C4, 4B, in P, Q, R, respectively, prove that they all
pass through the same point O, and that

tan4dP tanBQ tanCR
tanOP’ tan0OQ’ tanOR’
are respectively equal to

cosA cos B + cosC
cosB.cosC’ cosC.cos A4’ cosd.cosB"

14

9. Find the polar equation of the tangent at a point of the conic
section
=1+ e cosd.

S
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Find the polar equation of the straight line through the foot of the
directrix perpendicular to the tangent, and shew that the locus of its inter-
section with the radius vector at the point of contact is a circle.

10. The perpendicular from the origin on a plane is of given length
and makes given angles with the axes; find the equation of the plane.
Find the equation of the plane which passes through the origin and
through the line of intersection of the planes
Az + By + Cz=D, Az+ By+Cz=D;
and determine the condition that it may bisect the angle between them.

11. Shew that through any point of the surface

o 21:

Y

two straight lines can be drawn, entirely coincident with the surface.

Prove that the points on the surface, the straight lines through which,
coincident with the surfacé, are at right angles to each other, lie in a plane
parallel to the plane yz, and at a distance from it equal to

-5
2 °

12. Investigate the positions of the centric circular sections of an
ellipsoid.

If 6, ¢, be the inclinations of the normal of a centric plane section of

the ellipsoid 11y, g
) 5o o)

to the normals of the planes of the circular sections, find the equation of
the trace of the plane of the section on the plane of zz.

Tuespay, Jan. 20. 9...12.

1. ELIMINATE gz, y, %, between the equations
[ ] z =z z y

ctg=® 2t;=h -§+;=c.

2. From a bag containing a counters, some of which are marked with
numbers, b counters are to be drawn; and the drawer is to receive a number
of shillings equal to the sum of the numbers on the counters which he
draws; if the sum of the numbers on all the counters be n, what will be
the value of his chance?

8. O is the middle point of a given straight line 44’: BOB' is a
straight line perpendicular to 44': P, P, are two points in the plane of
AA', BB': perpendiculars from P upon AP, 4’'P, cut 4’4, in C, C,
respectively: if OC, OC’, be equal to each other and of given magnitude,
prove that the distances of P, P, from BB’ are in a constant ratio.

N



162 EXAMINATION PAPERS FOR [Jan. 20,

4. The foci of a given ellipse A lie in an ellipse B, the extremities of
a diameter of 4 being the foci of B: prove that the eccentricity of B varies
as the diameter of 4.

5. C'is the centre of an ellipse, G' the foot of a normal at any point P,
and O the corresponding centre of curvature: find the distance of P from
the axis minor, in order that the area of COQ may be the greatest possible.

6. The corners of a leaf of a book are turned down so as to meet and to
make the length of one crease always »n times that of the other; shew that
each corner will describe a portion of the curve

2 {y* + (c-2)P =n* (c-2)' (2*+¢*),
the outer edge of the leaf, the length of which is ¢, being taken as the axis
of z, and the lower edge as the axis of y.

7. A heavy ring is suspended from a point by any number of equal
strings attached to it symmetrically; and another ring of the same weight
but of smaller radius is in equilibrium when resting on the strings at their
middle points; if R, r, be the radii of the rings and 2/ the length of each

string, shew that
4R'-8Rr + 3 -31*=0.

8. A thread without weight carrying a heavy bead has its extremities
fastened to two points in the same vertical line; if the bead and thread be
made to revolve uniformly about this line with an angular velocity w; shew
that, when the bead is in equilibrium relatively to the thread, its distance
below the horizontal plane midway between the points of attachment of the
thread will be

g r

e Ny Jupe
21 being the length of the thread, and 2a the distance between the points of
attachment.

9. A flexible chain, the ends of which are united, hangs over two pegs,
in a horizontal line, in the form of two festoons; if P, P, be the tensions at
the vertices of the festoons, and a, o, the inclinations of the festoons to the
horizon at either peg, prove that the weight of half the chain is equal to

P tana + P tand'. )
Prove also that the weight of a piece of the: chain, equal in length to the
distance between the vertices of the festoons, is equal to P~ P,

10. A triangular lamina has a small ring at each of its angular points,
which slides on a smooth wire occupying the position of the circle circum-
seribing the triangle; determine the motion of the triangle when the wire is
held in any position, and find the time of a small oscillation when the wire
is 80 held that the triangle is nearly in its position of stable equilibrium.
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11, Shew, by aid of the formule

2 cot2z = cotz - tanz, 2 cosec2z = cotz + tanz,
that if tanz =a,z + a2® + a.z‘+.l..,

1 a, a, _
then cot.t=5-2, 1% g lz’ Fo 1-‘&"

2-1 G4, 2’ l 8y 2‘ 1 a,
713 % &+ Bt
12. Circles are described upon the radii vectores of the loop of a lemnis-

cate as diameters, passing through the pole; find the locus of their ultimate
intersections, and shew that its area is double that of the loop.

and cosecz = -1- + =

13. A semicircular tube of very small bore containing an elastic string
fastened to ome of its extremities is revolving with a uniform angular
velocity w about a vertical axis through that extremity perpendicular to
its plane, and the string in its stretched state subtends an angle a at
the centre of the circle the radius of which is'a; shew that, if the
modulus of elasticity be the weight of a length I of the unstretched string,

and Ig = 4a’w* cos‘ the unstretched length of the string will be
T+a

24 cos 3 log tan

14. Two spheres, the molecules of which attract according to the law
of the inverse square, were originally in contact; if W, W', W, be the
labouring forces which have been expended in pushing them asunder
in the line of their centres, when the distances between their centres are
respectively a, @', a”; prove that

rE-Ber Yoo

15. Normals to an ellipsoid through a curve traced on its surface
intersect a principal plane in a circle of given radius; prove that the
projection of the curve on the plane encloses an invariable area.

16. A curve is traced upon a terrestrial globe, of such a form that
the longitude of any point is equal to its north polar distance; prove
that the whole length of the curve between the north and south poles
is equal to the meridian distance between the north and south poles of
an oblate spheroid, the eccentricity of which is —

diameter of the globe.

1/2 and axis equal to the

17. A closed vessel in the form of a right cone is placed with its
base on a horizontal plane: supposing it to be filled with fluid through
a small orifice at its vertex, prove that the horizontal tension of the vessel
at any point varies as the area of the circular section through the point.
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-18. A luminous point is placed at one of the foci of a semi-elliptic are
bounded by the axis major; prove that the whole illumination of the arc
varies inversely as the latus rectum.

19. A homogeneous globe is placed upon a perfectly rough table, very
near to a centre of force in the surface of the table, the law of attraction
being, that of the inverse square; prove that the square of the time of an
oscillation varies as the volume of the sphere.

20. An inelastic ball, of given radius, is dropped from the window of a
carriage, travelling uniformly along a level road, upon the wheel, which it
hits at the highest point; determine the subsequent motion of the ball
relatively to the carriage, the rim of the wheel being perfectly rough.

TUESDAY, Jun. 20. 11...4.

1. AN object is viewed through a lens by an eye placed on the axis:
describe the several defects to which the image is subject, assuming the
light to be homogemneous.

Illustrate the defect of angular distortion by a figure, and explain
generally how this defect is diminished by using Huyghen’s eye-piece.

2. Explain the uature of the difficulty which prevents the formation
of a completely achromatic combination of lenses.

A pencil of light is refracted, centrically, and with small obliquity,
through two thin lenses in contact; find the condition of achromatism.
If such a combination be used as a microscope, determine which of the
lenses has the greater dispersive power.

3. Determine the interval from sunrise to sunset at a given place.
If the increase of the sun’s declination from noon to noon be A° and
t, t, be the times from sunrise to noon and from noon to sunset respectively,

shew that .
A i 3
f b=t — sin¢ seC

180 ° 4/{cos(l - &) cos (! + 8)}
where [ is the latitude of the place, and ¢ is the sun’s declination at
sunrise.

4, Calculate the aberration in right ascension of a star, the right
ascension and declination of which are given, and find its greatest value.

nearly,

5. A particle, acted upon by given forces, moves on a given smooth
surface; shew how to determine its motion, and the pressure on the surface.
If the surface be a smooth cone, placed with its axis vertical and
vertex downwards, and if gravity be the ounly force acting, shew that
the differential equation of the projection on the horizontal plane of the

path of the particle, is
d'u g sina cosa
== + u sin'a =

dot |3
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where « is the reciprocal of the distance of the particle from the axis,
6 the angle between this distance and a fixed vertical plane, 4 constant,
and a the semi-vertical angle of the cone.

6. Determine the motion of a body revolving about a fixed horizontal
axis under the action of gravity: and shew that there is a point in the
straight line through the centre of gravity perpendicular to the axis
such that, if the whole mass of the body were there collected, and hung by
a weightless string from the axis, the angular motion of the point would
under the same initial circumstances be the same as that of the body.

How would the pressure on the axis be affected by such a supposed
change in the arrangement of the mass?

7. Investigate the equations of fluid motion, referred to rectangular
axes.

An elastic fluid, not acted upon by any impressed forces, flows uniformly
through a cylindrical tube; compare the pressures of the fluid for two
different velocities, and hence explain the following experiment.

To one end of a tube is fitted a plane disc which is capable of sliding on
wires projecting from the end of the tube in directions parallel to the axis:
if the disc be placed at a small distance from the end, and a person blow
steadily into the other end, the disc will remain nearly stationary.

8. A perfectly flexible and slightly extensible cord is stretched between
two fixed points, at which its extremities are fastened: if a small disturb-
ance be excited in it, obtain equations for calculating the motion; and
determine the velocities with which transversal and longitudinal vibrations
are respectively propagated along the cord.

9. A particle revolves about a centre of force in an orbit nearly
circular; determine approximately the angle between two consecutive
apsidal distances.

Hence shew that the mean central disturbing force of the Sun will
cause the apses of the Moon's orbit to progress, assuming the Earth’s
orbit to be circular.

10. Assuming the following equation for determining the Moon’s
longitude,

P
ag t T T
P u mu®

i = 5 G L1+ 8 cos{(2 - 2m) 6 - 28)],
find the term of the second order, in the expression for 6, of which the
period is one year.

Considering only the effect of this term, and assuming ¢ = & and
sinma = 1, find approximately in minutes the difference between the greatest
and least periodic times of the Moon.

where
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WEDNESDAY, Jan., 21.' 9...12,

1. SHEw that the circle, which cuts orthogonally three given circles
lying in a plane, has its centre at the radical centre of these circles.
asin'0 + bsin'e _ bsin'6 + c sin’@ _ ¢ 6in®0 4 a sin'@P
b cos*0 + ccos®d ccos*d +acos’p acos’d +bcos'p’
then will @+ b + ¢ = 3abe,

2. If

8. A parabola slides between two rectangular axes; find the curve
traced out by any point in its axis; and hence shew that the focus and
vertex will describe curves of which the equations are

Sy @@ 4y, Py 43 =,
4a being the latus rectum of the parabola.

4. Shew that, if in the equation
az® + by' + 2cxy - =0,
the parameter f alone vary, the focus of the conic represented will lie in
either of two straight lines; if, either a or & vary, the other coefficients
remaining constant, the focus will lie in a rectangular hyperbola; and, if
¢ alone vary, the focus will lie in the curve
ab(z* +y*) - (a' + b*) 2'y* + f(a - D) (2" - ¢*) = 0.

5. A right vertical cylinder with circular ends carries a hand upon its
upper face, equal in length to a radius of the end, and moveable about
an axis coincident with the axis of the cylinder: the extremity of the
hand is attached by a fine elastic thread to a point in the circumference
of the lower end of the cylinder; and, when the thread is vertical, it is
stretched to its natural length: if the hand be made to revolve through
any angle a, and then let go, find its angular velocity in any subsequent
position; and shew that, if the angle of displacement, a, be very small,
the time of an oscillation will be

dée
"] @ew

where n is constant.

6. A narrow smooth semicircular tube is fixed in a vertical plane with
its vertex upwards; and a heavy flexible string, passing through it, hangs
at rest; shew that, if the string be cut at one of the ends of the tube,
the velocity, which the longer portion of the string will have attained when
it is just leaving the tube, will be

Hor -2 - gl4
(@ {ar - 3= - )}
4 being the length of the longer portion, and a the radius of the tube.
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7. If a, b, ¢, &, ¥, ¢, be the cosines of the inclinations of the faces of
a tetrahedron, a and &, b and ¥, ¢ and ¢, belonging respectively to the
edges-which do not meet, and @, ¥, ¢, to three conterminous edges; shew that

1+aa*+ 0%+ cc*=a+ 0"+ c* + a* + b + ¢* + 2a'bc + 2Wca + 2¢ab + 2a'b'¢
+ 2beb’e’ + 2cacad’ + 2aba’l’.

8. Shew that the determination of the circular sections of the cone

may be made to depend upon the solution of the cabic equation
abep® - (a* + ¥ + ) p* + 4=0;
and that the circular sections of the cone

é"}c +(c a&t-i-(g-l-é) =0

(: B Gre)=Gra)me

are parallel to the planes’
ar+dy + ez =0,

9. Shew that, if

=0

QR

+

it

+

oln

a=0, B=0, y=0,

be the equations of three planes which form a trihedral angle, the equa-
tion of a cone of the second order, which has its vertex at the angular
point and touches two of the planes at their intersections with the third, is

9 -kaf=0;
and that the equation of a surface of the second order enveloped by the
cone is
*+p(y' - kap) =0,

8 = 0 being the equation of the plane of contact, and x being constant.

Shew that if the enveloping cone of a series of ellipsoids be the asymp-
totic cone of a series of hyperboloids of two sheets, the curves of inter-
section of any ellipsoid with the series of hyperboloids will lie in planes
parallel to the plane of contact of the cone and ellipsoid.

10. A rigid spherical shell is filled with homogeneous inelastic fluid
every particle of which attracts every other with a force varying inversely
as the square of the distance; shew that the differenge between the
pressures at the surface and at any point within the fluid varies as the
area of the least section of the sphere through the point.

11. A uniform beam is revolving uniformly in a vertical plane about a
horizontal axis through its middle point; and, at the instant it is passing
through its horizontal position, a perfectly elastic ball, the mass of which
is one-third that of the beam, is projected horizontally from a point verti-



168 EXAMINATION PAPERS FOR [Jan. 21,

cally above the axis, so as to hit the beam at one extremity, then to rebound
to the other, and so on for ever, bounding and rebounding along the same
path; shew that if 0 be the angle, on each side of its horizontal position
through which the beam revolves, 6 will be given by the equation

6 tanf = 1.

12. A homogeneous sphere, of elasticity e, rotating uniformly about a
horizontal diameter, falls upon a perfectly rough inclined plane through
such a height A that its angular velocity is not affected by the first impact,
and then proceeds to descend the plane directly by bounds; if u, be the
velocity of the sphere along the plane after the »™ impact, shew that

u, = (2gh)} sina (1 + l,n."l'_’:),

and that the range which the sphere describes upon the plane before it
ceases to hop will be

. e ¢
4h sina m (l - §.TTQ) y
a being the inclination of the plane to the horizon.

‘WEDNESDAY, Jan. 21. 11..4.

1. STaTE clearly the meaning of “the limit of f(x) when z=0:"
and shew that, if two quantities approximate simultaneously to limiting
values, and always bear to each other a certain ratio, then their limits
are in that ratio. When are two quantities said to be nearly equal?
Give some test of the ultimate equality of two quantities which ulti-
mately vanish.

Assuming that & (1 + x)*:-, find the differential coefficient, with re-
spect to z, of ™.

2. Given that, under certain conditions,
F(z, + k) - F(z,) - F(z, + 6h)
S+ h) -flz) Sz, +6h)’

derive the equation

M) = ’[—n ¢"(62,),

stating fully the conditions for its truth.

Hence find the limiting value of the ratio of z - sinz to 2* as 2 is
indefinitely diminished.

3. Shew that the values of z, which render ¢(z), a continuous function
of z, a maximum or a minimum, are given by the condition that ¢(z)
for such values, vanishes or is infinite; and shew how to distinguish between
a maximum and a minimum.

o<
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Determine in each case the sign of ¢‘(z) for values of x very nearly
equal to those which make ¢'(z) infinite.

4, Give some definition of an asymptote of a curve, and employ it
to shew how to determine the asymptotes of polar curves.
If the equation of the curve be

u:-}:f(@),

shew that there may be as many asymptotes as there are unequal roots
of the equation f(6) = 0: and that, if « be one of these roots, the equation
of the correspondmg s,symptote will be

% = f'(a) sin(f - a).

6. Find the magnitude and position of the circle which has the closest
possible contact with the curve y =f(z) at a given point; and shew
that it generally cuts the curve at the point.

Prove that the chord of curvature, parallel to the axis of 2, of the curve

y

8ec— = g6
a

z

is constant, and that

1 z-a
t;ec(""'—y)3 =€a
a
approximately represents the evolute of this curve for the part near the
origin.

6. Investigate the analytical conditions for the existence of multiple
points in a curve of which the equation is % =0, » being a rational
function of # and y; and shew how the degree of multiplicity may be
determined.

Prove that, if

d'u d’_u -0

da* dy’ !
at a double point, the coordinates of which are =, y, the two branches
of the curve are at right angles to each other; and that, if the point be the
origin, the equation of the tangents to the branches will be

- B+ 2 ﬂ nE'=0,

£, n, being current coordinates of the tangent.

7. Find the values of the integrals,
de
v(z‘+a’) f(z+2)(z’+x+2) §in6’

f tanrdzx a™dz
————  and P
o
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8. Find the equation of the locus of tangent lines at a point (z, y, £) of
a surface, the equation of which is u=f(z, y, £) =0.

Common tangent planes are drawn to the ellipsoills

2 ¥y & L
FtEtecl Ftptacl
shew that the perpendiculars upon them from the origin lie in the surface
of the cone
@-aMz+ (B -y +(c*-c?) =0,

9. Shew how to integrate the equation
dy
a + P, Y= Q,

P and Q being functions of z.

The normal at a point P of a curve meets the axis of z in G, and the
locus of the middle point of P@ is the parabola y*=Iz; find the equation
of the curve, supposing it to pass through the origin.

10. Prove that the differential equation of the surfaces generated by a
straight line which passes through the axis of z and through a given curve,
and which makes a constant angle a with the axis of %, is

dz dz 3
xiz"-y@ﬂ(z"}'y’) cota.
11. Prove that the expansion of the function
t
-1
can involve no odd powers of ¢ above the first, and define Bernoulli’s
numbers,
If B,,, be the n'® of these numbers, prove that it is equal to

(- 1)" (BA0™ — 3A%0™ 4 314%™ - &o.}.

THURSDAY, Jan. 22. 9...12.

1. IF p, p/, be the reciprocals of the perpendiculars from the centre of an
ellipse upon SP, HD, where 8, H, are the foci respectively nearest to P, D,
the ends of two conjugate semi-diameters, prove that, b being the reciprocal
of the semi-axis minor,

(pp -5

. . (p-0) +(p-0p
is a constant quantity.

2. If forces P, @, R, acting at the centre O of a circular lamina along
the radii 04, OB, OC, be equivalent to forces P, Q, R', acting along the
sides BC, CA4, A B, of the inscribed triangle, prove that

P.P Q.Q R.R

——=0.

BC T C4 T 4B
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8. A fine thread just encloses, without tension, the circumference of an
ellipse: supposing a centre of force, attracting inversely as the square of the
distance, to be placed at one of the foci, prove that the sum of the tensions
of the thread at the ends of any focal chord is invariable, and that the
normal pressure on the ellipse at any point varies inversely as the cube of
the conjugate diameter,

4. Prove that the eccentricity of a section of an ellipsoid, made by a
plane through its least axis, varies inversely as the distance, from this axis,
of the point in which it cuts a centric circular section.

5. 04, OB, are two quadrants on the surface of a sphere, at right
angles to each other: a great circle cuts them in A, B, respectively: from
A', B, through any point P of the great circle, are drawn arcs B'PM,
A’PN, cutting 04’, OB, in M, N, respectively; if PN=¢, PM=1,
£0AB =\, LOBA = p, prove that

in*\ . cos'e — 2 cos N cosp sing sin Y + sin'u cos®yr = 1.

6. If a polygon of a given number of sides be inscribed in the orbit of
a planet, such that all its sides subtend equal angles at the Sun, prove that
the sum of the angular velocities of the planet about the Sun, at the angular
points of the polygon, is independent of the position of the polygon.

7. A uniform homogeneous wire PAP', of which 4 is the middle point,
is bent into the form of an arc of a loop of the lemniscate of which 4
becomes the vertex: prove that the resultant attraction on the wire, arising
from a centre of force at the node O, attracting accordmg to the law of
the inverse square, varies as

11y
(op' o_Z-) ’

8. A small light is placed at the focus of a perfect reflector in the form
of a paraboloid of revolution: prove that the brightness, due to reflection,
at any point within the volume of the paraboloid, varies inversely as

the square of the focal distance of the end of the diameter through the
point,

9. A hollow homogeneous cylinder, of given material, which is perfectly
brittle and incompressible, is partially inserted into a fixed horizontal tube
just wide enough to admit it: prove that the greatest length which the
free portion of the cylinder can have, without snapping off, varies as the
square root of the radius of its external surface.

10. A centre of force, repelling inversely as the square of the distance,
lies below the surface of a homogeneous inelastic fluid, which is also acted
on by gravity and is at rest: the intensity of the force, at a point in the
surface of the fluid vertically above its centre, is equal to that of gravity:
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prove that the external surface of the fluid has a horizontal asymptotic
plane, and that the centre of force is environed by an internal cavity,
the summit of which is at the external surface of the fluid.

Find the volume of the cavity in terms of its length.

11. A carriage is travelling along any level road: prove that the sum
of the squares of the shadows cast on the ground by any two spokes of
a wheel, which are at right angles to each other, varies during the journey
as the square of the secaut of the Sun’s zenith distance.

Prove also that, if the road run due east and west,

_ tan26

T tan2z ’

a being the azimuth and z the zenith distance of the Sun, and 6 the
corresponding inclination of a spoke to the horizon when its shadow is
greatest or least.

12. 04, OB, OC, are meridians on a surface of revolution, passing
through three points 4, B, C, which are connected together by the
shortest arcs BC, C4, AB: BC cuts OB, OC, at angles \;, A\,: CA4
cuts OC, 04, at angles A\, \,; and AB cuts 04, OB, at angles A, A;
prove that

sina

sin), . sin), . sin}, = sin), . sin), . sin},.

13. A little animal, the mass of which is m, is resting on the middle
point of a thin uniform quiescent bar, the mass of which is m’ and the
length 2a, the ends of the bar being attached by small rings to two
smooth fixed rods at right angles to each other in a horizontal plane:
supposing the animal to start off along the bar with a velocity 7,
relatively to the bar, prove that, & being the inclination of the bar
to either rod, the angular velocity initially impressed upon the bar will
be equal to

3m V sin 20
Sm+d4m’" o

14. A narrow tube, in the form of a common helix, is wound round
an upright cylinder, initially at rest, which is pierced by two smooth fixed
rods, parallel to each other and horizontal: supposing a molecule to be
placed within the tube, at a point of which the distance from the axis
of the cylinder is parallel to the rods, find the velocity of the cylinder
when the molecule arrives at any proposed point of the tube.

Prove that, m, m’, being the masses of the molecule and cylinder, the
velocities which the cylinder has acquired, at the successive arrivals of
the molecule at points most distant from the plane in which the axis of
the cylinder moves, will have their greatest values when, a being the
inclination of the helix to the horizon,

m
m+m

'
tan'a =

.
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THURSDAY, Jan. 22. 1%, 4.

1. ONE plane curve rolls on another, the planes of the two curves
coinciding, and their convexities being opposed to each other: if », v,
are the radii of curvature of the fixed and rolling curves respectively, at.
their point of contact, p the distance of any point P in the moving plane
from the point of contact, a the angle between p and the common normal
to the two curves, prove that the corresponding radius of curvature of
P’s path is equal to

—f -

_T + osa "

r P
Shew also that the directions of motion of all the points in the moving
plane, fixed relatively to the rolling curve, which at any instant are going
through points of inflection in their respective paths, pass through a single
point.

1
v
_c

X

2. Prove the following relation between the sides and angles of a
spherical triangle,

cosA + B cos? +b
2 P73
sin —(:’ cos
2 2

3. Integrate the simultaneous differential equations:

dz dy .
ad—t+b‘—1;+az+by-0,
,dx ., dy

ad7+baz+az+by=0.

4. If I (n) denote f s*2"1dz, where n is a proper fraction,

shew that °
m

I‘(n) r(l -'”) =m;

and hence deduce the value of f T dz,
0

5. Determine the change in the position of the axis and in the eccen-
tricity of the Moon’s orbit indicated by the terms

e cos(cO - a) + %éme cos{(2 —2m ~¢c)0 - 28 + a},

in the expression for the Moon’s parallax.
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6. A free rigid body, the mass of which is m, is at rest: its moments
of inertia about the principal axes through its centre of gravity are 4, B, C:
supposing the body to be struck by an impulsive force R through its centre
of gravity, and by an impulsive couple @, prove that it will revolve for an
instant about an axis, the velocity of which is in the direction of its length

and is equal to

L.X+M.Y'N.Z
A.m B.m C.m

2599 S
&5 &)
X, ¥, Z, being the components of R, and L, M, N, of G, along the prin-
cipal axes.

If 6 be the inclination of R’s direction to the spontaneous axis, prove
that

’

LX MY N.Z

% o

7. Two luminous points which emit light of the same colour and of
equal intensity, are placed very near to each other before a plane screen
and at exactly equal distances from it: investigate the appearance on the
screen.

8. Prove the following equation for the determination of the major
axis of the orbit of a disturbed planet,
: da,  2na® dR

Fripay, Jan. 23. 9...12,

1. IF a=0, B=0, 4 =0, be the equations of the sides of a triangle,
shew that the equation of a conic touching the sides of the triangle is

()t + (mp) +(n)! = 0.
=0,8=0,4=0, 4B, X o 2, B YV o 2, B, 7
fa=0,8=0,7=0, al+bl+cl O as+ ,+L‘,— ! ’-I-b’-i-—’—o,
be the equations of the sides of a hexagon which circumscribes a conic,

shew that
a (bscs - C,b,) + @y (bscl - cabl) + a, (bl.cl - clb:) =0,

2. Transform the triple integral f f | f(a, B, y)dadBdy into one in which
z, ¥, %, are the independent variables, having given
a=F (2,92, B=F(z,y,2), v=F(zy,2).
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I az=yz, Py=rzz, q8=uzy,
shew that

-fff(a,p,q)daapdq=4fﬂf(yf, =, %”)dzdydz.

3. Shew how to integrate the equation of differences,

) Upyn + Pr¥eyn + .. + Pty = f(2),
where p,, p,, p, are independent of 2.
Shew that a solution of the equation
YapnsUzingosovolny o Uy = B (Ugyy + Ugyy  + oo + Uy + %),

is included in that of
. Yein — U = 0,
and is consequently
4,=C,a*+Cya* + ... + C,,, a™,

where a is one of the imaginary (n+1)™ roots of unity, the n+1 constants
being subject to an equation of condition.

4. Shew how to find the differential equation of a class of surfaces,

* which cuts at right angles all the surfaces represented by the equation

S (z, 9,2 a)=0,
where a is an arbitrary parameter.
If the class of surfaces have an envelope, shew how we may find it with-
out solving the differential equation.

5. Disturbances are excited in the air contained in a cylindrical tube
of given length by a plate vibrating isochronously at one end, the other end
being closed: assuming expressions for the velocity and condensation
at any point, find the time of vibration, in order that a musical note
may be produced; and determine the points in the tube at which openings
may be made without affecting the pitch.

Supposing  vibrating plate also at the closed end, how must the time
of vibration of the first plate be modified, and how must the times of vibra-
tion of the two plates be related, that musical notes may be produced P

6. Assuming that the Sun causes an angular acceleration of the Earth,
proportional to the sine of twice the Sun’s north polar distance, about
the equatoreal diameter perpendicular to the line joining the centres of
the Sun and the Earth, shew that the line of equinoxes will have a pre-
cessional movement.

How will the amount of precession, as deduced from observation, aid
in determining the ratio of the mass of the Earth to the mass of a pound
weight P
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7. What is meant by secular variations of planetary elements P
Shew how to find the condition that the secular variations of the longi-
tudes of the lines of nodes of two mutually disturbing planets may be
periodic. ’
The following equations, connecting the inclinations and longitudes of
the nodes, may be assumed:
tan: sinQ = p, " tant cosQ =g,
dp - ) 4 dq _ L} ’ ;
a;—'ma'mc’({-Q)- a-m‘a/mc’(l’ -7
with corresponding equations for the planet to which the accented symbols
refer.
If the squares of the masses of the two planets were to each other
inversely as their mean distances, then the nodes would dicillate through
equal angles.

8. Describe some method of obtaining a circularly polarised beam of
light, from light polarised in one plane.

Circularly polarised light is incident, at a slight inclination, upon a
plate of uniaxal crystal cut perpendicularly to its axis, and the emergent
pencil is analysed; explain generally the phenomena produced. What
will be the effect produced by turning round the analysing plate?

Fripay, Jan, 23. 1%...4.

1. INVESTIGATE formule for the determination of the umbilici of
surfaces.

Prove that the radius of normal curvature of the surface zyz =a® at
an umbilicus is equal to the distance of the umbilicus from the origin of
coordinates.

2. Integrate the equations
a'u N Fu_ du du . %))

%,,,.8inz0 - u,.sin(z + 1) 0 = cos(z - 1) 0 - cos(3z + 1) 6...(2) ;

and find a general value ¢ (z) from the equation
@ (m'z) - (a + b) @ (mz) + abD () = cZ..uvveerernnnnnnn. (3).

3. State and prove the principle of Vis Viva, and describe the different
kinds of forces which do not appear in the equation of Vis Viva.

A circular wire ring, carrying a small bead, lies on a smooth horizontal
table; an elastic thread, the natural length of which is less than the
diameter of the ring, has one end attached to the bead and the other to
a point in the wire; the bead is placed initially so that the thread co-
incides very nearly with a diameter of the ring: find the Vis Viva of the
system when the string has contracted to its natural length.
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ay

4, If ¥ be a given function of z, y, da: Tt

find the conditions

that dez, between given limits, may be a maximum or minimum,

When a particle is attracted towards a fixed centre of force and moves
in the brachistochrone, prove that the area described round the centre
of force varies as the “action.”

5. Describe the terms in the expansion of the disturbing function,
which are of the greatest importance in calculating the variations in the
elements of a planetary orbit, and explain fully what is meant by the
long inequality of two planets.

‘What principle is used to ascertain the disturbing effects produced
" on a planet by several other planets.

6. Define the potential function ¥, and shew that, at any point (z, y, 2),
external to the attracting mass, it satisfies the equation
&V d'V d'V
d dy’
Hence prove that, if § be any closed surface to which all the attracting
mass is external, dS an element of S and dn an element of the normal
drawn outwards at dsS,
f aV as-o,

the integral being taken throughout the whole surface S.

—_=0.

7. Assuming the formule

. la+mB+ny=0,

! - m _ n
a(’-d’) B(-F) q(-¢)’

investigate the equation of the wave-surface in a biaxal crystal.

Prove that the direction of the vibration at any point of this surface
coincides with the projection of the distance of the point from the centre
of the surface upon the tangent plane at the point.

THE END.

METCALFE, PBIN’H'I!, GREEN STREET, OAIHRID(Il
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3 Vols. 12, 11s. 6.
“ The best work of its class we have met with for a long time.”—~PATRIOT,

““ Has the stamp of all the higher altributes of awlhorship.” —MoRXING
ADVERTISER. .

¢ Of singular power.”—BxLL'S MRSSENGER.
BY ALEXANDER SMITH,

Author of a ** Life Drama, and other Poems.”’

City Poems. Feap. 8vo. cloth, s,

“ He has allained al timesto a quict continuily of thought,and sustained sirength
of coherent wlterance . . . ke gives us many passages that sound the deeps of
Jeeling,andleave us satisfied with their sweetness”’—NorTn BR1T18H REVIEW.

A Life Drama and other Poems.  Feap. 8vo. cloth, 9s. 6.

BY JOHN MALCOLM LUi)LOW,

Barrister-at-Law.
British India, its Races, and its History, down to the Mutinies of
1867. 2 vols. fcap. 8vo. cloth, 92,

¢ The best historical Indian manual ezisting, one that ought to be in the Aands of
every man who writes, speaks, or votes on the Indian guestion.”—EXAMINER.

¢ The best elementary work on'the History of India.”’—HoMEWARD MATL.



8 NEW WORKS AND NEW EDITIONS,

MEMOIR OF THE REV. GEORGE WAGNER,
Late of 51. Stephew's, Brighton.
By J. N. Simpkinson, M.A., Rector of Brington,
Northampton. Second Edition. Crown 8vo. cloth, 9s.

¢ A deeply inleresting picture of the life of one of a class of men who are indeed
the salt of this land.”—MorNiNG HERALD.

BY FRANCIS MORSE, M.A.
Incumbent of St. Johw's, Ladywood, Birmingham.

Working for God. And other Practical Sermons,
Second Edition. Fecap. 8vo. bs.
« For soundneps of doctrine, lucidity of style, and above ol for their practical
teaching, these sermons will commend themselves.”—JOENK BuLL,

“There is much earnest, practwal teaching in this volume. — ENGLISE
CHURCHMAN.

BY THE REV. J. LLEWELYN DAVIES, M.A.
Rector of Christ Church, St. Marylebone, late Fellow of Trinity College, Cambridge.

The Work of Christ ; or the World reconciled to God.

Sermons Preached at Christ Church, St. Marylebone. With a
Preface on the Atonement Controversy. Feap. 8vo. cloth, 6s.

BY THE REV. D. J. VAUGHAN, M.A,,
Viear of St. Martin’s, Leicester, late Fellow of Trinity College, Cambridge.

Sermon$ on the Resurrection. With a Preface.
Feap. 8vo. cloth, price 3s.

BY THE REV. J. F, THRUPP, M.A.
Late Fellow of Trinity College, Cambridge.

lutroduction to the Study and Use of the Psalms.
Two Vols. 8vo. 21s.

“ What Mr. ﬂnp{ Aas attempted he has for the most part done well. The plan,
hat the author appeals to the great body of Enmglisk readers, is
admrablc The result is a volume as interestingly re le as it is critically
luable. We d these vol with peculiar satisfaction and conﬁdmoc
to the carnest attention of all students of sacred Seripture.”—!
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THIRD EDITION.

Lectures to Ladies on Practical Subjects. Crown 8vo.7s.64.

By F. D. MaURrIoE, PrOPESSOR KINGSLEY, J. LL. DaviEs, ARCH-
DEACON ALLEN, DEAN TRENOH, PROFESSOR BREWER, DR. GEORGE
JonNsoN, DRr. SIEvEKING, DR. CHAMBERS, F. J. STRPHEN, E8Q. and
Tou TaYLOR, EsqQ.

. ConrExts:—Plan of Female Colleges—The College and the Hospital—
The Country Parish—Overwork and Anxiety—Dispensaries—Dis-
trict Visiting—Influence of Occupation on Health—Law as it affects
the Poor—Everyday Work of Ladies—Teaching by Words—Sani:
tary Law—Workhouse Visiting.

4 We scarcely know a volume conlaining more sterling good sense, or a finer ex-
pression of modern intelligence on social subjects,”—CHAMBERS’ JOUKNAL.

BY BROOKE FO0SS WESTCOTT, M.A,,
Author of *‘ History of the New Testament Canon,” &c.

Characteristics of the Gospel Miracles. Sermons preached
before the University of Cambridge. With Notes.
Crown 8vo. cloth, 4s. 64.

¢ An earnest exhibition of imporiani and exalled lruth.”—JOURNAL OF Sac.
LITERATURE.

BY C. A. SWAINSON, M.A.
Principal of the Theological College, and Prebendary of Chichester.

1. The Authority of the New Testament ; the Convic-

tion of Righteousness, and other Lectures delivered before
the University of Cambridge. 8vo. cloth, 12s.

% These remarkable Lectures deal with most engrossing swbjects in an Aomest and
vigorous spirit. The religious lopics whick are now uppermost in the mind of
the thmgz;'ul classes among s, and which are fundamental to the Chyistian,

are here led with, we gladly acknovledge,in a courageows, straighifor-

ward way. The reader is led to think healthily and calmly. . . . Owr readers
will do well 1o obtain the book and read it all, there is 20 much in it of abiding
value.”—LITERARY CHURCHMAN,

2. The Creeds of the Church. In their Relations to the
‘Word of God and the Conscience of the Christian. 8vo. cloth, 9s

3. A Handbook to Butler’s Analogy. With a few Notes.
1s. 6d.

A
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NEW- -WORKS AND-NEW EDITIONS, -

THE WORKS OF

WILLIAM ARCHER BUTLER, MA,

Late Professor of Moral Philosophy in the Universily of Dublin.
PIVE VOLUMES 8vo. UNIFORMLY PRINTED AND BOUND.

““ 4 man of glowing genivis and diversificd accompliehments, whose remains fill
these five brilliant volumes.”—EDINBURGH REVIEW.

SOLD SEPARATELY AS FOLLOWS.

Sermons, Doctrinal and Practical. Figsr Semies,

Edited by the Very Rev. Tros. WoopwarDp, M.A., Dean of Down.
With a i[emoir and Portrait. Fifth Edition. 8vo. cloth, 12s.

¢ Present a ricker combination of the qualities for Sermons of the firsl class than
any we Rave met with in any living wriler.”—BRITISHE QUARTERLY REViEW,

Sermons, Doctrinal and Practical. Secoxp Serres.

Edited by J. A. Jersmiz, D.D., Regius Professor of Divinity in
the University of Cambridge. Third Edition. 8vo. cloth, 10s. 6d.

““ They are marked by the same originalily and vigour of ezpression,the same
richness of imagery and illustration,the same large views catholic spirit,and
the same depth and fervour of devotional feeling, whick so remarkably distin-
guished the preceding Series, and which rendered it a most valuable accession to
owr theological literature.’— From DR.JEREMIE’S PRR¥ACE. \

Letters on Romanism, in Reply to Dr. Newman's Essay on
Development. Edited by the Very Rev. THoMAs WoopwarDp, M.A.,
Dean of Down. Seconp EpitioN. Revised by the Ven. ArcH-
DEACON HARDWICK. 8vo. cloth, 10s. 6d.

¢« Deserve to be considered the most remarkable proofs of the Author’s indomi-
table energy and power of concentration”—EDINBURGE REvVIEW. .

Lectures on the History of Ancient Phllosoll)ihy.
Edited from the Author’s MS8S., with Notes, by WrLrram Hep-
wontrH TrHomeson, M.A., Regius Professor of Greek im the
University of Cambridge. 2 vols. 8vo.,£1 &s.

< Of the dialectic and physicsof Plato they are the only exposition atonce full,
acowrale,and, p?!dm‘, with whichl am acquainted : being far moreaccwraie than
the French, and incomparably more popular than the German treatises on these

departments of the Platonic philosophy.”—From Pro¥. THOMPSON’S PREFACE.
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THE WORKS OF
JULIUS CHARLES HARE, M.A,,

Somglime Archdeacon of Lewes, Rector of Hersimonceus, Chaplain in Ordinary fo the
Queen, and formerly Fellow and Tutor of Trinity College, Cambridge.

'

\ NINE VOLS. 8vo. UNIFORMLY PRINTED AND BOUND.

1. Charges to the Clergy of the Archdeaconry of
Lewes. During 1840 to 1854, with Notes on the Principal
Events affecting the Church during that period. And an Intro-
duction, explanatory of his position in the Churoh, with re-
ference to the Parties which divide it.

3 vols. 8vo. cloth, £1 11s. 64

2. Miscellaneous Pamphlets on some of the Leading

Questions agitated in the Church during the years 1845 to 18561,
8vo. cloth, 13s.

8. Vindication of Luther against his recent English

Assailants. Second Edition. A 8vo. cloth, 7s.
4. The Mission of the Comforter. With Notes. Second
Edition, 8vo. cloth, 12,
5. The Victory of Faith. Second Edition. 8vo. cloth, 5s.
6. Parish Sermons. Second Series. 8vo. oloth, 12s.

7. Sermons preacht on:Particular Occasions. 8vo. 1%s.

The two following books are included among the collected Charges, but are published
separalely for purchasers of ihe rest.

Charges to the Clergy of the Archdeaconry of
ewes. Delivered in the years 1843, 1845, 1846. Never
before published. With an Introduction, explanatory of his

position in the Church, with reference to the Parties that divide
it. 8ve. cloth, 6s. 64.

The Contest with Rome. A Charge, delivered in 1851.
With Notes, especially in answer to Dr. NEWMAN on the Position
of Catholics in England. Second Edition.  8vo. cloth, 10s. 64.



12 NEW WORKS AND NEW EDITIONS,

THE WORKS OF
CHARLES KINGSLEY, M.A.

Chaplain in Ordinary o the Queen, Rector of Eversisy,
and Regius Professor of Modern History in the University of Cambridge.

1. The Limits of Exact Science as Applied to History.
An TInaugural Lecture, delivered before the University of
Cambridge. Crown 8vo. 2s.

2. Two Years Ago. Third Edition. Crown 8vo. cloth, 6s.
 Genial, large hearted, humorous, witk a quick eye and a keen relish alike

Jor what is beautiful in nature and for what is gemwine, stromg, and earncst in
man,”—GUARDIAN.

8. “ Westward Ho!” or the Voyages and Adven.
tures of Sir Amyas Leigh, Knight, of Borrough, in the County
of Devon, in the reign of Her most Glorious Majesty Queen

Elizabeth. New Edition. Crown 8vo. cloth, 6s.
“ Almost the best historical movel to our mind of the day”—FrazEm's
MAGAZINE.

4. The Heroes: Greek Fairy Tales for my Children.
New and Cheaper Edition, with Eight Illustrations. Royal 16mo.
beautifully printed on toned paper, gilt edges, 5s.

¢ We doubl not they will be read by many a youth with an enchained interest
almost as strong as the links which bound Andromeda to her rock.”~—~BRITISH
QUARTEELY. .

5. Glaucus; or, the Wonders of the Shore. A Com-
panion for the Sea-side. Containing Coloured Illustrations of the
Objects mentioned in the Work. Fourth Editicn. Beautifully
printed and bound in cloth, gilt leaves. 7s. 6d.

¢« Its pages kle with life,they up a thowsand sources of wnanticipated
lean a:?l” bi v ’mindmlion in a very happy and unwonied

?cyne."':—Eéch'ﬂc REvIZW. .
6. Phaethon ; or, Loose Thoughts for Loose Thinkers.
© Third Edition. Crown 8vo. boards, 2s.

7. Alexandria and Her Schools. Four Lectures delivered

at the Puilosophical Institution, Edinburgh. With a Preface
Crown 8vo. cloth, 5s.
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WORKS

BY C. J. VAUGHAN, D.D.
Chaplain in Ordinary to the Quem,c 07:::; Zf" Doncaster, and Chancellor of York
TG

1. Notes for Lectures on Confirmation. With Suitable
Prayers. Third Edition. Fcap. 8vo. limp cloth, red leaves, 1a 64.

2. St. Paul’s Epistle to the Romans. The Greek Text with

English Notes. 8vo. cloth, 7s. 6d.
“ For educated men this commentary scems to fill a gap hitherto unfilled.
We find ‘“!’?;0:! careful elucidati ”Zf the ing of phrases by parallel

passages from Si. Paul himself, with a nearly continuous paraphrase and
ezplanation by whick the very difficult connexion of the argument of the
Epistle, with its countless digressions and ellipses and abrupt breaks, is
pointedly brought out. An educated lad, who thought for himself, would learn
more of the real meaning of St. Paul's words by thoroughly thinking out the
suggestive exposition of them here supplied, than /b{ any amount of study
bestowed upon more elaborate and erudite works. . . As a whole, Dr. Vaughan
- appears to us lo have given lo the world a valuable book of original and c:ﬁful
and éarnest thought bestowed om the lishment of a work which will be
of much service, and which is much needed.” —GUARDIAN,

8. Memorials of Harrow Sundays. A Selection of Sermons
preached in the Schoeol Chapel. With a View of the Interior
of the Chapel.

Second Edition. Crown 8vo. cloth, red leaves, 10s. 6d.

4. Epiphany, Lent, and Easter. A Selection of Expository

Sermons. Crown 8vo. cloth, red leaves. 7s. 6d.

“ Eack exposition kas been prepared upon a careful revision of the whole passage

s au{i the exireme rev{r:npce andpcarc m'lzrwkicﬁ the author ﬁandlg:‘ Holy

Writ, are the highest guaranices of success. Replele with thought, scholarship,
carnesiness, and all the elements of usefulness.”—L1TERARY GAZETTE.

5. Revision of the Liturgy. Five Discourses. With an
Introduction. I. Absolution. II. Regeneration. III. The Atha-
nasian Creed. IV, Burial Service. V. Holy Orders.

Second Edition. Cr. 8vo. cloth, ved leaves (1860), 117 pp. 4s. 64.

¢ The large-hearted and philosophical spirit in whick Dr, Vaughan has handled
the specific doctrines of controversy point him out as eminently filted to deal
with the first principles of the question.”—JoRN BuLL.

6. Rays of Sunlight for Dark Days. A Book of Select

. Readin%s for the Suffering. With a Preface by C. J. Vaughan, D.D.
Royal 16mo. Elegantly printed with red lines, and handsomely
bound, red edges, 4s. 6d.

“ the book. ort for th ul and affficted . . . cel)
e Shore b has Kad he oo fo S onhthat we v bm (s it bk,
Thke spiritual wisdom and Realthy feeling with which the contents have been
selected, equally W‘” in their character, their suitable brevily, and their
catholic union. We find lboﬁhgfuluu, tenderness, devowiness, strength in
these well-chosen extracts.” —NONCONFORMIST,




4 NEW WORKS AND NEW EDITIONS,

BY JOHN Mc¢LEOD CAMPBELL,

Formerly Minister of Row.

The Nature of the Atonement, and its Relatidn to

Remission of Sins and Eternal Life.
8vo. cloth, 10s. 64.

1

¢ This is a remarkable book, as indicating the mode in whick a devout and indel-
lectual mind Ras found its way, almost unassisted, out of the extreme Lutheran
and Calvinistic vicws of the Atonement into a kealthier aimosphere of doctrine,
« o « We cannot assent to all the positions laid down by this writer, but ke is
entilled to be spoken respectfully of, bath because of his evident earnesiness and
reality, and the tender mode in which he deals with the opinions of others from
whom he fecls compeiled to differ”—IITERARY CHURCHMAN,

BY THE RIGHT REV. G. E. LYNCH COTTON, D.D,,

Lord Bishop of Calcutta and Metropolitan of India.

Sermons and Addresses delivered in Marlborough

College, during Six Years.
Crown 8vo. cloth, price 10s. 6d.

m3)

8¢ We can heartily r d this volume as a most present for a yoxth,
or for family reading ; wherever there are young persons, the teacking of these
discourses wili be admirable.’—I3TERARY CHURCHMAN.

\

Sermons: Chiefly connected with Public Events in 1854.

Feap. 8vo. cloth, 3s.
“ 4 volume of which we can speak with kigh admiration.’
CHRISTIAN REMEMBRANCER,

Charge delivered to the Clergy of Calcutta at his
Primary Visitation in September, 1859. 8vo. 2s. 64.

THE ORE-SEEKER.

A Tale of the Hartz Mountains. By A. S. M.
Tllustrated by L. C. H. Printed on toned paper, with elaborate
full-page Tlustrations and Initial Letters, and bound in elegant
cloth with gilt leaves, 16s.

This work is most elaborately illustrated, and is published as a
Christmas present. The OBSERVER of Noy.18,1860, says of it -

“ On, the most beawtiful of [he illustrated volume: lished in the presewt
mf:g{, mu? ?me ;:e-e{lin:{ﬂy’ﬂ;taﬁforea 'é'ointtn:a”:nm ..” .o .elou and
truth beaulify the story, and render it delightful to all persons. . . . The illus-
trations are many of the finest specimens extant.”
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BY THE VENBLE. ARCHDEACON HARDWICK.

Christ and other Masters: A Historical Inquiry into
some of the chief Parallelisms and Contrasts between Chnstianity
and the Religious Systems of the Ancient World.

Religions of China, America, and Oceanica. In one volume.
Religions of Egypt and Medo-Persia. In one volume.
8vo. cloth, 7s. 6. each.

 Never was so difficult and complicated a subject as the k of Pagan
:hgion handled se ably, and at the same time rendered so luoid and attractive.”
OLONIAL CuuRCH CHRONICLE.

BY THOMAS RAWSON BIRKS, M.A,,

Rector of Kelshall, Examining Chaplain to the Lord Bishop of Carlisle;
Author of ** The Lije of the Rev. E. Bickersteth.”

The Difficulties of Belief, in connexion with the
Creation and the Fall. Crown 8vo. cloth, 4s. 6d.

“ 4 profound and masterly essay.”—EcLEpTIC.

% His arguments are original, and carefully and logically elaborated. We may
add that they are distinguished by a marked sobriety and reverence for the Word
of God.”—RECORD,

BY THE VERY REV. R. C. TRENCH, D.D.,

Dean of Westminster.

1. Synonyms of the New Testament.
Fourth Edition. Feap. 8vo. cloth, 5s.

2. Hulsean Lectures for 1845—46.

Contexts. 1.—The Fitness of Holy Seripture for unfolding the
Spiritual Life of Man.. 2.—Christ the Desire of all Nations;
or the Unconscious Prophecies of Heathendom.

Fourth Edition. Feap. 8vo. cloth, &a.

‘8. Sermons Preached before the University of Cam-
bridge. . Feap. 8vo. cloth, 2. 6d.



16 NEW WORKS AND NEW EDITIONS,

BY DAVID MASSON, M.A,,

Professor of English Literature én Universily College, London.

1. Life of John Milton, narrated in connexion with
the Political, Ecclesiastical, and Literary History
of his Time. Vov. L. 8vo. With Portraits. 18s.

“ Mr. Massow's Life of Milton has many sterling merils . . . his industry is
immense ; his seal unflagging ; his special knowledge of Miiton's life and times
eziraordinary . . . . with a seal and industry which we cannot sufficiently com-
mend, ke Ras not only availed himaelf of the bwgr?;hul stores collected by his

edecessors, but_imparied to them an ct of novelly by his skilful re-
g’rrmyeumt’."—Enmunan Revizw. April, 1860. 4

2. British Novelists and their Styles: Being a
Critical Sketch of the History of British Prose
Fiction. Crown 8vo. cloth, 7s. 64.

¢ 4 work eminently aleulated to win pularity, both by the soundness of its
doctrine and the skill of ils art."—Tux PREss,

8. Essays, Biographical and Critical: chiefly on
English Poets. 8vo. cloth, 125, 64.

CONTENTS.

1. Shakespeare and Goethe.—II. Milton’s Youth.—III. The Three
Devils: Luther’s, Milton’s, and Goethe's.—IV. Dryden, and the Litera-
ture of the Restoration.— V. Dean Swift.—VI. Chatterton : a Stery of
the Year 1770.—VII. Wordsworth.—VIII. Scottish Influence on British
Literature.—IX. Theories of Poetry.—X. Prose and Verse: De Quincey.

¢ Distinguished by a remarkable power o] lysis, a clear stat ¢ of the aclual
Jacts on wkiakylpcculalim [ bmd,{md an ap iale beanty 05 language.
These Essays showld be popular with seriows men.’—THE ATHENZUM.

THE ILIAD OF HOMER.
TRANSLATED INTO ENGLISH VERSE.

By I. C. Wrient, M.A., Translator of “Dante,” late
Fellow of Magdalen College, Oxford. Books I.—VI. Crown
8vo. bs.

“We know of mno edilion of the ‘sovran poct’ from whick an English reader
cﬁm detge{n the whole so complete an impression of the immorial Epos.”—
AILY NEWS,
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THE WORKS OF THE REYV,

FREDERICK DENISON MAURICE, M.A,,
Incumbent of Si. Peier's, Vere Sireet, St. Marylsbone.

‘Lectures on the Apocalypse, or Book of the Reve-
lation of St. John the Divine. Crown 8vo. cloth, 10s. 64.
What is Revelation? With Letters on Mr. Mansel’s Bampton

Lectures. 10s. 64.
Sequel to the Inquiry, “ What is Revelation?”
‘With Letters on. Mr. Mansel’s Strictures. Bs.
Exposition of the Ho}‘y Scriptures :
(1.) The Patriarchs and Lawgivers. 6s.
(2; The Prophets and Kings. 10s. 64.
(3.) The Gospel of St. John. 10s. 64.
(4.) The Epistles of St. John. 7s.6d.
Exposition of the Ordinary Services of the Prayer
Book: ' 5s. 64.
Ecclesiastical History. 10s. 64.
The Doctrine of Sacrifice. 7s. 6d.
Theological Essays. Second Edition. 10s. 64.
The Religions of the World. Third Edition. Bs.
Learning and Working. bs.
The Indian Crisis. Five Sermons. . 2. 6d.
The Sabbath, and other Sermons. 2s. 64.
Law on the Fable of the Bees. 4s. 64.

The Worship of the Church. A Witness for the
Redemption of the World.
The Name Protestant, and the English Bishopric at

Jerusalem. Second Edition. 3
The Duty of a Protestant in the Oxford Election. 1847. 1..
The Case of Queen’s College, London. 12 6d.
Death and Life. In Memoriam C.B.M. 1s.

. Administrative Reform. . 34



18 THEOLOGICAL MANUALS,

MANUALS FOR THEOLOGICAL STUDENTS,

UNIFORMLY PRINTED AND BOUND.

Thia Series. of Thealogical Manuals has beem published with the aim
of supplying books concise, comprehensive, and acourate, convenient for
‘he Btudent and yet interesting to the general reader.

L

Introduction to the Study of the Gospels. By Brooxs
Foss Wesrcorr, M.A. formerly Fellow of Trinity College,
Cambridge. ' Crown 8vo. cloth, 10s. 6d.

“The worth of Mr. Westcolt's volume for the spiritual interpretation of the
Gospels is greater than we can readily ezpress even by I/}e most grateful and

approving words. It presents witk an unp ‘p the charac-
teristic of the book everywhere being this complel kol of view,
comprehensi of representation, the fruits of sacred learning.”—NoxN-

CONFORMIST.

II.

A General View of the History of the Canon of the

New Testament during the FIRST FOUR CENTURIES.
- By Brooke Foss WestcorT, M.A. :

Crown 8vo. cloth, 12s. 64.

¢ The duthor is one of those who are teaching us that it is possible to rifle {he
storohouses of German theology, withowt bearing away thetaint of their atmo-
sphere : and to recognise the value of their aocumulaled ireasures, and cven
track the vagaries of their theoretic ingenuily, without abandoning in the purswit
the wlear sight s0vmd feeling of English-common sense . . .. 1t is by for
the best and mosi complete book of the kind; and we should be glad to sce i
well placed on the lists of our examining chaplains.”—GUARDIAN ., :

% Learned, dispassionale, discriminating, worthy of kis subject, and the present
state of Christian Literature in relalion tait.”—BRITISH QUARTERLY.

“To the student in Theology it will prove an admirable Text-Book : and to all
others who have any curiosity o the anbyect it will be satisfactory as oné of ke
most_useful and instructive picces of history which the records of .tk Chwreh
supply.”’—LONDON QUARTERLY. '

wes
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THEOLOGICAL: MANUALS—continued.

III.

History of the Christian Church, during the Middle
- Ages and ‘the “Reformation - (a.n. 590-1600).

By the Venerable CrarLES HarDWICK, Archdeacon of Ely.
: :2 vols. crown 8vo. 10s. 6d. each.

Vol. I. History of the Church to the Excommunication of Luther
With Four Maps. :
Vol. II, History of the Reformation. :
' Each Volume may be had separately.

“ Pull in references and authorily, systematic and formalin division ,with enongh
of I:’i:‘m the style to counteract the drynessinseparable from its brevity, and
ezhibiting the results rather than the principles of investigation. Me. Iium-
WICK i3 {0 be congratulaled on the successful achicvement of a difficult task.”
~—CHRISTIAN REMEMBRANCER.

¢ He kas bestowed patient and exiensive reading on the collection of his materials ;
Re has selected them with judgment ; and ke presents them in an equable and
compact style.”—SPRCTATOR.

“ To a good method and good materials MR. HARDWICK adds that great virtue,
a perfectly iransparent style. We did not expect to find great literary ities
in suck a mamual, bwt we have found them ; we should be satisfied in this
respect with conciseness and intelligibilily ; but while this book has both, it is
also elegant, kighly finished, and highly interesting.”—~NONCONFORMIST.

IV.

History of the Book of Common Prayer,
together with a Rationale of the several Offices. By Frawcis
ProcTer, M.A., Vicar of Witton, Norfolk, formerly Fellow of

- 8t. Catharine’s College, Cambridge. Fourth Edition, revised and
enlarged. Crown 8vo. cloth, 10s. 6d.

“Mg. ProoTER’s ¢ History of the Book .of Common Prayer’ is by far ihe best
commentary extant . . . . .. Not only do the present illustrations embrace the
whole range of original sources indicated by MR. PALMER, du¢ MR. PrROCTER
compares the present Book of Common Pra:cr with the Scotch and American
Jorms; and ke frequently sets out in full the Sarum Offices. As a manwal
extensive information, historical and ritual,imbued with sound Church princs-
ples, we are entirely satisfied with MR. PROCTER’S important volume.”

CHRISTIAN REMEMBRANCER.

« It igindeed a complete and fairly-written Ristory of the Liturgy ; and from the
dispassionale way in which disputed points are touched on, will prove to
troubled consciences what ought to be known to them, vis. :—that they may,

“ withowt fear of compromising the principlesof evangelical truth, give their assent
and consent to the contents of the Book of Common Prayer. ME.PrOCTER Aoy

- dome a great serviceto the Church by this admirable digest.”
: : ' CHURCH oF EN6LAND QUARTERLY.




MACMILLAN AND CO.’S
@Cluss Books for Colleges and Schools.

I. ARITHMETIC AND; ALGEBRA.

Arithmetic. For the use of Schools. By BarNarD Smite, M.A.
New Edition (1860). 348 pp. Answers to all the Questions. Crown 8vo. 4s. 6d.

Key to the above. Second Edition, thoroughly Revised (1860).

882 pp. Crown 8vo. 8s. 6d.
Arithmetic and Algebra in their Principles and Applications.

With numerous Examples, systematically arranged. By Barxarp Smirh, M.A.
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