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PREFACE.

Tais book of the Solutions of the Questions

in the Mathematical Tripos of 1875 has been
undertaken at the request of several persons who
are interested in the teaching of mathematics at
Cambﬁdge. | _
- The solution of ‘each question has, in general,
been furnished by the maker of the questioﬁ, or
is a solution that has been given by a candidate
in the Examination.

By the new regﬁlations for the Examination
several mew subjects have been introduced, which
have not been trcated of in preceding collec-

tions of Senate-House Solutions.



viii IR —— ‘
Complete solutions of the questions on the
higher subjects have been given in all cases where
it was felt that a reference to the Text-books in
ordinary use was not sufficient.
An apology must be given for the unavoidable

delay in the appearance of the book.

ERRATUM.

Page 95, in lines 8 and 9, read “If the first three planes meet the fourth plane
in BC, CA, AB, &c.”




SOLUTIONS OF SENATE-HOUSE
PROBLEMS AND RIDERS

FOR THE YEAR EIGHTEEN HUNDRED AND SEVENTY-FIVE.

MoNDAY, Jan. 4, 1875, 9 to 12.

P MR. GREENHILL. Arabic numbers.
MR. WRIGHT. Roman numbers,

1. PARALLELOGRAMS and triangles upon the same base
and between the same parallels are equal.

A', B’y C' are the middle points of the sides of the triangle
ABC, and through 4, B, C are drawn three parallel straight
lines meeting B'C’, C'A’, A'B’ in a, b, ¢ respectively ; prove
that the triangle abc is half the triangle ABC and that bc
passes through 4, ca through B, ab through C.

For (fig. 1)
6 ABa+bA4ac=06ABa+ 0 A4aC=340 ABC=0ABB' =0 ABc;

therefore Bac is a straight line.
Similarly it may be proved that Cab is a straight line.
And & Bbc =20 BbC, taking away the common part & Bba;
therefore
babc=06aBC=4s ABC.
Also 8.A4ab+06Aac=0AaB+b6A4aC=4r ABC=2>abc;

therefore bAc is a straight line.
B
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2. The angles in the same segment of a circle are equal
to one another.

If the diagonals AC, BD of the quadrilateral ABCD,
inscribed in a circle the centre of which is at O, intersect
at right angles in a fixed point P, prove that the feet of -the
perpendiculars drawn from O and P to the sides of the
quadrilateral lie on a fixed circle, the centre of which is
at the middle point of OP.

Let @ (fig. 2) be the middle point of OP; a, b, ¢, d the feet
of the perpendiculars from P on 4B, BC, CD, DA, and o, ¥,
¢, d’ the middle points of 4B, BC, CD, DA respectively.

Then a'¥'c'd’ is a rectangle.

Also t APa=t ABP=(t PCD=_(CP;

therefore aP¢ is a straight line, and similarly it may be
proved that 8Pd’, cPa’y, and dPb’ are straight lines.
Therefore Pa’Oc' is a parallelogram, and (), which is the
centre of the parallelogram, is the centre of the rectangle
a'b'cd'.
Therefore a circle can be described with centre @ passing
through a, o’; 5,8'; ¢, ¢'; d, d'.

Also 2(rad.)'+20@*=0d"+d' P*= 0" +d 4*=0'4,

and therefore the radius of the circle is constant.

This circle is analogous to the nine-pointic circle of a
triangle.

3. Upon a given straight line describe a segment of a
circle which shall contain an angle equal to a given rectilineal
angle.

gThrough a fixed point O any straight line OPQ is drawn
cutting a fixed circle in P and @, and upon OP and 0Q
as chords are described circles touching the fixed circle at
Pand Q. Prove that the two circles so described will inter-
sect on another fixed circle.

If C (fig. 8) be the centre of the fixed eircle and OM, ON
be drawn parallel to CQ and CP, forming the parallelogram
OMCN, then A and N are the centres of the segments.

-
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Therefore if B be the point of intersection of the segments,
OR is perpendicular to MN, and since MN bisects OC,
therefore MN is parallel to RC. .

Therefore the angle ORC is a right angle, and there-
fore the segments intersect on a circle described on OC as
diameter.

iv. Describe an isosceles triangle having each of the
angles at the base double of the thir§ angle.

Prove that the circle drawn through the middle points
of the sides of this triangle will intercept portions of the equal
sides such that a regular pentagon can be inscribed in the
circle having these portions as two of its sides.

If D, E, F (fig. 4) be the middle points of the sides, the
triangle FBD will be similar to the triangle 4BC, and the
circle through D, E, F will be the small circle of Euclid’s con-
structton relatively to the triangle FBD, and will cut 4B,
AC in"points MN, such that

BD=DN=NF=FE,
and therefore DMEFN is a regular pentagon.

v. Equal triangles which have one angle of the one equal
to one angle of the other have their sides about the equal
angles reciprocally proportional; and triangles which have
one angle of the one equal to one angle of the other and
their sides about the equal angles reciprocally proportional
are equal to one another

If ABC, ADE be two such triangles placed so that
BA, AE are in a straight line, as also C4 and 4AD; and
if BC, DE produced meet in F, prove that F4 will bisect
CE and BD. )

Since (fig. 5) the s BAC=2DAE;
therefore A BCE=bDCE,
and therefore CE is parallel to BD; therefore
BC:BF:: DE: DF;
therefore =~ ABCA:5BFA4 ::5DEJ :» DFA,
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but ABCA=0DEA;
therefore ABFA=0DFA,

therefore perpendiculars from B and D on FA are equal,
and therefore F'4 bisects BD, and its parallel CE.

vi. If a straight line stand at right angles to each of two
straight lines at the point of their intersection, it shall also be
at right angles to the plane which passes through them, that
is to the plane in whicE they are.

If P be a point equidistant from the angles 4, B, C of
a right-angled triangle of which 4 is the right angle and
D the middle point of BC, prove that PD is at right angles
to the plane OF ABC. Prove also that the angle between, the

lanes PAC, PBC and the angle between the planes PAB,

BC are together equal to the angle between the planes
PAC, PAB.

" For (fig. 6) PA*= PB*= PD*+ DB*= PD* + DA*;

therefore PDA is a right angle, and since PDB is also a
righé angle, therefore PD is at right angles to the plane
ABC.

And since P4 =PB and DA = DB, therefore the angle
between the planes PAB, PBC is equal to the angle between
the planes PAD, PAB.

Similarly the angle between the planes PA(C, PBC is
equal to the angle between the planes PAD, PAC.

Therefore the angle between the planes PAB, PBC, and
the angle between the planes PAC, IEBG are together equal
to the angle between the planes PAC, PAB.

3 Compare the rider to question 2, Thursday afternoon,
an. 7.

vii. The ordinate to the diameter throungh any point on
a parabola is a mean proportional between the corresponding
abscissa and four times the focal distance of that point.

If through a fixed point 4 a straight line be drawn
meeting two fixed lines 0D, OF in B and C respectively,
and on it a point P be taken such that AC.AP=AB*;
prove that the locus of P is a parabola which passes through
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A4 and O and has its axis parallel to OD and the tangent
at A parallel to OE.

Let the straight line through A (fig. 7) parallel to OD meet
OE in F, and draw PM parallel to OF to mect AF in M.

By similar triangles

PM*: OF*:: AP*: AB*:: AP: AC:: AM: AF;
therefore the locus of P is the parabola stated.

viii. If the tangent and ordinate at any point P of an
ellipse meet the axis major in 7' and N respectively, then
CT.CN=CA4"

If any circle be drawn through N and 7, prove that it
is cut at right angles by the auxiliary circle of the ellipse.

Let the circle cut the circumscribing circle in P, then
CT.CN=(C4*= CP*;

therefore CP is a tangent to the circle, and therefore it cuts
the auxiliary circle at right angles.

ix. Tangents to an ellipse or hyperbola at right angles
to each other intersect on a fixed circle.

If any rectangle circumscribe an ellipse, prove that the
perimeter of the parallelogram formed by joining the points
of contact is equal to twice the diameter of the circle which
is the locus of the point of intersection of tangents at right
angles.

If PQRS (fig. 8) be a circumscribing rectangle and C
the centre of the ellipse.

. l{foin CP and let 1t cut LM one side of the parallelogram
in V.

C is the centre of the rectangle and of the parallelo-
gram and P, @ lie on the dirgctor circle; therefore a CPQ is
18osceles, hence so also is s LNP; therefore LN=NP, and
CN is parallel to another side of parallelogram and equal to
half of it; therefore CP=} perimeter of parallelogram or
ppﬁlmeter of parallelogram = 4 CP= twice diameter of director
circle.
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10. In a central conic the tangent makes equal angles
with the focal distances, and the sum or difference of the
focal distances is constant.

Given a focus, the length of the transverse axis and that
the second focus lies on a fixed straight line, prove that the
conic will touch two fixed parabolas having the given focus
for focus.

If S (figs. 9 and 10) be the given point, CH the given
straight line, draw DK, D'K' parallel to CH at distances
equal to the given transverse axis, and draw SC perpen-
dicular to CH to meet it in C, and DK, D'K" in I} and D).

Then if H be the second focus of a conic and PP’ be
drawn throngh H parallel to SC to meet the conic in P, P’
and DK, D'K' in K, K, it is evident that

SP=PK and SP'=PK'

Therefore the conic touches two fixed parabolas having
the common focus S and the directrices DK, D'K’ at P
-and P.

If SC (fig. 9) is less than the given transverse axis, the
parabolas are turned in opposite directions and intersect at
right angles on CH in B and B', such that SB= SB'= given
transverse axis. '

Then if H be taken between B and B’, the conic is an
ellipse; but if H be taken beyond B or B’, the conic is a
hyperbola, and the same branch of it touches the parabolas.

If SC (fig. 10) is greater than the given transverse axis,
the parabolas are turned in the same direction and do not
intersect, and the conic is always a hyperbola of which
different branches touch the parabolas.

11. The tangents to a conic section drawn from a point
subtend equal angles at either focus.

If PP’ be a chord of a conic- parallel to the transverse axis
and the twd circles be drawn through a focus S touching the
conic at P and P’ respectively, prove that F' the second point
of intersection of the circles will be at the intersection of PP’
and 87, where T is the point of intersection of the tangents
at Pand P.

F
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Prove also that the locus of F for different positions of
PP’ will be a parabola with its vertex at &S.

A circle can be described about TPSP' (fig. 11) and
therefore 2 TPP' = FSP; therefore the circle described on
8P touching PT at P passes through F.

Similarly the circle described on SP' touching P'T at P’
passes through F.

Also if FM, FN be drawn perpendicular to the transverse
and conjugate axes to meet them in M, N respectively,
CT.CN=CB*; therefore

FM*:CB*:: CN:CT:: SM: 8C;

therefore the locus of ' is a parabola with its vertex at .S
and passing through the ends of the conjugate axis.

12. 1If a right circular cone be cut by a plane, the distance
of any point on the curve of section from a certain point bears
a constant ratio to the distance from a certain straight line.

If any sphere be inscribed in the cone, the length of the
tan%lent line drawn from any point en the curve of section
to the sphere will bear the same constant ratio to the distance
of the point from the line of intersection of the plane section
and the plane of the circle of contact of the sphere and coue.

The rider is proved incidentally in the book work.

(If O be the centre of the sphere and OD be drawn per-
pendicular to the plane of the section, it can easily be shewn
that the length of any tangent line from a point in the plane
to the sphere is equal to the distance of this point from a
fixed point 8 in OD such that SD*= OD" — (rad. of sphere)*.

The locus of S is called the focal conic of the conic section.)
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MonNpay, Jan. 4, 1875. 13 to 4.

MRg. FREEMAN. Arabic numbers,
Mg. CocKsHOT. Roman numbers.,

1. For a house occupied by B, 4 pays a rent of £40 per
annum by equal payments at the end of each quarter. B
pays 4 by equal payments in advance at the beginning of
each month. How much a month ought B to pay in order
that at the end of the year, with simple interest reckoned at
3% per cent. per annum, 4 may have recovered the value
of his own four payments with one-tenth additional ?

The answer is £3. 12s. 11}44.

2. Shew how to find the lowest common multiple of three
algebraical expressions.

If 1, 1,1 are the lowest common multiples of B and C,
of C and 4, of A and B, respectively; if g,, ¢,, g, are the
highest common divisors of the same pairs; and if 1}, G are
the lowest common multiple and highest common divisors of

3
A, B, and C; prove that£= L ) .

1238

G 9,99,

Let a, B, v be the powers of a simple factor P in 4, B, C
respectively.  Suppose them to be in descending order of
magnitude but without excluding the cases in which some
of them are equal or zero.

Then the index of P in —g

3
(o) is g Brata-g-y-B)=a-y.

isa-v, and in
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The same argument applies to any factor and therefore
‘_L_ = ( Illels)
G \9.9.9
3. () Find the simplest expression for

(a+p)(@atqg) . (b+p)(6+9 _(e+p)(c+g)
(a=?)(a—c)(a+z) * (b—ecj(b-a)(b+2) * (c—a)(e—d)(ct+a)" ¢

(8) If the letters all denote positive quantities, prove

that
(Z;:)b - 18 never greater than i ::._ :y .
GG
@ (a+d)zy ax+by —ab(z—y)

ay + bx a+b ~ (a+b)(ay+bx)’
which is never positive.

4. Find in terms of the coefficients the sum and product
of the roots of the equation

ax’+2bx+¢c=0.-

Find the condition that the roots of az*+ 2bz+c=0 may
be formed from those of a'az’+2b'z+c¢'=0 by adding the
same quantlty to each root.

The difference of the roots in each equation being the
same, therefore

b'—ac b*-ad'c

: = Al

aﬁ am ’

the required condition.

5. Solve the equations
(@) (c+a—2b)x'+(a+bd—2c)z+ (b+c—2a)=0.
(B) ax+yz=ay+rx=az+ay="0".
c
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(a) =1 is obviously one root, and therefore the other

root is bte—2a .
c+a—2b
B ar+yz=ay+2x=az+xy="0";
therefore (y—2)(x-a)=0;

therefore =y =2z = a root of the quadratic
=" +ax="0,
3® b —at
or m:a’ y+z=-c-¢7 yz=_a;’
with the roots obtained by a cyclical change of z, y, 2. Of

these six sets of roots three only are distinct, and the roots
2 __ aﬂ

are a, a,

6. Investigate the formula for the number of combinations
of n things taken » at a time, without assuming the formula
for permutations.

A selection of ¢ things is to be made, part from a group
of a things and the remainder from a group of & things.
Prove that the number of ways in whicir such a selection
may be made will never be greater than when the number
of things taken from the group of a things is the integer next i

(a+1)(c+1)
less than Catbrd

Let «, y be the numbers to be chosen respectively from
the groups of @ and & things.

Then xz+y=c,
L 2
Ele=s gl
is to be a maximum for integral values of 2 and y,
l 4

Lgta—m'[_c—a:lb—cjz

and

t.e.

is to be a maximum for an integral value of .



14—4] AND RIDERS, 11

Therefore the factor by which this expression is multiplied
when we write  + 1 for x must be just less than 1.
That is, that value of = must be taken which will first
make
a—x c—x

QL dnkSuuS |
e+l b—ctmtl
or ac—(a+clx<b—c+1+ (b—c+2)x,
or act+c—(b+1)<(a+b+2) .

Therefore « is the integer next greater than
cla+1)—(b+1)
atc+2 !
{a+1)c+1)
a+b+2
If there were n groups containing a,, a,, q,...q, things
(the a’s being in descending order of magnitude), and if p
things were to be chosen, the number of ways in which the
selection could be made would never be greater than when
the number taken from the group of @, things was the
integer next less than
(@, +1){p+n-1)
a+a,+...+a +n’

or next less than

vii. Shew that corresponding small increments of a
number and its logarithm are proportional. .
Find n from the following data:

log,, 42563 = 4 6290322,
log, 42564 = 46290424,
log,n  =26290376.

Find to how many decimal places n can be determined by
this method, given that log, e =43429.

The result is n=4256353 correct to four places of decimals,
for generally : .

log,, (n+ 8) — log, n= ’;—8 +...

where u =log, ¢ is the modulus.
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If & is so small that-’%8 does not come into the tables, &
cannot be determined by the method of proportional parts;
ud 1

h KO & =
therefore ” < iot?
1 = 1 42563
T R ST T:
1 42563

100" 43499 < 000
or the result is not to be relied upon beyond the fourth place
of decimals.

viii. Find a general expression in terms of « for all the
angles whose cosecants are equal to coseca.

Find all the ‘solutions of sin36 — cos=0.

Which of them will satisfy the equation

1 +sin’0=3 sinf cosf?

sin30=cos€=sin(—72f - 0) ;

therefore 30=nmw+(—1)" (%r - 8) ;
therefore 0=""47 or mr+ ~.
2 8 4
If 1+sin*0 =3 sinf cosb,
then 2 tan’'60—3 tanf+1=0;
therefore tanf=1 or },

and the values 6 =mm + % make tanf=1.

ix. Prove that cos(4 — B)=cosA cosB+sind sin B for
all values of 4 and B between 0 and 90°.

Shew how the proof may be extended so as to include all
values of 4 and B.
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If A+ B+ C=90°, prove that
cosec4 cosec B cosecC'— cot B tan O — cot C tan B— cot C tan 4
—cotA4 tanC—cot 4 tan B— cot B tan 4 =2.
The order of the letters denoting the direction in which
a straight line is measured, 4B+ BA =0 and for any three

points 4, B, Cin a straxght line AB+ BC=AC.
Then for any magnitude of the angle POM,

. MP oM .
smPOM:ap, cos PO =0p" ‘
oM _0Q+ QM
and cos(4—B)= 0P= 0P

_0Q ON_RP NP
=oN'oPt NP OP

and this will be true however the figure be drawn as in
figs. 12 and 13.
The expression

cosec 4 cosecB cosec C— tan 4 (cot B+ cotC) —
=cosec4 cosecB cosec( - sin 4 cosec B cosecC—...
=cosec4 cosecB cosecC (1 —8in’4 — sin’B ~sin’C)
=cosec4 cosecB cosecC (cos’4 —sin’B —sin*C)
= cosecA4 cosec B cosecC { cos(4 — B) cos (4 + B)—sin*C}
= cosec A cosecB {cos(4 — B)—cos(4 + B)}
=2

=cos 4 cosB+sin4 sinB,

x. Prove that the sides of a triangle are proportional to
the sines of the opposite angles.

Shew that if the squares of the sides of a triangle are in
arithmetical progression, the tangents of the angles are in
harmonical progression.

Ifa’-8"'=0"-¢,
sin’4 — sin’B=sin’B — sin’C,
sin (4 — B) sin(4 + B) =sin (B— C) sin(B+ (),
sin (4 — B) sinC=sin(B— C) sin4;
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therefore cot B—cotA = cotC - cot B;
1 1 2
therefore tnd T om0 = s’

Find the radius of the inscribed circle of a triangle
in terms of the angles and one side.
If B, », 7, r, 7, are the radii of the circumscribed, in-
scribed, and escribed circles of & triangle, prove that

7, +r,+7r,—r=4~R,

For o+, T,
" A
€08 - Cos o cos o cos o cos - cos o
“T cosé ¥ . cosg e cos-—’
2 2 2
sin 3 sin 3

— ( ——

CO8 —

2
= — (sinA cosgcosc+ coaésmgcos— ’
sm——cosé 2 2 2 2 2
2 2
+ cosé cosg smg —8in = sm— sin )
2 2 2 2 2
. A+B+0
2a sin T =
2 — 2a — 4R
sin 4 sin 4 ’

xii. Prove that sin@ lies between 8 and 6 — %: if @ is the

circular measure of an angle between 0 and 90°.

If a triangle be solved from the observed parts O=75°,
b=2, a=4/(6), shew that an error of 10" in the value of C
would cause an error of about 3”66 in the calculated value
of B.
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The ultimate ratio of the error in B to the error in

C (fig. 14)
=1t (ﬂ ﬂ') = é it 41!— -—ll cosd
- AB" AC) ¢ 44
_b+d-d 1 1

. - 2ct T2 ¢t
And ¢ =a'+ b —2ab cosC
=6+4—4/(6) (W{5)—1};
therefore ratio="5 — *134 =366 ;

therefore error in B is 3"66.
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TuUESDAY, Jan. 5, 1875. 9 to 12.

MR. COCKSHOTT. Arabic numbers.
MR. FREEMAN. Roman numbers,

1. FIND an expression for the magnitude of the resultant
of any number of given forces acting at a point in given
directions in a plane.

Prove that the resultant of forces 7, 1, 1 and 3 acting from
one angle of a regular pentagon towards the other angles
taken in order is 4/(71).

2 ) 2
Ri= (2 cosll0 + 10 cos ?1:(’)1) + (4 sin 3“)

4

T 3w .37
— osm+84cos —1-6+16

T e
10

. 2
=4 cos +40coas10

2
=604 22 cos%r + 20 cos—;—r +42 cos %’f

T . T
=60+ 22(003 g—smm)

=60 +22 {“/<5i+ 1_ */(5‘1_ 1} =71

9. State the conditions for the equilibrium of any number
of forces acting upon a body in one plane and prove that
they are necessary and sufficient. ;

If six forces acting on a bedy be completely represented,
three by the sides of a triangle taken in order, andp three by
the sides of the triangle formed by joining the middle points
of the sides of the original triangle, prove that they will be’
in equilibrium if the parallel forces act in the same direction
and the scale on which the first three forces are represented
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be four times as large as that om which the last three are
represented.

Each set of three forces will be equivalent to a couple,
and the two couples will balance.

3. If a system of parallel forces act at given points in a
plane, find the distance of the centre of the system from
a given straight line in that plane.

A triangular lamina is supported at its three angular
points and a weight equal to that of the triangle is placed
upon it; find the pesition of the weight if the pressures on
the points of support are proportional to 4a +b+ ¢, a + 4b+c,
a+ b+ 4c, where a, b, ¢ are the lengths of the sides of the
triangle.

The resultant of a+ b+ ¢ acting at each angular peint is
3 (a + b+ ¢) acting at the centre of inertia of the triangle, and
the resultant of 3a, 3, 3¢ acting at the angular points is
3 (a + b + ) acting at the centre of the inscribed circle.

Therefore the weight must be placed at the centre of the
inscribed circle.

4. Describe the common steelyard, and shew that the
distances between the graduations are proportional to the
differences of the weights to which they belong.

In a weighing machine constructed on the principle of the
common steelyard the pounds are read off by graduations
reaching from O to 14, and the stones by weights hung at
the end of the arm ; if the weight corresponding to one stone
be 70z., the moveable weight }1b. and the length of the
arm one foot, prove that the -distances between the gradua-
tions are £ in.

If ACB be the beam, C the fulcrum, and O the zero of
graduations, then ¥ at O and % at B will have the same
moment about C as § at B; therefore

400+ {;,CB=}CB;
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therefore OB=}CB;

0B _ CB

tlel*ef' > —" = -7 =3 inch.
1erefore i1 16 =% inch

5. Describe the differential axle, and find the ratio of the
power to the weight.

If the ends of the chain, instead of being fastened to the
axles, are joined together so as to form another loop in which
another pulley and weight are suspended, find the least force
which must be applied along the chain in order to raise the
greateli weight, the different parts of the chain being all
vertical.

When W the greater weight (fig. 15) is raised, the force
that must be applied either downwards on the inner de-
. scending chain or upwards on the inner ascending chain

is ‘f_;é . Ef—%—vf—, where a, b are the radii of the outer
and inner pulley respectively.

The force that must be applied either downwards on the
outer descending chain or upwards on the outer ascending
a-b W-W'

« T ‘7__ . [ )
b wW-w’

Therefore -(L;a— T is the least force.

chain 1s

6. State the laws of friction, and describe some method
of verifying them experimentally.

A glass rod is balanced partly in and partly out of a
cylindrical tumbler with the lower end resting against the
vertical side of the tumbler. If a and B are the greatest
and least angles which the rod can make with the vertical,
prove that the angle of friction is

sin*a — sin* B
sin‘a cosa +sin*B cos B °

3 tan™
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The laws of friction are
(i) That limiting friction is proportional to the pressure.

(ii) That it is independent of the extent of surfaces in
contact.

(iii) That it is independent of the velocity when motion
takes place.

(i) and (ii) are the laws of statical friction, and (i), (ii),
and (iii) are the laws of dynamical friction.

To prove experimentally the laws of friction a plane is
taken which is capable of being inclined at different angles
to the horizon and a number of blocks of the same substance,
but of different weights and shapes, are placed on it.

It will be found that the blocks begin to slide at the
same angle of inclination of the plane to the horizon, (i)
whatever be their weights, (ii) whatever be their shapes,
which proves the laws (i) and (ii) of statical friction.

This angle of inclination of the plane is called the angle
of friction between the substance of the blocks and the sub-
stance of the plane.

If the plane be fixed at an angle to the horizon greater
than the angle of friction, and the blocks be let slide freely,
it will be found that they all slide together with the same
acceleration, (i) whatever be their weights, (ii) whatever be
their shapes, and (iii) that the acceleration is constant, which
proves laws (i), (ii), and (iii) of dynamical friction.

The surfaces in contact must be well lubricated for these
laws to hold.

Let 2a be the length of the rod and b the diameter of the
tumbler (fig. 16).

In the position of equilibrium the directions of the actions
at A and C will intersect on the vertical through G the
middle point of the rod.

Therefore a sin8=AE=AD cos¢p=A4C ﬂt’rw
sin(m — B — 2¢)
_ b cos’p
~ sinBsin(B+2¢) "
b cos’d

Similarl asing=——-+———3;
wary sina sin(a —2¢, ’
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therefore sin’a sin(a —2¢) =sin’B sin (8 + 2¢) ;
sin’a — 8in®B
sin®a cosa + sin*8 cosB "

therefore tan2¢ =

vii. Explain how velocity and rate of change of velocity
are measured.

A velocity of one foot per second is ehanged uniformly
in one minute to a velocity of one mile per hour. Express
numerically the rate of change when a yard and a minute
are the units of space and time.

A velocity of one foot per second is a velocity of 20 yards
per minute. :
A velocity of one mile per hour is a velocity of & yards
per minute.
The rate of change referred to yards and minutes is
therefore
88 — 20 =9}.

viii. When the change of velocity is in a constant direc-
tion and its rate uniform, prove that the spaces described
from rest are proportional to the squares of the times of
describing them.

A train moving at the rate of sixty miles an hour is
brought to rest in five minutes by uniform retardation.
F'n:ufi the space traversed by the train during reduction of
speed.

Answer 2} miles,

ix. State Newton’s second and third laws of motion.

A bullet is fired in the direction towards a second equal
bullet which is let fall at the same instant. Prove that the
two bullets will meet, and that if they coalesce the latus-
rectum of their joint path will be one quarter of the latus-
rectum of the original path of the first bullet.

Refer the motion to two fixed directions, one vertical, tle
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other that of the line which initially joins the two bullets.
It is evident, since gravity is the only force, that when the
two bullets are in the same vertical line they are also at the
same point, having both been drawn down through the same
space from the line which initially joined them.

Secondly, the latus rectum of the path of a projectile
varies as the square of the horizontal velocity in that path.
One of the bullets has no horizontal wvelocity; hence, after
they coalesce, their masses being equal, the joint horizontal
velocity is half that of the first bullet, and the latus rectum
of the joint path one quarter.

x. Shew how to determine the motion of two elastic
spheres after direct impact, and prove that the relative
velocity of each of them with regard to the centre of mass
of the two is, after the impact, reversed in direction and
reduced in the ratio e: 1; e being the coeflicient of resti-
tution.

A series of n elastic spheres whose masses are 1, ¢, ¢*, &c.
are at rest, seParated by intervals, with their centres on a
straight line. The first is made to impinge directly on the
second with velocity u. Prove that the final kinetic energy
of the system is } (1 —e+ ") u'.

Let the sphere whose mass is ¢ impinge with velocity
v on the sphere whose mass is ¢™. Let v, v" be the respec-
tive velocities of the spheres after impact.

The whole momentum being unchanged

erv = ervl + e'{a!v"’
or v=2v+ev".

Also, the velocity of separation being ¢ times the velocity of
approach
vll - vl =ev ;
"

therefore v'=r,

and v=(1-¢t;
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that is to say, each sphere acquires the velocity of the sphere
which stmci it, and the velocity of the latter is reduced in
ratiol—e: 1.

Hence the final kinetic energy of the system is

b (1" (i)t (1) e (1= ) )

=1 {(1 - 1]—-—e_’;“ +e""‘} w=}(1—e+e")

xi. Determine the change in the square of the velocity
of a particle which has descended through a given height
down a smooth curve under the action of gravity.

A circle is drawn to touch at their middle points the chord
and arc of oscillation of a particle which is moving on a
vertical circle under the action of iravity. Prove that a
point on the first circle in the same horizontal line with the
particle moves with velocity equal to 2 4/(gr) sin'-g cosg,
where r is the radius of the circle on which the particle
moves, and a, 6 are the angles which the radius drawn to
the particle makes with the vertical at the instant when it
is stationary and at the instant considered.

Let r be the radius of the arc 4ACB of the vertical circle
over which the particle oscillates (fig. 17); p the radius of
the circle which touches the chord 4B and the arc ACB at
their middle points D, C.

P, @ simultaneous positions of the particle and corre-
sponding moving point, PQN being always horizontal.

u, v velocities of P and @, LPEC=6, L QFD= ¢,
LtAEC=a.

Then since CN=CF+ FN=3}CD (1 + cos¢),
r (1 - co8f) = §r (1—cosa) (1 + cos¢p),
: ¢

.0 . La
whence sin’ 5= sin’ 3 cos’E ................... (1),
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also since the vertical velocities of P and @ are equal
©sinf=v8ind...cecvereninnienn. (2),
and ' =2gDN=2gr (cosf — co8a)"see.vrererens (3).

Therefore

" sin” ¢ =2¢r (cos § — cosa) sin*d

_ [.aa .0\ ., 0 6
—IGgrksm g —sin 2) sin’ 5 cos’ 5

= 16gr sin’g (l cos"é) ain’%l cos' 2 cos' e , by (1)

=4gr sin* g sin" ¢ cos’g ,

whence v'=4gr sin* % cos’ g .

xii. Find the time in which a particle under the action
of gravity describes from rest any arc of a cycloid terminated
at the lowest point, the axis of the cycloid being vertical
and its vertex downwards.

Hence or from the rider to xi. determine the time of a
small oscillation of a simple pendulum.

Pendulums which beat seconds correctly in London
(9=232"19) and Edinburgh (g = 32'20) respectively are inter-
changed m station. %f started simultaneously from the
vertical position towards the left, after how many seconds
will they again be both vertical and moving leftwards?

To deduce the time of oscillation of a simple pendulum
from the rider to xi., we observe that when a is small, cos—
expressed by equation (1), differs from unity by a quantity

. o0
of the same order as sin® 3°
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Hence v is approximately constant and equal to

2 (gr) sin"g.

Theus, time of P over ACB
= time of @ over circumference of smaller circle

2. ir - cosa \/

2 #/(gr) sin®

(It is easy to obtain the next approximation to the time of

oscillation of a simple pendulum.
For if the circumference D@QC be divided into n egqual

parts, n being very large, time over element at Q

T .
— rsin® =

) 2 __ 7T (c)secﬁ
2 #/(gr) sin’%cosg 2n g 2

1

-5/ N

=21n \/(9) (1+4} sin® - 2 ’¢) nearly
=T N/G)(1+}.ssin"g+}sin"gcoscto).

2n
Hence time of @ over semi-circumference DQC

SNGIE

2T —1)m)
™ (r) 1 sin’; {cos +eos’ + cos?ﬂr +...+cos(n g .
2n\/ \g 2 n n

T aT
Now cosr ;1+cos(n— r) == Q.
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Hence when n is odd the series vanishes, and when = is
even is réduced to its middle term which is multiplied by
an infinitely small quantity.

In either case the time over the whole circumference

DQCD
— N/% (144 ain3),

and- this is the approximate time of swing of a simple pen-
dulum, length 7 through an angle 2a from rest to rest).

*(8econd Rider).
The London pendulum, removed to Edinburgh, swings
from rest to rest in ,\/ (g%%g) of a second. The Edinburgh

pendulum, removed to London, swings from rest to rest in

3220
\/(ﬁﬁ) of a‘second.

By the condition of the question, the London pendulum,
when at Edinburgh, must make two swings more than the
other in the same time.

Hence, if ¢ be the time in seconds,

z _ { —9:
Vi) /(e
3220 3219
therefore, t=2 /(3219 x 3220) seconds
={(3219 + 3220) seconds nearly
=12 47m 195,
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TuEsDAY, Jan. 5, 1875, 14 to 4.

MR. GREENHILL, Arabic numbers.

1
MR. WRIGHT. Roman numbers,

!
1. DEFINE a fluid and prove that the pressure of a fluid
at rest is the same in all directions about a point.
Define the measure of the elasticity of a fluid and prove
that if the elasticity is equal to the pressure, the pressure
of the fluid is inversely proportional to the volume.

A fluid is a substance such that the smallest shearing
stress if continued will cause a constantly increasing change
of form.

When the fluid is at rest there must be no shearing
stress, and therefore the stress must be uniform in all direc-
- tions about- a point, and this will be irue whatever be the
degree of viscosity of the fluid. (Maxwell, Heat, p. 276).

The elasticity of a fluid under any given conditions is
the ratio of any small increase of pressure to the cubical
compression thereby produced. ‘

If v be the volume of a given quantity of gas when the
pressure is p, and o' the volume when the pressure is in-
creased to p', the increase being small, the cubical com-

. v—v
pression may be measured by —

Therefore the elasticity is%-_:g, and if this is equal to p,
El

then pYv =pu.

This may also be proved by a diagram, as in Maxwell’s
Heat, pp. 107 and 111. : :
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2. If a solid be immersed in a liquid the resultant pressure
on the surface immersed is equal and directly opposed to
the weight of the displaced liquid.

Deduce the conditions of equilibrium of a floating body.

If an elliptic lamina with its centre of gravity at an
excentric point float in liquid, prove that there may be two
or four positions of equilibrium and point out which are
stable ang which unstable.

The lines of floatation will touch a similar ellipse, and the
centres of inertia of the segments cut off by the lines of
floatation will also lie on a similar ellipse, the tangent to
which at any point will be parallel to the corresponding line
of floatation.

If we draw normals from the centre of inertia of the
lamina to this last ellipse, these normals will be vertical in
the 'fositions of equilibrium.

'wo or four normals can be drawn according as the centre
of inertia lies outside or inside the evolute of this ellipse.

The points of contact of the normals with the evolute will
be the metacentres, and when a normal is vertical the equi-
librium will be stable when the point of contact lics above
the centre of inertia of the lamina, unstable when it lies
below.

-

3. Find the centre of pressure of a triangular lamina
when immersed in liquid (i) with its base in the surface,
(ii) with its vertex in the surface and base horizontal. ,

If a quadrilateral lamina 4BCD in which AB is parallel
to CD be immersed in liquid with the side 4B in the surface,
the centre of pressure will be at,the point of intersection

.of AC and BD if AB*=3CD".

- (i) The centre of pressure is at half the depth of the
vertex.
(i) The centre of pressure is at three-fourths the depth
of the base. '
Let E, F (fig. 18) be the middle points of 4B and CD
and @, H the centres of pressure of the A ABD, and the
& BCD respectively.
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If the centre of pressure of the quadrilateral lie in BD,
taking moments about BD, .

AB.}.1AB=CD.3.30CD,
AB*=3CD,

and the same condition is obtained by taking moments about
.AC. : :

4. On the assumptions that “one perfect gas acts as a
vacuum with respect to any other perfect gas,” and -that
‘“the volume of a perfect gas under constant pressure expands
uniformly when raised from the freezing to the boiling
temperature by the same fraction of itself whatever be the
nature of the gas,” prove that the pressure of a given quantity
of a perfect gas 18 Inversely proportional to the volume and
directly proportional to the absolute temperature.

Air is compressed in a vessel at a pressure p and at the
same temperature as the atmosphere. An aperture is then
opened, and shut the instant the air inside is at the at-
mospheric pressure P, and it is found that when the air
left in the vessel is again at the same temperature as the
-atmosphere its pressure is p. Find how mucﬁ air has issued
and the temperature at the instant the aperture was shut.

Explain why p' is greater than P.

(Maxwell’s Heat, pp. 27, 30, 50, and 179).
" The air left in the vessel is £ of the original amount,
and therefore 22 of the air has escaped.

P
If 7 be the absolute temEerature of the atmosphere and
¢ of the air inside the vessel the instant the aperture was shut.

"Pip' it Ty

therefore ' = £T

7.

" The air in escaping has done werk against the external
pressure of the atmosphere ; the temperature has consequently
fallen, and therefore ¢ being less than 7| p' is greater than P.
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5. Describe the barometer and explain to what eéxtent
the readings are affected by changes of temperature.

If the barometer tube dips into a cylindrical cistérn of
mercury and is suspended by a string which passes over a
pulley and supports a counterpoise, prove that the ratio of
the cﬂanges of height of the counterpoise to the corresponding ,
changes of height of the barometic column is equal to the
ratio of the interior sectional area of the tube to the annular
sectional area of the tube.

In the barometer (fig. 19) the height of the column is
measured by a scale fixed to a brass rod pointed at the lower
end and whieh can screw up and down.

In taking an observation the point is made just to touch
the mercury in the cistern, and the height of the column is
read off on the scale. .

The only corrections for temperature are then the coefli-

cient of cubical expansion of mercury and the coefficient of
linear expansion of the brass rod which carries the scale.
- Let « (fig. 20) be the depth of the bottom of the baro-
meter tube and z the depth of the surface of the mercury in
the cistern below the level at which the surface would stand
if the barometer tube were removed.

Let % be the height of the barometric column, a the
internal, 4 the annular sectional area of the tube, C' the
internal sectional area of the cistern. '

Then Az +(C—A—a)z=a(k-2),
_ah—Ax -
S Cc-4"

Let W be the weight of the counterpoise, W' of the tube,
o the density of mercury.

The downward force of the air on the top of the tube is
goh (4 +a) and the upward force of the mercury on the
annular bottom of the tube is go (h+2—2) 4.

Therefore the condition of equilibrium of the tube is

goh(A+a)—go(h+x—2) A=W-W',



30 SENATE-HOUSE PROBLEMS [Jan. 5,

therefore W-W'_ ah— A (x—2)
= 0'_—0-'A_ (ak — Ax).
If ', @' be corresponding changes of % and «,
ak’' — Az’ =0;
£ a
therefore oA

6. Define the density and specific gravity of a body and
shew how the specific gravity may be determined by the
hydrostatic balance.

If P, P' be the weights which balance the body when
suspended in air and in water respectively when the absolute
temperature is ¢ and the corrected height of the barometer
is k, prove that the density of the body at the temperature
Tis

Pa, Pb. A T
{1+k(t—T)}(P_P, P—P“Tz'”t)’

where a, is the density of water at the temperature ¢, % is
the coefficient of expansion of the body, and & is the density
of air when the absolute temperature is 7' and the corrected
height of the barometer is H:

The density of a body is measured by the number of -
units of mass in the unit of volume. '

The specific gravity of a body is the ratio of its density to
that of some standard substance, generally water.

Let o be the correction for the buoyancy of the weights
Pand P'in airj v, d, the volume and density of the body
at the temperature . .

The density of the air at the time.of observation is b. g ;
RT

therefore P(1-0)=v,dp—vpb. T
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P'(1-0)=vpdr—v,a,
Pa, Pb AT
pP—_p  pP-P- Ht)

={1+k'(t_T)}('Pa, . P% IzT)

eliminating o, dT_ 2 (

PP T P-P T

vii. State the laws for the reflexion and refraction of a
ray of light at a surface. :

Prove that a pencil of parallel rays of the same refrangi-
bility will consist of parallel rays after reflexion or refraction
at a plane surface.

Two plane vertical mirrors intersect at right angles and
a person looks into the angle formed by them. Prove that,
‘supposing no light can be reflected at the line of Junctxon
of the mirrors, he will see only one eye in the mirrors and
that if he shut either eye the image seen will be that of a
closed eye. .

Let 04, OB {fig. 21) be the mirrors; E, F, the eyes;
B, F their i images after two reflexions in the mirrors.

'E will see F' only and F' will see £’ only, and since EF"
and FE’ are parallel; the two images will be seen in the same
direction, and therefore give the impression to the brain of
only one image. _

If F be shut, E will see the image F" shut, and if £ be
shut, ¥ will see the image E' shut.

viii. Determine the geometrical focus of a pencil of rays
after direct refraction at a spherical refracting surface.

A hollow globe of glass has a speck on its interior surface,
if this be -observed from a point outside the sphere on the
opposite side of the centre, prove that the speck will appear

nearer than it really is by a distance ;’“—_—— 2 provided that

¢t the thickness of the glass is equal to the radius of the
internal cavity and p is the refractive index for the glass.
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Let A be the speck (fig. 22); O the centre of the
sphere; P, P, the foci after the'first and second refractions;
therefore

p _3pu-1

theefore 0P~ a3
AP,=t- 0P,

p—1
—3;4.-1‘&

ix. If a ray of light pass in a principal plane through
a prism denser than the surrounding medium, the deviation
is towards the thicker part of the prism.

Two triangular isosceles prisms are placed with two faces
in contact anguthe refracting edges parallel, prove that the
deviation of a ray which in passing through the combination
in a principal plane is reflected at each base is independent
of the refractive indices of the prisms and of the angle of
incidence.

If ¢ be the refracting angle of an isosceles prism and ¢
the angle of incidence of a ray measured positively towards
the refracting edge of the prism; then if the ray be re-
flected at the base, the angle of emergence will be ¢ and
the deviation towards the refracting edge of the prism will
be ¢+ 2¢. .

If another isosceles prism of refracting angle ¢ be placed
with a face in contact witha face of the first prism, then if
the prisms be related as in fig. 23, ¢ will be the angle of
incidence on the second prism, and the total deviation of the

-

L

- .
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ray towards the refracting edge of the first prism will be
1+2¢—7—-2¢p=2—17".

Bat if the prisms be related as in fig. 24, — ¢ will be the
angle of incidence on the second prism and the total deviation
of the ray will be ¢+ 2¢ +¢'—2¢ =7+ 7.

x. Define the illumination at any point of a surface and
rove that the illumination due to rays proceeding from a
Kright point varies directly as the cosine of the angle of
incidence and inversely as the square of the distance from the
bright point.
Explain how units of brightness and illumination could be
selected and defined.

The unit of brightness is defined by a light which con-
sumes a certain amount of oil or gas in the unit of time; for
instance, the light of a wax candle of certain weight to burn
a certain time.

The unit illumination would be that produced at unit
distance from the light of unit brightness.

xi. Shew how to find the focal length of a system of
lenses of known focal lengths whose axes are coincident and
which are separated by given intervals.

If the lenses be all concave, each of focal length 7, and
such that the interval between the rth and (r+ 1)th lenses
is equal to the distance of the focus after the rth refraction
from the rth lens, and if the original pencil be parallel, prove

1

that the distance of the nth focus from the nth lens is 23_ 1 b2

Let v, v, v, ... v, be the distances of the foci from their
respective lenses, then

1 _1
v, !
i1 1
v 2, f’
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11 _1
v, 20, f!
171 1
v, 2v_, f’ .
1 1 1 1 1
therefore o= 7+2—f+ §7+ + =
1
_1lmF
P
2"f
f =2 J
therefore v,= ity

xii. Describe the Newtonian telescope and find an ex-
pression for the magnifying power.

If the focal length of the reflector be 2 feet and the focal
length of the eye-glass 1 inch, and if the instrument be ‘in
focus for a star to a person who sees most distinctly at a
distance of 6 feet, prove that it requires no readjustment for
a person who sees most distinctly at a distance of 2 feet and
is viewing an object whose distance is 609 yards.

Let F, F' (fig. 25) be the images of the star and object
formed by the first mirror; f, /' the images formed by the
small mirror; g, ¢’ the images formed by the eye-piece.

1 .

therefore AF =3884, FF' = 1d45.
1 1 .
_Also 7 E—g=12., and Eg=6;
therefore Ff=1%, Bf' =34f,
1 1
and V7] =B 12=4%;

therefore - Eg' =2,
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‘WEDNESDAY, Jan. 6,1875. 9 to 12.

Mg. CoCKSHOTT. Roman numbers.
MR. WRIGHT. Arabic numbers.

1. Upron the sides of a triangle ABC as bases are
described three equilateral triangles aBC, 56CA, and cAB,
all upon the same side of their bases as the triangle ABC.
Prove that Aa, Bb, Cc are all equal and pass through a point
which lies on all the three circles circumscribing the equi-
lateral triangles.

If Aa be produced (fig. 26) to meet the circle described
round aBC in P, then £aPC=120" and 2aPB=60"; there-
fore £ BPC=60".

Since £ APec=120°, therefore the circle described round
bCA will pass through P, and 20PC=2bA4C=60". There-
fore BbP is a straight line.

Since £ APB=60°; therefore the circle described round
cAB will pass through P, and 2cPB=,cAB=60". There-
fore ¢CP 1s a straight line. .

In the triangles 4aC and BbC, aC=BC, CA=Cb and
L AaC=LbBC; therefore Aa= Bb.

In the triangles Ba4 and BCec, Ba=BC, BA= Bc and
£ BaA =t BCc; therefore Aa =Ce.

ii. Given the circomscribed and inscribed circles of a
triangle, prove that the centres of the escribed circles lie
on a fixed circle. '

The circle circumscribing the triangle ABC is the nine-
pointic circle of the triangle 4'B’'C’ formed by the centres of
the escribed circles.

If D be the centre of the inscribed circle, and O of the
circumscribed circle of the triangle ABC, then 4', B', C' lie
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on a circle of radius double the radius of the circumscribed

DO =2DO0.

circle and with centre at O’ on DO produced, such that

3. Out of m persons who are sitting in a circle three are
selected at random; prove that the chance that no two of
those selected are sitting next one another is *

(m— 4) (m — 5)
(m—=1) (m—2)"°

If A be the first person selected, the chance B is not next
m—3

m—1" : ,

If A and B be next but one, the chance of which is

2 . .y .
—3 C must not be next either, the chance of which is

m —
1 3 _ m=5
"m—-2 m-2° '
If A and B have at least two people between them, the

him is

-3

chance of which is : , C must not be next either, the

chance of which is
1__4_=m_—_(?.
m—-—2 m-2
Therefore the whole chance is
m-3( 2 m—5 m—5 m—6\ (m—4)(m-25)
m—1 (m—3'm—2 m—3'm—2)'—(m—1)(m—2)°

4. A person has n sewing-machines, each of which requires
one, worker and will yield each day 1t is at work ¢ times
the worker’s wages as nett profits; the machines are never
all in working order at once, and at any time it is equally
likely that 1,2, 3 or any other number of them are out of
repair. The worker's wages must be paid whether there is
a machine for him to work or not. Prove that the most
profitable number of workers to be permanently engaged

. . ng 1
will be the integer nearest to g+1 2"
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Let 2 be the number of workers.

If 1 machine is out of order, the profits are gz,
N P gz,

M= & eevrrrverrnnneenrrrineiuiernrisersroreniesnaes g,
n—z+1 ..... ferereeenttiianteiiiiaeaietierinerarerines q(z—-1)-1,
R—2+2 ceerrnirrerrirnieiineniiiiiiiiienieieesees q(x—2)-2,

e e q—(x-1),

T eeerrrnienniinnieneriirierisraaeaierieeanees -z

Therefore the average profit is

91_z {(n—-w) go+ qx (a;— 1) x(z2+ l)}

g2ty g+
O
q

_g+1(/ng IV ng | 1\?
- 2n {(q+l_§)—(x—g+l+§)}’

which is a maximum when x=q—1q—i'- %, or the integer

nearest to this.

5. The unique solution of the equations

xy ~ 2* xy —2'
-2 y—2 :
L _2_ A
a e b & —ab
x Y z a+b

From the equations

2 - 2
z_2-Y .4 z(x—y)+22 =y(y x) + 22 ,
c a—b a b
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therefore \ \
2 (@-3) +2¢ (2=4) y(y—m)-r?c’(:—:—;%)
a = b ’
x —y =0 would require a —56=0; therefore
z(a—b)'+2(x~y) _—yla-b]+2¢ (z—y) .

a b
therefore
x _ y Ty z
a(@-b)+2" b(b—a)+2" &' —=b c(a+b)’
z 2wy
and ¢ c—ab
_2 ¢ (a+b)' +ab(a—b)"—2¢ (a—b)" —4c*
T (a+8)*(c* — ab)
=2 (= +4d
- 'cu d (a+b)2 )
therefore 2. atb

@+t  (a—b)+4ac"

6. If A', B', C' be any points on the sides of the triangle
ABC, prove 'that AB'.BC. 8 '+B'C.C"A.= A'B the area of
the triangle 4'B'C" x twice the diameter of the circle cir-
cumscribing the triangle ABC.
AB'.BC'.CA'+ B'C.C'A.A'B
=AB'.BC'.CA'+(CA- AB')(AB— BC')(BC-C4)
=BC.CA.AB-BC.C'A.AB'-CA.A'B.BC'-AB.B'C.C4'
=4R (0 ABC—-0AB'C'-0BC'A'-sCA'B’)
=4R.0AB'C'. '

vii. I @=2 cos(B~ )+ cos(6 +a) + cos (6 — )
=2 cos(y—a)+ cos(f + B) + cos (6 — B)
=—2 cos(a—B) — cos (6 +.) — cos(0 —v),
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prove that z=sin"6, provided that the difference between

any two of ‘the angles a, 8, v, neither vanishes nor equals a
multiple of 7.

cosf (cosa + cosy) =— cos(B—1) "008(@—5) H

therefore cos @ cos %17 =— cos( - %1) ,

) cos 8 cos

B;'y:—cos(a——ﬁ—%—'-y);

.

therefore

aty ( /i+'y) B+ ( a+'v).
cos— — co8 (a g ) =008 —— cos| B —5 )3

therefore
a— L8
cos ( 3

therefore 2 sin =

8a-8 _ a—RB . a—38
_7>+cos—2——cos( D) +'y)+cos 3 3

i siny =2 sin(a— 8) sinagﬁ;

N
therefore, provided sin 3

a-B . a
5 sin )

B is not zero,

siny =2 cos B=sina+sin,8;

therefore cosf =—cos8—sinf tan a:;j

=— cosB — (sina — sinry) tan +7

= —cosa— cos3 + cosy;
therefore =2 cos (8 —1«)+ 2 cosa (— cosa — cos B +cosry)
=2 cosf cosy +sin’ B + sin’y —sina
—2 cos’a— 2 cosa cosB+ 2 cosa cosy
=1—(— cosa — cos B + cosy)*
=1 — cos’d = sin"f.
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viii. A circle and parabola touch one another at both
ends of a double ordinate to the parabola, prove that the
latus rectum is a third proportional to the parts into which
the abscissa of the points of contact is divided by the circle
either internally or externally.

(fig. 27) PN*=MN.NM'
= MN(2NG + MN) = MN (448 + MN);

therefore ~ 448.AN=MN(44A8+ MN);

therefore 4AS.AM= MN?.
So also, 4A8.AN=NM'(NM'-448);
therefore 4A8.AM = NM"*,

9. Inscribe in a given parabola a triangle having its sides
parallel to those of a given triangle. )

LemmA. If from a point 4 (fig. 28) two straight lines
AbB, AcC be drawn meeting a conic in b, B; ¢, C; and
BB', CC' be drawn parallel respectively to AcC, 4bB in-
tersecting in P and meeting the conic in B’, C'; then B'C’
is parallel to bc. -

4b.AB PC.PC’

For 4c.4C ~ PB.PB"
and - AB=PC, AC=PB;
: 4b PO’
therefore A = PBS

and therefore bc is parallel to B'C'. )
If A lie on the conic, then B'C’ is parallel to the tangent
at 4. )

Let 4, B, C (fig. 29) be the points of contact of the
tangents to any conic parallel to the sides of the given
triangle, and let A4’ be drawn parallel to BC to meet the
conic again in A', BB’ parallel to C4 to meet the conic in
B, and CC' parallel to 4B to meet the conic in C'.
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Then A'B' ¢ will be the required triang‘lae.
{In the same mauner a pelygon may be inscribed in any
conic having its sides parallel to the sides of a given polygon).

%. Two given ellipses in the same plane have a common
focus, and one revolves about the common focus, while the
other remains fixed; prove that the locus of the point of
intersection of their common tangents is a circle.

Let S, be the common focus of the two ellipses (fig. 30),
H the other focus of the fixed ellipse, K of the revolving
el]i;i'ae, b, b’ the semi-minor axes.

et 7" be the point of intersection of the common tangents,
and draw the perpendiculars SY, 8Y', HZ, HZ'\ KW, KW'
on the common tangents.

Then SY.HZ=0%" and SY.KW=10",

HZ ¥
and therefore W=
HZ v HZ

So also, KW =5~ KW

and therefore HK T is a straight line, and
"HT _ ¥
KT *°
But the locus of K is a circle, therefore the locus of 7'
is a circle. '

11. Two elastic strings are fastened at a fixed point P
and pass through fixed smooth rings 4 and B such that-
PA, PB are the natural lengths of the respective strings;
the other ends of the strings are fastened to C and D two
points of a rigid lamina whi(ﬁ? is moveable in its plane about
a fixed point O. If 4 and B are in the same plane as the
lamina and if the angles COA4, DOB are supplementary,
and the system is in equilibrium, prove that the equilibrium
will be neutral. g

G
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Let A, A' be the moduli of elasticity of the strings; then
the condition of equilibrium is (fig. 31)

AC , BD
A p-OH=X 5, OK,
A _AP BD OK AP OB DN
N BP AC ' OH BP 04 CM
AP OB 0D
“BP 04 00’

which is independent of the position of the body, and there-
fore if there is equilibrium in one position there is equilibrium
in all positions.

xii. A beam AB lies horizontally upon two others at
points 4 and C, prove that the least horizontal force applied
at B in a direction perpendicular to B4 which is able to move
b—a uW
2a—5 ™ 5

the beam is the less of the two forces u W 20— 5 ,

where AB=2a, AC=25b, W is the weight of the beam, and
p 18 the coefficient of friction.
pWa

The maximum friction at C is 5

, and at A is
w
L‘b—(b-a).

(i) If Cis fixed, the friction at 4 is perpendicular to B4,
and if P be the force applied at B,

b—a
P=p W2a -5’
b—a b-a
and force at C =,4W(2a__b + T) ,
which is less than the maximum friction if
a_2a(b—a) 4a

5> 5@a=8) <3
(1) If 4 is fixed, P= 8—211—’, and force at A=u W 2_(%;‘-1)

?
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- . .. .b—a_2-—b
which is less than.the maximum friction if %—q > a2b s

4a
b>'§.

(i) Ifo= %(_z , slipping begins at both points and P= "%V .
P must obvioixslry be applied perpendicularly to the rod,

to be a minimum.

xiil. A bucket and a counterpoise, connected by a string
passing over a pulley, just balance one another, and an
elastic ball is dropped into the centre of the bucket from a
distance % above 1t; find the time that elapses before the
ball ceases to rebound, and prove that the whole descent of

. . .. 4mh e
the bucket during this interval is Mrm m,where m,
M are the masses of the ball and the bucket, and e is the
coefficient of restitution.

Let- v be the velocity of the ball just before the first
impact. ,

The relative velocity after the first impact is ev, and the
relative acceleration is g, since the acceleration of the bucket
is zero.

Therefore the time during which the ball rebounds is

B gg ) =2 e f(H).
g(e+e+e+...—lg.1_e 2\/9 1=e

Let V,, V,, V,... be the velocities of the bucket during
the intervals between the first, second, third, ... impacts.

_m(l+e)

Then V'—2M+m'v’
_pamii+)
V*_V‘+2M+m .ev,
A A L

STt oM m
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and the apace described by the bucket is

_ 2me v Admh e
T (@Mym)(1-ef g 2M4m  [1-¢e*

xiv. A particle is projected from the foot of an inclined
plane and returns to the point of projection after several
rebounds one of which is perpendicular to the inclined plane:
if it takes r more leaps 1n coming down than in going up,
prove that cota cotf = 2/ _(:l;)i,(l =€) , where a is the
inclination of the plane, 6 the angle between the direction
of p{}'{’)jection and the plane, and e the coefficient of restitution.

hat is the condition that it may be possible to project

the particle so that one of its impacts may be perpendicular
to the plane?

Let n be the number of leaps going up and n+ 7 the

number coming down the plane, and v the velocity of pro-
jection.

Considering the motion perpendicular to the J)iane, the

times occupied by the leaps are 2v sin , 2ev sin y +oey and
i eosa ' g cosa

considering the motion parallel to the plane, since the n*™

impact is perpendicular to the plare, the time occupied by

. 0 . . .
the first n leaps is 2 (:i):a , and the time of coming down is

equal to the time of going up; therefore
vcosf 2vsinf
g sina g cosa

(t+et+e+...+€7)

2v sinf
= g—é%lg; (€ +e +.t ™)
therefore : 1-2¢"+€™ =0 vccourirriennnnnns 1);
. . " 1- 1- r
therefore € =—«/(,—_e—)

é ’
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the negative sign being taken to the radical because e<1;
therefore )
2 /(1—¢)-2(1—¢)
(1-e)e€ )
The condition that it may be possible to project the par-
ticle so that one of its impacts may be perpendicular to the

plane is that the equation (1) should give an integral value
of n for an integral value of ».

cota cotf =

15. If in BA, CA two sides of a triangle 4BC two points
D, E be taken respectively, such that B4 : AC:: EA: AD
and G the middle point of DE be joined to 4, and if BH,
CK be constructed in the same way as 4G, shew that
AG, BH, CK intersect in a fixed point O.

Prove also that if from O perpendiculars be drawn to
the sides of the triangle the sum of their squares is less than -
the sum of the squares of the perpendiculars from any other
point.

If GQ, GR (fig. 32) be drawn perpendicular to C4, 4B,
GQ:GQR:: AD: AE:: CA: 4B,
and therefore at O
OL:0OM:ON:: BC:CA: AB,
if OL, OM, ON be the perpendiculars on the sides of the
triangle ABC. :
(DE is parallel to the tangent at 4 to the circumscribing

circle and may. be called an anti-rara.llel to BC, and O may
be called the centre of anti-parallels.)

If =, y, z be the perpendiculars on the sides of the
triangle ABC and q, 3, c the sides,
. (a+ 8"+ ") (@ + y* + 2°) = (ax + by + c2)*

+ (b2 —cy)* + (cz — az)" + (ay — b2)*, .

a minimum when

z:y:z:tatb:ec,

since ax+ by +cz is constant, being double the area of the
triangle ABC. '
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xvi. A body is describing an ellipse about a centre of
force in the focus, and when its radius vector is half the
latus rectum it receives a blow which causes it to move
towards the other focus with a momentum tqual to that of

the blow ; find the position of the axis of the new orbit
2

—e .
, Where e is the

and shew that its eccentricity is 1

" eccentricity of the original orbit.

Let L@, LR (fig. 33) represent the velocities of the body
before and after the blow, then QR represents the velocity
generated by the blow, and therefore QR=LR, and QR
18 parallel to LS. .

The blow is therefore towards the centre of force and the
latus-rectum is unaltered in magnitude.

Hence SL being a radius vector of the new orbit equal
to half the latus-rectum coincides with the latus-rectum in
position.

* LS’ being the tangent to the new orbit, S’ is the foot -
of the directrix, and the eccentricity is

SL_1-¢
S8 2 °

17. A cone floats in liquid which fills a fixed conical
shell: both the cone and the shell have their axes vertical
and vertices downwards: the vertical angles of the cone
and shell are equal and the axis of the shell is twice that
of the cone. I(} the cone be pressed ‘down until its vertex
very nearly reaches the vertex of the shell, so that some
of the liquid overflows, and then released, it is found that
the cone rises until it is just wholly out of the liquid and
then begins to fall. Prove that the densities of the cone
and the liquid are in the ratio 45— 21 ¥(7) : 4 ¥/(7), the free
surface of the liquid being supposed to remain horizontal
throughout the motion.

In the two positions in which the velocity of the cone
is zero, the heights of the centre of gravity of the cone.and
liquid are equal.
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Let p be the density of the liquid, o of the cone, %
the height of the cone; in the second position the height
of the surface of the liquid is ¥/(7) %; therefore :

8mh’® ‘

§.2h. -7

tan’a.p — 4.k. "—: tan'a (p — o)

’ 3 3
=3.¥M A T tantap+ (YD) + P2 Ty tan'a.o;
therefore {45-21%(1)}p=4 (7)o

xviii. A ‘conical cup of uniform thickness-floats in water,
with its axis inclined to the vertical at an angle 6 and the
fraction m of the axis below the level of the surface of
8 sin’a

- the water; prove that cos’d= §—om

, where 2a is the

vertical angle of the cone.

Let G (fig. 34) be the centre of inertia of the conical
—cup, H of the water displaced; then GH is vertical. Let
AD="h, then AE=mh, AG = }h.

\ F.N=§k sin0=§FR=§ (FP-I- FQ)

_ mh cosf {tan(6 —a) + tan (0 + a)} ;

8
16 . cos sin20
therefore o, in 0= ol —sn'a’
therefore 8 (cos’ @ — sin*a) = 9m cos*d.

19. Bstands in front of a plane vertical mirror, find the
position that A must take in order to see B’s profile directly
and B’s full face by reflection at the mirror; determine in
what cases no such position exists. If B without changing
his station turn on a vertical axis, prove that the locus of 4
will be a rectangular hyperbola whose vertices are B and
the image of B in the mirror.

If B’ be the image of B (fig. 35), then if € be the point
of the mirror towards which B is looking, the angle 4BC
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must be a right angle. The angle CBB' must therefore
be less than half a right angle. -

Draw AN perpendicular to BB, then the triangles ABN
and AB'N are similar; therefore AN*=BN.B'N, and the
locus of A4 is a rectangular hyperbola with its vertices at
B and B’

xx. A hollow acute-angled triangular prism, whose ends
are perpendicular to its axis, is capable of reflecting light
at its inner surfaces; if it is placed with one face on a
horizontal table and a small pencil of light is admitted
through a hole in one face immediately opposite an edge so
as to be incident upon the bottem face directly under the
top edge, prove that the axis of the pencil will emerge at
the hole after five reflections at the faces and one at each
end of the prism if the direction of first incidence makes
with the axis of the prism an angle

© . saco8d+bcosB+ccosC
tan - 7 ,

where ABC is a transverse section and [ the length of the
prism.

The course of the light is the same as that of a perfectly
elastic ball.

The projections of the path on a transverse section ABC
pezpendicular to the axis of the prism must be the triangle
DEF, where D, E, F are the feet of the perpendiculars from
4, B, Con BC, CA, AB.

The projection of the ball will describe the perimeter of
DEF twice while the ball moves once up and down the

rism.
d Therefore the ratio of the velocities perpendicular and
parallel to the axis of the prism

_ 2 perimeter of the triangle DEF
- 2 length of the prism

_a cos 4 +b cos B+ ¢ cosC
= 7 .




( 9)

‘WEDNESPAY, Jan. 6,1875. 1 to 4.

Mr. Gnﬁnnnn.t.. Arabic numbers.
MR. FREEMAN. Roman numbers.

1. STATE and prove Newton’s first lemma. :

Prove that the quadrilateral of maxjmpm area that can be
formed with four straight lines 4B, BC, CD, DA of given
‘dengths is such that a circle can be described about it. Hence,
prove that the curve of given length which on a given chord
encloses a maximum area is an arc of a circle.

Let AD, BC (fig. 36) intersect in 0. Keeping 4B fixed
displace C to C' and D to D'; O is the instantaneous centre
of CD.

The area being a maximum ABCD=ABC'D to the
first order and ODC= 0D'C’ to the same order.

Therefore 8 AB0=ABC'0OD,
1o A0D

sBOC
04.0D
0B.0C'

and therefore a circle can be described about 4 BCD.
If BC, CD, DA be replaced by any number of straight

=1, and since £ A40D'=, BOC',

I =1, 04.0D=0B.0C,

lines BC, CD, ... KA, a successive apl)llcation of the method.

will prove that the area enclosed will be o maximum when

the angular Eoints of the polygon lie on a circle; and pro-

ceeding to the limit when the number of the sides is in-
definitely increased, the curve of given length, which encloses
the maximum axea, will be the arc of a circle.

H
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2. State and prove the eleventh lemma.

_If OP, OQ be the tangents to a small arc PQ of con-
tinued curvature, prove by Newton’s method that the ratio
OP+0Q - arc PQ : arc PQ — chord PQ tends to the limit
2 : 1 as the arc PQ is indefinitely diminished.

Let the involute PB (fig. 37) of the arc PQ be drawn
meeting 0@ in B, and PN be drawn perpendicular to 0@
to meet it in N, and let the tangent P7' to the involute
meet OQ in 12‘1}” - r

Then It TB.TQ =2, and therefore ¢ i =4lt —T?;=4
diameter of curvature at .P of arc PQ.

IB_,
BN ™
If the circular arc PA be described with centre O, and

" Since IB varies as T'P#, therefore It gﬁr: $,orlt

. TN AN
the arc PC with centre @, then It 74 =25 It oN= 2%
. TA A AB
and ‘therefore It N =25 therefore Bo =2 or

it OP+0Q —arc PQ : arc PQ —chord PQ=2: 1.

3. A body moves in a plane curve and the radius drawn
to it from a point in the Flane which is either fixed or moves
uniformly in a straight line describes areas about the point
proportional to the time. Prove that the body is acted on
by a force tending to the point.

If a body moves in a conic section so that the resolved
part of the velocity perpendicular to the focal distance is
constant, the force tends to the centre of the conic section.

Let v be the yelocity at the point P (figs. 38, 39). .
The resolved part of the velocity perpendicular to the’
focal distance

__8Z__ 87 _SZ:+82__ CY
=v-gp="?

SP- ' 8P:isP -V 4"

Therefore v.CY is constant, and the force tends to C.
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4. Find an expression for the law of force under which a
body will describe a given orbit about a centre of force.

f S be the centre of force and SY the perpendicular on
the tangent at a point P of the qrbit, prove that the accelera-
tion at P is equal to the product of the velocities of Pand Y
divided by SY.

Let SV represenf the velocity at P (fig. 40), SV. 8Y is
constant.
Then if T be the time the body takes to move frem P to
P, the acceleration at P
44 vv' YY' 8V ,YY'
=l d =1t Vo i i B—Y—.Zt———T
= product of the velocitics of P and Y divided by SY.

5. A body describes an orbit under the action of a force
tending to and varying as the distance from a fixed point,
prove that the orbit is an ellipse, and shew from elementary
considerations, that the periodic time is the same for all
circumstances of projection.

A number oF bodies which describe ellipses about the
centre of force as centre in the same periodic time, are pro-
- jected from a given point with a given velocity in different
directions in a plane. Prove that their paths will all touch
a fixed ellipse with the given point as focus.

If C (fig. 41) be the centre of force, P the point of pro-
jection, since the velocity at .P and the periodic time are
constant, therefore CD the diameter conjugate to CP is
constant.

If the tangent at @ be at right angles to the tangent at
P and intersect it in Y, then CY*=CP*+CD" is constant.

QV the normal at @ is an ordinate of the diameter PP’,
and therefore bisects the angle PQP'.

" Therefore PQ+QP' =2CY, and therefore the locus of Q
is an ellipse with foci P, P, and all the orbits will touch this
ellipse.

Compare the Rider to ix, Monday morning, Jan. 4.



52 SENATE-HOUSE PROBLEMS  ° [Jan. 6,

6. A body describes an ellipse about a centre of force in
the focus, find the law of force. '

If 8 be the centre of force, 4 the nearer apse, P the body,
and a small impulse which generates the velocity 7" act on the
body at right angles to SP, prove that the change in the
direction of the apse line is given approximately by

4 (g +cosASP) SP sin ASP,
h \e

where e is the excentricity of the erbit and % twice the rate of
description of area about S.

Let the normal at P (fig. 42) meet the apse line in @G,
and let GL be drawn perpendicular to §P.

The radial velocity being unaltered by the impulse, if
PHyg be the new normal and GH be drawn parallel to PL to
meet PHg in H, then

GH T _T.8P
PL ~ transverse velocity 4
If Sy be the new apse lire, and gl be drawn perpendi-

cular to 8P, then PL being the old and P! the new semi-
latus-rectum

Pl (k+ T.SP)’ Ll 2T.8P
)

PLT\" % PL™ &
néglecting 77 ; therefore Ll=2GH.
Let L ASP=6, L 8PG =+,
SG sinyr e sinf Ll GH

BP = sim(6—y) ~ = 080 ? gH=3 cosyr  cosy”
The change of direction of the apse line
=tG8=tGSH+ L HSy
= gg {sin0+ glrgg—?_xlr_)} ult.
_T.PL 2 8inf@ + e sin 6 cosd
T eh 1+e cosd

-~ _r (3 + coso) SP sin.
h \e

T

-
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vii. Shew how to determine the meridian and latitude of
a place by observations made with an altazimuth on a cir-
cumpolar star.

In north latitude 45° the greatest azimuth attained by
one of the circumpolar stars is 45° from the north point of
the horizon. Prove that the star’s polar distance is 30°.

Let ¢ be the star (fig. 43) when its azimuth NZu is
greatest and equal to 45°. ‘

Let Po produced meet the prime vertical, horizon, and
meridian in 7, § p respectively. Then ¢ is the pole of
op, hence o =90"={u; but uN=45°, hence S¢=45°, and
Sp = 45°, therefore {Sp is isosceles and angle &S;p =90°, there-
fore if Sv be drawn perpendicular fo {p it will bisect it and
the angle at S. .

Hence the three right-angled triangles PZs, &Sv, pSv
have the same hypothenuse, and one angle the same (45°), and
are therefore in other respects equal.

Therefore Po =t =vp.
But Pp=180" and {o =90
Therefore Ps =30

It may be proved also, that in this position the star’s
altitude ou is equal to its hour angle e PZ.

viil. Describe the arrangement of the axes of motion and
graduated circles of an equatorial telescope, and state the
errors of adjustment to which it is liable.

If the telescope be fitted with a divided object-glass, shew
how to measure by it the distance between fhe cusps of the
partially eclipsed sun and the rate at which that distance
1ncreases. '

Determine previously the reading of the micrometer head
which moves one-half of the object glass, for the position
when the twe images coincide, and the value of one revolu-
tion of the screw.

Open out the two halves of the object glass, and turn the
cell which contains them about the collimation axis of the
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telescope, until the four cusps of the two images are in one
line; superpose the upper cusp of one image on the lower
cusp of the other, and note the reading of the micrometer
head and also the time. The difference of the reading from
the reading for coincidence of images will give the distance
between the cusps.

Next open out the two halves still further through any.
arbitrary number of revolutions of the screw, and, if the
eclipse is not central, continue to turn the object glass cell so
as to keep the four cusps in one line, and note the instant
when the two cusps formerly superposed again coincide.
_ Divide the arbitrary number of revolutions by the number of
. seconds between the observations, and multiply by the value
of one revolution to obtain the rate of increase of the cuspidal
distance.

ix. Explain the annual course of changes in the length
of the day at places in mean latitude, on the arctic circle,
and on the equator.

Prove that at a place on the arctic circle the daily dis-
placement of the point of sunset is equal to the sun’s change
in longitude during the same interval.

- In fig. 44, NESW are the.cardinal points of the horizon

of a place on the arctic circle.

E=WT is the position of the equator, and 7O = ‘the
position of the ecliptic when the sun © is setting.

Now, the co-latitude of a plane on the arctic circle is equal
to the obliquity of the ecliptic.

Hence the angle 0T W is equal to the angle T Wo.

Therefore Wo =70, or the sun’s distance from the west
point of the horizon at sunset is equal to the sun’s longitude,
and therefore the daily displacement of the point of sunset is
equal to the sun’s change in longitude since the sunset.

"x. Explain how mean time and apparent time -are
reckoned. . Define equation of time, and prove that it vanishes
four times a-year. "

A clock at Cambridge keeps Greenwich mean time;
what time did it indicate when the sun’s preceding limb
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arrived at our meridian to-day? Longitude 22¢75 E.; sun’s
semi-diameter passed wmeridian in 1™ 1062 ; equation of time
6™ 2°-88.

On the 6th of January, the equation of time must be
added to apparent time to obtain mean time.

When the sun’s preceding limb crossed the meridian, the
apparent time at Cambridge was

128 — 1™ 10%62 = 11® 58™ 49°3.8.
Add to this 6™ 2*88 to obtain Cambridge mean time, and

subtract 22575 to obtain Greenwich mean time.
Result 12 4m 29851,

xi. Account for the error of aberration in the observed
position (1) of a star, (2) of a planet; and prove that all stars
are displaced by aberration towards the same: point on the
ecliptic. 'When has a planet no aberration?

he velocity of Venus is to that of the Earth as 47 : 40.
Determine the aberration of Venus at inferior and superior
conjunction, the constant of aberration for a star being 20"44.

A planet has no aberration when it is stationary.

Assuming Venus te move in the plane of the ecliptic, the
velocity of %’enus relative to jthe Earth at superior conjunc-
tion is §F, and at inferior conjunction 7 of the KEarth’s
velocity. Hence the aberration of Venus at those times is
+44"46 and — 358 respectively.

xii. Explain the phenomena presented by a satellite of
Jupiter to an observer on the Earth. When will the eclipses
be best seen? State the influence of the phase of Jupiter on
the times of beginning and ending of the transits and shadow-
passages of a satellite. Shew that the effect is small.

On May 19th, 1874, at 1 p.M. Jupiter was stationary.
Near that time the following succession of phenomena oc-
curred with the first satellite.

Transit Ingress | 18a 6° 84™ | 20¢ 1 1™
Shadow Ingress | 184 72 43™ | 20% 2B 12m
Transit Egress | 187 82 51™ | 20% 3" 18m
Shadow Kgress | 184 9" 59= | 209 4> 28m,
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Find the periods of the sidereal and synodic revolutions of
this satellite, and the Jovicentric elongation of the Earth
from the Sun when Jupiter was stationary.

‘When Jupiter is in quadrature with the Sun, the points of
immersion and emersion of the satellite in the shadow of the
planet are least likely to be concealed by the disc of the
planet.

. Transits of satellites are referred to the line joining the
centres of the Earth and Jupiter.

When part of Jupiter’s disc visible to the Earth is not
illuminatedp by the Sun, the exact time of the beginning or
ending of a transit cannot be noted, but only the contacts
with the boundaries of the wisible illuminated portion. The
ingress may be retarded or the egress accelerated.

Passages of the shadow are referred to the line joining
the centres of the Sun and Jupiter.

When part of Jupiter’s illuminated hemisphere is not
visible to the Earth, the whole shadow passage cannot be
observed, the ingress may be retarded or the egress acce-
lerated. '

On account of the great distance of Jupiter from the Earth

and Sun, the phase is small and its effect inconsiderable.

Middle of first trdnsit 18% 7h 42m:5
»  second , 208 2b 9m5
Difference . 1918, 27=
This is the sidereal revolution of the satellite, for Jupiter is
stationary.
Middle of first shadow passage 184 8k 51m
” second - 204 3h 20™
Difference . 1% 18k 29™
This is the synodical revolution of the satellite with respect to
the Sun. . .
Interval between middle of first transit} .,
and first shadow passage .............. '
Interval between middle of second
transit and second shadow passage...

Mean interval . 1Pt 9m5

8m-5

12 10™5
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Hence the angle of elongation of the Earth and Sun, seen from
Jupiter when he was stationary, is equal to
1 9™5

14185 298 360° = 9°49’ nearly.
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THURSDAY, Jan. 7,1875. 9 to 12.

Pror. TAIT. Roman numbers.
MR. FREEMAN. Arabic numbers.

1. Ir P, be the numerator of the ™ convergent to the
continued fraction whose quotienta are ¢,, ¢,...¢,, and if
P’ be the numerator of the 2 convergent to the fractlon
whose quotients are ¢,, ¢,_,...q,; prove that

P=P P'+P_ P, =P.

n—r=1" r-1

“Assuming that

and that n is the number of the recurring quotients g,
P
q,-24, 1f Z be the n® and 2nth convergents to 4/,
prove that Qm = 22}"’" Q,and P, =2P%4 (—1)™
For the rider, it is convenient to assume the following
notation, which is employed in a tract on The Expression

of a Quadratic Surd as a Continued Fraction, by Thomas
Muir, M.A., Glasgow, 1874.

Let K (abc l) denote the numerator of the last con-
vergent to the continued fraction a+ bl+ 1+ ..5 regarded
as the result of an operatlon on the quotients a,'b c...l

Then if — be the ™ convergent to the continued fraction
which express:as v (N),
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P, _K(49,4,9)

Q" K(gl"gl)

P, _ K(4g, q,24q.9)
Qin K(ql..2A_.ql)

_ K4, 9,6,-924).K (g,-9) + K(Ag,9,9,)- K (9,9 0 (5
K(QIQQ"gl2A) ’A (gl"ql) + I{(%"gl)'li (gl”qa) . ’

(24.K(Aq,.q) + K(Ag,-.q,)} K (9,-9,) + K (Ag,..q,). K (¢,-9,)
K (g,q,) {24.K (g,.q9,) + 2K (¢,-4,)} :
= {A'K(Ag]"?l)"'K(Aql"93)}K(QI“QI)+K(A 91'-9,){A'K(%"%)"‘K(ql"%)}
. ' 2K (Ql"gl) 'K(AQw%)
= K(Agl“%A)‘K (91'41) + K(A%"ql)’ .
2K (gl"gl) 'K(A91"gl) I
Therefore,

%—5—%"'—0" =K (4g,...q,)" - K (4g,...9,4).K (g,---))
O teeeesernracnens (v).

Now, if we consider the continued fraction whose quotients
are 4, ¢,y ¢, 9y ?-1, 4, in number n+ 1, and take the
difference of the two last convergents,

K(4g,...q) _K(4¢,...9,4) _ (-1°

K(Ql"'Ql) K(glgl'A) B K(gl"'%) 'K(gl"'gl'A) ’
we see that () becomes

‘Pn' Q‘m - PMQn = (— l)uQn'

2. Prove that one of the values of )
log {1+ o828 + /(- 1) sin26} is log (2 cosf) + 6 v/(- 1),

when @ is between —g and +% .

Deduce Gregory’s series for the expansion of @ in terms
of tan@.
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Prove also that one of the values of
sin™ {cosf +4/(— 1) sinf}
is cos™ 4/(sin @) + 4/(— 1) log {/(sin ) + /(1 + sin )}

when 6 is between 0 and _';_r .

If '=-1,
log(1 + cos26 + % sin26) = § log (4 cos'd) + (nm + 6) <,
and log (1 + cos28 + ¢ sin26)

=log(2 cos’d) +log (1 + ¢ tanb),

expanding log(1+¢ tan 0), and equating the coefficients of ¢,
we have éregory’s Series

nm+ @=tanf—} tan®0 +...,

where nar + 0 lies between — 7—; and + ;—r .

If we assume
sin™ (cos 6 + ¢ sinf) = & + B¢,
fief eB—-eh

2 +1 cosa g 1

. LA L
c030=smaeﬂ;e " sm0=oosaeﬂze 1

e cos(OTa) , P cos(04.-a) :
cosa sina cosa sina

co8f + ¢ sinf =sina

cos’a sin*a = cos* @ — sin*ay,
sina=1¢siné.
If 6 lies between 0 and %r ’

sina=14/(1 —sinf), cosa=4/(sin@), &8 =/(sinf) + +/(1 + siné).
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3. Prove that the equation to the circle which cuts at
right angles three circles whose equations are given in the
form (x—a)’+ (y—0") =c"is

@+y, =y 1
a:’+bx’_cl” LY bn 1 =0.
a’'+d'—c’ a, b, 1
a,"+bs’—c:, Ay ba) 1

Prove that the diameter of the circle which cuts at right

angles the three escribed circles of the triangle 4BC is

a

oA (L+cosBcosC+cosCeosd +cosd cos B),

The condition that the circle
+y' —2ax-2by+a’+bh’—c’=0,
should cut at right angles the circle
' +y' —2az— 2y +a'+8 —c'=0
may be written
a’+d*—c'— 2aa,—2bb,+a* +b'— ' =0,

eliminating a, b, and a® + §* — ¢', we have the required result.

In the rider take as axes of # and y the exterior and
interior bisectors of the angle 4; let a, (3, v be the centres
of the escribed circles, and 7, 7, 7, their radii, and D the
diameter of the circumscribing circle

. 4 B
7,=2D sin 5 085 C08 5y

A . B C B.C
AB:r,sec§=2Dsm§ cos 5 A'y—2Dcos§ sin- .

B B C
Aa=AB cot—2- =2D cos 5 €08 .
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B
Hence  a,=0, b,=2D cos 3 cosg a
c are the
a,=—2D sin g c08 5, 5,=0 coor«iif{layes B,
B .
as=2Dcos—2— snng, b,=0 v
4
and a’+b’—r'=4D" cos’ cos"—]—g cos’ ¢ ,
2 2 2
N c
a’+b}—r!=4D" sin’ 7 sin’ 3 085,

., 4 B .,C
a'+b'—r'=4D" sin’ 7 cos’ 3 sin” -,
if then the equation to the orthotomic circle be \

K (2*+y")=Pr+Qy+ R,

the square of the diameter = (%) + (%) + é]? , and

K=4D* cos‘—;1 cosgcosg

2 2
P ., 4 . B-C
E=2Dsm‘—2 sin ——,

- cos D cos g
3 cos 5 cos;) ,
B, . P |

X,—D gin B sin C sin 39

whence the result.

Q ( |
I_;’_2p sin -2—cos

4. Prove the relation ¢ (x) — ¢ (0) =2¢' (6x), where 6
is a proper fraction, stating the conditions subject to which
- it is true.

Hence deduce Maclaurin’s Theorem for the expansion of
- f() in ascending powers of .
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Prove that, when « is between —g and + ;f )
1 1 1 o T (T,
T COSx — 3 ms§x+-5; cosbx —... to infinity =3 (—4——.7: ) .

Assuming the form of the expansion of Maclaurin’s series

xn+l

S(@)=£(0) + zf (0) +...+ £”f" () + 31 R,
where B =f"" () +0 f" ** () + ... is a function of a.
Let $19mF) 10~ -2 1

then ¢ (2)= (””L) (R—f™ (z}

(z—2)

and ¢ (z) =0, ¢ (0)=0; therefore ¢> (0.:) 0, and therefore

B=f""(6x). N
cosx cos3x
It f((b)— 13_—_33 +"'7
" cosx  cos3x .
frla)== +=3

m™
f...—— Z )

for all values of = between —-;L and 7—;, and therefore
. 2
™

f (0:1:):—7—1; also f'(0)=0; therefore f(x)=F(0 )—~8—,
andf( ) 0, thereforef( )= 2,andf(a:) %(T—z)

v. Solve the equation '

C’ga"-l'2](7C—Zﬁ'-'l-')'l“.‘t,'= O,

k being essentially positive. Point out the effect of the
relative magnitudes of .k and » upon the form of the ex-
pression for .

[n+1 77
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Give a graphical representation of the relation between
z and ¢ when £ <n. .

[Maxwell’s Electricity, §731. Thomson and Tait’s Ele-
ments of Natural Philosophy, §295].

vi. Form the equations for the equilibrium of a flexible
elastic string, of uniform material, under the influence of
any system of forces; supposing Hooke’s Law to hold for
all amounts of extension.

Let one end be fixed to the rim of a wheel, sufficiently
rough to prevent slipping, and let the other be attached
to a mass resting on the ground, so that when the string
(of length @) is just taut it shall be vertical. Show that
the work which must be spent in turning the wheel so as
just to lift the mass off the ground is

Mqafl-Ea logE%Mq,

where E is the tension which would double the length of
the string, neglecting the weight of the string.

At any stage of the operation let & be the unstretched
lenei‘th of the part already wound on the wheel.
' hen the tension, by Hooke’s law, is

E®= (a—2)
a—-x
Under this tension the stretched length of dr is aafxm ,

and the work done in winding it on is the product of these
quantities, or
dW=Ea a—(a-a) de !
(a==) "

This is to be integrated from 7I'=0 to T'=Mg, or from

=0 to = _Hga , Whence the result.

E+ Mg
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vii. Explain how Carnot’s idea of reversible cycles of
operation has rendered an absolute. definition of temperature
possible. :

Define the intrinsic energy of a substance; and calling
it F, explain fully the physical signification of the quantity
¢ defined by the equation '

dE = pdv + Jid.

By the help of this equation find the value of ¢ in'terms
" of v and ¢ for the ideal perfect gas.

[Tait’s Thermodynamics, § 26, 204, 186, 198].

8. Two parallel plane conducting surfaces infinite in
extent are at a given distance, and contain a known quantity
of electricity on each unit area of their opposed surfaces,
one of the surfaces being maintained always at zero potential.
Determine the electric energy due to the distribution of
electricity on opposite unit areas.

If each surface of a second pair of infinite plane conducting
surfaces separated by the same distance and unelectrified is -
connected by a conducting wire with one of the surfaces of
the first pair, determine the change in the electric energy of
opposite unit areas on the first pair, and account for the
apparent disappearance of energy.

Let e be the electricity on unit area of one of the plane
surfaces, and let its potential be 4, the potential of the other
¥la.ne surface being zero and the distance between them c.

t may be proved by the method given in Maxwell’s Elec-
tricity, § 124, that
4
p

C4dme= —,

and if Q be the electric energy due to the distribution of
electricity on opposite unit areas, '

@ = led =2me’.
K
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When the second pair of planes is connected with the first -

gair the surface density becomes }¢, and the electric energy
ue to the electricity on opposite unit areas is given by

é'c
0—271'71- .

Corresponding to each unit area of the first pair of planes
there is an apparent loss of energy given by

Q-2¢ =wc'c.

Half the ener%y has disappeared, and has been transformed
into work done by electric forces, generally in the form of
light, sound, and heat of a spark, and of heat in the dis-

charging conductor, whilst the electricity was being distributed
over a larger surface.

ix. Define the Action of a particle moving under given
forces.

Jets of water escape horizontally from orifices along a -

generating line of a vertical eylinder kept always full.
Show that (to axes inclined 45° to the vertical) the equation
of the lines of equal Action for unit mass of water is of
_ the form : 3 3

xr+y =a.

+ Show also that the line of equal time for particles of
water issuing simultaneously from the orifices 13 the free
path of the water which leaves the vessel by an orifice at
a depth below the surface due to that time.

: Measuring x vertically downwards and y horizontally in
the direction of issue, if £ be the depth of an orifice, for the
water thence escaping (fig. 45),

y=n(29E), y=n(298)t, 2=V{29 (2 §)}, =- E=1g7"

* Action of unit mass = [v"dt, ’
24y, axdz

= [ dz=+(29) Vo5 .

— V(2g) (3 (= — B+ 26 (- B,
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k]
By the values of z and y, eliminating ¢, z—§¢= 31_;

therefore 2& =z + #/(a* — 3*), where either sign may be given

to the radical.
{(m+y\*— (=gl

Therefore ,

H A

{a:+y*+(w y;*}

«/(,

?

.4

and the Action = {(=+ y) + (x— y)g}
If we change to axes mclmed 45° to the vertical we must
change :v+y into @ M( ), and -y into y 4/(2), and the

Action = \/(q)( +y )

Were there no gravity the line of equal time would be
y= v(zqm)t a parabola with vertex at the origin and para-
meter }gt.

But gravity takes all particles down through }g¢¢* in the
time ¢, and the velocity depends on the height only,.not on
the partlcular orifice from which the particle started.

Therefore all are on the path of the particle which left
the cylinder at a depth }g¢".

What is meant by the equilibrium theory of the
tldes?
Give from it, without formul®, a general explanation
of the lunar semldmrnal diurnal, and fortnightly tides.
Point. out, also without detalls, the mode of taking
account, in this theory, of the distribution of land and water.

In the equilibrium theory the sea-level is at every instant
a level surface for the attraction of the Earth and Moon.

To treat the problem of the tides statically, the Earth
is fixed and the Moon is divided into two halves, moon and
anti-moon, which are supposed to revolve round the Earth’s
axis once 1n the lunar twenty-four hours with the line joining
them inclined to the equator at an angle equal to the {\Ioon s
declination.
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There will be a rise and fall twice in every lunar day,
which will be the lunar semi-diurnal tide.

When the Moon is not on the equator and also in con-
sequence of the unsymmetrical distribution of land and water
the two tides in the lunar day will not be equal, so that to
produce the resultant effect a tide of period a lunar day must
be superimposed on the lunar semx-tfmmal tide, and this is
the lunar diurnal tide.

In consequence of the variation of the Moon’s declination
there will be a variation with a period of a fortnight of
the average height of water at any place, and this effect
can be produced by the superposition of a lunar fortnightly
tide.

To take account of the distribution of land. and water, the
level surface of the sea must be such that the part of it which
bounds the sea encloses the same volume of water.

[Thomson and Tait's Natural Philosophy, § 807, 808, 809.]
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Tuvurspay, Jan. 7,1875. 14 to 4.

Pror. TAIT. Roman numbers,
MR. GREENHILL, Arabic numbers.

1. FInp the polar equation of a conic section referred
to the focus as pole, and the polar equation of a chord and
a tangent.

A hyperbola is described similar to the given hyperbola

+= 1+ e cosé having the same focus and touching it at the

point 6 =a, prove that the length of its latus rectum will be
ef—1
¢ +2ecosa+1’

and the equation of the common chord of the hyperbolas »
will be '

e+ cosa

l
—=¢cosf—e———
r 1+ e cosa

cos(f — a).

Let the equation of the hyperbola be

4

é=1+ecos(0-ﬁ),

then the equation of a pair of common chords of the hyper-
perbolas is

l—i~l=e cosf + e cos{f—B).
I+ '
If ——=¢ cosf + e cos(f - B) \ i

be a tangent where 6 =aq,
Z:|—l’ _ete cosB esinf
I~ etcosa  sina’
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: i 14 e -1
therefore tan é = _Bmna ORI R
2 e+cosa and g e+ 2¢ cosa+1"’

and the equation

-l—:—l’=e cosf —cos (6 - 8)

reduces to
e+ cosa

—_ 6—a).
1+ecosa COS( a)

l .
-=¢cosf—e
r

2. If a, b, ¢ be the sides, 4, B, C the angles, and E the |
spherical excess of a spherical triangle, prove that

. . . sin —
sind sinB sinC 1 2

0 =— = T =
sina  sind sinc 2

sin s sin<b sins
_ g Mgty

If €=A4 + B, prove that the chord triangle is right-
angled, the angular radius of the circumscribing small circle
c
2

If the arc CD be drawn making the angle 40D =4,
then the angle BCD =B and AD=DC=DB.

Hence D, the middle point of the arc B, is the centre of
the circumscribing small circle, and if the radius to D meet
the chord 4B in d, d is the centre of the plane circle cir-
cumscribing the chord triangle ABC, and therefore the chord
triangle is right angled.

is

. a, b
and sin - =tang tanc .

N T Y/
Therefore sin® = =sin* =+ sin’ -,
2 2 2
cosc=cosa + cosb—1,
. FE cosa cosb — cosc
and sin= = — cosC="—"—7 - —
2 sina sinb

1 - cosa - cosb + cosa cosd a b
=— - =tan- tan-.
sina sind 2 2
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(This spherical triangle in which one angle is equal to
‘the sum of the other two is more analogous to the right-
angled plane triangle than the spherical triangle which has
one angle a right angle.)

3. Explain Horner’s method of approximating to the real
roots of an equation. o
Find to two places of decimals the roots of the equation

&’ —6a'+9x—-3=0.
"The roots are 047, 1'65, 3'88.

4. If @, y be the rectangular, r, 6 the polar coordinates
of a point which moves once round the perimeter of a closed
curve in a certain direction, dg:‘ove that the area of the curve
is expressed by fxdy or — [ydzx or % [r’d6.

Interpret these expressions when the perimeter cuts itself.

Prove that the areas of the two loops of the curve

7’ —2ar cosd — 8ar + 9a* =0,
are {327 +24 4/(8)} a* and {167 — 24 4/(3)} a"

As the point travels round the perimeter in the direction
80 as to have the area of the curve on the left hand, the sum
of all the elements xdy for the same value of y (fig. 46)
will be the area of the curve cut off by two straight lines
parallel to the .axis of x at distances y and y+dy, and
therefore the whole area is fzdy.

Similarly the area is — [ydz (fig. 47), and } [r*d0 (fig. 48).

(Since xdy+ydxz=d.xy is a complete differential, therefore
[(xdy + ydx) =0 round a closed curve; but zdy — ydx =r*d6
18 not a comPIete differential, therefore [(wdy— ydw)=[r’d
depends on all the intermediate value of = and y, and is equal
to twice the area of the curve. ‘

An integrating factor of ady —ydx is x’—-}-__y” and then
J‘xdy— yda
m‘l+ y!
outside or inside the curve).

= fd0=0 or 2w, according as the origin is
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If the perimeter cuts itself (fig. 49) the value of any one
of the integrals taken round a loop will be numerically equal
to the area of the loop, and positive or negative, according as
the area of the loop is to the left or the right of the point
as it travels round the perimeter of the loop. - .

Therefore, if the point travel once roumY the perimeter the
value of any one of the integrals will be the sum of the areas
of the loops which were on the left hand diminished by the
sum of the areas of the loops which were on the right hand.

The curve is a limagon or nodal Cartesian oval (fig. 50)

=4+ cos6 + +/{(1+ cosd) (7 +cosb)],

QIR

2
2—,=24 +16 cos 0 + cos26 + 2(4+cos 0) v/{(1+cosf)(7 + cosb)}.

The area of a loop is [" *d0, the upper sign being taken
with the radical for the outer loop, the lower sign for the
inner loop.

Now [ (24+ 16 cosd + cos20) d6 = 24,
¢

. . 0 .
=9 P
and if sin 5 sin -,

Jo© (4+ cosf) V{(1+ cosb) (7 + cos6)} dO

. =8 J:; (5—8 sin’g) cos’-;édcﬁ

;4[¥ B+5 cos¢‘+2 cos2¢) dp

=4 {m+ 3 4/(8)}, whence the result.

P
}lg—u“ for the

motion of a particle under the action of a central force P.

5. Prove the differential equation %+u=
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If P=pu’ (144 sin"ﬂ)‘s find the orbit and interpret the
result geometrically.

& :
d0’u+u_7? (1+ &* sin”6)-4.

Multiplying by cos§ and integrating

30 cosf+u. smo—i.q f(l—-:_olj"—estzll_z’—ﬂ_)i
M sin 0
SF Vit R ene) T
Multiplying by sin @ and integrating
» 8in 840
R J(1+FE ~ £ cos’0)}
» cos +B;

k’ (1+%) /(14 %" sin 0)

2— Y% sinf —u cosG-

therefore u=—,%—]?5 V(1 + %" sin*6) + 4 sin@ — B cosb,

the equation of a conic section, the projection of the orbit
of an undisturbed planet inclined at an angle tan™% to the
plane of reference. :

vi. If & n, ¢ be continuous fumctions of the ceordinates,
and represent the components, parsllel to three rectangular
axes, of the velocity of a point at @, y, z; shew that the
rate at which the dilatation, thus produced, takes place in
the group of points near z, y, 2 is

d¢ dn dt
dzt 3y dy t
Shew, by actual integration, that

[[(GE+ 5+ 5) dodye= [t 4 mo-+nty 5

where the integrations extend, respectively, through the
. L

4
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volume and over the surface of a closed s J)ace 8; I, myn

being the direction-cosines of the outward-drawn normal to
the surface-element ds.

Shew that this equation expresses that mo points come
into or go out of existence during the motion. :Does it

matter whether S is simply-connected or no? Give your
reasons.

If o, ', 2’ be the coordinates after an infinitesimal time
dt of the particle originally at xyz,

d=a+ldt, y=y+ndt, 2’ =z+4t,

and if the group of points which filled the para.lleleplped
dxdydz now fill the parallelepiped dx'dy'd?’,

da’ d§ dy__ dn de d¢
T'l"'d dt, dy l+dydt’ 72-_1+d

and to the first order the volume of the parallelepiped

do' dy' dz' & dy d
.,
{1+(dx+dy ot dt}da:dydz.

d,

Therefore the rate of dilatation is z—i + ? + ;lizg
If the base dydz generate a prism by moving from — oo
to +o garallel to the axis of # and cutting out from the

surface suocesswely at entrance, and exit the elements
of surface ds,, ds,, ds,, ... (fig. 51),

ﬂ dxdydz_ﬂ( E 4 b~ +.) dyde

= f f (LEds, + LEds, + L Eds, +...) = f lgds,

since dydz=—lds =l ds,=—1ds,... .
Similarly

f j dvdyde = f fmo)ds and f f dedyde = fn§d3,~
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and therefore

ﬁf(% + % + gg dmdydz=ﬂ(?5+mn+n§)da.

The left-hand side is the rate at which the contents of §
diminish. The right-hand side is the excess of the rate of
escape from § over that of entrance into it. .

If these are equal no points can come into or go out of ,
existence, since S is any closed surface whatever.

If 8 be multiply connected, draw diaphragms so as to
make it simply connected.

Then the points that pass these diaphragms are counted
both at entrance and escape, hence it does not matter whether
&S is simply or multiply cennected. ‘

vii. Define the terms quantity and potential as applied to
a charge of electricity, and the term capacity as applied to the
conductor on which 1t is distributed. Point out the numerical
relation between these quantities, and shew how to find the
energy of a given charge on a conductor of given capacity.
wo spherical soap-bubbles are caused to unite into a
single spherical one. Shew that a diminution of surface
takes place," and calculate the charge of electricity which
must be given to the single bubble in order to draw out
the film to its former superficial extent.

The quantity of a charge is measured in electrostatic
units, the unit being that quantity of electricity which, when
placed at unit distance from an equal quantity, repels it
with unit of force.

The potential at any point is the work required to convey
unit of negative electricity from that point to an infinite
distance, supposing the distribution of electricity not to be
disturbed by induction. )

" The force varying inversely as the square of the distance,
the potential of a small quantity m of electricity at distance

. [ md. . .
ris f ":',r = :2, and therefore the potential of an electrified

-
bodylsE;-. |
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The electric force at any point in any direction is equal
to the rate of decrease of tﬂe otential in that direction, and
therefore the surface of a conductor in electrical equilibrium
is an equi-potential surface.

If one conductor be insulated while all the surrounding
conductors are kept at zero potential by being put in
communication with the earth, and if the conductor when
charged with a quantity E of eiectricity has the potential V,
the ratio of E to V is called the capacity of the conductor.

The capacity is therefore the charge required to produce
unit potential on the conductor.

The energy of the charge

E*
W=31EV=}%. 0
where C denotes the capacity.
Maxwell’s Eleetricity, § 41-50, 85]. . o
et r, r' be the radii of the soap-bubbles, p, p’ the
pressure of the air imside them, w the atmospheric pressure,
* T the superficial tension of the soap-bubble film,

. —-—m=—, —_—_ =,

If the two bubbles condense into a single babble of radius
R, and if P be the pressure of the air inside,

P-m= 27? and pr*+ p'r" = PR’ by Boyle's law,

therefore = (R'—7*—+")+2T(B* -+ —+")=0.

Therefore if 8V express the increase of volume, 88 the
increase of surface,

3wdV+2T88=0.

Now physical circumstances shew that the tendency is to
an increase of volume and a diminution of surface; both can
thus be satisfied.

If p be the surface density of the charge required, and if
R’ be the radius of the bubble, P’ the pressure of the air
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inside, the electric repulsion on any surface element ds is
along the radius and of magnitude 27p°ds, and the actiom
of the charge is equivalent to an additional pressure 2p" in
the interior.

Therefore . P’+27rp'—w=?R—?1,
and PR?=pr’+ p'r's;
therefore 2mp*R* = w (R” — r* — 1),

since B” ="+ 7" and the required charge is 4mpR"-

viii. Give a general explanation of the mode in which
a sownd-wave is propagated, and point out why its velocity
in air depends upon the temperature but not upon the

pressure.

Investigaté, on thermo-dynamical principles, the velocity
of propagation of plane waves of sound.

Consider plane waves of longitadinal displacement per-
pendicular to the front propagated in an unlimited medium.

Take the axis of x in the direction of displacement, and
suppose arbitrary velocities u=f(x), and arbitrary dilata-
tions s=¢(x) to be given to the medium between z=0
and z=/, the remaingcr of this medium being supposed
undisturbed. ‘

The motion being sepposed small, we may eonsider the
resultant motion by superposing two states of motion de-

fined by
4, =—as, =} {f (2}~ a¢ (z)}s
u=as,=%{f(2)+ad ()}

Considering the initial state of motion in which = —as,
let the curve OVL (fig. 52) represent the velocities of the
particles between O and L, such that PV represents the
velocity of the particles which at rest were at distance

OP from the initial plane z=0; then —%Y represents the
dilatation.
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After a time dt, taking PP'=adt, the increment of
velocity of these particles

= (pressure at P — pressure at P')dt '
-+ mass per unit of area between P and P’

. = (pressure at P — pressure at P’) L
1 dp 8 1 dp 1 dp ,pir
—;.2',;.;;—;.2’;.88 a;.d—p(PV—.PV),

neglecting squares of w and s, which is equivalent to con-
sidering the velocities and dilatations in the actual position
the same as in the mean position.
. d, .

Therefore if we take a"=;f—;, then after a time dt the
velocity at P will be represented by P'V’, and therefore
-the motion will be represented by sliding the curve OVL
with velocity a in the positive direction.

Therefore the initial state of motion in which u, =—as,
" gives rise to a wave propagated without change of form in
the positive direction, with velocity a = (%13 .

Similarly it may be shewn that the initial state in which
u, = as, gives rise to a negative wave.

If we increase p, in any ratio, p, by Boyle’s law, will be
increased in the same ratio, and the ratio of the moving
forces to the masses moved will be unaltered, and therefore
the motion will be unaltered. Hence the velocity of pro-
pagation is independent of the density and pressure.

For the second part we have the exact equations

d¢_ _dp p dt

Pl =" d g =
Also because the compressions and dilatations are rapid,
neglecting conduction, radiation, &c. by Thermodynamics,

A
&= T
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where 8 is the ratio of the specific heat at constant volume
to the specific heat at constant pressure; therefore

¢
e X da*

the exact differential equation of motion for finite displacements.
With the usual approximation this reduces to
TE_ gL TE
dt p,  dx*?

and therefore the velocity of propagation is \/ (/3 %) .
0

ix. Investigate an expression for the mutual potential
energy of two bar magnets which are placed, in any
positions, at a distance from one another great compared
with the length of either.

Employ it to find the positions of equilibrium when the
magnets are free to turn about their middle points in given
planes, distinguishing between stable and unstable positions.

Calculate the disturbances produced on each other’s in-
dications by a variation-compass and a dip-needle whose

relative position is given.

If (xyz), («'y’?’) be the centres of the magnets, M, M’

their moments, and /mn, I'm'n’ their direction cosines, then
the mutual potential energy
!
W=MM ik (;)
;8,4  d\(,d ,d , d\1
. MM’ 1\Q Q' ' ' L ’
== [T{3(x—a')*- P}+...48(mn'+m'n) (y—y') (2 — 2')+...].

[Tait, Thermodynamsics, Note C; Maxwell, Electricity, §387].
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For the secend patt taking the line joining the centres
of the magnets equally inclined to the coordinate axes

W= ﬂ{i‘[ (mn' +m'n+nl +0'l+ lm' +Tm),

this is to be a maxXimum or minimum in the positions of
equilibrium subject to the conditions

N+ mp+nv=0, ' +m* +2* =1,

IN 4wy 40V =0, '+ m*+n"=1,
where Auv, N'p'v are the direction cosines of the axes about

_ which the magnets are free to turn.
Therefore Adl+ udm + vdn=0, ldl+mdm + ndn=0,
dl. _ dm _ dn

my—np  nA—1lv  lu—mA
MM’

r»®

=dyr suppose.

AW =3 {((nt' + o) DU+ (' +¥)dm + (T + ') dn
+(m+n)dl + (n+ 1) dm’ + (14 m) dn'}

m'+n'y d'+l, U+l mtn, ntl, l+m |
o}

Iy, m, n |dp+| U , m, o
My o py v

7'3

MM {

!

My, u,

“Therefore the condition of equilibrium of the first magnei; )

for a given direction of the second magnet is
w+n, W+l U4+m
' !, m, n
Ay, o op, v
or the lines whose direction cosines are
(lmn), (Mwv)y (m'+2'y n'+1, U'+m),

lie in a plane. .

Refer all the directions to the surface of a sphere, and
let O (fig. 53) denote the direction of the line joining the
centres of the magnets, and let C4, CB denote the planes
in which the magnets are free to move.

=0,
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Then if B denote the direction in which the second
magnet is held, and BO be produced to B' such that
tanOB' =} tan BO, it may be easily proved that B’ denotes
the direction of the line (m'+n', n'+{, I'+m’) ; and, therefore,
if B'A be drawn perpendicular to C4, 4 will be the direction .
of the first magnet in the position of equilibrium relative
to B. Bwil aﬁ?: be in equilibrium relatively to 4, if when
A0 is produced to 4’ such that tanO4'=4} tand40, A'B is
perpendicular to CB.

f we eliminate I'm'n’ between the equations we get an
equation of the second degree in /mn, which combined with
IN+mp+ nv=0, gives two values of !:m :n, to each of
which corresponds a value of I' : m’ : %',

If CA=0, CB=¢; . ACO=a, . BCO=8, CO=3,

W= 1 mgn)(T w4 0) = (1 +mm + )}

r

=£r;u—’ (8 0804 cos OB - cos 4B)

Mg[' {8 (cos@ cosd+sind sind cosa)(cosd cosd+sing sind cosS)

o —(cosf cos¢ +sind sing cosa+ B)}
=a cosf cosp+ sin6 sin¢ + ¢ sinf cosp +d cosd sing,

MU (3 costs—1), b=....

r
In the position’of equilibrium %%7 =0, %Z—;= 0; or putting

if a=

x =tan 6, y=tan ¢, .
~ax+by+c—dey=0, —ay+ber—cry+d=0,
two homographic relations between « and y.
Therefore (x'—1) (ac + bd) + x (a* = 8"~ ' +d*) =0,
(¥*- 1) (ad+ be)+ y (2’ 8"+ ' = d") = 0.

If «, y,; «, y, be the roots of these equations, since
N
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x@x, =y .y, =~ 1, for each magnet the directions of equilibrium
1“2 1?/ gn q
are at rlgsht angles, and
W, _ &, I, _
3 = ag =W goag="e
3w dnufl . daufl 2 R .
¢ At (d'edqb) =Wi=w
ow ‘
oo (et a)’+ (b, +d) _ (dy, +a)'+ (by, + o)
' 143 ' 1+y’ ’
W= W} = (ac+bd) (v, —,) = (ad + bc) (3, - 3,) 5
therefore if ac+d and x, be of the same sign, so also will

ad+bc and y, W, is a maximum or minimum, and the
directions given by «, and y, give four positions of equilibrium,
two stable when Wl is negative, two unstable when W, is
positive. ‘

W, is then a maximum-minimum, and the directions given
by «, and y, give four positions of equilibrium which are
stable-unstable, that is, stable for some displacements, unstable
for others. ’

In the simplest case when the planes in which the magnets
move are parallel, the stable and unstable positions of equi-
librium are in the plane through the lif® joining the centres
of the magnets perpendicular to the :planes In which the
magnets move, and the stable-unstable positions are per-
pendicular to this plane.

N S n ] N 8 8 fn

1) = @®)
® 8 N ] n ) ] N n 8
stable, unstable.
N % S n
®) @
S & N s
N S & N ]
(6) @®)
N Ny n

n
stable-unstable,




“and

13—14)] . 'AND RIDERS. 83

For the third part of the question, in the variation-
compass and the dip-needle, the planes are at right angles,
aw dw
0’ dé
the earth’s directive force.

are the couples interfering with the effect of
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MoNDAY, Jan. 18, 1875. 9 to 12. |

Pror. Tarr. Roman numbers,
MR. WRIGHT. Arabic numbers,

1. DEMONSTRATE formulae involving polar coordinates
for the position of the centre of inertia of a plane lamina and
of a solid. )

If the density at any point of a circular disc whose radius
is a vary directly as the distance from the .centre, and a
circle described on a radius as diameter be cut out, prove
that the centre of inertia of the remainder will be at a

. 6a
distance e 10 from the centre.

The mass of the large circle if complete
= [} pr.2wrdr = §uma’,
The mass cut away .
T [acosd s
=2 [*[*" vt ar = 8 [ copag =
oo 8 J, 9

Therefore, if C is the centre of the large circle, and B
the centre of inertia of the circle cut away,

1‘,! acosf ’
' 2[[ pr.r cosf,rdd.dr o

Y 3a
.B = ;) = = / ® = —,
C. I 8], cos*6d0 >
Therefore the required distance is
3a s
5 tua 6a

jumd —$ud®  15w—10°
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2. Find expressions for the accelerations of a moving
point estimated () along and perpendicular to the radius
vector (8) along the tangent and normal.

If a curve ie described under a force P tending to the
pole and a normal force N, prove that

r (v)+3 (w0

) THE \Pap
Resolving along the normal

2

N+PE-Z,
P

resolving along the tangent
dr 1 & 1
P-a;=—-2-.;]-;, or P=—§.3—;',

therefore, eliminating ¢,
4 (p.N+ pP?;:) +2P=0,

dr
4G g) v

whence the result.

* 3. A particle moves under the action of given forces on
a §iven smooth surface, shew how to determine the motion
and the pressure on the surface.

Given the resultant impressed foree and the velocity of
the particle at any point, determine by a geometrical con-
struction the osculating plane and the centre of curvature
of the path on the surface.

Let 8 be the surface (fig. 54), M the particle of mass m
projected in the direction MT with velocity v, and let F be
the resultant impressed force represented by M#.

If N be the normal reaction of the surface represented
by MN, we can consider the particle as moving freely under
the action of the resultant K, represented by MK, of F
and N; KMT will then be the osculating plane of the path.
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N is unknown, but is determined from the condition that

if MI be taken equal to ﬁlg_" where B is the radius of

. curvature of the normal section made through M7'; then M1

is equal to the algebraical sum of MN and the projection
of MF on MN. : .

The osculating plane being then determined, if a line be
drawn through I at right angles to the plane IMT] it will,
by Meunier’s theorem, meet the osculating plane in H, the
centre of curvature of the path.

iv. Form the equation of motion of a rigid plate of any
form consequent upon one of its points being constrained
to move in a given manner in the plane of the plate.
Integrate it for the special cases of uniform rectilinear, and
uniform circular, mnotion of the point. ‘

~Apply your results to explain the action of a flail, gravity
being neglected.

Let £, n be the coordinates of the point given in terms
of t; x=a cosf, y=a sind the relative coordinates of the
centre of inertia of the plate; X, Y the component forces
applied by the constraint. Then

ME+2)=X, M(n+y)=Y, and MF'§= Xy~ Ya.

Therefore %'6=(£+2)y—(n+y)x=Ey— 12— a6,
(8 + o) 6= £y — .
(1) In the case of uniform rectilinear motion of the point

"E=0, n=0; therefore 6 =0, and the plate rotates uniformly.

(2) In the case of uniform circular motion of the point
§=—bn® cosnt, 7=— bn? sinnt;
N 2 a,b :
therefore \\ (Sllz) (- nt)=- ﬁg sin (6 - nt),

which repreﬁx\lts pendulum motion about the uniformly re-
volving }'adi y
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These two cases explain the flail. The handle is worked

so that the joint has the circular motion wuntil the striker

ains its maximum angular velocity ; the motion of the joint

18 then changed into the rectilinear motion, when the striker

continues to move with the same angular velocity until the
blow is delivered.

v. Write down Euler’s equations which give the angular
velocities of a rigid body about its principal axes, and
interpret the various terms.

If a constant couple be applied about the axis of symmetry
of a body supported at its centre of inertia, and initially

_rotating about an axis perpendicular to that of symmetry,
determine the motion completely; and shew that the cone
described in the body by the instantaneous axis has the
equation

¢ _1w=A—C' QCc
an 4 "IN Tty

where N is the couple,  the initial angular velocity.

The equations of motion are

Co,=N; therefore ms=%r t,
and . Ao, +(C~ 4) w,0,=0,
Aé’,'l" (A - 0) Q)sa)l =0;
therefore o0, + “?:“33 =0, o'+ 0 =0},
ma'),—-wa’),=.A—C _4-C N
&nd Jmig + m:l A wﬁ - A ) G.t’

Lo _A4-C N&_A-C Co?
therefore  tan m:—T'E(—)"—_A A
4-0 2C o

4 " 2N e’te)’

hence the equation of the cone described by the instantaneous
‘axis.
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6. Shew how to find the coordinates of the centre of
pressure of a plane area immersed in homogeneous liquid.

If a straight line be taken, in the plane of the area,
parallel to the surface of the liquid andp as far below the
centre of inertia of the area as the surface of the liquid is
above, the pole of this straight line with respect to the
momental ellipse at the centre of inertia whose semi-axes
are equal to the principal radii of gyration at that point
will be the centre of pressure of the area.

Taking the principal axes at the centre of inertia as
coordinate axes, if the equation to the momental ellipse be
Z Y1 then t=lZ028 . _[ly'dzdy
a b [[dzdy [[dzdy °
If @ cosa +y sina = f be the equation of the line in the
surface of the liquid and (Zy) the centre of pressure,
_[lp—a cosa—y sina)a:clxdy__ci"cos
" [flp—= cosa—y sina)dady  p o0

- _[[(p—= cosa—y sina)ydedy  ¥' sina

Y=T/(p—= cosa—y sina) dody ’
Therefore (zy) is the pole of x cosa+y sina=-p with
respect to the momental ellipse.

z

vii. Shew that a cloud of small particles or of fine dust,
if only deep enough, however far the particles may be
separated in comparison with their diameters, can give a
brightness equal to half that of a slab of the same material
similarly illuminated by a distant source of light.

Hence shew that the brightness of a comet, and the
visibility of a star through the head of a comet, are con-
sistent with the comet’s being a mere swarm of meteorites.

Shew how to compare, approximately, the utmost bright-
ness of a cloud nearly opposite to the sun, and consisting of
small spheres of water, with the brightness of the sun’s image
in a pool.

Suppose the cloud arranged in layers, parallel or not,
each allowing 1 — e of the incident light to pass, and sending
back ef of it.
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Then 1stlayergets 1 sends back ef,
2!1(1.--.”-.-". 1—3 essseessecnece (l-e)'e_/;
3rd ccvreneenee (1 —6) vovererrennes (1 —e)ef,

oooooooo 9000000000000000 9000000000000 000008 0000000008

the factors (1 —e), (1 —¢)’, ...., being squared, because of the
loss in coming out.
Therefore, altogether there is sent back

ef {14 (1=-e)+ (1 - e)* +... ad inf.
of

S1-(1-ef 2-e 2!
when e is small. But, if e=1, no light gets through the
first layer, which is then virtually a slab; and it sends back
f, double the light of the cloud.

Comets (except occasionally their nuclei, which are, pro-
bably, to a great extent self-luminous) are not nearly of
half the brightness of planets equally distant from the sun. ,

Through the clous, above spoken of, the brightness of
a star would be reduced from 1 to (1—e)", where = is
the number of layers. The individual particles of the comet
are usually too far apart to eclipse more than a small fraction
of the disc of a fixed star, even though the disc is invisible
in our best telescopes.

For the last rider using the same process, and taking
account of the size of the images in the reflecting spheres;
if 20 be the angular diameter of the sun, and r the radius of a
raindrop, the area of the image of the sun formed by reflection
at the convex surface of the raindrop will be i7" sin’w, and
therefore the ratio of the apparent size of the ima§e of the
sun to the apparent size of the raindrop will be  sin’w.

Therefore the cloud will give at most a brightness which
will bear to the brightness of the image of the sun in
a pool the ratio } sin’w, which is 4 the ratio of the apparent
area of the sun to the apparent area of the hemispherical
celestial vault.

The light reflected from the interior of the rain-drops, by
vlvlhich the rainbows are formed, is insensible nearly opposite
the sun.

N
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viii. If 6, ¢, be the angles of incidence and emergence
of two parallel rays passing through a prism in a plane per-
pendicular to the edge; d,, d, the distances between these
rays before incidence and after emergence ; shew that

d__%
d, 8’
)0 is any small change of 6, and 8¢ the corresponding

of ¢. ,
w from this that the position of minimum deviation,
of most distinct vision through a thin prism.

be the distance between the rays inside the prism,
d, secO=d secl', d, secd=d secd’;

he position of minimum deviation d, =d,, and there-
e divergence of the rays is unaltered by the prism,
8 the condition for the most distinct vision.

Discuss separately, and without formule, the effects
ual parallax and aberration on the apparent position
ted star as it would be seen from a comet of a year
moving in the ecliptic, in a path of great excentricity.
re these with the corresponding effects as seen from
'th. '

«ce the curves representing, from each of these points
v, the asparent annual path of a star, without proper
, situated near the pole of the ecliptic.

3 effect of annual parallax is to make the star describe
1al and parallel orbit turned through 180°, and the
ion of this on the celestial sphere will be the apparent
f the star due to annual parallax.

e effect of aberration is to make the star describe the
‘aph of the orbit, which is a circle parallel to the plane
orbit, and the projection of this on the celestial sphere
» the apparent path of the star due to aberration.
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If the star be near the pole of the ecliptic, the orbits due
to annual parallax and aberration will be unprojected on
the celestial sphere.

The orbits seen from the comet will be an ‘ellipse of great
excentricity, and a circle passing very nearly through the

- mean position of the star (ggs. 55, 56, 57) and the apparent
annual path will be the resultant of these two orbits; seen
ﬁ:Ol!ll the earth the orbits will be approximately concentric -
circles.

10. Explain the construction of charts on the gnomonic,
the stereographic and Mercator’s projections. Examine what
cpr;e in each case will represent () & rhumb line, (8) a great_
circle. :

Shew how to draw the trace in the two first projections
of the great circle passing through any two given places.

Prove that the equation of the trace on a Mercator’s chart
of a great circle will be always of the form

. [ v
2 sin (;+a)=k(ea—-e o),
where a is the radius of the sphere.

The traces of (a) a rhumb-line are respectively a transcen-
dental spiral of the form i—a —e—e: , an equiangular spiral

and a straight line; and the traces of (8) a great circle are
respectively a straight line, a circle, and the transcendental
curve of the third part of the question.

To draw the trace.of a great circle joining two given
points in the gnomonic projection, draw the straight line
Joining the projections of the points; in the stereographic,
draw the circle passing through the projections of the points
and their antipodes.

Let PM be the great circle (fig. 58), 0X, OY the equator
and initial meridian which project into the coordinate axes
in Mercator’s projection, and let 7, A be the longitude and
latitude of P, and =, y its coordinates on the chart.
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dy _ _dr —al:
Then 7o = somnal? and z=al;
therefore y=a [secAd\
=a log(secA + tan}),
since A and y vanish together.
Therefore ¢s=sec) + tan),
and ¢i— ¢ i=2 tanA =2 sin MN tan PUN
=2 tan PMN sin(f+ MO) ,
a

which reduces to the given form, putting
k=cot PN, a=MO.
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MoNDaY, Jan. 18, 1875. 1§ to 4.

MR, COOKSHOTT. Arabic numbers.
Mg. FREEMAN, Roman numbers,

1. EXPAND a" in powers of .
Shew that, if n is greater than 3,

°+ n ("' 1)( 2)° + n(n— 11).(2”.;.24(”_3) (n—4)° + &e.

=n*(n+3) 2",

The series is == L of the coefficient of &° in (¢°+1)" + (¢"~ 1)",

12

If n>3, a* appears only in the first of these two terms,
n* (n+3)2"°
3

9 n n
that is, in (2+w+ Z 4 ) + (a:+ B +.. )
and its coefficient is , and therefore the required
sum is ' (n 4 3) 2",

2. Prove that there are' only five kinds of regular poly-
hedrons.

If one of each kind be inscribed in the same sphere, prove
that their edges will be in the ratio of

- 2¥(2):2:(6): W(5) =1: W[§{5-V(B)}].

If m be the number of sides in each face of a regular

| polyhedron, » the number of plane angles in each solid angle,
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a the length of an edge, and D the diameter of the cir-
cumscribing sphere

T
cos’ —

a m
o i

sin
(i) tetrahedron m= 3,n=3, therefore-— =v(3),
(i) cube m=4,n=3, 5 =V(#);
(iii) octahedron m=3,2n =4, = —'\/(1})
_N@E)-1
2 V@)’

(v) icosahedron m=3, n= 5’D «/{———}.

fore the required ratios are

/0450 )

=24/(2) : 2: W(6) : ¥(5) - 1: W[§ {5 -V (5)}].

Find the equation of the chord joining the points of
't of two tangents drawn to the parabola y*=4az from
int (%, k).
¢ (=, 11/) = (az+ By)’ +292+2fy+c=0 be the ‘equation
arabola, prove that the equation of its axis is

d¢+/3 ¢

(iv) dodecahedron m=>5,n= %%

1e direction-cosines of a dlameter are proportional to

aé .

(xy) is on the axis these lmes are at nght angles, and
'®

!y and of the polar of (zy) to—~

d¢ -
a‘-k;+/3(—1!7—
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iv. Find the length of the straight line drawn from the

point (&, 8, v) parallel to the straight line ; =Iy_l: = s to meet

_ the plane lx + my + nz =p.

rove that the four planes,
my+nz=0, ne+le=0, ke+my=0, le+my+nz=p,

form a tetrahedron whose volume is

2p°
3lmn °

If the first three planes meet the coordinate planes of
y2, zx, xy in BC, CA, AB respectively (fig. 59), and the
fourth plane meet the coordinate 1phmes in b¢, ca, ab; then
B(C passes through a and is parallel to b¢c, CA passes through
b and is parallel to ca, and AB passes through ¢ and is
parallel to ab.

Hence the triangle abe is } the triangle 4BC.

The volume of the tetrahedron

Oabe=} 0a.08.0c=} .

Therefore the volume of the tetrahedron

OABC=4 tetrahedron Oabc =} '111:71 .

5. Find the equations of the tangent plane and the
normal at a point of the surface

xﬂ
Aty

k] z’
—E—_-l

If the plane lz + my + nz =p cut this surface in a parabola,
prove that la® + m'’ =2%¢") and the coordinates of the vertex
of the parabola satisfy the equation

s (074 ) = (0" 4 &) + 5 (B - @) =0
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The equations of the line conjugate to the plane
le+my+nz=p are o

and if the curve of section be a parabola, this line must be
parallel to its conjugate plane, therefore

la*+ m'd* —n'e*=0.

If (aBy) be the coordinates of the vertex, the equations -
of the diameter are

z-a_y-B__z—vg

la’ mb* nc*

and of the tangent line are
xa  yB 2y
dtr-e= 1}

le+my+nz=pl,
and these are at right angles.
Therefore
("8 L ™Y e (479 r(’_’ff‘_lﬁ_
la (b’ + c") mb (c" +a’) "\ F)_O’

a

or a

B+ ) -+ a) - L@- 1) =o.

6. Shew how to determine the maximum and minimum
values of a function of two or more variables connected by
a given equation.

A framework crossed or uncrossed is formed of two
unequal rods joined together at their ends by two equal
rods; prove that the distance between the middle points of
either pair of rods is a maximum when the unequal rods
are parallel and a minimum when the equal rods are parallel ;
unless the two unequal rods are together less than the two
equal rods, in which case the unequal rods are parallel in
both the maximum and minimum positions, !
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Let ACDB be the framework; AB=a, AC=BD=},
CD=c, t CAB=0, t DBA=¢; and let = be the distance
between the middle points of the unequal rods.

2 2
a2 (6n 0+ sing)'+ 7 (cos 0~ cong) =2 st P12,

This is to be & maximum or minimum subject to the
condition

' =a’ —2ab (cos 0 + cos §) + 25° {1 + cos (0 + ¢)}.
Hence, .
2ab sin 0 — 28" sin (0 + ¢) = 2ab sin ¢ — 25" sin (0 + ¢),

ginf@=sin¢ and 0=¢; for 6+ $=o would require the
quadrilateral to be a parallellogram.

If a>c¢, 0 has its greatest numerical value when BD(C
is a straight line, and ¢ when 4 CD is a straight line.

If a+¢>2b, 6 and ¢ can vanish, and it is possible for

he unequal rods being
crossed.

If a+c¢<2b, 60 has its least numerical value when BCD
is a straight line, and ¢ when ADC is a straight line, and it
is impossible for the equal rods to become parallel.

From the figures 60 and 61 we see that 2* is a maximum
when the unequal rods are parallel; and if a4c¢> 25, o* is
a minimum, and zero when the equal rods are parallel; but
if a+c<2b, o' is a minimum when the unequal rods are
parallel and the equal rods crossed.

If y be the distance between the middle points of the
equal rods,

y*=a'—ab (cos 6+ cos ¢) + % {14cos(0+9)};
therefore y*- o'= b ;—c

mum when 2’ is a maximum or minimum.

—?", and #' is a maximum or mini-

vii. Prove that there are two ways of generating the

same hypocycloid by the trace of a point on a circle rolling

(V]
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on a fixed circle which encloses it. And that in any position '
of the two rolling circles, which roll in opposite directions,
a circle may be drawn concentric with the fixed circle so as
to touch both rolling circles at points such that the line
joining them is the tangent to the hypocycloid.

If any three of the tangents to a three-cusped hypocycloid
form an equilateral triangle, prove that the angular points
of the triangle will lie on a curve whose polar equation is
r=a cos36. :

Let AQ (fig. 62) be the hypocycloid traced out by the
point @ on the rolling circle P@p.

Produce PQ to meet the fixed circle in P’, and let P'O
meet Qp in p', where O is the centre of the fixed circle.

The circle on P'p’ as diameter will pass through @; and
if C, O’ be the centres of the circles PQp, P'Qp', then, since
the angles at P and P’ are equal, CQC'O is a parallelogram
and C'Q equal to OC. ' ' ‘

Hence the arcs PQ, P'Q, PP' are similar, and as the
radii PC, CO, PO.

But PC+ CO=PO;

therefore arc PQ + arc P'Q=arc PP’, and the arc PQ being
equal to the arc PA, therefore the arc P'Q is equal to the
arc P'A.
: Thus, if the circle P'@p’ roll on the fixed circle, it will
generate the same hypocycloid 4¢. '
Also since Op= YO;', a circle whose centre is O will touch

the two rolling circles in p, ', points on the tangent at Q.

g’for further developments see Wolstenholme, Proceedings
of the London Mathematical Society, vol. 1v., p. 321.]

In the three-cusped hypocycloui, if 0C=2a, CP=a, and
the angle PO4 =60,

‘@=2a cos 6 + a cos 26,
‘ y = 2a sin 6 — a sin 20,
and the equation of the tangent is

a:sin-o-+ cosg— sin30-
g TYBgTanny;
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therefore the perpendicnlar on the tangent being o sin%g,
three tangents forming an equilateral triangle are equi-
distant from the centre; and if », ¢ be the polar coordinates
of an angular point of the equilateral triangle

"_f._g-_"f ™ 6 39 =

==~ s~ 2 23"
and r=2a sin 3?0=2a cos3¢,

the required equation of the locus.

vili. Integrate the differential equatien
Y+ py=q,

in the case where P and @ are functions of 2 only.
Prove that the variables in the differential equation

dy _y@+y)+¥
dz  x(z+y)+a

may be separated by the substitutions, 2=u+v, y=Fku- v,
provided the constant % be suitably chosen, and integrate
the equation.

Making the substitution and reducing, the equation
becomes :

{(1+ %) uo+ ko' — b} du={(L + %) v’ + o + 8"} dv.
_If then ka* = b, the variables can be separated, and
(1+E) udu _ dv,
. L+4fu +a*+8 v’
therefore (1 + &) u'+a’+ b"= O,
or (@+y)*+a*+8 = C' Pz —a'y)"
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¢ o in ascending
¢ no odd powers except the ﬁrst appear, and if
2 be the coefficient of ¢,

ix, Prove that in the expansion of

wa= (=1 (5 - ’;: + g: - &.) 0™,

hat

o
B‘ELL_

+ &e.=1-log?2.

t ¢ ¢ t*
m=l—§+BlE—BaL—é+u.,
__ W _,_ W _pb& _pb_
0sf+¢snf—~1 "2 T'[2 T°[4 T
1¢ real parts

o 0 ¢ 6

cot-=1- B‘I—_E—B’I_—é—m’

2
0 0 w°
’o 2 2d0 =T-— .Bl l_a .BBE—..-,
cot§ d0=2[o ¢ cotpd

k.

=2 (¢ log sing)* —2 log sm¢d¢ w log2;

B,—E+B,L—5-+...=l—log2.
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TuUESDAY, Jan. 19, 1875. 9 to 12,

MR, COCESHOTT.

. 1. Ir 4, B be two fixed points and any plane be drawn .
through AB meeting a fixed plane conic 1n @ and R, prove
that the locus of the point of intersection of 4@ and BE will
be another fixed plane conic.

The quadric cones with vertices 4 and B having as
common Ylane section the given conic will intersect in
another plane conic, on which 4@ and BR will intersect,
as also AR and BQ. :

2. Prove that, if a, 8, v, 0 are all different,

cos2a + cos2
.a-B . a-y . a—=8 . B-a. B+y . B=9
8in ——sin ——sin — sin —— sin = sin—
cos2y cos2d
+ +
. y—a . y=B . y—06 . 6—a . 0—f . o—y
sin <5 — sin o= sin -~ 8in —— sin —;— sin —
=8 sinq_+_ﬁ+’y_+__8.
2
In the algebraical identity
a’ b
@Ha-a@-a  B-090b-d0-a)
3 dﬂ

.
Y de-a -5 T @G- @-@—q
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putting a=cosa+4¢ sina, b=...,

—b=2s a—B( a+B .. a+B)
a vsin ——(cos—— +7sin 7))
and the first term of the identity becomes
T o8 3a + ¢ 8in 3a
8 sin a___—} gin == sing——'oe cos Sa+Bty+9 +¢s8in SatB+y+0
2 2 2 . 2 2
- :i co8 2a + ¢ sin 2a ..
- _§ - % . v ” - TS
8 8in =2 gin ¥ gin a-0 eosa"ﬂ +'y+8+'.'inafB +7+.8
. 2 2 2 2 2
therefore '
cos 2a _ . a+B+y+d
sina‘—ﬂsina’—'yaina—g-l-'”- Sﬂm v 2 R
2 2 2 .
sin 2a +...=—8wsa+3+7+8~
sina‘—ﬁsina_'ys' a—2¢ 2
2 3 sin )

3. If AB'CA'BC' be a regular hexagen, prove that three
rectangular hyperbolas can be described, the first touching
+AB, AC at B, C and touching A'B, A'C' at B, C', the
second touching BC, B4 at C, 4, and B'C'y B'A' at C', 4,
and the third touching C4, CB at A4, B, and C'4’, C'B’ at
4’y B'; and that any one of the three is the polar reciprocal
+ of the second with respect to the third.

Prove also that an infinite number of triangles can be
described, each of which is self-conjugate to one hyperbola,
whose sides touch the second, and whose angular points lie
on the third.

Taking ABO or, 4'B'(" as the triangle of reference, the
equations of the three rectangular hyperbolas will be

o +2y2=0...(1), y¥'+222=0...(2), 2"+ 2xy=0...(3).

—
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1f the line (mn) touch (1), F+2mn=0; and if (xyz) be
its pole with respect to (2) c=Ca Z; therefore 2*+ 22y =0.

Let (Lmmn,), (Lmgn), (l .mn,) be the sides of a triangle
inscribed 1 in (1) ; therefore -

'+2mmn =0, 1'+2mm =0, 1'+2mm,=0.

If possible, let the triangle be self-conjugate to (2), the
conditions for this are

mymy + 0l +n,l, =0,
mgm, +nl +nl =0,
mm,+ nl +nl =0,

and eliminating n,, 0, n,,

A WL Ly
U 2_m—: 2m, =0, or mgm, (171:-*- 77,)—2’

with two similar equations.
" 'But the three equations

py(ptv)=wA (V4N =M A+ p)=2

are only equivalent to the two independent equations
A+u+v=0, Auv=2; hence, there is an infinite number
of triangles clrcumscrlbmg (1), and self-conjugate to (2).

Also, any such triangle is inscribed in (3); for the con-
ditions for this are

(l My — I'ms)g +2 (m 5Tt — mana) (”sla - nsla) =0, oy

+ and eliminating n,, n, n,

(lsms_ lams)’ -3 (l:ms.‘_ l:m:) (lamn - lsmn) m '1;! =0, ..
g My
- AN
o 2=(lm,+m) Lt ‘(m,+m,) =

which have already been obtamed.
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Hence there is a singly infinite series of triangle whose
sides touch (1), which are self-conjuiz:te to (2), and whose
angular points lie on (3); and by taking the hyperbolas in
dj.t%erent order six such series of triangles can be formed.

4, Prove that

2| o o oy a1 |=3]| o o) a’, a, 1 ‘
By By By By 1 gy B 8 A1

IRIR IR IR R
& & 8 51 8 8 & 81
e e e el e, ¢ ¢ gl

=4 (a—B)(a—7) (a—98) (a-€) (B=1)...{(a—B)" + (a—9)" &e.},
that is half the product of all the differences of any two x the
sum of the squares of the differences of any two.

~ Calling the determinants 4 and B,

A=a*(B=) (B=8)(B-2)(v-8) (y=8) (5=8) + o,
B=d(B+y+8+)(8=1)(8 -8)(B-)y—8)(y—e) S—e}+...;
" therefore A+ B=(a+B+y+8+¢){d(B—19)(8-9)...}

=(a+ B+ v+ d+¢)* (product of differences),
and since B does not contain o’ £°, ...

* therefore B=(a8+ay+...) (product of the differences);
therefore A =(a"+...+aB +...) (product of the differences);
24 - 3B=(2a"+...—af —...) (product of the differences)

=}(a-8)(a=9)..{(@a=B)+(a—9) +...}

5. Prove that all tangent planes to an anchor-ring which
pass through the centre of the ring cut the surface in two
circles.

Also if a surface be generated by the revolution of any
conic section about an axis in its own plane, prove that a
double tangent plane cuts the surface in two conic sections,
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The equation of the anchor ring in cylindrical coordinates
ry 6, 2,18 :
(r—a)*+2'=?",
which rationalized in rectangular coordinates @, ¥, 2, becomes

(w¥+ yl+zl+a’_bf ’=4aﬂ(wﬁ+y‘)’

if the axis of the surface be taken as the axis of z, and
if 5 be the radius of the generating circle, a the distance
of its centre from the axis,

To find the section made by a tangent plane through the
centre, change 2 into

@ cosa— 2 sina and 2 into z sina + 2 cosa,

where sina = 2, and then put z2=0.
. Therefore the équa.tion of the section is
(' +y' +a'—b")* =4a* (2" cos’a+ y')
=4(a"- ") 2"+ 4a’y =4 (a' - 0") (¢ + ¥') + 40%",
or : @'+ y' - a’+ 0") = 4",
| 2+ =d,
the equation of two circles.

If we give the surface a homogeneous strain, so that 2
is changed into Az, y into ky, z into X'z, the surface is
" deformed into the surface generated by the revolution of
a conic section about an axis parallel to a principal axis
of the conic section, and the double tangent plane cuts the

new surface in two conic sections, intersecting at the points

of contact.
“ In the general case if 2" sin’a— 2* cos’a =0 be the equa-

tion of the double tangent planes O7, OT" (fig. 64), the
equation of the generating conic in the plane of wz will
be of the form

(az + b2 - ¢')* — d* (=" sin”a — 2" cos’a) =0,
where az+bz—c'=0 is the equation of T'T", the chord of

contact.
P
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_ Therefore the equation in cylindrical coordinates of the
ring generated by the revolution of the conic will be

(ar + bz — c)* — d* (r* sin®a — 2* cos®a) =0,
which rationalized in rectangular coordinates becomes
[a" (2" +3*) + (b2 — ¢")* — &* {(2* + ¥) sin*a — 2* cos’a} *
=4d’ (2'+ y*) (b2 - )"
To find the section made by the plane 07, change z into

x cosa, z into x sina as before ; therefore the equation of the
section is

{a’z" cos’ a + (b sin a — c*)* — (4 sin’a —a®) ¥}’
=4a’ (2" cos’a+ ") (b sin a — ¢*)". -
Solving this quadratic in *,
¥ (d" sin’a—a')' =
[a ¥{(d" sin*a— a")a* cos®a+ (b sina—c')'} +d sina(bx sind—c') T,
or {y(d'sin'a—a’)+d sina(bz sina- &)}
=a' {(d" sin’a — a') 2* cos’a + (bx sina —¢')*},

the equation of two conics.

6. If ABC is an acute-angled triangle and D the inter-
* section of the perpendiculars from the angles upon the
opposite sides, shew that the four conic sections which can
be described touching the sides of the triangles DBC, DCA,
DBC(, ABC respectively, and having one of their foci at
4, B, C, D respective{y, will have their transverse axes
equal, their centres coincident, and the squares of their
eccentricities equal to

1+8cosd sinBsinC, 1+8 cosBsinCsind,
1+ 8 cosCsind sinB, 1- 8 cos 4 cos.B cosC,
respectively.

If E, F, @ (fig. 63) be the feet of the perpendiculars, the
circle circumscribing the triangle EFG, which is the nine-
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pointic circle of the triangle 4BC, will be the common
auxiliary circle of the conics, which will therefore have a
common centre and transverse axes equal to R, the radius
of the circnmseribing circle of the triangle ABC.

If P be the centre of the nine-pointic circle, the eccen-
tricities of the conics will be

24P 2BP 20P 2DP
E' R’ E'R"
The LOAD=,3‘-;—B—%+0=0—B,

and AD=2R cos4,
therefore 4DP’= OD* =R+ 4R’ cos’4 — 4R" co3 A cos(C— B)

=R*(1-8 cos A4 cosB cos(),
44P*=204+2DA*~0D*
=R"(1+8 cos' 4+ 8 cos 4 cos.B cosC)
=R'(1+8 cos 4 sinBsinC),
similarly  4BP'=R"(1+ 8 cos BsinO sin4),
4CP*=R'(1+8 cosC sind sin B).

7. Along the normal st a point P of an ellipsoid is
measured PQ of a length inversely proportional to the
perpendicular from the centre on the tangent plane at P,
prove that the locus of @ is another ellipsoid, and that the

enveloPe of all such ellipsoids is the * surface of centres,” that
is the locus of the centres of principal curvature.

If (2y'#’) be the coordinates of P, (zyz) of @, (aBy) the

" direction” cosines of the normal at Pjs P the length of the
?

perpendicular on the tangent plane at

wl . ’ ?
cosa:%;—, cos =1%1£-, cos'y=%,z-;
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)
and if PQ=—
Q P
, & w’_ ax .
w=m(1+;,-,),-;—a,+k,,...,
a'zt by? 't

(a'+7c’)’ + (b'+k§)’ + CTr)F =1L
lering the line of intersection of two such surfaces,
it lies on.two normals at consecutive points of the
and therefore the envelope is the locus of the points
tte intersection of the normals, which is the surface

‘ace the curve
2 /“ sinaf sin*d
== ———.d6.
y== o [
_2 /" coszl sin*6d0
T R &

_ 1 [®2 cosaxl~ cos(x+2)0— cos(x—2)0
‘ETrf., - dé.

® cosrf T e o ..

fo 7 d0=—? if » is positive,
= —7'—; if r is negative.

fore, if 2> 2> 0, '

g"—l=‘}(—2x+2+z+2—w)=l—§,

da
2
fore y=a2- :—, the curve OL (fig. 65).
-2, %:}(—2x+w+2+w—2)=0,

fore y is constant =1.
rigin is a centre of the curve.
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9. The value of a diamond being roporhonal to the
square of its weight, prove that if a (Ylamond be broken
into three pieces, the mean value of the three pieces together
is } of the value of the whole diamond.

If a be the va.lne of the whole diamond, the mean
‘ value of the three pieces is
Gl @+ +(1—z—y) dedy _
11 dzdy

10. Find the orbit described by a pa.rtlcle movmg; under
, the action of a central force u {2 (a* +b‘)u 3a'0"'}, if it

be projected at a distance a with velocity -; in a direction
at right angles to the radius vector.

d'u
&
(g%)’ +u*=(a'+ 8") u' — a'b"’,
(%)’ =u'(a"%'-1) (1-5""),
du
0= f u V{(a’u" SN =F)’

+u=2(a'+ ") u* - 3a"B"s,

20= f @ = b’)}

f a—b’ a’+b
«/{ )
a+b’
= cos™ —17.}—
2
A a+d a=-b . -
=+ 0820 = a® cos'6 + b* sin*0,

the pedal of an ellipse.
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11. If a river is flowing due north, prove that the
pressure on the eastern bank at a depth z is increased by
the change of latitude of the running water in the ratio
g%+ bvo sinl: gz, where b is the breadth of the stream, v
its velocity,  the latitude, and » the angular velocity of the
earth about its axis.

The time of describing & being 8_:, and the change of

velocity & (RBe cosl)=— Rw sinldl, the acceleration west-
ward is :

Roo sinl% — vo sinl.

Therefore the additional pressure on the eastern bank is
pbve sinl. .

12. If the moon is seen in the form of a bright semicircle
with its diameter vertical at a place in latitude 45°, when
the sun is in the summer solstice, and the obliquity of the
ecliptic be considered to be 224°, prove that the time of

night js 6+ sin” {y(2) — 1} hours beforo or after midnight,

and the azimuth of the moon is cos™ the moon being

1
sapposed to move in the ecliptic.

Let P be the pole, Z the zenith, 8 the sun, M the moon.
Then since SM=,8MZ=90"; therefore SZ=90°, and
the sun is on the horizon.
: If A be the latitude, @ the obliquity of the ecliptic, then
. P8=90"—- 0, PZ=90°—\; cos SPZ=- tanw tan\, and the

time of night is 6+ — sin (tana tan)) hours before or after

midnight. .
If a be the moon’s azimuth measured from the south point,
cosa=—cos PZM =tan\ cotZM; but ZM =1 Z8M =L PSN,

therefore sin ZM = z—:i—:;, and cosa = 4/(cos’ w — sin”» tan)).
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If A=45", 0 =22{", then tanA =1, tanw=4/(2) — 1, and

cosa = 4/(cos2m) 7@

13. Two pieces of similar uniform rigid wire in the shape
of a semicircle and its diameter are joined together at their
ends by two pins, and the whole is set in rotation in its own
plane, which 18 vertical, about an axis through one pin; find
the stress at the other pin, and shew that it attains its
maximum and minimum values when the inclination of the

diameter to the vertical is tan“{-, and the semicircle meets

the vertical through the fixed axis, supposing the rotations
about the axis are complete. If the rotations are not
complete, when does the stress attain its maximum and
minimum values?

If m be the mass of the diameter, M of the semicirole,
0 the inclination of the diameter to the vertical, and F the
stress at the pin, the equations of motion are :

2 2
m 4-; . ?hf = —mga sinf + F.2aq,
de . 2a
M.24° o =— Mg (a snna——; 0030) —F.2aq,

and m=u.2q, M= p.‘vra; eliminating %ig ,

_ Kga . _ kga V(7" +16) _
F= St d (w 8in6 + 4 cosf) Y R cos (6 —a),
where tana=1w; therefore F is a maximum when §=a, a
minimum when §=a+ 7; but if the angle swung throuil;

does not attain this value, the maximum value of F will

at an instant of rest, because %0 is positive.

14. A sphere moves on the concave side of a rough
cylindrical surface of which the transverse section perpen-
dicular to the generating lines is a hypocycloid.
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The sphere is rolling initially with a velocity V along the
generating line at which the curvatures of the sphere and
cylinder are eT’xal, and the sphere is acted upon during the
motion solely by a force tending to and equal to u times
the distance of its centre from the nearest point of the central
axis of the cylinder.

Prove that the motion of the sphere will be comprised

within a length
: 14V 25, 5
a—2b 5u a=b)

of the cylinder and that the time between successive instants
of the sphere reaching the original generating line on which

it was prqjected is
L
a 5u (a - ’

where b is the radius of the rolling circle which generates
the hypocycloid by rolling on a circle of radius a.

If NOM=60, XOM=¢ (fig. 66), then
. x=0M=(a—1>) cosp —d cos(%—l)cﬁ,
y=MP=(a-1b) sin¢+bsin(§-1)¢,

cos¢+cos(g—l)¢

dy a
< =cotf= =cot{5 —1)¢;
dz —sin¢+8in(§_])¢ (2b ) H]
a af
therefore 9=(2—b.-1)¢ and XON=0+¢=—22
. . ab ‘
PX=0NBm(0+¢)=asln;:?b,
also : %=2(a—b) cos‘%,
b . @ b, , . ab
a=4;(a—b) smi—g—’::i;(a_b)sma%ﬁ_ 4




9—12] AND RIDERS. 113
Therefore, if s=1sinnf .be the intrinsic equation of the
hypocycloid, then )
a b '

n= m, and l=4&(a-b).

'With the usual notation (fig. 67), 6, =0, ,=4%g ,6,=03
and the equations of motion of the sphere are, ¢ being the
radius of the sphere

do, df_ Fo

TGS ..............;...(I)I, .
‘d\ Fe .
dnt” = —? oooooooooo [EXTRTT YY) (2),
do, dé
jt‘! + ml E*— ‘0 oooooooooooooo LIXXXXL) (3),
du aé .
E w -(72 = F- [lu.PX ......... (4),
d )
c—l}’ I (5),
dw df )
dt' +u *d—t = R —[&.X (| NP (6)
Since the Soint of the sphere which is in contact with
the hypocycloid is instantaneously at rest,

%—co,=0, v+cw, =0, w=0;

also u=(p-c¢) ‘2—3, where p is the radius of curvature of

the hypocycloid.
Therefore, by (2) and (4),

.‘Z?=__‘F§=_ g(‘fil+u.,.PX),

(1+ 7%) L e PX = pa sin
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If initially 0 =a, then ¢ =nl cosna, and
dé do
u=(p—c) ¥ =nl (cosnf — cosna) T
Therefore

4 ( 1+ 75") gi {(cosn.O - co8na) g—f} = — pa sinné,
ying by 2 (cosné — cosna) :ii—f and integrating,

/2 do)*
-+ 5,7) {(cosna — cosna) 7&} = Es (cosnd — cosna)*;
. do\' pa & . (a-2D)°
° (t—ﬁ) A Y =t (a=d)"
7 8=1sinnd; therefore .
d's " do\* a's
a7 =—lsnnd () = b et a=%)°
refore the peint P on the hypocycloid oscillates har-
lly with a period

4 () .
@ /e
om equations (1) and (5), '
dv dd _F'd o dv
THTR T R
'\ dv dé
(1 + k") @ + co, —- 7 =0,

m equation (3) d - :—’-%—f =03 therefore eliminating o,

(1+%’,.) ‘%’M (‘%) =0,

dﬁ) v=—48u 4(;: - 26;; A'v suppose ;

e o ——
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therefore v="V cos A, and if 2 be the length of the cylinder
transversed in the time #, =%7 sin M, and the motion will be
comprised within a length of the cylinder

] 4 V14 2

x “a- {57. (“‘b)}-

15. If the velocity function denoting the motion of a

w , prove that the lines
of flow are plane curves of the form #*=4¢" sin’d cosd. If

also the force function be %‘;—(4 cos'd + sin‘é)), prove that a
sheet of fluid started from the origin will return to it without
the use of a containing envelope.

A’ + By*+ Be*
LT

homogeneous liquid be

If ¢= be the velocity function of a

liquid, it must be a solid harmonic of degree —3, and
Az®+ By* + Bz* will be a solid harmonic of degree 2; there-
fore A+4+2B=0; this result can also be obtained by sub-
stituting in the equation of continuity.

Changing to polar coordinates, ¢= g (sin* 0 — 2 cos® §),

and the equation of a line of flow in a meridian plane is

_d_r_ rdf |
BT’
dr rdf
2 dr _
therefore ;—.d—;=2oot0—tan9,

#*=C sin* § cos 6.
If V be the potential

Pyt
E+7+3=0,
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w e {())

=20 (2 oo —sin® 64 4 six P oo’ 6}
.
= Z—f, (4 cos*@+sin* )

therefors the given potential makes p constant and equal
to the surrounding pressure, and no_containing envelope is
required ; also the lines of flow passing through the origin,
the liquid started from the erigin will return to the origin.

16." A uniform elastic beam lies unstrained on a smooth
horizontal table ; prove that if one end of the beam be moved
in the direction of the length of the beam with uniform
acceleration f, the length of the beam will oscillate between

Z(1+ %)and l, where 7 is the unstretched length. of the

beam, and ' the unstretched length of a similar beam whose
weight is the modulus of elasticity.

If ¢ be the distance at the time ¢ of the section of the
beam originally at the distanece « from the end which is
moved with acceleration f, and 7 be the tension, A the
modulus of elasticity of the substance, 'and p the mass per
unit of length of the beam, the equations of motion are

oG f) L, T2,

de’ N dx
. 2 e,
thereff)re g—;—f=q’g—x—i, if a'= %

The solutioﬁ of this equation is
om b (2 at) + ¥ (o = at) + A1
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(i) When ¢=0, %=0, g—;=l for values of « from 0 to 73

therefore 2’ (8) =4 (2) =0, &' (2)+ ¥ () =1 for values of »
from 0 to

() When o=0, 2 =0 for all values of ¢; therefore

@ o+ B mofra posiivo valus of s

(iii) When 2= Z; =1 for all values of ¢; therefore
¢’ (I+2) + 4 (I—2)=1 for all positive values of 2.

Therefore ¢" (z) =" () = 0 for values of # from 0 to 7, and
#O+¥ (9+5=0, ¢ (+o=y (-9

for all positive values of 2.
Therefore

{¢" () ={¢" (+o)l,=(¥" (=2)},=0
and since  ¢" (2l +5) =4 (~8) =—¢" (¢) - §

therefore (4" @) =— %5, 18" @ =0, ...

The relative acceleration of the ends of the beam
a'¢’ (1 +at) + a™y" (l at) +f=2a'¢" (I + at) +f,

and is therefore £ from £=0 to t—'l , —J from t—ito t—?—z

<fﬁ'omt=3—ltot—ﬂ,andsoon
The length of the beam therefore escillates between °

+ % and 1; and since Tgp=2; therefore o= 75.
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TuUESDAY, Jan. 19, 1875. 1} to 4.

MR, FREEMAN, Roman numbers.
MR, GREENHILL, Arabic numbers,

1. PROVE that the normals to an ellipse drawn through
a given point meet the ellipse at its points of intersection
with a rectangular hyperbola which passes through the centre
and the given point.

R |
If the normals drawn to the ellipse %, + %: =1 from any

point on the normal at %, %, meet the ellipse in P, @, R,
prove that the sides of the triangle PQE will touch the

parabola . ' Ay
& K/ - thexy
(F+5+1) -

The éqnation_ of the normal at (zy) is
2Y -0’y X=(a" =" 2y .ccvuurrunn. o (L)

and if (XY) be considered constant and (zy) variable, this
is the equation of a rectan&l-lrlar hyperbola passing through
the centre of the ellipse, through (XY) and through the
- points where the normal; drang m (XY') meet the ellipse.
o If%+m7y= and}? @b—y=l be the equations of two -
"of the lines joining the four points at which the normals
meet the ellipse, the equation

2l (Bem g (e my

17 l+x(a 3 l)(a t7 - )=o
can be made to coincide with (1).

Therefore A=1, Il'+1=0, mm'+1=0; and therefore



13—4] © AND RIDERS. ‘ 119

the normals at the points where the ellipse is met by the
straight lines -

L 2.9

st —tad gty =1
meet )m & point (Wolstenholme, Mathematical Problems,
p. 119). . ~

If the first pass through (%), then the equation of the
second becomes : :
h l(a:k ok

&
P;"i‘ ;;'——-— )=¢;—0,

the envelope of which is
(xh  yk * 4xh _
(Z' - F-l) + =0

" which reduces to the given result.
(It is not necessary for %, % to lie on the ellipse).

2. Find the relations between the coordinates of the ends
of three conjugate diameters of an ellipsoid.

Corresponding points on an' ellipsoid of semi-axes a, by ¢
and a sphere of radius r being defined by

then if OP and Op be corresponding radii of the ellipsoid
and the sphere, Og and Or any two radii of the sphere per-
pendicular to OP, prove that Op will be perpendicular to
0Q and OR, the radii of the ellipsoid corresponding to
Og and Or.

- Let

(xlylzl ? (z,y,z,), (zaytza)) (ml'yl'zl'), (:c,'y,'z,' ! (ma'yn""'a%
be the coordinates of the points P, Q, R, p, ¢, r respectively.

’
&, b))
Then === =,,,; and therefore z.x,/=xz,, ...,
a r ] 13 1%
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If Og and Or are perpendicular to OP, then
- zm, + ."/13/9' + ”xzn' =0,
m,a:," + ynys' + zlzl' =0,
themmre : zt"pa +y l'y s+ zn'ss =0,
z, 'z, +y1'ya + zl'z‘ = 0’

- and therefore Op is perpendicular to 0Q and OZ.

(This is the geometrical interpretation of Hamilton'’s
solution of the linear and vector equation when the function
is self-conjugate). :

3. If p= ¢| (= y z)g ({’ é, (z, ¥, 3), Ps =¢, (7, ”),

shew how to chan tﬂ independent variables in p:

ferential coeﬂiclents of any function from z, y, 2, to p,, p,s p,

& If p,, p, Py denote a system of orthogona.f surfaces, prove
at

IV IV TV

&ttt

a8+ (4 )2 (2D,

i dp dp dp . .
where 4, (Z;l) + (7?/‘) + (z‘) and A, %, are similarly
formed from p, and p, ‘

Deduce the tra.nsformatxon for the usual polar coordinates

0, ¢,
av a'v _ d*'v
wErat e

= i (i (7500 %)+ 33 (520 55) * g (s 25}

The concentration of V due to the ﬂll‘ of faces perpen-
dicular to ds, in the element of space ds, formed by the

-orthogonal surfaces,

; (dsd,"g)=_dp,d dp.ddp (;:1., 32)
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since dsl=‘%, d;,—_—%’l’, ds = -
1 B H

If the axes of x, y, z be taken perpendicular to the
surfaces p,, p,, p, respectively, then ds, = dz, ds, = dy, ds, = dz,
and the same concentration of V due to the pair of faces

perpendicular to dx is — dedydz %
, ay a (h AV
Thex:efore i =hhph, ‘F% (}:,7?; ‘E) ,
&V dv _day
and vt

being an invariant for rectangular axes, by addition the
required transformation is obtained.

If do be the diagonal of the elementary parallelepiped

dsdsds,, dor dp? o
B -2 s
A A T .

‘With the usual polar coordinates

do* = dr* + Pd6" + 7 sin*0dg*;

do’ =

L
therefore 2, =1, A, = o h, , Whence the result.

" rsiné

4. Prove that any system of forces can be reduced to
a wrench, that is a force P alopg a certain axis and a couple
Pa about that axis. '

Prove that the wrench will not affect the equilibrium
of a body moveable only about a screw of which the pitch
for unit angle is b, if )

(a+B) cosf@—d sinf=0,

where @ is the angle, and d is the shortest distance between
the axes of the screw and the wrench.

R
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If we take any arbitrary origin, the system of forces can
be reduced to a single force acting at this origin and a

couple. )

: f{esolving the couple into two components, one parallel
and the other perpendicular to the force, the resultant of the
force and the couple of which the plane is parallel to the
force is an equal and. parallel force, and the system is thus
equivalent to a single force, and a couple in a plane per-
" pendicular to the force; such a force and couple constitute
a wrench.

If the body be turned through a small angle B, the work
done by the couple of the wrench is BPa cosf, and by
the force of the wrench is 8Pb cosé and — BPd sinf; hence
the whole work done is

" BP{(a+b) cosf—d sinb},

and the condition of equilibrium requires that this should
vanish.

v. If = be eliminated between the equations
g+ rE+8=0 cervirnirnnnennnns (a),

Erove that the coefficients of 3* and y in the res;ulting
iquadratic for y vanish when

=g, and 74’ + (48— ¢') p* — 2grp — " =0.

Apply this method to the solution of the equation
x'+ 52— 6 =0, and explain why the four equations (8)
corresponding to one value of u give only one root of (a)
for each solution of (8).

If s, 8, ... denote the sums of the powers of the roots
of the given equation
8,=0, 5,=—29, 5,=—3r, 5,=2¢"~ 45,
s,=gr and s, =3+ 698~ 2¢°.

If 6,y 0, ... denote the sums of the powers of the roots
of the transformed equation in y, the coefficient of y* will
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vanish if o, =0, which gives 2\ =7; and the coefficient of
y will then become — }o,.

Now o,=3{uz+ A+ ")}’ =p’s, +8u’ (As, +3,)
+ 8u (N's, + 2As; + 8,) + 4N’ + 305, + s, + 8,

and therefore substituting the values of s, ‘s,, ...y the coeffi-
eient of y in the transformed equation becomes

ru’+ (4s— @) p* — 2¢qrp — 1%,

Applying the method to the given equation a*+ 52 —6=0,
in this equation A =0, and the cnbic in x becomes

5u® — 24p’ — 25 =0,

which has one real root w=>5, which makes the biquadratic

in y become \ \
4" + 683" — 3564 =0,

The roots of this equation are +6 and +3 4/(—11), and the
corresponding four pairs of values of x are

1, =65 —2, —=3; §{L+#(-11)}, —}{11+¥(-11)};
F{1-v(=11)}, = {11-#(=11)};

and the first of each pair is a root of (a). :

Each root of (a) gives one value of y; two different roots
of (a) could not in general give the same value of .y, without .
the other two alse giving a value of y, equal and of opposite
sign to the first y.

Hence, in general, one root of (B) is a root of (a); but
if the quadratic in 3" has equal roots, both roots of (8) are

roots of (a).

vi. If a surface and a cone whose vertex is at the origin
be referred to polar coordinates, the 'area of the cone between
two of its generators and the curve in which it meets the

surface 18 .
17, . g p (AN
Efr_ {l+sm 0((7(;)} dé.
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The equations of a cylinder and cone are r sinf =aq, and
cot@=4 (e?—e*). If 4, 4, A, are the areas of the cone
reckoned from ¢ =0 to ¢ =8 —a, B, B+ a, respectively ;

é'—-'- —A—9 ="+ e,
s . gp (AP A
In the rider sin®@ (@) =1, and fhérefore the ared

at . ot a* -
= ;/(?) cosec’8df = W)— cotf = 2—7@) (e?—e ’?i

.between’ proper limits,
Therefore

& o eim 4 s ~
A:=2_m) (7" — &™), A2=2\/(2) (eﬂ—eﬁ)i
‘Aa = W (fw - e-ﬁ-d)i

whence the result.

7. Exphin the production of the focal lines of a small
pencil of light which is obliquely reflected at a spherical
surface, and calculate their positions. '

If a pencil passing through two focal lines is incident at an
angle ¢ on a small area of a reflecting surface of which r, r;
-are the principal radii of curvatare; and the line of curvature
corresponding to , lies in the plane of incidence, and if
u,, u, are the distances of the focal lines from the surface;

rove that the reflected pencil will pass through two focal
fines at distances v,, v, from the surface, where

1 + 1 2

u, v, r cosp’
1 1 2cos

—_— 4 —= d)’.
u, v, 7,
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provided that the focal lines at the distances u, v, from the
surface be at right angles to the plane of incidence.

. Let @, @, be the primary and secondary foci of the
incident pencil, and first suppose the reflecting surface
ABC plane (fig. 68).

The reflected pencil will be the image of the incident
Eencil seen by reflexion in the plane ABC, and if ¢, g,

e the primary and secondary foci of the reflected pencil,
then g A=A4Q,=u, q4d=A4Q,=v. ‘

Now let the piane ABC 'be bent into a cylinder of
radius r,, with generating lines perpendicplar to the plane
of incidence. The reflected rays in the primary plane ¢, 4B
will pass through the primary focus ¢,, and it may be proved,

——— 3 the reflected
. , , T, co8¢ .
rays in the secondary plane will be unaltered. _
Next let the plane ABC be bent into a cylinder
of radius 7, with generating lines parallel to the plane of
incidence. - The reflected rays in the primary plane will be
unaltered, and the reflected rays in the secondary plane ¢,4C
will pass through the secondary focus ¢, and it may be
proved, as in the bookwork, that ;1- + vl =2 c:s¢ .
The superposition of these two cases will produce the
_general result. : .

. 1 1
as in the bookwork, that o=

viii. Find the position of the centre and focal centres
of a lens whose refractive index, curvatures, and thickness
are known. '

If through the focal centres planes be drawn at right
angles to the axis of the lens, and if a straight line parallel
and near to the axis meet these planes in the points
and ¢; any incident ray which passes through p» and is
inclined at a small angle to the axis, though it may not
meet it, will after emergence pass through ¢.

Let the centre of the lens be taken as the origin O, and
the axis of the lens the axis of z (fig. 69), meeting the lens in
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A,-A', and let C; C' be the centres of the spherical surfaces
AP 4P, '
Let 04 =g, 00=¢, 04'=d', 0C'=¢'; then since the

centre of the lens is a ecentre of similitude of the spherical
surfaces, - = (i, ‘
c c

Let SPP' Q' be the course of a ray which passes near the
axis, meeting the Iglanes through C, C' perpendlcular to the
axis in @, B, @, and let the equanons of PP’, the re-
fracted ray within the lens, be

z—h=PB(za), y—k=y(c—a);

then to the second order, considering the deviations of the
ray from the axis of the first order, the surface AP may
be considered coincident with the tangent plane at 4, and
the equations of the incident ray SP will be of the form

z—h=8(2—a), y—k=v'(2-a)
Since sin CPQ = p.sin CPR; therefore
cQ sinCRP
CR =t sncgPp™*
to the second order; and, therefore, putting z=¢,
h+ﬂ@—@=nw+3@—>}k+v<—)= {k+v (e~ al,

hy o= ﬂv+~—;k

or

Similarly, if the equations of PP’ be written
z—h=B(z-a), y-F=y(z—-d),
and the equations of the emetgent ray P'¢Q’
x_hr=ﬁn (Z _a') y—kl= " (z_ l);

’ 1 ’
then B'= //.,3+ Py h, 7 —I"'Y+ o

Putting 2 =0 in the equations of PP,
h—Ba=k—Ba', k—ya=k —ra
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If m, n he the focal centres of the lens, and if Om=u,
On =1/, then, since O and m are conjugate to 4,

1 1 . —1)ac

—+———=E+L,Oru=u;

c—a a—u a c—a pec—a
and similarly «'= (F'—;,l—)::,g .

If the incident ray meet the focal plane through m in p,
then at p :

m=iz+(p-,3+ ’:__;h) {("“)“c-a}

pe—a

_Ho—pd g
= £ (- Ba).

Similarly, if the emergent ray meet the focal plane
through = in ¢, then at ¢, z=£ :{_,—__ ’; ? (¥ - Bd); and there-
fore the 2’s at p and ¢ are equal; and in a similar way it
may be proved that the y’s are equal, which proves the
proposition. .

. (Verdet Huvres, tom. 1y. p. 894; on Gauss’ Theory of
Optical Instruments).

ix. Establish the equation of vis viva for a system of
bodies acting in any way on one another. What are the
classes of mutual actions for which this equation does not
hold in abstract dynamics?

An endless flexible and inextensible chain in which the
mass for unit length is p through one continuous half and u'
through the other half is stretched over two equal perfectl
rough uniform eircular discs (radius @ and mass M) whic{
can turn freely about their centres 'at a distance & in the
same vertical line. Prove that the time of an oscillation-of
the chain under the action of gravity is

e ),
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If the system be displaced from the position of stable
equilibrium by turning the pullies through an angle 6, the
equation of motion is ~

’

N ) 40 Cn
o (rat0) ok ) @} G5 == 29 (=)0,

m a8 '
[+ (ma+8) (p+u)} o5 +29 (—p)0=0,

m of harmonic motion, whence the time of oscil-

d the conditions of equilibrium of a fluid acted on
forces, and prove that the ,resultant force at any
surface of equal pressure is normal to the sarface
sely as the gensity at the point and the distance
secutive surface of equal pressure. '
itity of homogeneous fluid which completely fills
id spherical shell (radius ¢) is under the action of
tem of forces that 4
p_m_ 3(m!+yi+zi)'l_5(xﬂ+yl+zi)

P. = at b
the pressure at the centre, which is the origin of
s. Prove that the surfaces of equal pressure meet
planes + y +2=0 in circles; and that the average
t the surface of the shell is equal to the pressure
tre; determine also the least possible pressure at

Y +2=0.c0pirreriinrerinencnss (1),

z{ +y‘+zl=2 (yﬁz'l+z2x2+ mzyf) B
(wl-_*_yﬂ + z’/\’A=2 (m4 +yi+zl),
-w 1
PT =2 @+ 3"+ 2",

surfaces of equal pressure meet the planes (1) in

/,,
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' The average value of z*+y*+2* over the surfa.ce of the
sphere is three times the average value of z*, and

fx‘dS =4nc’ F cos* 0 sin §d = e’

Therefore the average value of 3 (@' +y"+2)" =5 (" + 3" + =)
is zero, and the average value of p is .
The pressure is least at the points wbere the coordinate

2 4
axes meet the sphere and 27“_' = ——(Tc H therefore @ can-

3
not be less than 2 (i, pe
a
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WEDNESDAY, Jan. 20, 1875. 9 to 12.

Mr. WRIGHT.

1. Ir PP, Q@ be diameters of an ellipse, and PR, PR’
be let fall perpendiculars on P'Q, P'Q, prove that the chord
of the ellipse intercepted on the straight Ene RER’ will subtend
a right angle at P. :

) Let PR, PR meet the conic in 8, 8'; then if 8¢, Q§
- intersect in O, ROR' will be the Pascal line of the hexagon
PSQ P’ QS P inscribed in the conic.

Since PQP'Q' is a parallelogram, the chords 8¢, QS’
subtend a right angle at P, ‘'and therefore O is a fixed point
on the normal at P.

Therefore the points where RR' meets the conic will
subtend a right angle at P.

2. Prove that the determinants

000abdc|=0
00zabdo
0y0alec
2000 b ¢
zyz000

, Adding the last row to the first row, and adding the
second, third, and fourth rows to the last row, the geter-
minants become .
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x Y % a b c
-0, 0, % a b O
0, 9 0 a 0, ¢

z 0, 0, 0, b ¢

2z, 2y, 2z, 2a, 2b, 2¢

which vanish, because the first and last rows differ only
by the factor 2. . '

3. If an ellipse U be described having the centre of a -
conic V for focus, and for. axes the arithmetical and geo-
metrical means of the axes of V, then of the common
tangents to U and ¥, one is such that its point of contact
with ¥ lies on the auxiliary circle of U, and the line drawn
through this point of contact parallel to the major-axis of
V passes through one end of the major-axis of b, and the
other three common tangents form a triangle whose angles
are equidistant from the centre of ¥, and whose nine-pointic -
circle is the auxiliary circle of U.

If ACA'y BCB (fig. 70) be the axes of ¥, and LCOL' the
major-axis of U, C being a focus of U, then CL= CB,
01g'=0A; and the auxiliary circle of U touches both the
auxiliary circles of V. :

If LP be drawn parallel to C4 to meet the auxiliary
circle of Uin P and UB in N, then :

PN:NL=LC:CL=CA4:CB,

and therefore P lies on V.
_ If the tangents to U-at L, L' meet CB, CA respectively
in 7, 7", then since .

CT.CN=CL'=CB* aﬁd CT'.NP=CL"=0C4*;

therefore 7'7" is the tangent at Pto V.
Since the angle T’CT" is a right angle, therefore 77" is a
tangent to U also, which proves the first part of the question.
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If a circle be described with centre C and radivs C4 +CB,
it is well known that there is an infinite series of triangles
inscribed in the circle and touching ¥, and an infinite series
of triangles inscribed in the circle and touching U.

Therefore the other three common tangents of U and V
form a triangle which belongs to both series of triangles, and
whose angular points are equidistant from C.’

. Since the feet of the perpendiculars from C on the sides
of this triangle are the middle points of the sides, and also
lie on the auxiliary circle of U; therefore the auxiliary circle
of U is the nine-pointic circle of this triangle.

4. If one of the lines of curvature on a developable
surface lie on a sphere, all the other lines of curvature, other
than the rectilineal ones, lie on concentric. spheres. If the
common centre of these spheres lies on the surface, the
surface must be a cone.

The lines of curvature on a developable are the generators
and curves which cut them at right angles. :

If PQRS..., P'Q'R'S'... be lines of curvature, such that
PP', Q@ ... are generators, then PP'=Q¢ =....

Now if PQRS... be on a sphere whose centre is O, since
any curve on a sphere is a line of curvature; therefore the
spgere and surface intersect at a constant angle.

Therefore, since OP, PP’ are equal to 0Q, Q@' respec-
tively, and the angle OPP’ is equal to the angle 0Q¢@, OP'
is equal to OQ'; and therefore P'Q'R'S'... is on a concentric
sphere.

i If O be on the surface, and if PP be the generator
through it, since OP is equal to 0@, O must be at the
intersection of the generators through P and Q.

Hence, all the generators pass through the point O, and
the surface must be a cone.

ml

. . z -
5. If smw=a:—t—§+ L—é—..-'l'(—l) L—2——7£:X,
w‘ - mﬂ-l
L.2n -1

and cosm:l—{% D X,
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§=

o o

prove that f X de=2 X dx.
x x

By Maclaurin’s theorem, if f(x) =sinz,
X=(-1)"f" (0x) =sin bz,

a.nd | fwgdx=fw Bine&vdwzz-r.
o x [\] 2

x
Similarly, if f(z) = cosz,
X'=(-1)"f"" (0x) =sinOx, and fn X =2,
! s 2

6. At each point of a closed curve are formed the
rectangular hyperbola and the parabola of closest contact;
shew that the arc of the curve described by the  centre
of the hyperbola will exceed the arc of the oval by twice
the. arc of the curve described by the focus of the parabola;
provided that no parabola has five-pointic contact with the
curve.

If OPQRS be five consecutive points on the curve, and
rectangular hyperbolas be drawn through OPQR, PQRS,
they will have a common circle of curvature, the limit of
the circle PQR. : *

If C, C' be the centres of the hyperbolas (fig. 71), and if
CP, C'P meet the common circle of curvature in ¢, ¢/, tken
CP= Pc, C'P=P¢, and therefore CC' will be para]iel to cc,
or the tangent at C to the locus of C will make with PC an
angle equal to that which CP makes with the tangent at P
to the oval.

The same proof applies to the locus of S, the focus of the
parabola of closest contact, since PS=4Pd; (or to the pole of
any curve, such as the equiangular spiral, and all the curves
7" =aq" cosnf, in which the chord of curvature through the
pole bears a constant ratio to the radius vector).

Now if the ellipse of five-pointic contact be drawn at P
(since no parabola is supposed to have five-pointic. contact,
the conic of five-pointic contact must always be an ellipse,
since it cannot for a closed oval always be a hyperbola), then
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in the reasoning concerning elementary arcs, this ellipse may
be supposed to replace the oval.

Let C be the centre of this ellipse (fig. 72), H, S the centre
of the rectangular hyperbola and focus of the parabola of
closest contact at P.

Then PC will be a diameter of all three curves, and if
P', H', 8' be consecutive positions of P, H, S, OP'H' will
be & stralght line, and, since HH', PP’ "make equal angles

HH' CH
with PH, It 75 = =P
Now PH=} chord of curvature along PC= (é?:, there
foro 1t BH' HH' CH 1 cr?
et pr =P~ Tt oP

If PS, P'S meet in O, since PO, P'O are equally inclined
with PC P'C to the tangents at P, P'; therefore O, C will
be foci of an ellipse touching the oval at P, P',or ultxmately
having four-poxntlc contact at .P.

1 4 CP

Therefore ﬁP + 0= PH" 2 ot

c»* _ SP.CP . o, ODf
OO~ CP- /P ' P = 30p”

CP |

. PO=
. ZCP—
Therefore

8S 08 SP CP-8P _SP _CD

bep=op='"op='""0P = cP"z0P"

HH' S8’
and therefore It P~ 2lt PP = 1; or the arc described by

H=arc of the oval + 2 arc described by &S.

7. A set of three conics pass through' the three nodes
of a trinodal quartic and touch the quartic; three points
are determined by their remaining intersections; a second
set of three points are similarly determined; prove that all
‘gix points lie on a second trinodal quartic havmg the same
nodes as the first.
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By triangular inversion the conics circumscribing the
triangle formed by the nodes become straight lines touching
the conic, which is the inverse of the quartic, and the
proposition reduces to the well-known ore, that if two
triangles circumscribe the same conic their six vertices all
lie on another conic. ‘ '

8. SK, SK' are perpendiculars from a focus -on the
asymptotes of an hyperbola, and P is a point moving ‘so
that KP.K'P is constant; prove that the tangent to the-
locus of P at a point where it meets the auxiliary circle of
the hyperbola will be a tangent to the hyperbola also, and
that the normal to the locus of P at this point will pass
through 8. ' :

Forces F, F' al;)ng PK and PK' will have their resultant

I/ ,dr'
along. the normal at P, if FE§+ F v

for PK and PK’; but if r’(ﬁ+ré’r—=0, then E: E—, or the
- ds ~ds roor
forces must be inversely as the distances.

If the forces were as the distances the resultant would act
along PO (O being the middle point of KK'); hence, in the
actual case, the resultant along the normal will make with
PK an angle equal to OPK’, or if a circle be -drawn about
KPK', the normal will pass through the intersection of the
tangents at K, K'; that is, through S when this circle is the
auxiliary circle of the hyperbola; and the tangent being at
right angles to SP will touch the hyperbola. '

=0, where r, #' stand

.9. A rough wire in the form of an equiangular spiral
whose angle 18 cot™ (2u) is placed with its plane vertical, and
a heavy particle slides down it, coming to rest at its lowest
point; prove that at the starting point the tangent makes
with the horizon an angle 2 tan™pu, and that the velocity
is greatest when the angle ¢ which the direction of motion
makes with the horizon is given by the.equation ~

(2u* —1) sing + 3u cosp = 2u.
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Let the initial line SA (fig. 73) pass through the lowest
point 4, then the equation of the curve is r=aec™® where
S4 =a.

The equations of motion are

my gg = —mg sinf + uR,

mv?i—?=— mg cosd + R;

dv dé .
therefore v 5 uo' Z="9 (sin@ — p cosf),
or % (v%¢*0) = — 29670 (sin 6 — . cosb).
Now if cota=2u, % =ae’0 coseca,

and % (v'e**8) = — 2ga coseca (8in & — u cosf). |

Integrating from 6 =0, \
v'e™0=2gq coseca (cosf — 1 + u sinf),
and therefore the particle started where

. 0
1-cos@ = sinf, or tang = p.

Also v*=2ga cosecae™® (cosf—1+ x sinf) is a maximum
when
2u (cos8 —1+ p 8inb) — sinf + u cos =0,

or (2u*—1) 8in 8 + 3u cosb =2pu.
10. If the horizontal distance of a ];:'ojectile in a resisting |
medium from the point of projection be connected with the

" time by the equation xz=f(t), prove that the equation of
the trajectory is '

y=—of® [7e+s [F dex 470 + B,

where 4 and B are constants.
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In the case when ¢=ax +b2’, shew that the equation ‘
of the trajectory is

y=a tana- g (3o’ + §ada’ + }0'*).

The equations of motion are -

dx _ dx dy _ dy
=P =9 By

dz &y _dydz __ de

therefore 7 dt’ G =" 9%"

Dividing by ("%) and integrating,

dy
de ‘
therefore % ——gf"(9) f%mf' (),
and =-gf(t) F (z) +gff((:)) + Af (t) + B.
If t=az+ b2’ :;: =a+2bx, [’ (t)——%%;,

dy _ 2)*
ﬂ——gf(a+2bz) de+ A

=a—g (a’z+ 2aba’ + $0%°),
y=2 tana — g (§a’c" + 3aba’ + $0'z"),

if the particle is projected from the origin at an angle « to
the horizon.

T
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11. A plane elliptic mirror swings on its major-axis,
prove that the locus of a bright Eoint, so placed that the
mirror may throw a rectangular hyperbolic patch of light
on a wall perpendicular to the axis of the mirror, is the
spheroid generated: by the motion of the mirror.

If P be the bright point and @ its image in the mirror,
the quadric cone with vertex @ -and passing through the
elliptic boundary of the mirror will be cut by planes per-
})endicular.to the major-axis of the ellipse in rectangular
1yperbolas.

Therefore the plane through @ perpendicular to the major-
axis will cut the cone in two straight lines at right angles;
and if E, F be the points in which this plane cuts the ellipse,
EQF being a right angle, Q lies on a circle described on £F

. as diameter, the plane of which is perpendicular to the plane
of the mirror. :
_ The locus of @, and consequently also of P, will therefore
be the spheroid generated by the motion of the mirror.

12. A sphere, radius a, rests between two parallel thin
perfectly rough rods 4 and B in the same: horizontal plane
at a distance apart equal to 2b; the sphere.is turned about
A till its centre is very nearly vertically over 4; it is then
allowed to fall back ; prove that it will rock between 4 and
B if 106" <7a", and that 6, the angle through which it will
turn after the ™ impact is given by the equation

V@=b)  a-v(a-F) (1 _ lob")"‘ )
a ¢

7a*

cosf, =

If C be the centre of the sphere at an instant of impact,
if o,_, o be the angular velocities of the sphere just before
altlld Just after the n impact respectively, and if 2 4CB=2q,
then

(@' +F) o, =k, +ado,_,

cos 2a,

“and sina:f;, I'=3d";
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’ 3
therefore R/ S 10{)‘ .
1a

w’l—l

Therefore 1-— 17(-)}, must be positive in order that the
sphere may rock.

By the principle of energy,
% (@' + ¥\, =ga (cos 8, - cosa),

and if o be the angular velocity of the sphere just before
the first impact, ,

3 (@ +7) ' =ga(l-cosa);

" cosf —cosa

therefore = 1 cosa
2

- (1))
or cos @, =cosa+ (1 —cosa) o

V@ - o (1 1_0_6’)“.

and cosg=——->, *=(1—
a ? w a"

13. A cylindrical bullet of mass M is fired from a rifle,
length @+ b, of which a length & is originally occupied by
the powder; the rifling is at a uniform pitch, making an
angle a with the axis of the barrel, and tane is the co-
efficient of friction; supposing that the powder is all ignited
before the shot stirs from its seat, shew that, neglecting the
resistance of the air in the barrel, the velocity of the shot
a8 it leaves the barrel being denoted by 7,

Ve 2mp,ct b—tR(a+b)#
T M(B-1)1+ 4} tana.tan (a+¢)’

where p, is the initial pressure behind the bullet, ¢ the radius
of theﬁore, and B the ratio of the specific heats of the gas
at a constant pressure and at a constant volume, assuming
that for all pressures and temperatures the law pof =p o #
holds. ‘
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Since the resultant action at every point of the rifling
acling on the bullet makes an angle 47 + a + ¢ with the axis;
therefore if B be the resolved part of the action parallel to
the axis, then Rccot(a+¢) will be the couple acting on
the bullet due to the action of the rifling. ’

If P be the impressed force due to tghe powder at the time
t, @ the distance traversed by the bullet, and @ the angle
turned through, then the equations of motion of the bullet are

w%_p_n,
¢ 20
_ 2 dt
and since = ¢ cota.0; therefore

M = Rc cot(a +¢),

3 M tana j—; =Rcot(ate),
and eliminating R,

M{1+}% tana tan (a +¢)} ‘—f;; =P
Therefore $MV* {1+14 tana tan(a+ &)}

'= [: Pda:=m730c’f: (1 + %)-pdx l

- ;7}": (B84 (a+ B},

14. If in an infinite mass of homogeneous incompressible
fluid in equilibrium under finite fluid pressure only an in-
finitely long cylindrical column be suddenly annihilated,
prove that no motion will take place.

If v be the velocity of the liquid at the distance r from
the axis of the cavity, and if = be the radius of the cavity at
the time ¢, then the equation of continuity is

dx
o=z =d¢t, .



t
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_and the equation of motion of the liquid is

_l_(_l_ﬂ__Dv
p dr dt
_dv _(?17
&~
U 2
” 7

If = be the finite fluid pressure, = will remain the
pressure at infinity, and therefore

- [

r

=_¢,tf’£_(¢_t)'

r 22"

.

. :
Since [ fi_" is infinite, ¢t must be zero in order that

@ may be finite ; and since ¢t is initially zero, therefore it
is always zero, and no motion takes place.

Considering the liquid between two parallel planes per-
pendicular to the axis of the cavity, and at unit distance
from each other; if motion were possible, the kinetic energy

would be f 2wprdr . 3v° = mp ($t)* f %' , which is infinite;

and the work done would be thea'product of = into the
diminution of volume at infinity, that is, the product of =
into the diminution of area of the cavity, which 1s finite.

The kinetic energy and the work done cannot therefore
be equal, and therefore no motion takes place.

PO T
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15. Light falls normally through a very small hole on a
f doubly refracting crystal of which the parallel faces
rallel to one of the circular *sections of the surface of
ity ; shew that if ¢ be the thickness of the plate, and
ni-axes of the surface of elasticity be proportional to '
N\, respectively, the area of the transverse section of
iergent cylinder of rays will be

SNV =1) -

: a, b, ¢ be the optical constants of the crystal,
, the ratio of the velocities of light along the axes of
rstal to the velocity of light in a vacuum.
: O be the point of incidence of the light (fig. 74)
3' the section of the wave surface made Ey the plane
h the axes Oz and Oz of greatest and least elasticity
crystal, DE the section of the equivalent sphere in
oposed of radius unity.
3 coefficients of restitution perpendicular to the axis
ing as b' and o', therefore the ray-velocities along
: as b and ¢, and therefore OB=5, 0C=c; similarly
1, OB'=b, and 4C is an ellipse, BB' a circle.
@ be the common tangent of the ellipse 4C and the
BB, then OQ is perpendicular to a circular section of
psoid of elasticity

a'c + 0y + ' =1,
y tangent plane to the wave surface through PQ will
the surface in a circle, and if the crystal be cut per-
ilarly to 0@, then the light incident normally at O
rm inside the crystal a cone and will emerge in a
ical beam, the transverse section of which RS will
rcle.

, z be the coordinates of P, and if the angle POQ be
1 by @, then cosa= —0213,'and

z!
+=5=1

o8,

G -
~e

IR
[

+

G‘I an
5]
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x /1 1 1 1
therefore = ((?—?) =m= =
‘_'(l_l =1_1
a* \& a’)—c" b
. of1 1 ,(1 1)
- 11 ’
¢ o
tan*a= Obl:'—l

(a'- 8 (" <)
= -———b‘———
and the area of the circle RS

= (=1 (1w,

=1nt tan'a
=3 (M =1)(1-A" ¢

143
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‘WEDNESDAY, Jan, 20, 1875. 14 to 4.

Pror. TAIT. Roman numbers.
MR, FREEMAN, Arabic numbers.

IEW how to obtain a first integral of the differential

Rr+ 8s+ Tt+ U(S—rt)=V,

has a first integral of the form (s, v)=0, where
U, V, u, v, are functions of z, y, 2, p, ¢.
n the complete integral of the equation

)r—2pgas+z(1+p) t—2"(s' = rt)+ 14 p' +¢"=0.

e, Differential Equations, Supplementary Volume,
0 141).

raring the proposed equation with the standard form,
(21), p. 133 becomes

m* — 2mpqz + p’e'7’ =0,

. of which are each equal to pgz. ,
iis ease it is possible to find three integrals of the
f differential equations of p. 139, which become

l *
dp+ =L du+ 2L gy =o,

‘ dg+l~)z1 da:+!—-:—q—2dy=0;

last two, by reason of (1), reduce to
de+2zdp+pdz=0... coceeienenenn. (2),
dy+2dg+qdz=0 ...ccocuvvinnnnenns (8)-
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The integrals of (2) and (3) are
: z+pr=a, y+gz=b,
. and substituting for dz and dy from (2) and (3) in (1)
(1+p°+9") dz + (pdp + gdg) dz =0,
the integral of which is
2 (1+p'+¢")=c"
Eliminating p and ¢ from the three integrals, we have
(@ —a) +(y— B+ =,
which represents a sphere,
Now a=¢(c), b=v¥(c), F(a,8)=0,

are all first integrals of the given equation, and the complete
integral is found by eliminating ¢ between the equations

-3 @ +{y-¥ (@ +2 - =0=F(x320)

af _
and d_c_o'

* The complete integral is therefore the equation of a
tubular surface, the central line of which is in the plane

of xy.
A first integral of the equation is

F(x+pz, y+92)=0.

2. State the criterion for the selection of the com-
bination weights of n independent measures of, a magnitude.
Determine the probable error of the result in terms of the
probable errors of the » measures.

In the observation of the zenith distances of stars for the
amplitude of a meridian divided into four sections by three
stations intermediate between the extreme stations, @ stars
are observed at the first, second, third stations only; & stars
" at the second, third, fourth only; c stars at the third, fourth,
U
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fifth only; and the probable error of every observation of a
star is e. Shew that there are only three independent modes
of measuring the whole arc, and obtain equations for de-
termining the combination weights of the three measures.
In the case when a=bd=c, prove that the square of the

probable error of the result is —1;—:— .

(Airy, Errors of Observations, § 64—10, and for the rider
80-82).
Consider the scheme

Stations.
1 2 3 4 5
“s? a |4, | 4,4,
-
22 B | B | B,
E o
Eg c G| C | C,
Means of actual errors.

The mean actual errors of possible measures of the whole
arc are represented by

(4,~ 4)+ (B, = B)+(C,= C)vrrerrerec (1),
(4,—A) +(B,—B)+(C,= C)eerererennn(2),
(4, 4)+ (B,—B)+(C,= C)erererreran 3),

which represent three independent, though entangled measures
of the arc.

Any other measure can be expressed in terms of (1), (2),
and (3), for instance

(4,-4)+(C,- C)=(1)-(2) + (3)-
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If a=b=c, then the equations become

6x+4y+ z=Ca,
4x + 6y + 42 = Ca,
z+4y+6z=Ca;

x z
refore, s="Y=3-
(p. e. of result\*
e

_¥AH14+2°4140+142°4148 10,
- 8% "~ 3a’

. 10¢* )
(pte. of result) =55

Torm the equations of motion of a frictionless liquid,
y that of the bounding surface; and point out
7 what is to be understood by the velocity at any

 that no differentially irrotational motion (i.e. motion
a velocity-potential) can take place in an unmoved
nply-connected closed vessel completely filled with

quid.

v, w the components of the velocity of the fluid at
'n point (x, y, 2) be given as functions of the time ¢,
J, 2 and ¢ are independent variables ; and the velocity
direction will be measured by the volume of flow
. of time and per unit of area across a small plane
ced at the point perpendicular to the given direction.
if the velocity ¢ be uniform and make an angle 0
. axis of # and we take a fixed plane area 4 (fig. 75)
icular to the axis of  and consider the fluid which
this area in the time ¢, this fluid will fill a cylinder
4 with generating lines parallel to the velocity and
1 qt. ) .
vglume of this cylinder is Aqt cos@, and hence the

oss 4 per unit of time and per unit of area is ¢ cos®.
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If the velocity is not uniform, the proposition is still
differentially true at every point.

If F(x,y,2,t)=0 be the equation of a surface which
always contains the same particles of fluid, then in the
infinitesimal time df, x, y, z become respectively « + udt,
y + vdt, 2+ wdt; and, therefore,

F(x+udty, y+vdt, z+wdt, t+dt)=0;
dF dF dF dF _
PR TRl
the differential equation of a surface which always contains '
the same particles of fluid.

Two consecutive surfaces will by. the principle of con-
tinuity remain consecutive throughout the motion and cannot
penetrate each other except for discontinuous values of £.

Hence, in general, particles once in the bounding surface
will always remain in the bounding surface, and if F(,y,2,¢)=0
be the equation of the bounding surface at the time ¢,

dF dF dF dF _ 0
udx+vdy+wdz+—¢-ﬁ-— 3

If u, v, w be finite and continuous and the differential
coefficients of a function ¢, and the surfaces for which ¢ is
a constant be drawn, then the vessel being acyclic, these
surfaces are either closed surfaces or bounded entirely by
the surface of the vessel.

A closed line within the region cutting any one of the
surfaces must therefore cut the same surface in the opposite
direction at some other point of its path; and therefore
the integral of udz + vdy+ wdz round a closed line must be
zero; hence ¢ must be a single valued function,

If dS denote an element of the surface of the vessel, dn an
element of the inward drawn normal, then by Green’s theorem

fffq’dxdydw—ffqbggdmﬂfqb (‘g + g;if + %;?)dxdydz,

and the first term on the right-hand side vanishes because

therefore u 0,

do . .
3% is zero over the surface, and the second in consequence

of the equation of continuity.
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Therefore ¢ must be zero, and no motion can take place
in the interior.

If ¢ became discontinuous or infinite we might have a
vortex line in the interior of the vessel, or if the vessel were
«cyclic and ¢ many valued, we should have circulations of
the liquid in the circuits of the vessel.

iv. Pressure is applied, according to an assigned law, to
every point of a plane surtace bounding an otherwise infinite
isotropic solid. Find the resultant displacement at any point
in the interior of the solid.

Work out the particular case in which the plane face is
that of y2, and the pressure is perpendicular to it and pro-

27y

portional to sin e

(Thomson and Tait, Natural Philosophy, §§ 693 to 739).

Measuring the axis of @ perpendicularly to the plane face
into the interior of the solid and supposing the arbitrary
pressure on the plane face a function of y only, then the
stresses and strains are functions of # and y only, and the
general equations of internal equilibrium reduce to

L
de " dy )
C_ZU_I_d_Q_,_O O ) B
de ' dy
and if a, B be the displacements of a point eoriginally at z, y
da B’
P=(m+n +(m —n) ==
( )2; ( )dy
do dp
Q=(m—n)£+(m+n)@ ............ (2),
dB da

where m =k + }n, k& being the elasticity of volume, and » the
elasticity of figure of the substance.
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Equations (1) become

m(is+n'A"a=0
dx

m d_S +nA*8=0
dy
da dB

where 8= o+ 2y
. 18 the superficial dilatation, and
L.z
ot Rt

At the surface the stress being always mormal, the stress.
ellipse must be a circle; and, therefore, when =0 we must

have P= Q and U=0.
If P=pf(y) represent the distribution of traction and

pressure on the plane face, then 8=f—: = ﬁ f(y) when =0,

A’

and from equations (3) A’3=0; 8 must also vanish when
=0,
Therefore by Fourier’s theorem

8= 7% f: f: €= f (u) cosu (v— y) dudv,

and then since A'a=—" i) Ag=-" .‘@, a and 8 are
n dx’ n dy J

. oe. m dd m .

the potentials due to densities Trn do and Ton g in the

interior of the solid.
In the particular case where f(y)= sin%y , We must
assume

Q=‘\’r($) sin%y, U:x(a;) 0082—?,
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and then from equations (1)
, 2
¢ (@) - x(2) =0,
L2
X @)+ ¥ (@) =0,

and, therefore, x (@)= 2%_ ¢' (=),

¥ (@) =- =" (o)

and =L {¢ (@) 259" (;v)} sin?—z_"'i.
Puttng ¢ (@)1 4" (@) == (o),
then since A8 = 0, therefore
w" (x) - %—:—aw (x)=0.
Therefore @ (x)= Ae'z%== )
S S e

the solution of which is
$la) =BT - T e E
Therefore x (¢) =— Be "+ — §4¢”™% + T dzs
| e

and P (2)=- S P + ';-EA:re" @ .

Now when 2=0, P=Q=p sing?— and U=0; therefore

$(0)=¢(0)=p, x(0)=0;
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and therefore ~ A4+2B=0, B=p;
_ 2mx\ _27= . 2wy
P—p(l+—&—)e a SmT’

27rx "= 2wy

U=-p —¢€¢ =« cos —~
Pa, a ?

Q=p (1—2—7;—:”) e sin2l;-—y',

1
and 8-——”% (P+Q)
=2 e'ﬂTz sin2—'—n—y .
m a
. : da P+Q  P-Q
Since- = am + i

a8 _P+Q _P-@Q.
dy 4m 4n ’

a (1  2wx\ _o™= . 27y
therefore d—z_ip(";+—;;)e < sin—=<,
d...é:% (l_g_m)e—i:fsinm’
dy m  na a
= . 2
and therefore a=— -2 {—l— + ! (-2—@+1)} % sin Y ,
4m m " n \ a a
__ 1_212) T cos Y
A= 4w (m na ) % a

5. Prove that in any substance the ratio of the specific
. heat at constant pressure to the specific heat at constant
volume is equal to the ratio of the elasticity when no heat
escapes to the elasticity at constant temperature.

ence shew that

()t omes ™ () e comer = () s ()
dv/ (¢ const.) dt/ (o const)  \dv/ ¢ gonst) dt) (p const.)’

X
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where p, v, ¢ are the pressure, volume and absolute temperature
of the substance, ang Jtd$ is the dynamical equivalent of the
heat it has received from external sources during a series
of operations. '

It is proved in Maxwell’s Theory of Heat, chap. 1x., that

AK AN
g, Tar Var g
K=—an- T~ 5
T'an Vak

and referring to the diagram' (fig. 76), we see that if
¢,—¢,=1and T,-T,=1,

ﬁ—]z’ = (%),’ K and L béing on a lim? of equal pressure;
j—%: (‘Z} ; M and K being on an isothermal ;
%%: CZ’)', Mand N l?eing on a. line of equal volume;
%ZX = (%L, N and L being on an adiabatic;

whence the result.

6. Rays of plane polarised light are incident normally on

a plate of uniaxal crystal ; prove that the emergent rays are

in general elliptically polarised, and find in what cases they

would be circularly polarised. )

If the elliptically polarised light be received normally on

a second plate of uniaxal crystal (which could circularly

olarise plane polarised.light) in such a manner that the

Eght emergent from the second plate is plane polarised, prove
that :

tana = tanf sin2 k—t 2 k

ana = 8in2w - —tany cos2 3 ,

where a is the angle from the principal plane of the first
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late to the plane of polarisation of the incident light, 8
18 the angle from the principal plane of the second plate
to the plane of polarisation of the finally emergent light,
vy is the angle from the principal plane of the first to that of
the second plate, and % is the equivalent in air to the relative
retardation of the ordinary and extraordinary rays caused by
the first plate. The principal plane of each plate contains
its optic axis and is normal to its parallel surfaces.

(Euvres de Verdet, Tome VI., p. 60.)

The plane of the figure being perpendicular to the ray,
let C be the point of incidence, é')x the principal plane of-
the plate, CP the plane of polarisation of the incident ray.

Inside the crystal the light is divided into the ordinary
and extraordinary rays, the planes of polarisation of which
are Cx and the plane Cy perpendicular to Ce.

The ‘incidence being normal, the reflexions at the faces
of the plate diminish in the same ratio the amplitudes of
vibration of the ordinary and extraordinary rays; the ampli-
tudes may, therefore, be represented by a sina, a cos a.

If O, E be the equivalent lengths in air of the plate for
the ordinary and extraordinary rays, then O — E=F, and the
difference of phase of the rays at emergence is "

The displacement of the ether at emergence may therefore
be represented by '

. ¢tk . .
Z=a sina 8in 27 (-,1—,+ X)’ Y =a cosSa SIn 27 -=,;
. " 5

~ 2
x . k .
therefore ——— — 2 ——J— cos2m = + — =a’sin’ 27 —
: sina ~ sinacosa A costa A

which proves‘ that the emergent ray is, in general, elliptically
polarised. :
* If however tana=1 and & = (2n + 1) {\, then

a4y = 4,
-and the emergent ray is circularly polarised.

If the ray be received on a second plate in which k= i,
. and of which the principal plane is Cx', then the component
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vibrations at emergence parallel and perpendicular to Cu'
may be represented by

' . . t k
Z =a sina cos 7y sin 27 (71—,+ t })
+a cos & sin ¢y sm27r( v+ })

a sin a sin sm27r( k + a co8 . cos sm27rt'
y= 7 T x) 7 T*

If the emergent ray be polarised in a plane making an
angle B with Cz', then :%, =tan g

(tan a cos 27 If

t . k. ¢
X + tan fy) cos 27 T tan a sin 27 3 8 27:'7,

ky . t .ok t?
1— = QI — — 291 — COS27r —
( ‘ -tana tany cos27rx) sin2w 7 tana tanvy sin xcos27r 7

a relation which must be independent of ¢, and therefore

tanB( —tana tanty cos?vr;:)+tana sm27r-77—i—0

tan a tan B tanvy sin27r£ +tanalcos27r£ +tany =0.

Multiply the first equation by sin 2w k , the second by
cos 27r£ , and add; tana tan B tanvy is ellmmatcd, and the
required condition is obtained.

vii. Explain briefly the nature of the analytic and syn-
thetic processes by which Helmholtz shewed that the quality
of a musical sound depends upon the number and intensity
of the harmonics which accompany it, and which are, in -
general, objectively present.
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Shew that two pure sounds, represented by increments
of pressure in the external ear proportional to sinm¢ and
sin(nt+ a) respectively, provided that they are of sufficient
intensity to require us to take account of the square of the
consequent disturbance of the membrane of the tympanum,
give rise in the internal ear to the following new pure sounds

sin{(m +n)¢t+a} and sin{(m—n)t—a},

in addition to their own first harmonics. Which of these
new sounds is the louder, and what conditions are most
favorable to its being heard distinctly ?

Under what circumstances are such sounds produced
objectively ?

Musical sounds are distinguished (i). by their pitch, (ii)
by their intensity or loudness, %iii) by their quality.

The pitch is determined by the number of vibrations in
a second, the intensity by the amplitude of vibration, so that
the quality can depend only on the form of the vibrations.

ourier’s theorem proves that any vibration can be re-
solved into a series ofp simple harmonic vibrations, having
vibrational numbers which are once, twice, thrice, four times,
&ec. as great as the vibrational number of the given motion;
and Helmholz has proved experimentally that these harmonic
vibrations are objectively present in the' air, and that the
ear performs the resolution that Fourier’s theorem shews is
mathematically possible. _

Analytically, the number and intensity of the harmonics
can be found experimentally by the use of resonators applied
to the ear, which reinforce the harmonic corresponding to
the fundamental note of the resonator. The harmonics are
Eroved to be objectively present by the fact that light mem-

ranes, &c. tuned to the harmonics are set in sympathetic
vibration when the fundamental note is sounded.

Synthetically, the quality of any musical sound can be
produced by a series of tuning forks, tuned to the funda-
mental note and its harmonics, and provided with resonance
chambers, which are capable of producing variations of
* intensity "and differences of phasc in the harmonics.
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The tuning forks being kept in vibration by electric
currents, it is found that any musical sound can be repro-
duced by the combipation of the prime tone with the upper
harmonics in different intensities; and it s found also that
the quality is independent of the phases of the harmonics.

The differential equation of the motion of the membrane
of the tympanum may be written

(g:f + p'x = ax’ + f sinmt + g sin(nt + a).

For the first approximation, neglecting ax®,

fsinmt g sin(nt + a)
=" 1 ) P) )
p'—m pi—n
the complementary function, which represents the proper tone
of the membrane, being neglected because it rapidly dies away.
Substituting this value of = in aa’, we have for a second
approximation to the value of x the differential equation

d'c ., _ (fsinmt g sin(nt+a))®
37+px—a1p,_m, +—7p"—n" '

S I'a } ' {/" cos2mt . g* cos2(nt+a)}
= 2 Y Bl et g 0 ne T ]
e M (= e
- (_I—)’——ma”f?p—’;—ﬂ—’) [COS{(m + n) t+ a} - CO08 {(m - 7!) t— a}].
Hence, in-addition to the first harmonics produced by the
. terms involving cos2m¢ and cos2 (nt + a), we shall have com-
binational tones represented by

cos {(m+n)¢t+ a} and cos{(m- n)t- a},
of amplitudes

afg and afy
() (P ) = (mean)} T (pPm)(p-n){ PP (m—n)}
respectively. ) . )

The -intensity of the differential tone is the greatest. It
will be most easily heard if the generating sounds are less




15—4] AND RIDERS. o 159

than an octave apart, because in that case the differential
combinational tone is deeper than the generating sounds.

In general, a combinational tone is not reinforced by the
proper_resonator applied to the ear, shewing that the tone
18 produced in the ear itself. If, however, the generating
sound is of sufficient intensity for the square of the displace-
ment to be taken into account, the combinational tones will
be produced objectively and will be reinforced by a resonator.

viii. Integrate the simultaneous equations:

-d'-: + ax + by cos nt + bz sinnt =0,

aw - idf—bysinnt+bz cos nt =0,

dt

bw cos nt + bx sin nt — —d‘i/—az=0,

dt

bw sin nt — bz cos nt + ay-g—:=0.

Eliminating x, g, 2

d

e a, bcosnt, bsinnt |w=0,
d bsinnt, b cosnt
a, -  —bsinnt bceosn
b.cosnt, b sin nt, - .0
. d
b sinnt, — b cosnt, a, - %

which expanded becomes
d* . d'w
d—;°+ {2(a’+ ")+ n* — 2na} T

+ {(@*+ 8 + (a* + b*) (n* — 2na) = b'n'} w=0,
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and there will result the same differential equation for
z, y, and 2.
The auxiliary equation is

m' + {2 (a® + ")+ n* — 2na} m* + (a* + 8" — na)* =0,
, or (m*+ a*+ b* —na)* + m*n*=0.

Hence m is of the form p /(- 1), where

@+ pn —(a* + ' — na)=0.
If + u, + p, are the roots of this equation,
. Byt py=mn,

and the solutions of the differential equations consist of the
sum of the products of cospt, sinut, cospt, sinpt by

arbitrary constants.
If we take w= H cos p?, we must take

x=H sinpt, y=H sinpt, 2=H, cospgt,
and substituting in the differential equations we must have
H=H, H=-H, and — (p,—a) H-bH=0, bH-(p,~ a)H=0.
H a-p, _ =b
Therefore H~"F ~a=p
which satisfies the auxiliary equation, since

pot p=n, pp =na—a —b'
Similarly, if we take w = I sin p,¢, we must take
g==Icosput, y=1, cospt, 2=1I sinut,
and (p,—a) I+l =0, —bl+(u,—a)l,=0.
If we take w = cos u t, we must take
z=Jsinut, y=J, sinut, z=—J,cospt,
and  —(p,— )= BJ,=0, BJ—(,—a)J,=0.
If we take w =K sin u,t, we must take
x=—Kcosut, y=K, cosut, z=K_ sinuft,
and (g, —a)K+bK,=0; —bK+(u,~a)K,=0.
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Therefore the solution of the equations is
w=Hcosput+Isinut+Jcospt+ K sinput,
x=Hsinput—1TIcosut+dJ sinput— K cospt,

a_b'u"Icosp,,t

=% Hsinpt+

a—

b

Ps J sin it + 2= K cos ot

+ 3

z=_?:b_"_'1Hcosp,t+Zrbﬂ‘Isinpﬂt

a— a="u
5 "Jcosp\.lt+ 3 2

involving the four arbitrary constants H, I, J; K -

K sin p 2,

ix. What is the nature of the analogy between the
bending of a flexible rod and the motion of a rigid body ?

Work it out in full for the case of a pendulum which just
makes a complete revolution in a vertical plane.

(Thomson and Tait, Natural Philosophy, §§ 593—611).

Draw two planes of reference.at right angles to one another
through the elastic central line of the rod when straight,
cutting the normal section at Pin PK and PL. 4

Let the rod be bent into any curve, of which PT is the .
tangent to the central line at the point P; and let 7 be the
twist at P, and «, A the component curvatures in the planes
perpendicular to PK and PL.

rgf a rigid body be taken which moves about a fixed
point O, and which has component angular velocities =, x, A
about axes 07", OK', ‘OL’ fixed in the body; then if P
move along the central line with unit velocity, the lines
OT', OK', OL, if initially parallel, will always remain
parallel to PT, PK, PL. .

The twist and flexures 7, x, A being proportional to the
impressed couples, the energy w of "the stress per unit length
of the rod is a quadratic function of 7, &, A, and therefore

w=14% (A7"+ Bx'+ C\* + 2Dk + 2ENT + 2F7k),
. Y
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where 4, B, C, F, G, H are constant, since the rod is
supposed ‘uniform.

f A, B, C, F, @, H be the moments and products of .
inertia of the r1g1d body about the axes 07", OK', OL/, then
w is the kinetic energy of the body.

mponent couples acting on the rod at P perpen-'
PT, PK, PL, and the component moments of
1 of the ngxd body about O7T', OK', OL' are

?: , Z:f , d: respectively ; and the resultant stress

he point P and the corresponding resultant moment
um of the body will be equal.
rod be bent by a pair of balancing wrenches at
the stress couple at any point P will be the resultant
sle @ of either wrench and of the couple formed by
he force R of the wrench to the point 2. :
ipressed couple that must act on the rigid body in
iake the body move in the prescribed manner about
- the rate of variation per unit of length at P of
couple, which is B sina, where a is the inclination
he axis of the wrench.
a force R, parallel to the axis of the wrench, acting
point in OT" at unit distance from O, will make
rody move in the required manner.

particular case 7=0, A=0, G=0; and the rod takes
of (fig. 77), where the curvature is proportional to
ce from the line of force.

e the lengﬂl of the simple equivalent pendulum of
body, and also the mean proportional between the
curvature at P and distance of P from the line of
an if P move with velocity 4/(ga), instead of unit
the tan gent at P if mltlaﬂy will always be per-

sto OT" (fig. 78).

3 time ¢, measured from the instant when P is at
)T in the vertical position OA’, let the angle
9, and the arc AP=s; then s= V(g a)t.
|uat10n of motion of the pendulum 18

}a 'Jf) =ga (1 +cos 6),
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or ‘ a_1 (a' 9.
do—é\/g)“%’

or tanTH0 _ i@,
T4
and the intrinsic equation of the curve 4P is
tan r:- 0 e,

10. Define an electric image, and find the surface density
on an uninsulated spherical conductor (radius @) under the
influence of a quantity e of electricity at an external point at
a distance f from the centre of the sphere.

When the sphere is insnlated an(F the whole charge on the

sphere is — e %5 , find the position of the line of no electrifica-

-tion on the surface of the sphere, and the quantities of

electricity on each side of this line.

Q‘Z’[axwell , Electricity, § 157). ,

hen uninsulated the charge induced on the sphere is

—_nd

—e—, and the surface density at any point is —84—;;-,
where r is the distance from the influencing point. "

3

Hence if the sphere be insulated’and have a charge — J%’

we must superpose on the preceding system & . cha.rse

3.
e (-i;. ot ) , uniformly distributed with surface density ef imaf® H

and therefore the density at any point will be

J - (1 _1
dma ( I r”) ‘

At the line of no electrification on the surface of the sphere
r=f; hence if 4 be the influencing point (fig. 79), B the
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image, C the centre of the sphere, and EE’ the line of no
electrification ; then 4E = A4C, and therefore BE= EC.
The quantity of electricity on EDE’

= ef;;:. f(;—, - -},) 2ma’ sin 6d6;

r=a'—2af cos 0 +f°, afsinfdf=rdr.
re the quantity of electricity on EDE’

i) [
() G
E -6+,

yre the quantity on EdE’

as

= —ef—.,-}e%:(l—}) (3+§)
'=—}e%(l+;) (3-;).

1at is meant by the specific inductive capacity of a

rate the electrostatic capacity, per unit of length,
rine cable, the diameter of the core being d, and
il diameter of the insulating sheath D.

og the leakage to bear, at all points, the same
e charge, form the equation for the transmission
potential along the cable: and shew from it that,
ibus, the time necessary for a definite electrical
is as the square of the cable’s length. If the
considerable, how must the battery-power depend
sth of the cable in order that slow signals may be
intepsity ?
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(Maxwell, Electricity, §§52, 126; Stokes and Thomson,
Proceedings of the Royal Society, V1I.)

Let ¢ be the electrostatic capacity per unit of length, so
that cvl is the quantity of electricity required to charge a
length [ of the cable up to potential v.

Then c=%—Kﬁ, where K is the specific inductive

lOg (7
capacity of the dielectric. - ‘

Let % denote the galvanic resistance of the cable, and
let v denote the ‘strength at the time ¢ of the current at a
point P of the cable at a distance « from one end.

Let % denote the ratio of the leakage to the charge per unit
of time,

The potential at the outside of the cable may be taken
at each instant as zero; hence at the time ¢ the quantity of
electricity on a length dx of the cable at P will be cvdz.

The quantity that leaves the element dz in the time d¢
for the adjacent parts of the cable will be dt@dm, and the

: dz
leakage in the same time will be Acvdad:.

dv , ., dy
Therefore —cdx ¢_1-t-'dt =dt o

or' : —ﬂ=c(@+7w).

dx + hevdzdt,

dz dt

dv

-But the electromotive force at P is — et and therefore

ky=- (—;—Z ; therefore

%:ck(%+lw),

the differential equation for the transmission of electric poten-

tial along the cable. . .
This 18 the differential equation for the propagation of the

temperature v in a bar, of which c is the specific heat per unit
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of volume, and -/1;, k the coefficients of interior and exterior

conductibility of the bar per gnit of length.
If we assume v =¢™¢, the differential equation becomes

I db
p= el

The consideration of the dimensions of this equation shews
that two cables will be similar, provided the squares of the
lengths @, measured to similarly situated points, and therefore
the squares of the whole lengths /, vary as the times divided
. by ck; or the time of an electrical operation is proportional
to ckl’. :
Taking into consideration the leakage, the potential di-
minishes as ¢™, and the time varies as the square of the
lenggzl of the cable; hence the battery power must vary
as e\,
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THURSDAY, Jan. 21, 1875, 9 to 12.

MR. COCKS8HOTT. Roman numbers.
MR. GREENHILL. Arabic numbers.

1. ExpLAIN the general principle of reciprocal polars.
Shew that the reciprocal of a circle with respect to a point is
a conic section, and determine the nature and magnitude of
this conic.

The diagonals of a quadrilateral inscribed in a circle
intersect at right angles in a fixed point. Prove that the
sides of the quadrilateral touch a fixed conic.

The angular points of a rectangle circumscribing a conic
lie on the director circle.

Reciprocating with respect to a focus proves that if the
diagonals of a -quadrilateral inscribed in a circle intersect
at right angles in a fixed point, the sides of the quadrilateral
will touch a conic, of which the fixed point and the centre
of the circle are foci. \

ii. Prove by changing the order of integration, or other-
wise, that '

dy [ fEVIE_
. f:«/(w—y) f Viy—§ ~ ") =70
Prove also that

o dn, (m_dn, (=)
f« 3 L (2~ &

- {r ()} e -s .

(x.l - ‘zs) w e (xz— xs)?:_l
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Changing the order of integration,

T dy  [LEE_ [ dy

[ - «/)f:wy—f)'f.,f(f”ff;V(x-y)«/@/—s)

 wn[ F@E=T@-FOL
z d,l/ .

Py

| fe Vi@-y) (- B}
dy [ fOdE
" (e-y)T 7 =B

[ 2 dy .
f“ e, (@—3)* (-5~

S (&dE 1 dz

P (@—f T (12w

_p(0,)) [ L%,

n'n

nr-y !

*(@—£)
fore, by successive changes in the order of inte-
1e multiple integral becomes

w26 -0 [ e

- (e (O ve-ron

u and ¢ (z, ) are two functions of z and , which -
Tand @ (X, Y') by a linear transformation in which
lus is unity, prove that

d - d d d
(5 - @) =2 Gy -~ )"
t b’y + cx'y’ + dacy® + ey* = 1 represents a hyperbola

onjugate referred to rectangular axes, form the
which determines the lengths of the semi-axes.
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Transformed to the axes, the equation will become

where a and 8 are the semi-axes. .
:

Therefore (5—, i _1 d’)" (g_%:)

dyl Bﬂ Eﬂ
_ (. d d . 3
= (ad_y‘ -b Tody +) (0" + 02y +...),
[l_l 2t E _ ' o 2
or W+W+E—2[§M—2L§bd+28,

o 1 _12ae—3bd+c‘
r BT 16 .

Again performing the equation ((—i;, + %*) on each function

4 U 4
I—‘: -2 L‘= =[4a+ 2%+ |1e,

o anﬂa'*'ﬁg
1.1 21
or ) ;+E=§*a—,r—,,+a+%c+e
s 2
=»‘/\12ae 63I)cl+c) ta+iote

Hence the required equation is

LR {4(12«&2 3bd+¢")

12a¢—3bd+c" _

16 0.

+a+-}c+e}+'R°

iv. State the conditions that the integral of a given
function of z, y and the differential coefficients of y with
respect to z shall. be a maximum or minimum by the
variation of the form of the function connecting x and ,
and explain how the limits of integration and the constants
introduced by the integration of the differential equation

: z
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are determined when no conditions are imposed by the
problem on the values of @ and y or the differential co-
efficients at the limits of integration.

A lamina of given mass is symmetrical with respect to
an axis and its density at amy point varies as the square
of the abscissa measured from one end of its axis; if the
attraction upon a particle on the axis be a maximum, prove

that the lamina is bounded by the oval »*= (33:2) cosd,

where m is the given mass and ¢ the density at unit distance,
assuming the law of attraection to be that of the inverse
square of the distance.

The attraction of the element ydzx of the lamina is
ox’dxdy %0 ayde
@+ )t V@' +3)’
ard therefore the attraction of the lamina is
% xyde
o N @ +y)
The mass of the lamira is given by

20

m=2c f = x*yda.
Zo
=% __ZJ ;
Let V= T+ @ then we have to investigate
the maximum value of o Vdz.

-'”o

The condition N— % + =0 reduces to N= 0, that is,

z _ my 2 0
e MR i
or (=*+y" )t —a’z=0;
therefore r*=a’ cosl,

the equation of the curve bounding the lamina.
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At the limits V. dz, -V dx, must vanish, and therefore
V,=0, V,=0, which bends to’ ¥,=0 and g, '=0. Thus the
lamina must be bounded by the whole closed curve.

To determine a, since the mass of the lamina is m, therefore

g f far’ cos*0drdf

=}od ] i cos'0dé
. 8.1m
=4od' 5 33
therefore = 32m
31ro'

5. Prove that

.U wg—x n-x --1 f(m +y +z +.._.) dxdydz...., \

the integral being so taken as to give the variables all
{positive values consistent with the condition that z +y + 2 +...
18 not greater than c, is equal to

T (f) T (m)T (n)... S
T({l+m+n+...) ]:f(h)k dh.

If a rod be divided into p pieces at random prove that
the chance that none of the pieces -shall be less than %th

1
«of the whole, where m is greater than p, is (l —,%)r .

If 2 be the distance of the n™ point of dmsmn from
.one end, then if each piece be greater than —th of the
whole, we must have = greater than -’—l and l - greater

than 2 ; and therefore

i
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Hence, each point of division has a favourable range
1- f% of the length of the rod when each part is not less

than %th of the whole, and since there are p—1 points of

1
division, the required chance is ( - 1%) .

6. State what general class of integrals can be reduced
to elliptic integrals.

Distinguish the three species of elliptic integrals, and
. explain the terms sinam, cosam, Aam.
Prove that -

sin [am (u+ v) -+ am (u + v)] = .o LAY cosamu Aam v

-1 =% sinam*» sinam*v °

Writing for shortness = sinamu, y = sinamv, then

\.sinam(u+v)=xv(l_y) Ja-Fy ")-II‘-’y’;/’l 2f V(1 - k)

’

+4
D Buppose,
V(1—-2) (1 —g') — 2y V(1 = E'") V(1 = EY")

cosam (u+ v) =

1 k2 2 2
= ;) suppose ;
and therefore ‘
sinam (u — v) = ZA , cosam(u—v)= BzB .

Therefore  sin[am (z + v) +am (u —v)]
= sinam (¥ + v) cosam (% — v) + sinam (» — v) cosam (u + v)
_(4+4)(B+B)+(4-4) (B- B
.Di

AB+ A'B’
=
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and | AB+ A'B’ .
=z V(1 -y) V(1 =) V(1—2") V(1 =)

+y V(1= @) V(1 - K ay ¥ (1~ F2) V(L= KY)
=2 /(1) V(1 -R) {1 - " +§* (1 - K="}
=z J(1-2) V(1 -y) D.

G AB+ 4B 2w y(1-3 )4(1 By
yig 1—%%

the required result.

Hence

vii. Prove by Newton’s method that an orbit similar and
equal to the apparent orbit of P round S in motion may be
described round S fixed by the action of the same central
force, and that the periodic time will be increased in the

ratio of
V(8+P): y(8).

Prove that if two similar orbits be similarly described,
B'Y 7\.-5; where « is the ratio of homologous linear
dlmenmons of the orbits, B8 is the ratio of homologous forces,
1y the ratio of the periodic times, & the ratio of the masses,
and A the ratio of homologous velocities.

If PQ, pg be similar elementary arcs of the two orbits;
PR, £r the tangents at P, p and E@, rg the subtenses in

the direction of the resultant impressed torces, then
_LE_E¢
T’
P
o o 2wt
b= T
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where v, v’ are the velocities at P, p respectively,

P P....... impressed forces........cceeuues ’
MM ....... masses,
1 7 R times of desoribing P@Q, pg.

Therefore a =\ B'Y* tﬁe required relations.

8. Prove the differential equations for the motion of the
moon supposing its orbit in the ecliptic,

du, P T du o dE 2T
T T Y de M T
If P=
S
T=-"T 4 sin2 (1—-m)4,

:and we assume as integrals of the equations of motion
au=1+a, cos2(1—m)0, H=na"{1+h, cos2(1-m)6},
and neglect squares and products of m*, 4, and a,, prove that

%m,2—-m
. 3m* 1-— . .
hx"'—' i(1—m)’ “n=4(1_m)szl1) p=n'a’(143m’),
2a,+h
and 0= nt+s+2(l‘—‘)sm2(l m) (nt +¢).

To the required order of approximation
" H*=n'" {142k, cos2 (1 —m) 6},

ie® .
0 =" 4n’a*h, (1 —m) sin2 (1 —m) 6,
21;:—3m‘n’a‘ sin2 (1 —m) 63

3m?

ttherefore l hl = Z-(l——ﬂﬁ) .
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Ao T¥u=l_ B0 mpo1)coea(1-m)h,

71'7'=F‘%{_“* cos2 (1 —m) 6}

= E {12, cos2 (1—m) 0] =" (3 +§ cos2 (1= m) 6]

T duw

and Z,—u,, d—o‘

=0

to the required order.
Therefore, equating coefficients of like terms,

and S L-mp-1}= uh,  3m

or . p=n'a’(1+}m?), 'A .
and a {4(1—m) -3 =24 +§m’

— 3m. 3

=3i—m Tim
s 2—m
=t

Also (;—0=Hu’;

dd =
therefore n— B He = —(2a,+4,) cos2 (1 -m)¥,

_”
2(1—
and, inverting the series,

‘nt+e=6— sin2 (1— m)0

a,+ h,

6= m+e+22(1 502 (L=m) -+

to the required order of approximation.
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a gravitating particle of mass m’' be placed at the
'2'), prove that the work required to move a particle
1ss from the point {zyz) to an infinite distance is

m' {(—a)'+ (y-y) +(-2)Th
also that

d ' ’ " N2 =47 _
it i) [ (=T + -+ (= Y] =0,
enz=, y=y, 2=2\

3 these theorems by replacing the particle m' by
g bodies of finite extent and find the potential at
due to a hollow sphere of uniform density.

that the pressure per unit of length on any normal
" a spherical shell of mass m and radius a due to
al gravitation of the particles tends to the limit

the thickness of the shell is indefinitely diminished.

P=(@= )+ -y + - )
required to move a particle of unit mass from a
- from the particle ' to an infinite distance is

© ,dr m
m — =—.
, r

<

7

r

d (1 __z—a 4 (1) _3(x—a) -,
Iz )— * Vdt\r/ 7 2
fore, provided r does not vanish,
@& d  d\1
(a;*’f apt ) 7=
d‘ d’ (. ’ 7\2 UIE 3
- i+ g I (e=2) + =g+ =21 =0
particle m' be replaced by bodies of finite extent,
receding progosihons, being true for every particle
lies, are true by addition for the whole bodies; and,
if V be the work required to move a particle of

0,




9—12] AND RIDERS, 177

unlt mass from a point (xyz) to an infinite distance, and if

p' be the density at the point (2y'z'), then
V=[lfpdzdyds {(z— )+ (y - )" +(z-2)'}}
and if (2zyz) be a point in free space
av + 47 d V av
& T dy tEF T
If, however, p be the density at the point (a:yz),

¢ ] 2 ¢
LR T LN

=0.

For a hollow sphere of uniform density p, V' depends only
on the distance from the centre, and taking the centre of the
sphere as origin, and ' =2"+ 3" + 2,

av 24V
e R +4mp=0;
d(,.dV
therefore A (r —2—) +4mpr'=0,
7"5-1;-"— —f 41rpr’dr=—m

where m, is the whole amount of matter within the sphencal
surface of radius .
If a, b be the external and internal radii of the shell
then
av m
3

(i) When r>a, m, = 4mp (a®—-b")=m, % ="

and V=

ik

where m is the mass of the shell.
() a>r>b, m=4mp(* =), & = —gm (- 2)
y M, P _ ' ar P g )

B
V=Cgmpr - gmp 2,

AA
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. AW
and when r=a, V=4mp (a - ;) H
3

therefore V=23mp(a’- ")+ §mp (a" - b;) .
av

(iii) b>r, m=0,2" =0,

dr

and V is constant and equal to the value it has when »=25;
therefore V=_2mp (a*—b").
The resultant force of attraction on one half of the shell

2x rkmwra  JV .
= fo fo fb-—f‘z; cosOpdrrdOr sinfdp .
e ,dV
= - wpfb 7 E;dr

= g f: (" =17) dr

$mp* {§ (o' - 0") =8 (a - 0)}
7%’ (@ — )’ (a” + 2ab + 30°)
. . (@—b)* (a® + 2ab + 38"
- -iae-m (al — b' 2
va 3@ +2ab+ 80
- 'iaﬂ'm (a"+ab+ b’)”
¢
which becomes '1_87%’ when b is made egua.l to a.

Therefore the pressure per unit of length on any normal

. o m
. section will be Tomd*

10. Establish the equation of continuity of a fluid, (i) by
considering the fluid which enters and leaves a fixed. element
of space, (ii) by following the motion of an element of the
fluid. ,

Find the rate at which momentum in the direction of the
axis of « of the fluid which is instantaneously within the .
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element of space dxdydz is increased on account of the fluid
which enters and leaves that element. .
Hence prove. that

d(up) , d(wp)  d(uvp)  d(uwwp) dp -
@ T T a t& tarE=0

with the usual notation, and deduce the ordinary equations
of fluid motion.

Considering only what takes place in the interior and on
the surface of the element of space dxdydz at the point
xyz, and considering only the components of the force and
momentum parallel to the axis of z, then the momentum
of the fluid which is in dzdydz at the time ¢ is updedydz,
and the momentum of the fluid which is in dxdydz at the
time ¢+ dt is updadyde + ) drdudyda.

In the time ¢+ dt

(1) momentum w'pdtdydz enters the element of space
dzdydz by the face , and momentum

d (')
Tz dtdxdydz .

w'pdtdydz +

leaves by the face z + di;

(2) momentum wuvpdtdzdx enters by the face y, and

momentum wuvpdtdzdz + %’ﬁ) Jtdxdydz leaves by the

face y+dy;

(3) momentum wuwpdtdxdy enters by the face z, and

momentum wuwpdtdedy + J—(;Z—L")dtdxdydz leaves by the

face 2z +dz.
Hence the rate at which momentum in the direction of the

axis of x i3 being generated within the element of space
dxdydz per unit of volume is .

d(wp) , d(up) , d (uwp)

d (uwp)

dz
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Considering the pressures which act on the element dxdydz,
the pressure p on the face = generates in the time d¢ the

momentum pdtdydz, and the pressure p + %dz on the face

« + dx generates in the time d¢ the momentum
- pdtdyds - L dtdwdyds.

The pressures on the faces parallel to the axis of x will
generate no momentum parallel to the axis of . .

The impressed force X generates in the time dt¢ the
momentum pXdtdxdydz.

Hence the rate at which momentum in the direction of
the axis of « is generated within the element of space dxdydz
by the pressure of the surrounding fluid on the element and
by the impressed force per unit of volume is

dp
pX- 7z
Therefore

dp _d(wp) , dlup) , d(uvp)  d(uswp)
PA-%="a * @ YTy T & !

the required equation.

Combined with the equation of continuity
dp , d(up) , d(vp)  d(wp) _
7t+da:+dy+dz =9

this equation reduces to the ordinary form

1dp du du  du du
P il Rl M T

xi. If the velocity of normal proxa.gation of a plane wave
of light-vibrations in a crystal in a direction ([, m, ») referred
to a system of rectangular axes be given by the equation

® m’ n*
pamr il R

prove that when a disturbance spreads from the origin of
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coordinates, the locus of all particles in the same state of
vibration is a surface of the form

2.2 2, 2 2,2
a’r +*by’+ c'z
r—b

If a, b, c are unequal and in descending order of magni-
tude, prove that the surface has four real nodes, and that the
equation of the normal cone at one of them referred to axes
parallel to axes of the surface is

m!(b'l__ 2) +yl(a’_cﬂ) +z¥(a¥_b2)= % (a!+c!) V(a!_ b‘) V(b’_ c!).

. =0,

r'—a’ r—c*

In finding in the usual way the envelope of the plane
le+my+nz=v,

subject to the conditions

roowm
tp—ataTa=0

a-v

U+m'+a'=1,
we obtain
® v

=
r—ad v-a'

Y mv
r— b! o = b?
z nv

r’—c’—v’—-c"’

from which we find the required equation of the wave surface.
At the four real nodes y =0, » =5, and
a'r’ 2 . a'¢
e-b b-¢ a—c"
x, b
- o—v

Therefore
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al

w L

Tt
v—;—(b —G);.

a'-¢ l )
Therefore - (a* =8 o+ & -¢) =

(@- ome (@ —5) L+ @-o "
Eliminating v,
(@)= @B S @ B) P-4 e) R parp-o X,
or (@*—c) (P +m'+n) )
=(@-8)0+ ‘-‘1;—0—' V(e - 5) V(5 - &) Lt (= ),
or B(F = &) 4 m (@' = &) + ' (a" = B \
T P W )

xii, Find the intensities of the reflected and refracted
rays, when light polarized perpendicularly to the plane of
incidence falls on a refracting surface of glass, stating clearly
the assumptions that are made.

If common light fall on a series of parallel plates of glass
at an angle tan™'u, where u is the coefficient of refraction for
glass, prove that the light reflected at any of the surfaces
of the plates will be completely polarized in the plane of
incidence. :

The assumptions rest on four principles (Euvres de Verdet,
tome V., p. 397).

1. The principle of energy, by which the energy of the
incident ray 1s equal to the energy of the reflected and refracted
rays.



9—12] AND RIDERS. , 183

2. The principle of continuity, by which the differences
of velocity and displacement of ‘points indefinitely near to one
another on opposite sides of the surface of separation of the
media are infinitesimally small.

3. The principle of sudden change at the surface of
separation, by which it is assumed that the change from the
incident to the reflected and refracted ray takes place im-
mediately. .

4. The principle of the constitution of the ether, in which
it is assumed that the pressure of the ether is the same in
all media, and that the difference of the velocity of light
is due to the difference of the densities of the ether, so that
the velocity of light in a medium is inversely proportional -
to the square root of the density of the ether.

If a denote the amplitude of the incident, 4 of the reflected’
and ¢ of the refracted ray, where b and ¢ are estimated
positively when the direction of the vibration of the reflected
or refracted ray coincides with the direction of vibration of
the incident ray when the reflected or refracted ray is turned
so as to be in the prolongation of the incident ray (fig. 80),
and if 4, <’ be the angles of incidence and refraction; then,
by principles 1 and 4,

a’— b _ sind coss’

¢ -sins’ cosg ?

and, by principles 2 and 3,

(a—~3) cosr==e cos?".

Therefore a_-l-_b = -s.l—n?-,. ’
P sine
and b tan(¢—14') e 2 sint’ coss

a tan(i+4)’a sm(i+7) cos(i—7)’

If ¢+ ¢’ =90°, then tan¢ = u, and the light which is reflected

at the surface will be completely polarized in the plane of
incidence. ' , "
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If the light fall on a series of parallel plates, then, since
1+ 7' =90°, the light after any number of refractions, internal
-al, will always be incident at the polarizing angle,
reflected light will be completely polarized in the
ncidence.
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THURSDAY, Jan. 21, 1875. 1} to 4.

ProF. TAIT. Roman numbers.
MR, GREENHILL., Arabic numbers,

1. IF a binary quantic contain a linear factor a times and
not more, prove that the Hessian will contain the same linear
factor 2a — 2 times and not more.

Find the conditions that a binary quartic may be a perfect
square, and considering the coefficients as being each of the
order unity, shew that the order of the system is equal to 4.

The repeated factor may without loss of generality be
taken to be z, the quantic is then 2*¢, and it is to be shown
that the Hessian contains the factor ™™, and not any higher
power of . The first differential coefficients of =*¢ are

2-1 ¢d¢ ad¢.
" p+at o, & ay’

and hence the Hessian is

{a (a—l)w“‘q5+2am“"g—: +x“§—:£} x“%;%’

d¢ dd)*
l- ——
-G e o)

d’$ (dd) * . ’
— e ) (py P o 221 =
=ax {(a 1)¢ & a dy) } + terms in 2™ and

Hence the Hessian contains the factor ™, and it only
remains to show that it does not contain any higher power
of z; this is so if the coefficient of 2™ does not vanish

for x=0.
BB
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Suppose ¢ is of the order n, and write 4, B, C for its
second differential coefficients, we have

b a8 ),

dp 1
d*¢ . .
3‘&2 = 0,
and thence the coefficient of z*** is
a—1 o . a -
which for 2 =0 becomes
1 . at+n—-1 ., ,
n (,n_ ])x {(”_1)(a—1)—"a} C"y y = n (n_ l)x c Y.

But the quantic z’¢ contains the linear factor a (and not
more) times, hence ¢ does not contain the linear factor z,
and consequently its second differential coefficient C' does not

n—1

— .. a
vanish with #; and the remaining factor + » does not

n(n—1)
vanish for any positive inte%ral values of a or n; hence the
Hessian contains a non-vanishing term in 2™, or it contains
the linear factor 2a — 2 (and ngt more) times.

If a binary quartic contains a linear factor twice, then the
Hessian contains the same factor twice; and hence if the
quartic is a perfect square (that is, if it contains two linear
factors each twice), the Hessian will contain the same factors
each twice, or it will be a mere constant multiple of the
quartic. Taking the quartic to be

(a, b, ¢, d, e]z, y)',
the conditions are

ac—b' _ 2(ad—bc) ae+2bd-3c" 2(be—cd) ce—d*
a 4 6e T ad T e ?
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these being, of course, equivalent to a two-fold relation between
the coefficients (a, 3, ¢, d, €).

The order of the system is equal to the number of solutions
obtained by combining with the foregoing a number of
arbitrary linear relations . sufficient to render the system
determinate; that is, 2 arbitrary linear relations. The con-
ditions express that there exist quantities (a, 3, ), such that

(@) by ¢, d, e}, y)* = (az’ + 2By + vy')!
identically, viz. that we have
a, 4b, 6¢, 4d, e=(a*, 4aB, 2ay + 48", 4By, ¥°).

Imagining these values substituted in the arbitrary linear
relations, we have for the determination of the ratios a: 8 : vy
two equations of the form (a, 8, v)'=0 giving 4 systems of
values of a, B, v, and therefore also 4 systems of values
of (a, , ¢, d, e); or the order of the system in (a, d, ¢, d, ¢)
18 4.

2. State and prove Sturm’s theorem for determining the
number and position of the real roots of an equation.

1 a" /2*-1\"
If X"=E . 'd—xi‘ (_2 ) )
prove that 2nX =(2rn—-1)2X,_ —-(n-1)X,,

and hence shew that the roots of the equations X, =0,
X, ,=0,... are all real and between —1 and 1.

x -1

Putting =2z, then
nX, —(2n—1)zX,

1 {dz --(2n—l)zd-z-}

[n—1 |da" dx"’
1 d a2 d" 'z
= (=1 {n. 7~ = (2n -1) pro

+en-1) (-2 7
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1 d" a2 a
=" [r=1 {("‘“1) P —(2”—1)("—1)—@-7}

1 d7° (de? "
=_|_n—2da:""'{ = _(en—1)s *}

1

=3 I {(n=1) %"+ 2" - (2n - 1)2""}

_ n=14d"
- [n—-2 da™*

Considering the series of functions X, X, , ..., X, we
see that X =1, and that two consecutive functions cannot
therefore vanish for-the same value of x; also that when
a function vanishes, the adjacent functions are of opposite
sign; hence the functions may be considered as a series of
Sturm’s functions.

When z=-1, X =(—1)", and when =1, X =1;
therefore the roots of the functions are all real and comprised
between —1 and 1, and the roots of the equation X,_ =0
separate the roots of the equation X =0.

=—(n-1)X_.

3. If Yt= %2—:, prove that

b+c bsinya—c sin(y+2,a—2et cosa sin(y+1)a ¢

Y=

"~ 2ecosa’bsin(y—1)a—csin(y+1)a—2et cosa sinya e’

where (b4 ¢)'=4 (bc— ae) cos’a, and hence prove that the
condition that 4 is a periodic function of the xth order is

DIy
. b* —2bc cos— +¢*
‘ o x
a= ; or e=— 1:11' - )
4a cos® —
)

7 being an inte%:er not a multiple of .
Find y*t when (b+c¢)*> 4 (bc—ae), and discuss the case
when (b+c¢)*=4 (bc— ae). :
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Let y't=u,; then

a+buy L
uw=—c—+—e';:,orum(c+euy)=a+buv.
)
Let u,= - — -5 then
v, e
(’.’m_f)e'_’vﬂ=a+b(’_’m_f),
Dy 2 v, e
or €'v,,,—€(b+0) v, +bc—ae=0.

Hence »,= AR’ + By', where B, vy are the roots of the
equation

&2t —e(b+c)z+bc—ae=0.
If (5+c)*<4(bc—ae), the roots of this equation are
impossible ; and, putting (b + c)* =4 (bc — ae) cos’a, the roots
are

b+c . -
3¢ coBl {cosa +4/(—1) sina}.
Therefore '
_ b+c Csin(y+1)a+Dcos(y+1l)a ¢,
¥™ 2¢ cosa O sinya+ D cosya e’

and putting y =0, »,=¢, and

——b——*‘—c(—oaina+cosa) gy
2¢ cosa \D e ?

C _ 2et cosa—(b-c) cosa

therefore

D~ (b+c) sina !
Csin(y+1}a+D cos(y+1)a
and -
Csinya + D cosya

__ 2¢t cosa sin(y+1)a—(b—c) cosa sin(y+1)a+(b+c) sinacos(y+1)a
" 2et cosa sinya— (b—c) cosa sinya+ (b +c) sina cosya

__ bsinya —c sin(y + 2) a —2et cosa sin(y+1)a
T bsin(y—1)a—csin(y +1)a—2etcosa sinya
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Hence ¥"t=t¢ if a= 3;—1' , and then, since
&+ c)' =4 (bc — ae) cos"a,
4ae cos’ + B — 2b¢ cos 2T T +et=0.

b+c)'>4(be— ae), B and «y are real, and

AR 4+ Bylﬁ-l ¢
“S AF+ By o
tting y =0, u, =", and

AB+By ¢,

A+B "'

¢

. 4 L
3 B=" )
B—t—;

g7
ie function cannot be periodic.
(b+ ¢)' =4 (bo—ae), then B=ry = b;c,and

”y=(A+B.‘/)B"7
p-(p-r-ory

uy= - =

B-(8-t-2)y

Find the measures of curvature and tortuosity at any

of a given curve.
at any point of a curve the osculating helix be'drawn
g the same curvature and tortuosity as the curve, prove
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that the axis lies along the shortest distance between con-

secutive principal normals, and that if along the curve and

the helix equal arcs 8s be measured from the point of contact

and on the same side of it, the distance between the ends
3

of these arcs will be ultimately Rl %’; , Where p is the
radius of curvature. bp

The osculating helix touches the curve and has the
same osculating plane as the curve at two consecutive
points; hence the curve and the helix will have the same
principal normals at two consecutive points, and therefore
the axis of the helix lies along the shortest distance between
consecutive principal normals.

If I, m, n be the direction-cosines of the principal normal
at the point xyz, and if 8z, 6z', be the relative abscissa of
the ends of equal arcs 8s measured on the curve and on the
osculating helix, then since —“% and % are the same for the

curve and for the helix, therefore

ds* ~ p ds
. . . dp
helix, but in the helix A 0.

3 8,/ 8,
oz’ — 8x = 8—; (%; - %‘?) to the 3rd order.
Now d= Z, and d is the same for the curve and the

d’z _1dl 1 dp
Therefore . r _; A ? 0
and il = 1 il .
ds®  p ds’
dx dxz I dp
therefore i ? 7
, _, 08 dp,
8-5 —8 = F a,
8 3

and therefore the required distance is é%* i,—g to the 3rd order.
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v. State, briefly, to what classes of enquiries Laplace’s
coefficients are most directly. applicable, and mention the pro-
perties which render them so useful. ‘

Show that the coefficient of % in the expansion of
(1—2uk+ A%t 8"

B¢
Also prove that

+1 2
f_‘ Q:Q;du=0, or'=————2i+l,

according as ¢ and 7 are different, or equal, positive integers.

Spherical Harmonics or Laplace’s coefficients are used
to express in converging series the potential and attraction
of boJ)ies, and the velocity function of liquids.

The usefulness of these functions depends on the funda-
mental property that a harmonic distribution of density on
a spherical surface produces potential, which is the allied
solid harmonic of positive degree in the interior and of
negative degree in the exterior of the sphere; and, similarly,
for the velocity function of a liquid.

Let (1—2uk+R)=1 -2k,
then as u increases from —1 to +1, « also increases from
—1to +1; also
1-2uh+ R =1-2zh+ 2R
therefore p=z+ik(1-2),
-1
2 ?

or x=p+h

and therefore by Lagrange’s theorem



!
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Also % =1-2ah
=(1—2uh+ i),
dx

therefore 2= (1—2uh + ),

and therefore Qi= le (Ed;)‘ (’%——1 )‘.

Integrating by parts, [_: Q. Qidu
LR @ ey |
- @) G ()

. . . d -1 [l:!— l i
the first part vanishes at both limits, because (3;) ( 3 )

contains u* — 1 as a factor.
Hence, continuing the process of integration by parts,

" aean= ST (G () G (55 e

-G () (oY g

If < and j are different, this is
(CE7] (i)w—l (F"— T\
2y \4 2 )’
which vanishes at both limits.
But if ¢ and j are equal, this is

S Y e

. 2(L%)

ccC
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wd [ (p-1du= {A (u— 1)}; —ai (1) d

2i ! 2 =1
el B

_ (26(2-2)...2 [*
= Ui [_, ap
27 (27— 2)...2
(2e+1)...3 °

1
Therefore f Qldu
. : -1

= 2(-1)

|2¢2¢ (26— 2)...2
2% (19)* (26 +1) (26-1)...3
_ 2
T22w+1°

6. Assuming that if ¥ be the potential at a point outside
the spheroid at a distance » from the centre of a homogeneous
spheroid of small ellipticity, the equation to whose bounding
surface is r =% (1~ 3¢Q,); where % is the mean radius of
the spheroid, p the density, ¢ the ellipticity, and @, the zonal
harmonic of tﬁe second order '

dmpl® 8wk’
V= 3’,:. - 15’:,8 .'eQz‘)

deduce the corresponding expression for V when the spheroid, . .
instead of being homogeneous, is composed of strata of equal
density, the general equation to which is r=4(1—3Q,),
where ¢ the ellipticity and p the density are functions of %.

If the spheroid be revolving with angular velocity @ about
its axis, and the external surface be a level surface for gravi-
tation and centrifugal force, prove that at an external point

v 2K im) Qu

r 3r°
where ¢, &, refer to the external surface, M is the mass of
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27, 8
the spheroid, m= mﬂf;" , and m is considered of the same

order as ¢,
Hence prove that at a point on the surface of the spheroid
the resultant of gravitation and centrifugal force is -

% (1= 3m) {L+3 (gm—e) Q.

The homogeneous spheroid may be considered as made
up of a sphere of radius 4 and of a distribution of surface
density — Zpke @, on a spherical surface of radius %.

By §536 of Thomson and Tait's Natural Philosophy,
the potential of this har;monic distribution of density at an
81‘? ka’; and, therefore, for the homo-

157 .

external point is —

geneous spheroid

_Ampk® _ 8mpk’e @,

e 15 °

Hence, if dV be the potential at any external point of

the stratum of density p, contained by the spheroids of mean
radii % and % + dk, and ellipticities ¢ and ¢ + de, -

4ap d (k) 8mp d (k) s
154 H

vV

V="t %= 15p —gp &

and, therefore, for the heterogeneous spheroid
A [k, 8@, (%o d
v [Cerak - [Co gk d
. _M 8mE '
T 1R
if M deno:e the mass of the spheroid, and E denote the
integral [ o3 (%) dk. |
The external surface being a level surface we must have
V+ie'(2*+y%)=0C,

M _8nE s -
or — -5 Qe (1-Q)=0,

r
a constant, over the surface.
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Putting r =%, (1 — 3¢,@,), and retaining only terms of the

first order
M 8TE -

7 (143,00~ (575 G+ 408 (1-Q) =€,

M 2 M 8nE
o (w3 E Gmim) - Tl 4G,

for all values of @,.

(1]

2 M ' 8wk
Therefore 3 /;; (g, — 3m) — ok =0,
o | ' P8—]7.£5? =Mk} (e, ~ 4m),
M 2MEk}
and V= 7 37 (& — 3m) @,

On the surface the resultant of gravitation and centrifugal
force to the order considered is

v, .,
- d_r—'ﬁ'mr(l_Qe)

= (440,00 -2 o s~ d) @, — 3%, (1- )
=%(1-§¢)+§%(gm—e‘,)(?,
M

=~
=

X (1 _%m) {1 + % (gm - eo) Qz}

to the order considered.

vii. Precession and Nutation are sometimes said to be
due to the attraction of the sun and moon on the protuberant
portions of the earth towards the equator. Why is this not
necessarily true? Shew how to put the statement in a
correct form.

‘What is the terrestrial constant upon which Precession
and Nutation depend; and how does the determination of
it from observation give us information, as to the interior
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distribution of the earth’s mass, which we cannot obtain so
accurately from pendulam observations.

(Thomson and Tait, Natural Philosophy, §§ 825, 826).

* Precession and Nutation result from the earth’s being not
centrobaric.

The distribution of density in the interior of the earth
might have been such that the earth would be centrobaric,
although the external surface is spheroidal.

The terrestrial constant on which Precession and Nutation

depends is —0—;}4, when 4, C are the equatoreal and polar

moments of inertia of the earth.

The value of C— 4 may be determined solely from a
knowledge of surface gravity, as determined by pendulum
observations; and the interior distribution of density in the
earth can be varied in an infinite number of ways subject
to the condition of leaving the surface gravity, and con-
sequently the exterior gravity unchanged, and for all these
distributions O — 4 remains the same.

But C will be less or greater according as the mass is
more condensed in the central parts, or more nearly homo-
geneous to within a small distance of the surface.

On the other hand the interior distribution of density in
the earth can be varied in an infinite number of ways subject
C-4

c

to the condition of keeping the same; for instance,

by varying the density in any way, keeping the same strata
of equal density.

Consequently a comparison of pendulum observations with
Precession and Nutation gives us information of the interior
distribution of the earth’s density, which could not be obtained
from pendulum observations or Precession and Nutation
separately. '

viii. Shew how the determination of the form of an
unclosed soap-film which, with the vessels on the rims of
which it rests, contains a given quantity of air, may be made

. to depend upon either the superficial extent, or the curvatures,
of the film.
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Solve the problem from each of these points of view, and
shew that they lead to the same result.

‘We may solve the problem either by considering the equi-
librium of each element of surface, the superficial tension and
the difference of pressure on the two sides being constant;
or from the consideration that the superficial extent is a mini-
mum subject,to the condition of containing a given volume.

If ¢ be the superficial tension, and p the given difference

of pressures, the first method gives l+ 5—, =};’, a constant,

Tt sooond muthod me have to meke oY T
U=[[(1+p*+ ¢") dxdy a minimum,
subject to the condition that
W= [[zdady is constant.

Here V=N(14+p"+¢’) +az,
and by the Calculus of Variations, the condition for a mini-
mum 18 i Iy
&=ty =l
4 __»p 4 9 _
T VAP HVrD Y
or (1+¢")r—2pgs+ (1+p") ¢ _
e
or 1 + l, =a, a constant,
PP

9. Find the electrification at any point of an uninfluenced
conducting ellipsoid which has a given charge of electricity.

Prove Ehat the capacity of an oblate ellipsoid of revolution
. M@=c
18 owssss——

-3 C
cos™—

) Where a, ¢ are the equatoreal and polar semi-

diameters.
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The electrification at any point is proportional to the
length of the perpendicular from the centre on the tangent
Elane at the point, and if it ‘be denoted by Ap, we must

ave [ApdS equal to the charge Q.
But [pdS is three times the volume of the ellipsoid, and

. ) . Q
theréfore equal to 4mwabc; therefore A is equal to Tmabo

The potential V' at any point in the int¥rior of the
conductor is constant, and at the centre of the ellipsoid

of revolution

Ve[t P orr sinods

r 4mac

= %(—%fp sin Ods

18 [Mag
=i [ r* sin 66,

. 1 sin®*fd  cos’
where S=—+—.
s a P

sin8d0
a* cos*0 + ¢ sin*0
™ sin 040
_%cho cx+(a2_c$) cosao

=3 7 (a,,Q_ tan™ {@ cos 0}:

Therefore V=4Qc f T
(]

¢)

V(- ¢

Qtan —T—

=

= N —-¢c)" .
: 2 _ ¥
Therefore the capacity %is V@=c) .
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x. Find the pressure at any poipt in the interior of a
mass of homogeneous incompressible liquid held together by
the gravitation of its parts alone. .

mploy your expression to find the mutual attraction
between two hemispheres of a uniform solid globe.

Take the earth’s radius as 4000 miles—suppose its density

to be throughout equal to the mean density 5-5—and take
the weight of a cubic foot of water at the surface to be
- 63lbs. Also suppose the average tensile strength of the
earth’s materials to be 5001bs. per square inch. Compare
the amounts of the gravitation-attraction and the cohesion
between two hemispheres separated by a meridian plane, and
calculate the angular velocity of rotation which would just
enable inertia to overcome them both.

‘What would be the radius of a planet, of the earth’s mean
density, and of the tensile strength above assumed, if gravit
and cohesion were egually effective in keeping two hemi-

" spheres of it together ?

By the ordinary hydrostatical equation, combined with *
a known theorem in attraction, we have

and if p=0 at the surface where 7= a,
p=43mp’(a’ 7).
Hence, the whole pressure across a diametral section (.e.
the whole attraction of two hemispheres for one another) is
[ ) 37’ (a* — &) 2wz dz = ym’pla’.
[

The centrifugal force tending to split the sphere across a
plane section distant 5 from the centre is

f ) zw'.mp (o — ') dc
]

— mpa {ja* (@' ¥) — § (o~ B9}
=}mwpw’ (a* - &°)"
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Per unit of area of the section the value of this is {pe® (a*—3%),
and is therefore greatest for a diametral plane.
Hence the ratio of gravitation-attraction and centrifugal
force is
in'p'd' _ 4mpa
impa’a’ w'a’

the ratio of attraction to centrifugal force on & body at the
equator.

This ratio is 3}y in the case of the Earth; hence if the
Earth revolved 17 times faster, it would just be about to split
across & meridian plane.

To reduce to numbers, $mp’a the attraction at the surface
on a cubic foot of matter of density p must be 5.5 x 63 1bs.
weight. .

Therefore the whole gravitation between two hemispheres
is %7 x 5.5 x 63a’ Ibs. weight.

ut the whole cohesion is 7a* x 500 x 144 lbs. weight.

Therefore the ratio of gravitation-attraction to cohesion

between two hemispheres is

5.5 x 63 x 4000 x 5280

Ix500x 144 —26410.

Since the gravitation varies as a* and the cohesion
as o', gravitation and cohesion will be equal for a planet of
the same mean density as the Earth if its radius be

4000 4000

7E5410) = 160 nearly = 25 miles,

xi. State the fundamental phenomena of thermo-electric
currents as discovered by Seebeck, Cumming, and Peltier;
and shew how Thomson was led, by thermodynamic reasoning
from them, to the discovery of the electric convection of heat.

Wires of three different metals 4, B, C, having resistances

_a, b, ¢, have their ends soldered together at two junctions

which are maintained at (different) constant temperatures.
If I, be the strength of the current when A is cut, Z, the
' DD



202 SENATE-HOUSE PROBLEMS [Jan. 21,

strength if B be cut; shew by a rigorous method that the
strength of the current in C, when all three wires is con-
tinuous, is ~
ad+c)l +b(atc)l,
ab+ be+ca )

Seebeck discovered that electric currents are established
in a closed circuit of two different metals with the junctions
at different temperatures. o

Cumming found that the order of certain metals in the
thermoelectric scale is different at high and low temperatures,
go that for a certain temperature two metals may be neutral
to each other.

Peltier discovered that when a current of electricity crosses
the junction of two metals, the junction is heated when the
current is in one direction and cooled when it is in the other
direction ; if, when the junction was heated, the thermoelectric
current was in a certain direction, then the passage of a
current from an extraneous source in that direction cooled
the junction, while a reversal of the current heated the
junction. :

From these facts Thomson argued as follows:

Suppose a circuit of two metals in which the temperature
of the hotter junction is that of the neutral point, there is
no reversible thermal effect produced at the hotter junction,
for two metals at the neutral temperature behave as if they
were the same; and at the colder junction there is, by
Peltier’s principle, an evolution of heat, while there is also a
current produced.

Hence, the only place where the lieat can disappear so as
to account for the current and the evolation of geat at the
cold junction is in the metals, so that a current from hot to.
cold must cool one metal, or a current from cold to hot must
cool the other metal, or both these effects may take place.

Let a, 8, v, N be the potentials of the wires and the
solder at one junction P; o', 8, v, N at the other @ (fig. 81);
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and let z, 7, z be the currents in the wires supposed to be
going from P to Q.

The electromotive force in the wire 4 is (a'— V)~ (@ — ),
and bz Ohm’s law this is equal to the product of the resistance - -
into the current.

Therefore (@ =N)=(a=N)=az,
“or a—a—ax=N-\
=B —-B-by=vy—y—cz
by symmetry, with z+y+2z=0.
- Similarly a —at+aly=9' —gy—cl,
B -B+bl =y —y=cl,
Therefore cz—ax=(c+a)l,
cz—by=0+c)1;
therefore
(ca+ab)z—ab(e-+y) =a(b+0) L+ b(c+a) I,
3B+ Ltb(o+a)],
be+ ca+ab

or
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1. FroM the consideration of a conic and its director
circle, prove that the condition that it may be possible to
circumscribe quadrilaterals to a conic S such that the ends
of two diagonals shall lie on another conic §', is

O - 400'A + 8A'A' =0,

where °A + £'© + kO’ + A’ is the discriminant of S+ §'.

. Prove that the two diagonals of any.such quadrilateral
intersect in a fixed point, that the thitdy diagonal will be a
fixed straight line, and that the two tangents drawn from any
point of 8" to § will divide this straight line in an involution
whose double points lie on S'.

Prove also that the points of contact of the tangents
drawn from these double points will lie on S'.

m’ 2

Let S represent =t %—, -1, and let §' represent the

director circle A (2 + y* — a* — b").
The discriminant of £8+ 8’ is

(ak +x) (g‘. +x) {is+>~(a"+b*)},

. and therefore = &}_bi’ ,A'=7L' (a’ -I-b"),’
_ 1 1 L a8 a B
9_27"(2'*'6—%)’ @'=)N (3+z,,—+;,).
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. Therefore = 0'—-40'A .
- (b Grrded)
-t

and ©'-400'A +8A%A’

" and since this is homogeneous in all senses (when 4, @, @/,

A' are supposed to be of dimensions 3,2,1,0; 0,1,2,3; or
1, 1, 1, 1), it is the relation expressing the projective relation
between the two conics, that quadrilateral can be circum-
scribed to 8, such that the ends of two diagonals lie on 8.

In the case of a conic and its director circle, any such
quadrilateral is a rectangle, the two diagonals intersect in the
centre, and the third diagonal is at infinity; therefore in
general the two diagonals intersect in a fixed point, and the
third diagonal is a fixed straight line.

Any two tangents from a point on the director ecircle to
the conic are at right angles, that is, divide the distance
between the circular points harmonically, and the circular
goints are the points in which the line at infinity meets the

irector circle; therefore in general the two tangents drawn
from any point on 8’ to 8 divide the third diagonal in an
involution, the double points of which are the points in
which the third diagonal meets S!. ‘

" At the points of intersection of a conic and its director

circle ‘
@ a'+b—-a . a
@ P =1, or &= v
that is, they are the points where the directrices meet the
conic, or the points of contact of the tangents drawn from
the foci, which are also the points of contact of the tangents
drawn to the conic from the circular points; hence, in
fgienem}g," the tangents drawn to S from the double points
eon S’ .
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2. Prove that the normals drawn at different points of a
.small portion of a surface pass through two focal lines at right
angles to each other.

Deduce Gauss’ measure of curvature at any point of a
surface. '

If the part of a screw surface of uniform pitch be taken
which is formed by one complete revolution of a generating
line and the axis of this part of the surface be bent into a
circle, prove that this part of the surface supposed inextensible
will assume the form of a surface generated by the revolution
of a catenary about its directrix. ' :

Normals along a‘line of curvature ultimately intersect ;
hence if C, C' be the centres of principal curvature at the
point O of a surface (fig. 82), and if a small square PQRS
formed by lines of curvature be drawn enclosing O, then
the normal planes through PQ and RS will ultimately pass
through C, and the normal gla.nes through P8 and QR will
ultimately pass through C’, and these planes will pass
through the two focal lines 4B, A'B’, which are parallel to
the lines of curvature at O; and therefore any normal
drawn at a point near O will pass through these two focal
lines.

If P'Q'R'S’ be the small square cut out on the unit sphere
by the normals nggllel to the nf}mals to the surface along

) ' Q 1 ' 1 ,
PQRS, then ltw =2 and It —P—g—= ek where p, p' are
the principal radii of curvature at 0.
Therefore lt% = i, , which is Gauss’ measure

iy
of curvature at the point O.

A screw surface of uniform pifch is generated by the
motion of a straight line which intersects at right angles a
fixed axis, about which it twists with an angular velocity

. . 1 L3
which bears a constant ratio, 5 Suppose, to the velocity of

the point of intersection with the axis; and therefore when
the generating line has made a complete revolution, the point
of intersection with the axis will have moved through a
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distance 27c, and a point on the generating line at a distance
o from the axis will have described a helix of length
2w A/ (¢* + &%)

When this length 27c¢ of the axis is bent into a circle
of radius ¢, the helix will also be bent into a -circle of radius
V(c*+ ¢*), and the generating lines will be bent into meridian
curves on a surface of revolution.

If y be the distance of a point from the axis of revolution,
then y=+/(c"+¢'), and the meridian curve is therefore a
catenary, of which the axis of revolution is the directrix.

In the screw surface if the axis be taken as the axis of 2,
then the equation of the surface is

g:tanf;
z ¢
a.;ld therefore p=—?%, q=a§‘%? ,
2 2
r=(—§i—c‘;—,)—“ s-=—c'(mi,‘:%‘, t=—(——x?i‘r‘;2)t7
and rt—s’=—(—w2—f—w.

Therefore Gauss’ measure of curvature

rt—- 8 c

= (1+px+qs)|=_ (:z:"’+y"+c”'
In the catenary of revolution
0""+6’

p=—p=—"j

and therefore at corresponding points of the two surfaces:
Gauss’” measure of curvature is the same, '

a. Show how to find y as a function of Z so that the value

of the integral
el W Ty
f.f(y’ az’ a?,)d.t

may be a maximum or miniinum, the form of f being given.
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If a point move in a plane with velocity always propor-
tional to the curvature of its path, show that the brachisto-
chrone of continuous curvature between any two given points
is a complete cycloid.

Prove that in the ordinary gravitation brachistochrone
(which is also a cycloid) the velocity is inversely as the cur-
vature of the path, and state the connexion between .the two
results. ' ‘ ) ‘

Take the intrinsic equation of the curve between p and v,
4 being measured from the line joining the points. :
N 3

Then if v = (-;-, we must have

e P

v Cc

a minimum, subject to the condition that fp cosyrdyr=a,
the distance between the given points. :

We must therefore make the variation of f‘:& Vdy due
to the variation of p and of the limits vanish, where
V=p"—2p cosy.
Now 3 f;’,’ Viy

e dV
=Vdy,-Vdy, + f v dp Spdy,

since V is a function of p and 4 only.

1

Therefore ‘2—5 =0, or 2p— A cosyr=0, and the curve is a

cycloid.

“Also V=0 and ¥,=0; therefore p,=0 and p,=0, and
. the curye must be a complete cycloid.
In the ordinary cycloid, when a gravitation brachistoch~
- rone, the velocity is proportional to the square root of the
distance from the base of cycloid, that is proportional to the
radius of curvature, or inversely proportional to the cur-
vature. .
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In the two cycloids the velocities are inversely propor-
tional, and therefore the action in one cycloid corresponds to
the time in the other; one cycloid will be a brachistochrone
for a system. of forces, while the other cycloid will be a free
path under an associated system of forces.

(Tait and Steele, Dynamics of a Particle, §§ 280, 281).

‘8. Show that if any portions of a frictionless liquid
have motion differentially rotational, that property remains
associated with those portions of the liquid; and that the
spaces occupied by such portions, unless they terminate in
the free surfgce, are necessarily doubly-connected spaces.

(Helmholtz, © Vortex Motion,” Pkil. Mag.,1867; Thomson,
% Vortex Motion,” Trans. R. S. E., vol. 25).

When the motion of any portion of a frictionless liquid
is such that it could not have been produced by fluid pressure
transmitted through the portion from the boundary or sur-
rounding liquid, the motion is called rotational.

The ordinary equations of motion of a frictionless liquid

are
Du__dP Do _dP Du__aP

_ dt dz’ dt dy' dt — " d=&?
where . P=V+ -‘%
D
Therefore = (wdz + vy + wdz2)
Déx Déy Déz Du Dy Dw
=u—dt—+v dt"l'w—a—t—'l-mth‘i'ﬁdy-l'—%dz

dP dP, dP
=udu + vdv+ w8w—%d.c-a"—/dy—~d—z dz

=8} (u'+v'+w')—P}.
Hence by integration round any. closed line
D iz + vy +wodz) =0.

EE
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Therefore, if the line integral of the tangential component
velocity along any closed curve be called the circulation
in that line, the circulation in a closed line moving with the
fluid is constant during the motien in a frictionless liquid,
and if the motion is irrotational, the circulation is zero round
all mutually reconcilable paths.
By anaiy:)gy with the rotation of a rigid body, the com-
gonent rotation of the fluid in any plane at any point is
efined as the circulation round any infinitesimal area in the
plane enclosing the point divided by twice the area.
The circulation round the element dydz at the point

(zyz) is :
vdy+(»+"—”dy)dz-(u+§z?dz)dy-wdz

dy

dw v
. (3 - Z) e
and, therefore, the component rotation in the plane yz is

3 (%1; - -j—z), and, similarly, the component rotation in the
. 4 (du dw . . 4 (dv du
planezmxs&(dz dz),andmtheplanexylsi(%—d—y).

Since the circulation round any triangular area is the
sum of the circulations round the projections on the co-
ordinate planes, the composition of rotations is according to
the vector law. _ ,

Hence, in any infinitesimal part of the fluid the circulation
is zero rownd every plane curve passing through a certain
line, the resultant axis of rotation at that part of the fluid.

But the circulation remains zero in every closed line
moving with the fluid for which it was once zero, hence the
vortex lines move with the fluid. .

A vortex line being endless, a vortex tube bounded by
vortex lines is also endless, and therefore forms a doubly
connected space, unless it is infinitely long or terminated in
the free surface.

5. A rigid body moveable about a fixed point is in stable
equilibrium under the action of a potential such that the work
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required to move the body through a small angle @ about an
axis whose direction cosines with respect to the principal axes

at the fixed point are I, m, n is

30 (PV 4 Qm* + BRn* + 28mn + 2 Tnl + 2 Ulm).

Prove that if the body be slightly displaced it will perform
oscillations compounded of barmonic oscillations about the
common conjugate diameters of the momental ellipsoid at
the fixed point

Az’ + By +Ca'=1,

and of the ellipsoid of equal energy
Pr’+Qy' + Rz* +28yz + 2Teax + 2Uxy = 1.

In the particular case when gravity is the.acting force,
prove that the surface of equal energy is a right circular
cylinder the axis of which passes through the centre of gravity,
and hence determine the independent motions of the body.

If (xyz) be the coordinates at the time ¢ of the E(;int
of the body originally at (abc)Lthe principal axes of the body
in the position of equilibrium being taken as coordinate axes,
and if

A=lw, p=mw, v=no,
then since the displacement is small, to the first order
we have '

z=a+bv - cu, .
y=b+cr—av,
g=c+ap—br;
and, therefore,  S2=pTY_ Tk
' dz &
ead [ -+ m

' = f {(b+c7\.—av)(a %’f -b %) - (c-l-ap—b)\.)(c %’—; -a %)} dm

Foy EoY
=f(b'+c’)ﬁdm=‘4‘—a—,-.
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If U be the work required to perform the displacement
from the position of equilibrium '

T=3 (PN 4+ Qu*+ Bv* + 28puy +2TvA + 2U\p),

s moment of the impressed forces about the axis of

U
~ S == (PA+ Up+ To)

refore the equation of motion will be

A‘fl—’;'+m+ Up+ Tv=0,

B%;+U7«.+Qp+3v=0,
&
0#+D&&+M=a

» motion will consist of a simple harmonic oscillation
an axis whose direction cosines are (f, g, k) if these
ns are satisfied by

=fcos(pt+q), p=g cos(pt+q), v=nh cos(pt+q),
- Pf+ Ug+ Th= AR,
Uf+ Qg + Sh = Bgp®,
If+ 8g + Rh= Chp";

Pf+ Ug+Th _ Uf+ Qg+ Sk Tf+8Sq+ Rh_ .
4f T Bg T Ch P

8, if (fgh) be the direction cosines of a common
rate diameter of the momental ellipsoid and the ellipsoid
al energy.

iy arbitrary displacement will give rise to escillations
unded of simple harmonic oscillations about the three
on conjugate diameters of the two ellipsoids as normal
and the period of each will be proportional to the ratio
common conjugate diameters oF the ellipsoids.
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In the case of gravity, no energy is required to turn the
body about the vertical and the same amount of energy
is required to turn the body through the same angle about
any horizontal axis; hence the ellipsoid of equal energy
becomes a right circular cylinder with its axis vertical.

The normal axes are therefore the vertical and the
common conjugate diameter of the sections of the cylinder
and the momental ellipsoid made by the plane which is
conjugate to the vertical, and any small oscfllation will be
compounded of harmonic oscillations ahout these common
conjugate diameters. :

vi. Explain the variation of the inclination and the irre-
gularity in the motion of the moon’s node expressed by the
second of the following terms in the mgon’s latitude

- k.sin(g6 — oy) + gmk.sin {(2 — 2m — g) 6 — 28 +v}. -
(Godfray, Lunar Theory, § 80).

7. It is found by observation that the mean annual pre-
cession is about 50”. Hence prove that the deviation of the
instantaneous axis and of the axis of resultant moment of
momentum of the earth from the axis of figure is less than
0"-01. .

Neglecting this deviation prove by considering the motion
of the axis of resultant moment of momentum the equations

ay 3n* C-A4
@ = ZX°£ 1-
7 ™ 0 cosf (1 —cos2l),

:il—;’ =— %‘— . ——CBA sin 6 gin2,
where y is the precession, 8 the obliquity of the ecliptic
b P ) quity puc,
—;‘— (C—A4) 5in28 the moment of the sun's attraction, & the
declination, / the longitude of the sun, and Cn the angular
momentum of the earth. '

Prove that if the mass of the sun be divided into two
equal parts, and placed on the polar line of the ecliptic at
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distances from the centre of the earth equal to the mean °
distance of the sun, these two parts supposed repulsive will
produce twice the mean solar precession, the centre of the
earth being supposed fixed. '

In the same manner if the mass of the moon be uniformly
and equally distributed over two thin rings, the central lines
of which are the circles which are the intersections of the
polar lines of the lunar orbits with a sphere concentric with
the earth of radius equal to the mean distance of the moon,
then these two rings supposed repulsive will produce twice
. the mean lunar precession.

If a be the inclination of the instantaneous axis to the
axis of figure, and if ® be the obliquity of the ecliptic, then

sinw _ 366 x 360 x 60 x 60
sina 50 :

The mean value of w is about a quarter of a right angle,
and with this approximation ‘ .

sinw =4} '\/{]+ﬁ}—‘}«/{l—ﬁ}

1
= m =35 about.
Since the angle a is small, if it be expressed in seconds,
| 4 3606060

o ina
_ 50 sin®
= 27 x 366 .
50 x 7 x°35 .
= Zix3eq (teking m=%)
122°5
=m =008 a.bout.

The earth being a spheroid of revolution flattened at the
poles, its momental ellipsoid is an oblate ellipsoid of revolu-
tion, and therefore the axis of resultant moment of momentum
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lies between the instantaneous axis and the axis of figure,
and the deviations of these three axes are less than 001,
and therefore quite insensible.

If on the celestial sphere (fig. 83) Z be the pole of the
ecliptic, C the pole of tEe earth, S the direction of the sun,
and if SN be drawn perpendicular to the equator, then the
axis of the couple due to the sun’s attraction 1s directed to g,
a point 90° behind N.

In the figure, the eye is supposed to be at the centre
of the earth, and to be looking at the concave side of the
celestial sphere.

If 0(5) represent the axis of resultant moment of mo-
mentum, then the velocity of & is equal to the impressed
couple in magnitude and direction; and therefore since
O G may be taken as coincident with the axis of figure,

On sin@ %‘tk =3n"(C—4) sind cosd sa R
=3n" (C— A4) sinf sinl cosd sinR
=3n"(C— A) sinf cosf sin'?
=4n" (C— 4) sinf cosf (1 — cos2l),

dy _3n" -4

i iy cosd (1 — cos2l),

and Cngg=—3n"(C—A)Sin8 cosd cos R

=—38n"(C- A4)sind cosl
=—3n"*(C~ 4)siné sinl cosl,
dd_ 3" C-4

or ' a-  2n " C

If the sun be divided into two halves and placed on the
polar ‘line of the ecliptic at the mean distance of the sum
from the earth, the moment of these two masses, supposed
repulsive, will be about OT, and of magnitede

§x*(C— A) sin26,

sin @ sin2l.
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and the equations of motion will become

dy 32" -4 dé

= O cosd and ==
Hence 6 = o, the mean value of the obliquity of the ecliptic,
and the precession is twice the mean solar precession. .

In treating of the lunar precession and nutation, the
fortnightly fluctuations due to the position of the moon in its
orbit are neglected, and the fluctuations due to the change of
position of the moon’s orbit only are considered.

Hence, if in a similar way the moon be replaced by two
masses of repelling matter, each of half the mass of the
moon placed In the polar line of the moon’s orbit, the pre-
cession and nutation generated will be twice the lunar
precession and nutation, and if these masses be uniformly
distributed over the circular rings, they will produce twice
the mean lunar precession.

vili. Prove that the equation for the variation of the
longitude of perihelion of a disturbed planet is
dw na(1-¢)dR natanyi dR

&= pe e Tuvi-&) &-
(Cheyne, Planétary Theory, §29).

ix. Investigate the differential equation for the longi-
tudinal vibration of an elastic rod to which no forces are
applied except at the ends.
’ Determine’ the solution for the case of a rod free at both
ends; state the conditions for the existence of a node at the
‘middle point, and hence deduce the periods of the component
* tones of a rod fixed at one end and free at the other.

(Donkin, Acoustics, § 149—151, 153, 157, 158).

«v. Point out the fundamental distinction between the -
rotation of the plane of polarization of light produced by
turpentine or quartz, and that produced by a transparent
solid or liquid 1n the magnetic field.
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1

Show that the experimental facts are represented by
equations of the form

PE_AE Ay D dm A
@ T d M G & drd
where, for turpentine or quartz, » is even and s odd; and for
the body in the magnetic field » is odd and s even. [Here
£ and 7 are displacements perpendicular to each other, and

to 2, the direction of the ray.] : :

and

In turpentine and quartz, where the rotation of the plane
of polarization depends on the nature of the medium, the
reversal of a ray reverses the direction of rotation of the
plane of polarization. '

In the magnetic field, the rotation of the plane of polari-
zation remains the same when the ray is reversed. -

Any incident plane polarized r:ay can be resolved into
. two equal rays, circularly polarized in opposite directions,

and it 18 found by experiment, that in mesla which produce

rotatory golarization, the two rays similarly polarized in
opposite directions are propagated with different velocities,

and therefore with different wave lengths, since the time of
vibration is the same.

Representing the ray which is circularly polarized in one
direction by

£=bc°82r(—;‘—§), "l=b8m2qr(%'_ :)’
t‘hen %T_— b(%")' (2’_")' cos2m (—;,_;4_%_3)

and similarly -
‘" _ 2” r 2_”: 8 .
mt—.'f("zi> (x) sin (r + ) .
Substituting in either of the differential equations we
obtain .
4n*  4v'a’ 2w\ /27\" .
= e (—7—,> (-i-) sm(r+s)4}jr.

FF
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Writing a7 for A in the coefficient of e, since ¢ is small,

2 ™~ .
An'a® AT e (271') sin(r +38) 3,

= e —

N J
and to the same order

2mra 2 e [2m\""?
—;:_=?-§E. (7,) sin (r + 8) .

Representing the ray circularly polarized in the opposite
direction by
t 2z . t =z
f=b 0082'11'(7..— XT) ’ ")-‘-‘—'b sm27r(-Ta_ .i?) ,

‘we obtain in a similar way

T

2ra 2w e (2m\"™"! |
~ =7 +};, (—T) sin (r + 8) §r.

The resultant vibration at any point will therefore be
represented by

E=b cos2qr(-%,— %) +b 00327:-(%,— %) )
n=> sin-21r (—;—,— %) - b sin27r (%,- {‘:) ’

7_ z_2
and therefore 3 =tanm (x, 7\.) .
Therefore the rate of rotation of the plane of polariza-
tion is .

VTN T 24\T

If r+4s is even, sin(r+s) 3w is zero, and there is no
rotatory polarization.

If ris even and s odd, then the rotation of the plane of
polarization changes sign with a the velocity of light, repre-
senting the effect of turpentine or quartz. :

r44=1
ma wa 1e (27!') sin (r+s) }r.
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If 7 is odd and s even, then the rotation of the plane of
polarization is unaltered by reversing the ray, representing
the state of things in the magnetic field.

8. Form the equation for the conduction of heat in a bar,
on the supposition that the temperature is the same through-
out a transverse section, and that the rate of loss by surface
radiation and convection is, at each point, directly as the
excess of temperature over that of the surrounding medium.
Point out the dimensions of the various quantities introduced.

Integrate the equation completely in the two following
cases, where the bar is very long, and is supposed to be
heated at one end

(a) periodically, supposing the conductivity, specific heat,
density, &c. unaltered with temperature, and the temperature
of each transverse section a periodic function of the time,

(6) steadily, supposing the conductivity inversely as the
absolute temperature, density, &c. unaltered with tempera-
ture, the surrounding medium at absolute zero, and the flow
of heat steady.

Let ¢ be the thermal capacity per unit of volume; %, %
the coefficients of interior and: exterior conductivity per unit
of area; v the temperature at the distance = from t{e origin ;
A the sectional area; and ! the perimeter of the section
area.

The quantity of heat which enters the element dz of the
bar in the time d¢ from the adjacent parts of the bar is

d dv .
d_a:(Ak d_z) dadt, and the loss of heat from the surface in

the same time is Alvdxdt.
The increase in the quantity of heat in the element dx

in the time dtis & (dev) dtd.
Therefore, equating the gain and loss of heat, we obtain
. the equation

dv

2 (der) — 2 (4320) + =0,



<
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If [L] be the unit of length, the unit of time,
[©] the unit of temperature, and H the unit of heat,

the dimensions of % will be 4] , of & w1ll be i

[LTo] ey’
and of ¢ will be [[L€®] (Maxwell, Theory of Heat, Ch. XVIIL).
l)) If A,c, k, k, I be constant, the differential equation
may be wntten P P
v v
7 =K 7 — Hy,
where K= Zc H= -h—i;

We mnst,assum;a as the general integral of the equation
v=V+32°4 67 cos (27m %,— g.z+ B )

where T is the period and V is the mean temperature.
Substituting in the equation we must have

av
K@——HV—

2mn

— = 2@n?n’

K (p.. -q.))—

These equations determine p, and % and 4, and 8, are
determined from the given circumstances of heatmg

(8) The differential equation reduces to the form
d fldv\ v
dz (v d.—z) =%
where a is a constant. .
Let v=—§—i , then ¢ is the area of the curve representing
the temperatures, and the differential equation becomes
o1
dp* o’
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and, therefore,
v=A+Bp+ 1} a3

Hence ¢ can be found in terms of = and then v= ‘i—i .

xil. When a substance is meltin At the absolute tem«
perature ¢ under pressure p, if I be the latent heat of fusion,
and w, w' the volumes of unit of mass of the substance corre-
sponding to its hquxd and solid states, prove that

d,
J‘—(“ - ) d]t)’

where J is the dynamical equwalent of heat.

Show how J. Thomson’s discovery of the dependence of
the temperature of fusion of ice on pressure is connected thh
this relation.

(Briot, Théorie mécam'gue de la chaleur, §§ 127~ 129).
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1. Form the equation

d*(r8r)  n __dB dR
e +;.(r8r)—a7;+2n ?k—dt

for the perturbation in radius vector of a planet.

Integrate this equation so as to obtain a first approxi-
mation to dr.

Explain why this and the similar equations for longitude
and latitude cannot be employed with advantage in the
calculation of secular variations or of long inequalities..

(Cheyne, Planetary Theory, §112).

ii. Assuming the equation

[If@+ le—_Z +55) dedyds= [0+ mn + nt) de

where 7, m, n are the direction-cosines of the outward-drawn
normal to the element ds of the surface of a closed space 8,
throughout which and over whose surface the integrals are
taken, prove Green’s Theorem ; and show how to adapt it
to the case in which one of the potentials is many-valued,
and 8 is multiply-connected. )

Hence show that the whole exhaustion of potential energy
of any number of gravitating particles, originally scattered at
infinite distances from each other, is

o [[[Fazayas, \
|
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where F is the resultant attraction on unit mass at x, ¥, 2,
and the integral is taken through all space. .

Assume first

av av dV
f—wa;"l Ud ’ &=U dz’

therefore

[l %+ ‘1’5 ”Z ‘% @

= [[0(i% +m g +r )%

)&@&

_ ] Il U(d' d'V "sz) GodYdz crvsrerernsssrinsnns (1)-
Next assume . dU
E=V da: ) 1= ’ g—
then

& e+ 5%+% ”ZL’

=ﬂV(l dU iZU)d’ |
fff"(‘?g+ ‘f;[.]+ d’U) d2dyde ceureensensessrrsneenns ()

and comparlng (1) and (2), we obtain Green’s Theorem.

V be man}["valued and S multiply-connected, the

quantities g’fl ' s will have definite values at all

points within S; the expressions in equation (1) and on
the left-hand mde of equation (2) will have definite values,
but the expression on the right-hand side of equation (2)
will be many-valued.

If the space S has n cycles, it must be rendered a-cyclic
by drawing n dxaphragms

)dzd ds
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If S, be a diaphragm and k, its cyclic constant, then
to the right-hand side of equation (2) & series of terms of

the form
k,ff(l%wg+?n%+n%g)&,

must be added to make Green’s theorem determinafe.
(Thomson and Tait, Natural Pkilosophyy §§ 548, 549).

iii. Write down the equations of motion of a connected
system in terms of generalized coordinates, and point out the
meanings of the various terms.

Solve these equations for a number of bodies, each of
_ which has but one degree of freedom, and vibrates (when
undisturbed) at a given rate according to the simple har-
monic law, the connections being st;pposed s;;?ht.

Apply your result to the case of the small motions (in
the magnetic meridian) of two permanent bar-magnets of
equal mass suspended each by its extremities, by parallel
strings, all four of equal length, from points in a horizontal
line.  Show s a particular case that if one of the magnets
be initially at rest the whole energy will in time be com-
municated to it. '

If the kinetic energy 7' be expressed in terms of the
generalized coordinates ¢, and their rates of increase per unit
of time ¢, then Lagrange’s equations of motion are of the form

ddr_dr_
dtdg  dg
‘;—g is the generalized component of momentum, and Z—f '

is the rate of increase of the kinetic energy per unit of
length in the direction of the coordinate g. :
or the given system of bodies

T=%((a, a) ¢+ 2[a, 8] 8¢ + [}, b] $* +...),
and the potential energy .
V=% (2, a] 6" +2[a, B] 04 + [B, B] ¢ +...),
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and therefore the equations of motion are

(0] 0+ 3y ] §-+.vi= = [ 16 [0 £] 6 .

---------------------------------------------------------

‘Since the connexions are sli ht [a, a] &c and [«, a], &ec.
are conmderable compared with [a, b], c. and [a, B], &c.;

also 12 [———]— =nl , &c., where n,, &c. are the angular velocities

in the undxsturbed harmonic motions.

To solve the equations, assume 6= 4 sin(\t+ B), &c.,
substitute in the equations-and form the determinant, the
roots of which will give the different values of A.

Let 2a be the distance between the magnets in equi-
librium if the{ were demagnetized ; @, § their displacements
at time ¢; u the strength of each pole 3

T=§ME + 9",

=G Ta E)*‘}M (& +2") + &e,

where [ is the length of the strings, and the magnets are
supposed so long that only the two contiguous poles act
on one another. This simplifies the work, but does not
alter the character of the result.

Hence, the equations of motion are

d .. g
d . | PR e .
M= Gro—E +’;_ g - U6+ &

Adding, Sa+h=-T@+b+&e.

Subtracting, : . (2)
M(%(é—é) L (1-_.5+ )= M4 (z-p+ée.

GG
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Making « and £ constant in (1), we get their equilibrium
values; and measuring  and £ from these, (2) become

Feth=-I(@+p)

P TR T (8%
- 0==(1+ /) -0
Thus, if n’=‘%—,
9, B
‘ W=t
z+ E=A4 cos(nt+ B) } .
we have o= E= A, cos{ng+ B)f T (4).

(It depends upon whether the proximate poles of the magnets
attract or repel one another whether n or n, is the greater).

Now if at t=0 we have =0, £=0, we must have at
2w

time aah #=0, 2=0, which is the statement.

In ’fa.ct, if the magnets be swung as one piece at their

uilibrium distance from one another, the time of oscillation
will be the same as that of either pendulum when left to itself,
since the magnetic force does not vary during this motion.

Agsin, if the magnets be swung with equal and opposite
motions, the centre of inertia is fixed, and the time of
oacillation will be the same as if one of the magnets were
held fixed and its magnetic strength doubled; it will therefore
be shorter or longer than the former period according as the
poles presented to one anether attract or repel.

Hence, as the small motions can be represented separately
by barmonic motions of periods ‘%'r and i—ir, the period of

‘any complete oscillation produced by superi)osition of these
2% w

simple motions will be , and therefore at intervals.

n,—n n,~—n
the configuration of the magnets will be the same to a
spectator who changes the side from which he regards them
in successive intervals. Thus, if one magnet were originally
at rest, the two will alternately be reduced to rest.
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4. Prove that to every surface harmonic of order ¢ there
correspond two solid harmenics of degrees ¢ and - (¢+1)
respectively. .

Show that a surface harmonic distribution of density o,

. . . . dmrie;
over a sphere of radius @ gives rise to a potential @-&_-I)T"
o al e e . 4ma™a,
at all points inside the sphere and a potential G~
all points outside.
how how to determine the form of a series of spherical

harmonics expressing a function which has any arbitrary
value over a spherical sarface.

(Thomson amd Tait, Natural Phelosopky, Appeadix B.,
&, r, 3, §536).

at

5. Form the. equations for the transverse vibrations of a
stretched string. Show how to solve the equations whea
the initial circumstances are given.

- In the case when a stretched string of length I is set in
vibration by a transverse displacement 4 of a point at a

distance % from one emd, show that the disturbance at the
time ¢ is given by

. rmT

sin —

" o T i T 0 T
m-1)7 e ] I

(Donkin, Acoustics, §§ 99, 100).

6. A pencil of light, which originally came from a single
luminous point and is converging to a focus, falls directly
on a screen in which is a small hole; prove that the in-
tensity I of illumination at any point ¥, 9 of a parallel
screen which passes through the focus of the pencil is given
. by the equation

I'= U f o827 a:f_;xy_q d:cdy)‘ + O ]sin?nr sz;;y" dxdy)f,.

A -
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the integrations extending over the area of the hole, B being
the distance between the screens,

(Airy, Undulatory Theory of Optics, §80).

vii, Show that the velocity of propagation of oscillatory
waves of very small ‘elevation, in a liquid of practically in-

finite depth and without surface-tension, is ,\/ (%'l}r) , Where

A is the wave-length. .

If there be surface-tension T, and if p be the density of
the liquid, show that the velocity is given in terms of the
wave-length by the equation

v'= '2—7‘_' + ~ 7’ .
Hence show that waves are propagated in a liquid mainly
by gravity if longer than, and mainly by molecular forces

if shorter than, 27 A‘/ (;2;) .

Let ¢ denote the velocity function; taking the axis of
.« in the undisturbed surface and drawing the axis of y
vertically downwards, P
Pogy-%
. C+ P_gy ‘ i ?

neglecting the square of the velocity since the motion is small.

The equation of continuity is
¢ T¢
de' " dy*

| =0;
and, therefore,
¢==4.¢™ cos(nt—mz),

and C+I’—: =gy + Znd ™ sin (nt — mz).

At the free surface Cp+p is the excess of the pressure
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in the liquid over the atmospheric pressure due to the
curvature and tension of the surface.
If y, denote the vertical displacement of the free surface,

the curvature is

free surface
Idy_

putting ¥ =0 in the exponential terms.

Since

therefore

_ and

or

Bat

therefore

iﬁ: approximately; and, therefore, at the -
c+2
P
=gy, + 2nd,_ sin (nt — mz)......... veeend(1),
dy, . d¢ =
F 7l ~ when y—Q,
= — Zmd, cos (nt —mx);
Yo=— 27544. sin (nt — maz),
dy, _m .
T —2, - A sin (nt — mz).
Substituting in equation (1), we must have
m'T m
np . n g+
92
»_9,.mT
m' m p
2mv 2mr
EAT MER
T
T2 A p’

At the limit between waves and ripples

and therefore

e (5) i 412,
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8. If % be the elasticity of volume and n the rigidity of
an elastic isotropic substance, prove that Young’s modulus
- of elasticity, that is the longitudinal elasticity of the sub-

stance when there is no lateral constraint, is ———.
3k+n

- If a cylindrical beam originally straight be bent in a
plane, prove that the bending moment across a normal

section is —, where p is the radius of curvature of the

mean fibre, 7 the moment of inertia of the normal section
about the axis throuéh the centre perpendicular to the plane
of flexure, and E is Young’s modulus.

If the beam be supported at its ends by two props in the
same horizontal line, prove tl:at the deflection otP the middle

point below the ends is 27v% , whore W is the weight and

2q the length of the beam.

(Thomson and Tait, Natural Philosophy, §§ 682, 683).

If the beam be uniformly curved by a properly applied
stress-couple at its ends, the fibres of the beam parallel to
the axis will be bent into coaxal circles.

. If « be the distance of the fibre from the straight line
through the centre of inertia of a cross section of the beam
perpendicular to the plane of flexure, then p + 2 is the radius

‘of curvature of the fibre when bent, and therefore Z is the

longitudinal strain.
dA be the cross section of the fibre, then neglecting the

lateral influence of the adjacent fibres, the tension is £ z dA,
and the moment of these tensions, balancing the applied
couple at one end, is £ fa'dAd = 'EI

P
Take the middle point between the props as the origin,
the axis of « horizontal, and measure the axis of y vertically
downwards. : '
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The deflection of the beam being small, the curvature

may be put equal to-— % .
The bending moment across the section at a distance =
from the origin is

w w a—-2x
7 (@-A) =g e-a) 5
W, .
='4—a(a—z*)-

&y W .

Therefore EI %’!, = . (@-a).

. dy W, 4 a..

Integrating EI ‘7—'Z= ym (3a° - a’z),
W . 4 4! 2 2
and Ely= o {# (2'—a') - §a’ (=" - a')};

since :g =0 when z=0, and y =0 when z=a.
Putting =0, the deflection of the middle point of the
5%’(1’

beam is m.

ix. Show that the potential, @, and the current-function,
B, in a uniform conducting plate, satisfy the equations
d'a d'a a8 d'B

7l Waak i = I S

Show that the resistance of the portion bounded by a,, a,,
ﬁu ﬂ’ iﬂ as

&=
ﬁ] - B’ !
and that the heat developed in it by resistance is in unit of
time as (a,—a,) (8,—8,). .
As a particular case, show that if electrodes be attached,
at any two points, to an infinite plate, the resistance of the
plate will be doubled if it be cut down to a circular disc of
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any radius whatever, provided its edge passes through the
centres of both electrodes.

The potential-function a is such that the excess of its
value at one point over its value at another point is the
electromotive force acting from the first to the second point
along a conductor joining the points.

he currept-function 8 is such that the excess of its value
at one point over its value at another point is equal to the
current which flows across any line joining the £oints, from
right to left to a person at the first point looking at the
second point. ~

Hence, if B denote the resistance of the conducting plate -

per unit of area,
da _ d_@ da g .
d'a da '
and, therefore, 7 + ‘737 =0,

78, I8

dx* * dy*

The resistance of a conductor is measured by the electro-
motive force divided by the current.

In the portion bounded by a,, a,, 8,, B,, the electromotive
force is @, —a,, and the current is B, —/8,;. hence, the re-

=0.

. . a—-a
gistance 18 ;1 —2 .

The heatlgene’rated is proportional to the work done by
the current, which in unit of time is equal to the product of
the current and the electromotive force; hence, the heat
generated in the unit of time is ;E.roportional to (2, —a,)(B,—B,)-

For a single electrode at the origin the current-function

would be tan“%; and, therefore, if the coordinates of the
electrodes be (+ @, 0), we must put

B=tan? ¥ —tan? &,
z— z+a
The lines of flow are therefore circles passing through
the electrodes, and the current in a part of the plate bounded
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by two lines of flow is proportional to the angle at which the

lines of flow interseet at an electrode.

If the plate be cut down into a circular disc passing
through .the electrodes, half the lines of flow are cut away,
consequently the resistance of the remaining part is doubled.

x. Investigate the magnetization of an ellipsoid of soft
iron in a uniform magnetic field.

Prove that when, as in iron, the magnetic susceptibility is
30 or upwards, the intensity of magnetization in a sphere,
and still more in an oblate ellipsoid of revolution (when the
lines of force of the magnetic field are parallel to its axis),
is nearly the same as if the susceptibility were infinite ; but
that in a very long prolate ellipsoiX of revolution it is nearly
proportional to the susceptibility.

(Maxwell, Electricity, §§ 437, 438).

. Xi.. Show that the equation

d*z dx
hatbad Y)Y Mt
@ g
in which < has all positive integral values, and % is less than
n, represents -cycloidal pendulum motion, with viscous re-
sistance, under the action of an infinite series of equal im--
pulses (in the same direction) succeeding one another at

+n%z=n"P(1 4237 cosipt),

intervals of 2w .

D, : . '

Integrate this equation; and, by comparing the result
with that obtained by treating the problem for each impulse
separately from an epoch so distant that the motion has
become independent of the initial circumstances, show that

1 +23° (n* —<"p%) cosipt + 2dkp sinipt
n’ 1 (n‘l —_ isz)x + 4i¥pﬁk’

2Tk

: 2 . .2 '
(1 -7 cosﬂ‘) sinnt+g 7 sin —- 1 cosn,?
27 u L y4 ‘

n _mmk  2qm, o _amk ?
my ) 1—-2¢"5 cos p?+e P

’

where n, = y/(n® — %), and ¢ lies between 0 and 27” :

HH
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The force represented by the series

. o cosipt) mtP 17
1¢P(1+2219'°°s'1’t)—n~P1—2e cospt + &'’

and therefore in the limit when e=1, the force is zero ex-
cept when cospt =1, when the force is infinite.
The momentum generated by the force during an interval

of time 2m
A .
= "pr (1+23¢ cosipt)dt=2—;n— P;
[

and, therefore, the first equation represents cycloidal pen-

dulum motion with viscous resistance, under the action of
. v

impulses in the same direction, of magnitude mn'P

, suc-
. . 2
ceeding one another at intervals of —.

p

The symbolical solution of the equation, neglectixllf the
complementary function, which' depends on the initial cir-
cumstances, gives

S 2 ‘°| EZ
2 =P 14+23° coss

2

a’ d o
(F- 2k a7t n") 1+ 221- cosipt)
dl

(n'+£,)”—wdt,

(1 ose (n'—4"p") cosipt + 2iph sinipt}
—ppil
= .Pinx +?E| (nﬁ_iypg)+4i,p’k2 ..... (1)_

=n'P

If we solve the differential equation

P o de . ,
W+2k—d—t+nw—0,
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supposing the motlon to have been orxgmated at the time

t
@ =

Ps™ sinnt.
1

Similarly the motion due to the preceding impnlse which
took place at the time ~27T il be represented by chang-
ing ¢ into t+2—'n" is the last expression; and so on for all the

impulses which have taken place.
The resultant motion due to the infinite series of im-
Eulses that have taken place will therefore be represented.
putting .
x = 2mt PEfe"'(‘*ﬂTr) sinn, (t+ 2%'.)
1

=277 pen (O sinm b+ 8 cosng) ovvrrenne @),

2
where* C= 2"°e'”_ cos—";ocﬁ ,

1

&, 2min
S=37¢ » sin » 1,

Now C+8y(-1)
= 306 v}
01

1 - ¢ Fmvin}

1

2 _mE
l—e'%kcos%—a/(— 1)e 7 sin

=

2mn,

. 2mn
1—¢% cos n‘+V(—1)e‘T in—
= -, )

2 -
1—26"%rz cos—;—n'+e P
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and therefore ‘
ark 2mn

s A cos—;—‘
O= ,

_2mh 2mn _smk
- 1—-277 cos—+e 7

. 1- 26_,"? cos ———27‘ + e"’?

Comparingh equations (1) and (2) we see that the last
equation of the question holds, provided ¢ be restricted to

lie between 0 and 2'”.

The equation mig{t also have been established by proving
that the left-hand side is the expansion by Fourier’s theorem
in a series of sines and cosines of multiples of p¢ of the right-
hand side

2 (O sinng+ 8 cosng),
Pnl 1 1 .

THE END.

W. METCALFE AND SON, PRINTBRS, CAMBRIDGE.
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A CATALOGUE

OF

EDUCATIONAL BOOKS,

PUBLISHED BY

MACMILLAN AND CO,,
BEDFORD STREET, STRAND, LONDON.

ELEMENTARY CLASSICS.
18mo, eighteenpence each.

A Series of CLASSICAL READING BOOKS, sélected from the
best Greek and Latin authors, with short introductions, and
full elementary Notes at the end, designed for the use of
the Lower Forms of Public Schools, of Private Preparatory
Schools, of Candidates for University Local Examinations,
and of beginners generally.

The following are ready or in preparation :—

VIRGIL THE PIFTH ZENEID. 7HE FUNERAL GAMES.
Edited by Rev. A. CALVERT, M.A., late Fellow of St. John’s
College, Cambridge. [Ready.

BORAOE. Z7HE FIRST BOOK OF THE ODES. Edited
by T. E. PAGE, M.A,, late Fellow of St. John’s College, Cam-
bridge, and Assistant-Master at the Charterhouse, [Ready.

ovip. SELECTIONS. Edited by E. S. SHUCKBURGH, M.A.,
late Fellow of Emmanuel College, Cambridge, and Assistant-
Master at Eton. [Ready,

CXESBAR. THE SECOND AND THIRD CAMPAIGNS OF
THE GALLIC WAR., Edited by W. G. RUTHERFORD,
M.A., Balliol College, Oxford, and Assistant-Master at St.
Paul’s School. [Ready

20,000.9.80,
a
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[ILLAN’S EDUCATIONAL CATALOGUE.

DES, Book IV. Ch. 1-41. 7HE CAPTURE OF
'TERIA. Edited by C, E. GrAVES, M.A., Classical
and late Fellow of St. John'’s College, Cambridge.

[Ready.

p8. BPelections from Rooks VII, and VIII.
'‘XPEDITION OF XERXES. Edited by A. H.
B.A., Fellow of King’s College, Cambridge,

' [Ready.

'K BLEGIAC POBTS. Seclected and Edited by Rev.
T KYNASTON, MLA., Principal of Cheltegham Col-
| formerly Fellow of St. John’s College, Cambridge.
[Ready.
ILIAD. Book XVIII. THE ARMS OF ACHIL-
idited by S. R. Jau=s, B.A., Scholar of Trinity Col-
nbridge, and Assistant-Masterat Eton, [/n preparation.

E HANNIBALIAN WAR. Being part of the 21st
d books of Livy, adapted for the use of beginners.
C. Macauray, M.A, Assistant - Master at Rugby,
Fellow of Trinity College, Cambridge. [/% tke Press,

THE SECOND GEORGIC. Edited by Rev. J. H.
M.A., late Fellow of Merton College, Oxford, and
-Master at Uppingham. [Ready.

ELAST TWO KINGS OF MACEDON. SCENES
THE LAST DECADE OF LIVY, Selected and
y F. H. Rawuins, M.A,, Fellow of King’s College,
ge, and Assistant-Master at Eton,  [/# preparation.’

SELECTIONS FROM THE EPISTLES AND
7S. Edited by Rev. W, J. F. V. Bakgr, B.A,,
of St. John’s College, Cambridge, and Assistant-
it Marlborough. [Ready.

SCENES FROM THE FIFTH AND SIXThH
" OF THE GALILIC WAR. Selected and Edited
)LBECK, M. A., Fellow of Trinity College, Cambridge,
stant-Master at Harrows [In preparation,
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PLATO—EUTHYPHRO AND MENEXENUS. Edited by
 C. E. GRAVEs, M. A, [4n preparation.

HORACE — THE SECOND, THIRD, AND FOURTH

BOOKS OF THE ODES. Edited (each book separate) by
T. E. PaGg, M.A. [In preparazwn

MACMILLAN'S CLASSICAL SERIES FOR
COLLEGES AND SCHOOLS.

Being select portions of Greek and Latin duthors, edited
with Introductiois and Notes at the end, . by eminent
scholars, The series is designed to supply first rate text-
books for the higher forms of Schools, having in view
also the needs of Candidates for public examinations at the
Universities and elsewhere.

The following volumes are ready :—

BSCHYLUS—PERSA, Edited by A. O. PRICKARD, M.A.,
Fellow and Tutor of New College, Oxford, With Map. 3. 64.

CATULLUS—SELECT POEMS. Edited by F. P. 81MpsoN,
B.A,, late Scholar of Balliol College, Oxford. New and
revxsed Edition, ' 5s.

CICERO—THE SECOND PHILIPPIC ORATION. From
the German of Karl Halm, Edited, with Corrections and
Additions, by JouN E. B. MAYOR, Professor of Latin in the
University of Cambridge, and Fellow of St. John’s Collegc.
New edition, revised. 5.

THE OATILINE ORATIONS. From the German of Karl
Halm. Edited, with Additions, by A. S. WILKINs, M.A,,
Professor of Latin at the Qwens College, Manchester. New
edition, gs. 64.

THE ACADEMICA. FEdited by JAmMrs Rmm, M.A,,
Fellow of Caius College, Cambridge, 4+, 64,

a 2
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Continued—
LEGE MANILIA. Edited after HALM by Prof, A, S.
INs, MLA. 35, 6a.

ROSCIO AMERINO. Edited after HaLM, By E.
'ONKIN, M.A., late Scholar of Lincoln College, Oxford,
ant-Master at Uppingham, 4s. 64. ’

'HENES — THE ORATION ON THE CROWN.
1 by B. DRAKE, M.A,, late Fellow of King’s College,
ridge, Sixth and revised edition. 4s. 64,

8 ODYSSEY—THE NARRATIVE OF ODYS-
), Books IX.—XII.' Edited by JouN E. B. MAvog,
Part L 35

L—SBLECT SATIRES. Edited by -JorN E. B.

R, Fellow of St. John’s College, Cambridge, and

ssor of Latin, Satires X, and XI. 35, Satires XIL—
3s5. 6d,

[ANNIBAL’S FIRST CAMPAIGN IN ITALY,

s XXI. and XXII. Edited by the Rev. W. W,

5, Reader in Ancient History at Oxford, With 3
[

L—SELEOCT EPIGRAMS. Edited by Rev. H. M,

1ENSON, M.A., Head-Master of St. Peter’s School,
6s. :

EROIDUM EPISTULZ XIII Edited by E. S,

KBURGH, M.A. 4s. 6d.

—OATILINE and JUGURTHA. Edited by C,
VALE, B.D. New edition, carefully -revised and en-
+ 45 64, Or separately 25, 64, each. -

I—AGRICOLA and GERMANTIA. Edited by A. J.
CH, M.A., and W. J. BRODRIBB, M.A, Translators of
5. New edition, 3s. 64, Or separately 2s, each,

ANNALS, Book VI By the same Editors, 25, 64,
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TERENCHE—HAUTON TIMORUMENOS. Edited by E, S.

SHUCKBURGH, M. A,, Assistant-Master at Eton College, 3. .

With Translation, 4s. 64,

PHORMIO. Edited by Rev. JouN Bonp, M.A., and
A, S. WALPOLE, B.A. 4s.6d,

THUCYDIDES —THE SICILIAN RXPEDITION, Books
VI.aud VII.  Edited by the Rev. PERcIvAL FROST, M, A.,
Late Fellow.of St. John’s College, Cambridge. New edition,
revised and enlarged, with Map. §s.

XENOPHQN—HELLENICGA, Books I. and II. Edited by
H. HAILSTONE, B.A., late Scholar of Peterhonse, Cambridge,
With Map, 4s. 64.

CYROPZEDIA, Books VII. and VIIX. deted by. ALFRED
GOODWIN, M.A., Prefessor of Greek in University College,
London. 3.

MEMORABILIA S8O0CRATIS. Edited by A. R. CLUER,
B.A. Balliol College, Oxford. 6s.

The following are in prepayation :—

ZESCHINES—IN CTESIPHONTEM. Edited by Rev. T.
GWATKIN, M. A,, late Fellow of St. John’s College, Cambridge.
[ 21 the Press.
CICBRO-PRO P. S8ESTIO. Edited by Rev. H, A, HOLDEN,
M.A., LL.D., Head-Master of Ipswich School, late Fellow
and Assistant Tutor of Trinity College, Cambridge, Editor

of Aristophanes, &c.

DEMOSTHENES—FIRST PHILIPPIO. Edited by Rev,
T. GWATKIN, M.A,, late Fellow of St. John’s College,
Cambridge.

DEMOSTHENES — ADVERSUS LEPTINEM. Edited by
Rev. J. R. KiNG, M. A,, Fellow and Tutor of Onel College,
Oxford.

BURIPIDES—SBLHOT PLAYS, by various Editors.
ALOBSTIS. Edited by J. E. C. WELLDON, B.A., Fellow
and Lecturer of King’s College, Cambridge,

BAOCHAE. Edited by E, S, SHUCKRURGH, M.A,, Assistant-
Master at Eton College.

PR X Y.
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EURIPIDES Continued—

HIPPOLYTUS. Edited by Rev. J. P. MamArry, MA,,
Fellow and Tuter of Trinitys College, Dublin.

MEDEA. Edited by A. W. ViRrrALL, M.A., Fellow and
Lecturer of Trinity College, Cambridge.

HERODOTUS—THE INVASION OF GREEOCR “MIX.II.
Books VII. and vIXz, Edited by THoMAs Casz, M.A.,
formerly Fellow of Brasenose College, Oxford.

HOMER’S ILIAD—THE STORY OF ACHILLES. Edited
by the late J. H. PraTT, M.A,, and WALTXR LEAF, M.A,,
Fellows, of Trinity College, Cambridge, [7n ke press.

HOMER’S ODYSSHY—Books XX1._XXIV. FEdited by S. G.
HAMILTON, B.A., Fellow of Hertford College,

HORACE_THE oDBS. Edited by T. E. PAGE, M.A., Master
at Charterhouse and late Fellow of St. Johmn’s College,
Cambridge. .

LIVY—Books XXIII. and XXIV. Edited by Rev. W. W.
CArEs, M.A.
THE SAMNITE WARS as narrated in the First Decade
of Livy. Edited by Rev. T. H, STokog, D.D., Lincoln
College, Oxford, Hcad Master of King's Colle,,e School,
London.

LYSIAS—SELEOT omu-:ons. Edited by E. §. SHUCK-
BURGH, M.A., Assistant-Master at Eton College, ,

OVID-PASTI. Edited by G. H, HarrAmM, M.A,, Fellow of
St. John’s College, Cambridge, and Assistant-Master at
Harrow,

PLATO—FOUR DIALOGUES ON THH TRIAL AND

' DEATH of SOCRATES, 7iz,, EUTHYPHRO, AFO-
LOGY, CRITO, AND PHZEDO. Edited by C. W, MouLE,
M.A., Fellow and Tutor of Corpus Christi College, Cambridge,

PLAUTUS—MILEBS GIORIOSUS. Edited byR, V. TYRRELL,

M.A., Fellow and Professor of Greek in Trinity College, Dublin.

[4n the press.

PLINY’S LETTERS—Book III. Edited by Professor Joun E.
B. MAavor. With Life of Pliny, by G. H. RENDALL, M. A.

[ £ the Press.
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PROPERTIUS—SELECT POEMS. Edited by J. P. Posr-
GATE, M.A,, Fellow of Trinity College, Cambridge,
In the Pyess,

SUBTONIUS—LIVES OF "rnn ROMAN EMEPRERORS.
Selected and Edited by H. F. G, BRAMWELL, B.A., Junior
Student of Christ Church, Oxford,

TACITUS—THE HISTORY. Books I. and I, Edited by C,
E. GRAVES, M.A. . '

THUOYDIDES—Books I. and IX, Edited by H, BROADBENT,
M.A., Fellow of Exeter College, Oxford, aod Assistant-
Master at Eton College,

Books IV. and V. Edited by C. E. GrAves, M.A,,
Classical Lecturer, and late Fellow of St. John’s College,

Cambridge.
VIRGIL—ZENERID, II. and III. The Narrative of ZEneas.

Edited by E. W. HowsoN, B.A., Fellow of King’s
College, Cambridge.

vanOPBON—THB ANABASIS—-Books I to IV. By Pro-

fessors W, W, GOODWIN and J. W. WHITE. [/x 2Ae Press.
Other volumes will follow.

CLASSICAL.

ESOAYLUS—7THE EUMENIDES, The Greck Text, with
Introduction, English Notes, and Verse Tramslation. By
BERNARD DRAKE, M.A,, late Fellow of King’s College,
Cambridge, 8vo. 3s.6d.

THE ORESTEIAN TRILOGY. Edited with Introduction
and Notes, by A, O. PRICKARD, M. A, Fellow and Tutor of
New College, Oxford, 8vo. . [In pregaration.

ARATUS—THE SKIES AND WEATHER-FORECASTS
OF ARATUS. Translated with Notes by E, Pos’tz, M.A,
Oriel College, Oxford. Crown 8vo. 3s. 64.
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‘STOTLB—AN INTRODUCTION . 70 ARISTOTLE'S
RHETORIC, With Analysis, Notes and Appendices. By
E."M. CoPE, Fellow and Tutor of Trinity College, Cambridge,
8vo. 14s.

ARISTOTLE ON FALLACIES; OR, THE SOPHISTIC?
ELENCHI, With Translation and Notes by E. PosTr, M.A.
Fellow of Oriel College, Oxford. " 8vo. ' 8s, 64.

THE POLITICS. Translated by J. E. C. WELLDOK, B.A,,
Fellow of King’s College, Cambridge. 8vo. [/% preparation.,
STOPBANES~—7XHE BIRDS, Translated into English
Verse, with Introduction, Netes, and Appendiees, by B. -H.
KeNNEDY, D.D., Regius Professor of Greek in the University
of Cambridge. Crown 8vo. 6s. Help-Notes to-the same,
for the use of Students. 1. 6d.

OHBR—SHORT EXERCISES IN LATIN PROSE
COMPOSITION AND EXAMINATION PAPERS IN
LATIN GRAMMAR, to which is prefixed a Chapter on
Analysis of Sentences. By the Rev. H. BRLCHER, M.A.,
Assistant Master in King’s College School, London, New
Edition, 18mo, 1s. 64.

iy to the above (for Teachers only). 2s. 64.

SHORT EXERCISES IN LATIN PROSE GOMPOSI-
TION. PART II, Onthe Syntax of Sentences, with an
Appendix including, EXERCISES IN LATIN IDIOMS,
&%, 18mo. 2s.

OKIB—GREEK AND ENGLISH DIALOGUES FOR
USE IN SCHOOLS AND COLLEGES. By Joun
STUART BLACKIE, Professor of Greek in the University of
Edinburgh. New Edition. Fcap. 8vo. -*2s, 64,
BRO—7HE ACADEMICA. The Text revised and explained
by JAmes Reip, M.A., Fellow of Caius College, Cambridge.
New Edition. With Translation, 8vo, [2m the press.
THE ACADEMICS. Translated JamEs S. Rep, M.A,
3vo. 5s. 64,

SELECT LETTERS.—After the Editlon of ALBERT
WATsON, M.A, Translated by G. E. Jeans, M.A,, Fellow
»f Hertford College, Oxford, and Assistant-Master at Hailey-
bury. 8vo. [Immediately.
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OLASSICAL WRITERS. Edited by J. R. GREEN, M.A,
Feap. 8vo. 1s. 6. each, .
A Series of small volumes upon some of the principal

classical writers, whose works form subjects of study in our
Schools.

EURIPIDES. By Professor J. P. MAHAFFY. [Ready,
_ LIVY. - By Rev. W. W, Cargs, M.A. [Ready.
SOPHOCLES. By Prof. LEwis CAMPBELL. [Ready.
VERGIL, By Professor H, NETTLESHIP., [Ready,

BLLIS—PRACTICAL HINTS ON THE QUANTITATIVE
PRONUNCIATION OF LATIN, for the use of Classical
Teachers and Linguists, By A, J. Eruis, B.A.,, F.R.S,
Extra fcap, 8vo. 4s. 64, )

ENGLAND—EXERCISES ON LATIN SYNTAX AND
IDIOM, ARRANGED WITH REFERENCE TO
ROBY’S SCHOOL LATIN GRAMMAR., By E. B,
ENGLAND, M.A,, Assistant Lecturer at the Owens College,
Manchester. Crown 8vo. [/n preparation.

BURIPIDES-—-MEDEA. Edited, with Introduction and Notes, by
A, W. VERrALL, M.A., Fellow and Lecturer of Trinity
College, Cambridge, 8vo. [% preparation.

GBDDBE—7HE PROBLEM OF THE HOMERIC POEMS.
By W. D, GEDDES, Professor of Greek in the University of
Aberdeen. 8vo, 14,

GLADSTONB—Works by the Rt. Hon, W. E, GLADSTONE, M.P.
. FJUVENTUS MUNDI; or, Gods and Men of the Heroic
Age, Second Edition, Crown 8vo. 105, 64,
THE TIME AND PLACE OF HOMER. Crown 8vo.
6s, 64,
A PRIMER OF HOMER. 18mo. 1s.



‘10 MACMILLAN’S EDUCATIONAL CATALOGUE.

GOODWIN—Works by W, W, GOODWIN, Professor of Greek in
Harvard University, U.S.A.
SYNTAX OF THE MO00DS AND TENSES OF THE
GREEK VERB. New Edition, revised. Crown 8vo.
6s. 64,
ANELEMENTARY GREEX GRAMMAR. New Edition,
revised. Crown 8vo., 6s.

‘Tt is the best Greek Grammar of its size in the English language.”—
naum.

GOODWIN—4 7EXT-BOOK OF GREEK PHILOSOPHY,
based on RITTER and PRELLER’s ¢ Historiae Philosophiae
Graecae et Romanae.” By ALFRED GOODWIN, M.A. Fellow
of Balliol College, Oxford, and Professor of Greek in
University College, London. 8vo. L% preparation.

GREENWOOD—7HE ELEMENTS OF GREEX GRAM-
MAR, including Accidence, Irregular Verbs, and Principles of
Derivation and Composition ; adapted to the System of Crude
Forms. By J. G, GREENWOOD, Principal of Owens College,
Manchester, New Edition. Crown 8vo. 5¢. 64,

HERODOTUS, Books I.—II1.—7HE EMPIRES OF THE
EAST. Edited, with Notes and Introductions, by A. H. -~
SAvce, M.A., Fellow and Tutor of Queen's College, Oxford,
and Deputy-Professor of Comparative Philology. 8vo.

[in preparation.

‘HODGSON —MYTHOLOGY FOR LATIN VERSIPICA-
TION., A bdrief Sketch of the Fables of the Ancients,
prepared to be rendered into Latin Verse for Schools. By
¥. Hopason, B.D., late Provost of Eton. New Edition,
revised by F, C. HopgsoN, M.A. 18mo. 3.

HOMER—Z7HE OQDYSSEY, Done into English by S. H
BurcHEir, M. A., Fellow of University College, Oxford, and
ANDREW LANG, M.A,, late Fellow of Merton College, Offord,
‘Second Edition, revised and corrected, with new Introduction,
additional Notes and Illustrations, Crown 8vo, 10s. 64, .
THE ILIAD. Edited, with Introduction and Notes, by
WALTER LEAF, M.A., Fellow of Trinity College, Cambridge,
and the late J. H, PraTT, M,A. 8vo. [7n préparation.

.
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' HOMBRIO DICTIONARY. For Use in Schools and Colleges,
Translated from the German of Dr.;G. Autenreith, with
Additions and Corrections by R, P, Keep, Ph.D, With
numerous Illustrations, Crown 8vo. 6s.

HORAOE—7HE WORKS OF .HORACE, rendered into
English Prose, with Introductions, Running Analysis, and
Notes, by J. LONSDALE, M.A,, and S. Lzr, M.A, Globe
8vo. 35 64 ‘
THE ODES OF HORACE IN' A METRICAL PARA-
PHRASE. By R.M. HOvENDEN, Extra fcap. 8vo. 4s
HORACE'S LIFE AND CHARACTER. An Epitome of
his Satires and Epistles, By R. M. HoveNDEN, Extra fcap.
8vo, 4s. 6d.

WORD FOR WORD FROM HORACE., The Odes
literally Versified. By W, T. THomNTON, C.B, Crown
8vo, - s, 6d.

JACKSON—FIRST STEPS 70 GREEK PROSE,COM-
POSITION. By BLOMFIELD JACKSON, M.A. Assistant-
Master in King’s College School, London. New Edition
revised and enlarged. 18mo. 1s. 64,

SECOND STEPS TO GREEK PROSE COMPOSITION,
with Miscellaneous Idioms, Aids to Accentuation, and Exslzmi-
nation Papers in Greek Scholarship. 18mo. 2s. 64,

«*« A Key to both Parts, for the use of Teachers only, is in
preparation.

JACKSON—A MANUAL OF GREEK PHILOSOPHY. By
HENRY JACRSON, MLA., Fellow and Preelector in Ancient
Philosophy, Trinity College, Cambridge. [/n preparation,

JHEBB—Works by R. C. JEBB, M.A., Professor of Greek in the
University of Glasgow.
THE ATTIC ORATORS FROM ANTIPHON T0
ISAEOS. 2vols, 8vo. 25,
SELECTIONS FROM THE ATTIC ORATORS, ANTI-
PHON, ANDOKIDES, LYSIAS, ISOKRATES, AND
ISAE0S, Edited, with Notes. Being a companion volume to
the preceding work, 8vo, 12564,
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MAYOR (JOSEPR B.)~GREEK FOR BEGINNERS, By
the Rev, J. B. MAYOR, M.A,, Professor of Classical Literature
in King’s College, London, Part I., with Vocabulary, 1s. 64.
Parts 1L and 1L, with Vocabulary and Index, 35 6d. com-
plete in one Vol. New Edition, Feap. 8vo. cloth, 4s. 6

NIXON—PARALLEL EXTRACTS arranged for translation
into English and Latin, with Notes on Idioms, By J. E.
Nixown, M.A., Fellow and Classical Lecturer, King’s College,
Cambridge. Part L—Historical and Eputohry New Ed:non.
reyised and enlarged. Crown 8vo.  3s. 64,

A FEW NOTES ON LATIN RHETORIC. With
Tahles and Ilpstrations, By J. E. Nmxon, M,A. Crown
Swo, 28 -

PHILE (JOHN, M.A.)—AN INTRODUCYTION TO GREEK
AND LATIN ETYMOLOGY. By Joun Prnx, M.A,,
Fellow and Tutor of Christ’s College, Cambridge, formerly
Teacher of Sanskrit in the University of Cambridge, Third
and Revised Edition. Crown 8vo. 104, 64,

A PRIMER OF PHILOLOGY. 18mo, 1s, By thesame
Author,

PINDAR—T7THE EXTANT ODES OF PINDAR, Translated
into English, with an Introduction and short Notes, by ERNEsT
Myers, M. A., Fellow of Wadham College, Oxford. Crown
8vo. 5

PLATO—T7HE REPUBLIC OF PLATO. Translated into
English, with an Analysis and Notes, by J. Lr. DAviss,
M.A., and D. J. VAUGHAN, M.A. New Edition, with
Vignette Portraits of Plato and Socrates, engraved by JEENS

. from an Antique Gem. 18mo, 4s. 6d.

PHILEBUS. ¥Edited, with Introduction and Notes, by
HENRY JACKSON, M. A,, Fellow of Trinity College, Cambridge,
8vo. [2n preparation.

THE TRIAL AND DEATH OF SOCRATES. Being
the Euthyphro, Apology, Crito, and Phaedo of Plato. Trans-
lated by F. J. CHURCE. Crown 8vo. 4s. 64..
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PLAWTUS—ZTHE MOSTELLARIA OF PLAUTUS. Wit
Notes, Prolegomena, and Excursus, By WILLIAM RAMSAY,
. M.A., formerly Professor of Humanity in the University of
Glasgow. Edited by Professor GEORGE G. RAMsAY, M.A.,

“of the Univensity of Glasgow. 8vo. 14

POTTS (A. W.; M.A.)—Works by ArexanpEr W. PorTts,
M.A., LL.D., late Fellowof St. John’s College, Cambridge ;
- Head Magter of the Fettes College, Edinbargh.
HINTS TOWARDS LATIN PROSE COMPOSITION.
New Edition, Extra fcap. 8vo. 3.
PASSAGES FOR TRANSLATION INTO LATIN.
PROSE. Edited with Notes and References to the above.
Extra fcap. 8vo. 2s,

LATIN VERSIONS OF PASSAGES FOR TRANSLA-
TION INTO LATIN PROSE, For Teachersonly. 2, 6d.

EXERCISES IN LATIN PROSE. With Introduction,
Notes, &c., for the Middle Forms of Schools. Extra fcap. 8vo.
11 preparation.
ROBY—A GRAMMAR OF THE LATIN LANGUAGE, fsom
Plantus to Suetoniug, By H. J. RoBy, M.A., late Fellow of
St. John's College, Cabridge, In Two Parts, . Third Edition.
Part T. containing :—BookI. Sowunds. Book II. Imflexions.
Book IIL. Word-formation. Appendices. Crown 8$vo, 8s. 64,
Part IL—Syntax, Prepositions, &. Crown 8vo. 1I0s. 64,
“Marhdbytheelurnndpmmed ‘;ludtm-uthhutn-
A book that would do honour 40 &0y couniry. "—ATRENEUM,
SCAOOL LATIN GRAMMAR, By the same Author.
Crown 8vo, 35s.

BRUSH—-SYNTHETIC LATIN DELECTUS. A First! Latin
Construing Book arranged om the PnnaplenofGnmnal
Analysis, With Notes and Vocabulary. By E. Russ, B.A.
With Preface by the Rey. W. F. MourToN, M.A,, D.D,
Extra fcap. 8vo. as. )

RUST—FIRST STEPS TO LATIN PROSE COMPOSITION,
By the Rev. G. Rusz, M.A, of Pembroke College, Oxford,
Master of the Lower School, King's College, London, New
Edition. 18mo. 1s. 64,
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RUTHEBRFORD—A FIRST GREEK GRAMMAR, ByW.G,
RUTHERFORD, M.A., Assistant Master in St. Paul's School,
London, Extra fcap, 8vo, Néw Edition, enlarged. 1s. 64,

SEELBY—A PRIMER OF LATIN LITERATURE. By
Prof. J. R. SeeLRY, [7» pregaration.

BIMPSON—PROGRESSIVE FEXERCISES IN LATIN
PROSE COMPOSITION. Founded on Passages selected
from Cicero, Livy, &e. By F. P, SIMPsON, B.A,,, of Balliol
College, Oxford, [In greparation.

TACITUS—COMPLETE WORKS TRANSLATED, By A.J.
CHURCH, M.A,, and W. J. BroDrIBB, M. A,
THE HISTORY. With Notes and a Map, New Edition,
Crown 8vo. 6s.

THE ANNALS. With Notes and Maps, New Edition,
Crownt 8vo, ¥s. 64,

\ THE AGRICOLA AND GERMANY, WITH THE
DIALOGUE ON ORATORY. With Maps and Notes,
New and Revised Edition. Crown 8vo. 4s. 64,

THEGCRITUS, BION and MOSOHUS. Rendered into
English Prose with Introductory Essay by ANDREW LANG,
M.A. Crown 8vo. 6s.

THROPHRASTUS—THE CHARACTERS OF THEO-

PHRASTUS. An English Translation from a Revised Text,
With Introduction and Notes. By R. C. Jees, M.A., Pro-
fessor of Greek In the University of Glasgew. Extra fcap. 8vo.
6s. 64,

- THARING-—Works by the Rev. E. THrING, M.A., Head-
Master of Uppingham School.

A LATIN GRADUAL, A First Latin Constriing Book
for Beginners, New Edition, enlarged, with Coloured Sentence
Maps, Fcap. 8vo. 2s. 64,

A MANUAL OF MQO0D CONSTRUCTIONS. Feap,
8vo. 1s. 6d. o

A CONSTRUING BOOK, Fcap. 8vo. 2s 6d.



CLASSICAL. b 17

VIRGIL—7HE WORKS OF VIRGIL RENDERED INTO
ENGLISH PROSE, with Notes, Introductions, Running
Anslysis, and an Index, by JAMES LONSDALE, M.A., and
SamurL LEg, M,A. New Edition. Globe 8vo. 3¢ 64.;
gilt edges, 4s. 62, ’

WHITE—FIRST LESSONS IN GREEK. Adapted to Good-
win’s Greek Grammar, By JoHN WiLL1IAMS WHITE, Ph.D,,
Assistant-Prof. of Greek in Harvard University, Crown 8vo.

[ /% the press.

WILKINS—A PRIMER OF ROMAN ANTIQUITIES. By
A, S. WiLkINS, M.A,, Professor of Latin in the Owens
College, Manchester, With Illustrations., 18mo. 1s.

WRIGHT—Works by J. WrIGHT, M,A., late Head Master of
Sutton Coldfield School

LELLENICA; OR, A RISTORY OF GREECE IN
GREEK, as related by Diodorus and Thucydides ; being a
First Greek Reading Book, with explanatory Notes, Critical
and Historical. New Edition with a Vocabulary, Fcap, 8vo.
35, 6d. ' )
A HELP TO LATIN GRAMMAR; or, The Form
and Use of Words in Latin, with Progressive Exercises.
Crown 8vo. 4+, 64,
THE SEVEN KINGS OF ROME. An Easy Narrative,
abridged from the First Book of Livy by the omission of
Difficult Passages; being a First Latin Reading Book, with
Grammatical Notes and Vocabulary. New and revised
edition. Fcap. 8vo. 3s. 64,
FIRST LATIN STEPS; OR, AN INTRODUCTION
BY A SERIES OF EXAMPLES TO THE STUDY
OF THE LATIN LANGUAGE. Crown 8vo, 5s.
ATTIC PRIMER. Arranged for the Use of Beginners.
Extra fcap, 8vo. 4. 6d.
A COMPLETE LATIN COURSE, comprising Rules with
Examples, Exercises, both Latin and English, on each Rule,
and Vocabularies. Crown 8vo. 4s. 64.

&
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MATHEMATICS.

AIRY—Works by Sir G.' B, Airy, K.C,B,, Astronomer
Royal :— ; : .
ELEMENTARY TREATISE OMN PARTIAL DIF.
FERENTIAL EQUATIONS. Designed for the Use of
Students in the Universities, With Diagrams, Second Edition,
Crown 8vo. 55, 64,

ON THE ALGEBRAICAL AND NUMERICAL
THEORY OF ERRORS OF OBSERVATIONS AND
THE COMBINATION OF OBSERVATIONS, Second
Edition, revised, Crown 8vo, 6s. 64.

UNDULATORY THEORY OF QPTICS. Designed for
the Use of Students in the University,. New Edition, Crown
8vo. 6s. 64, -

ON SOUND AND ATMOSPHERIC VIBRATIONS.
With the Mathematical Elements of Music, Designed for the
Use of Students in the University, Second Edition, Revised
and Enlarged. Crown 8vo. g¢s.

A TREATISE OF MAGNETISM. Designed for the Use
of Students in the University, Crown 8vo. ¢s. 64,

AIRY (OSMUND)—A TREATISE ON GEOMETRICAL
OPTICS, Adapted for the use of the Higher Classes in
Schools, By OsMUND AIRY, B,A., one of the Mathematical
Masters in Wellington College, Extra fcap. 8vo. 3s. 64.

BAYMA--THE ELEMENTS OF MOLECULAR MECHA-

NICS. By JoserH BAYMA, S.J., Professor of Philosophy,
Stonyhurst College, Demy 8vo. 10s. 64,

LEASLEY—AN ELEMENTARY TREATISE ON PLANE

TRIGONOMETRY. With Examples. ByR. D, BEASLEY,

' M.A., Head Master of Grantham Grammar School, Fifth
Edition, revised and enlarged, Crown 8vo. 3s. 64,

BLACKBURN (HUGH) — ELEMENTS OF PLANE
TRIGONOMETRY, for the use of the Jumior Class in
Mathematics n the University of Glasgow. By Hucn
BLACKBURN, M. A., Professor of Mathematics in the Univer.
sity of Glasgow. Globe 8vo. 1s. 64
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BOOLBE—Wuks by G. BooLg, D.C.L., F.R.S., late Professor
of Mathematics in the Queen’s University, Ireland,
A TREATISE ON DIFFERENTIAL EQUATIONS.
Third and Revised Edition. Edited by I, TODHUNTER. Crown
8vo. 14,
A TREATISE ON DIFFERENTIAL EQUATIONS.
Supplementary Volume. Edited by I. TODHUNTER, Crown
8vo. 8. 64,
THE CALCULUS. OF FINITE DIFFERENCES.
Crown 8vo. 105, 6d. New Edition, revised by J. F,
MouLTON, . .

BROOK-SMITH (J.)—ARITHMETIC IN THEORY AND
PRACTICE. By J. Brook-SmitH, M.A., LL.B., St.
John’s College, Cambridge; Barrister-at-Law ; one of the
Masters of Cheltenham College, New Edition, revised.
Crown 8vo. 4. 6d.

CAMBRIDGE SENATE-HOUSE PROBLEMS and RIDERS
WITH SOLUTIONS 1—
1875—PROBLEMS AND RIDERS, By A. G. GREENHILL,
M.A. Crown 8vo, &, 64

1878—SOLUTIONS OF SENATE-HOUSE PROBLEMS.

By the Mathematical Moderators and Examiners, Edited by.

J. W. L. GLAIsHER, M.A,, Fellow of Trinity College,
Cambridge., 12s.

OCANDLER—HELP 70 ARITHMETIC. Designed for the
use of Schools, By H. CANDLER, M,A, Mathematical
Master of Uppingham School. Extra fcap. 8vo 25, 64l

CHEYNB—AN ELEMENTARY TREATISE ON THE
PLANETARY THEORY. By C.H. H, CHEYNE, M.A.,
F.R.A.S. With a Collection of Problems. Second Edition,
Crown 8vo. 6s, 64,

CHRISTIE—A COLLECTION OF ELEMENTARY TEST.
QUESTIONS IN PURE AND MIXED MATHE.
MATICS; with Answers and Appendices on Synthetic
Division, and on the Solution of Numerical Equations by
Homer's Method. By JaMEs R. CHmisTiE, F.R.S., Roya
Military Academy, Woolwich, Crown 8vo. 8. 64.
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PORD—7THE ELEMENTS OF DYNAMIC, An In.
‘oduction to the Study of Motion and Rest in Solid and Fluid
lodies. By W. K. CLIFFORD, F.R.S., Professor of Applied
Tathematics and Mechanics at University College, London,
‘art 1.—KINEMATIC. Crown 8vo. 7s. 64.
MING—AN INTRODUCTION T0 THE THEORY
)F ELECTRICITY. By LINNz&us CuMMING, M.A.
me of the Masters of Rugby School With Illustmtxons.
‘rown 8va. 8. 6d.

HBERTBON—EUCLIDIAN GEOMETRY. By FRANCIS
CUTHBERTSON, M.A., LL.D,, Head Mathematical Master of
he City of London School. Extra fcap. 8vo. 4s. 64,

TON—Works by the Rev. T. DarLToN, M.A., Assistant
daster of Eton College.

RULESAND EXAMPLESIN ARITHMETIC. New Edi-
ion. 18mo. 25, 6d. [Answers to the Examples are appended.

RULES AND EXAMPLES IN ALGEBRA. Part 1,
New Edition. 18mo. 2s,” Part II. 18mo. 2s. 6d.

'—PROPERTIES OF CONIC SECTIONS PROVED
GEOMETRICALLY. Parr 1., THE ELLIPSE, with
Problems, By the Rev. H. G. Day, M.A, Crown.8vo.
3s. 64, .

IW—GEOMETRICAL TREATISE ON CONIC ;S'EC-
T70NS. By W. H. Drew, M.A,, St. John’s College,
Cambridge. New Edition, enlarged. Crown 8vo. §s.

SOLUTIONS TO THE PROBLEMS IN DREW'S
CONIC SECTIONS. Crown8vo. 4s. 64,

BR—GRADUATED EXERCISES IN ANALYTICAL
GEOMETRY. Compiled and arranged by J. M. DyEg,
M.A., Senior Mathematical Master in Cheltenham College,
Crown 8vo. . [77 preparation,
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BDGAR (J. K.) and PRITCHARD (G. 8.)—NOZTE-BOOK

ON PRACTICAL SOLID OR DESCRIPTIVE GEO-
METRY. Containing Problems with help for Solutions, By
J. H. EpGAR, M. A., Lectiirer on Mechanical Drawing at the
Royal School of Mines, and G. S. PRITCHARD. Fourth
Edition, revised and enlarged. By ARTHUR MEEZE, Globe
8vo. 4s. 64.

FERRERS—Works by the Rev. N. M. FERRERS, MLA., Fellow

and Tutor of Gonville and Caius College, Cambridge.

AN ELEMENTARY TREATISE ON TRILINEAR
CO-ORDINATES, the Method of Reciprocal Polars, and
the Theory of Projectors, New Edition, revised, ‘Crown 8vo.
6s. 6d. .

AN ELEMENTARY TREATISE ON SPHERICAL

HARMONICS, AND SUB_-?ECTS CONNECTED WITH
THEM. Crown 8vo, %s. 6d.

PROST—Works by PERCIVAL Frost, M.A., formerly Fellow

of St. John’s College, Cambridge ; Mathematical Lecturer of
King’s College.

AN ELEMENTARY TREATISE ON CURVE TRA-
CING. By PErRCIVAL FrosT, M.A. 8vo. 12s,

SOLID GEOMETRY. A New Edition, revised and enlarged
of the Treatise by FroST and WOLSTENHOLME, In 2 Vols,
Vol.- I. 8vo. 16s.

GODFRAY—Works by HugH GODFRAY, M.A., Mathematical

Lecturer at Pembroke College, Cambridge.
A TREATISE ON ASTRONOMY, for the Use of Colleges
and Schools, New Edition, 8vo. 125 64

AN ELEMENTARY TREATISE ON THE LUNAR
THEORY, with a Brief Sketch of the Problem up to the time
of Newton, Second Edition, revised. Crown 8vo, §s. 64,

HBMMING—AN ELEMENTARY TREATISE ON THE

DIFFERENTIAL AND INTEGRAL CALCULUS, for
the Use of Colleges and Schools. By G. W. HEMMING, M.A.,
Fellow of St. John’s College, Cambridge, Second Edition,’
with Corrections and Additions, 8vo gs.
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ORSON — GEOMETRICAL CONIC SECTIONS. An
Elementary Treatise in which the Conic Sections are defined
as the Plane Sections of a Cone, and treated by the Method
of Projection, By J. STUART JACKSON, M.A., late Fellow of
Gonville and Caius College, Cambridge. - Crown 8vo. 4s. 64,

LLET (JOHN H.)--A4 7REATISE ON THE THEORY

OF FRICTION. By JonN H. JELLET, B.D., Senior Fellow
of Trinity College, Dublin; President of the Royal Irish
Academy. 8vo, 8s. 64,

NES and OHEYNE—ALGEBRAICAL EXERCISES,
Progressively Arranged. By the Rev. C. A. Jongs, M.A., and
C. H. CHEYNE, M.A,, F.R,A.S., Mathematical Masters of
‘Westminster School. New Edition. 18mo. 2¢, 62

LLAND and TA1T—INTRODUCTION TO QUATER-
NIONS, with numerous examples, By P, KeLLAND, M.A.,

F.R.S.; and P. G. TA1T, M. A., Professors in the department °

of Mathematics in the University of Edinburgh, Crown 8vo,
9s. 64, .

FCHENER—A GEOMETRICAL NOTE-BOOK, containing

Easy Problems in Geometrical Drawing preparatory to the
Study of Geometry. For the use of Schools, By F. E.
KITCHENER, M.A., Mathemathical Master at Rugby. New
Edition, 4to. 2s.

ULT—NATURAL GEOMETRY: an Introduction to the

Logical Study of Mathematics, "For Schools and Technical

Classes. With Explanatory Models, based upon the Tachy-

metrical Works of Ed. Lagout. By A. MAULT. 18mo, Is.
Models to Illustrate the above, in Box, 125, 64.

'RRIMAN — ELEMENTS OF THE METHOD OF
LEAST SQUARES. By MANSFIRLD MERRIMAN, Ph.D.
Professor of Civic and Mechanical Engineering, Lehigh Uni-
versity, Bethlehem, Penn, Crown 8vo. 7s, 64.

LLAR—ELEMENTS OF DESCRIPTIVE GEOMETRY.
By J. B. MILLAR, C.E., Assistant Lecturer in Engineering in
Owens College, Manchester, Crown 8vo. 6s.
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MORGAN — 4 COLLECTION OF PROBLEMS AND
EXAMPLES IN MATHEMAZTICS, With Answers
By H. A, Morgan, M.A,, Sadlerian and Mathematical
Lecturer of Jesus College, Cambridge. Crown 8vo, 6s. 64,

MUIR—DETERMINANTS. By THos. MuiR, Crown 8vo,

. [Zn preparation.

Nkw'x'on’s PRINCIPIA, Edited by Prof, Sir W, THoMSON

and Professor BLACKBURN, 4to. cloth. 31s. 64.
THE FIRST THREE SECTIONS OF NEWITON'S
PRINCIPIA, With Notes and Illustrations, Also a col-
lection of Problems, principally intended as Examples of
Newton’s Methods. By PERCIVAL Frost, M.A, Third
Edition, 8vo. x2s.

PARKINSON—Works by S, ParkinsoN, D,D., F.R.S., Tutor
and Preelector of St. John'’s College, Cambridge.
AN ELEMENTARY TREATISE ON MECHANICS.
For the Use of the Junior Classes at the University and the
Higher Classes in Schools. With a Collection of Examples,
New Edition, revised. Crown 8vo, cloth, gs, 64.
A TREATISE ON OPTICS. - New Edition, revised and
enlarged. Crown 8vo. cloth, 105, 64

PEDLEBY—EXERCISES IN ARITHMETIC for the Use of
Schools. Containing more than 7,000 original Examples,
By S. PEDLEY, late of Tamworth Grammar School. Crown
8vo, 5s.

PHBAR—ELEMENTARY HYDROSTATICS, With Nu.
merous Examples, By J. B, PHEAR, M.A., Fellow and late
Assigtant Tutor of Clare College, Cambridge., New Edition,
Crown 8vo, cloth. §s., 6d.

PIRIB—LESSONS ON RIGID DYNAMICS. By the Rev.
G. PiriE, M.A,, late Fellow and Tutor of Queen’s College,
Cambridge ; Professor of Mathematics in the University of
Aberdeen, Crown 8vo. 6s,

PUCKLE —AN ELEMENTARY TREATISE ON CONIC
SECTIONS AND ALGEBRAIC GEOMETRY, With
Numerous Examples and Hints for their Solution; especially

designed for the Use of Beginners. By G. H. PuckLE, M.A.
New Edition, revised and enlarged, Crown 8vo, %s. 64,
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RAWLINSON—ELEMENTARY STATICS, by the Rev.
GEORGE RAWLINSON, M.A, Edited by the Rev. EDWARD
STURGES, M.A, Crown 8vo. 4s. 64.

RAYLEIGH—7HE THEORY OF SOUND. By LorD
RAYLEIGH, M.A., F.R.S., formerly Fellow of Trinity College,
Cambridge, 8vo. Vol I, 12s. 6d. Vol. II. 124 64,

[Vol. 11T, in the pyess.

REYNOLDS—MODERN METHODS IN ELEMENTARY
GEOMETRY. By E. M. ReyNoLDs, M.A., Mathematical
Master in Clifton College. Crown 8vo. 3s. 64.;

ROUTH—Works {by EDwWARD -JoHN RouTH, M.A,, F.RS.,
laté Fellow and Assistant Tutor of St. Peter’s College, Cam-
bridge ; Examiner in the University of London,

AN ELEMENTARY TREATISE ON THE DYNAMICS
OF THE SYSTEM OF RIGID BODIES. With numerous
Examples, Third and enlarged Edition, 8vo. 21s.
STABILITY OF A GIVEN STATE OF MOTION,
PARTICULARLY STEADY MOZION, Adams' Prize
Essay for 1877. 8vo. 8s. 64,

SMITH—Works by the Rev, BARNARD SMITH, M.A., Rector
of Glaston, Rutland, late Fellow and Senior Bmsax of St.
Peter’s College, Cambridge.

ARITHMETIC AND ALGEBRA, in their Principles and
Application ; with numerous systematically arranged Examples
taken from the Cambridge Examination Papers, with especial
reference to the Ordinary Examination for the B.A. Degree.
New Edition, carefully revised. Crown 8vo. 10s. 64,
ARITHMETIC FOR SCHOOLS. New Edition, Crown
8vo. 4s. 64.

A KEY TO THE ARITHMETIC FOR SCHOOLS.,
New Edition. Crown 8vo. 8, 64,

EXERCISES IN ARITHMETIC, Crown 8vo. limp cloth,
23, With Answers. 2s. 64.

Or sold separately, Part I, 1s,; Part IL 1s. ; Answers, 64.
SCHOOL CLASS-BOOK OF ARITHMETIC. 18mo.
cloth, 3¢ '

Or sold separately, in Three Parts. 1s. each,
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SMITH Continsued—)
KEYS TO SCHOOL CLASS-BOOK OF ARITHMETIC
Parts 1., I1,, and III,, 25, 64, each,
SHILLING BOOK OF ARITHMETIC FOR NATIONAL
AND ELEMENTARY SCHOOLS. 18mo. cloth, Or
separately, Part L 24, ; Part IL 3d4. ; Part III. 74, Answers. 4
64,
7HE SAME, with Answers complete. 18mo, cloth. 1s. 64

KEY TO SHILLING BOOK OF ARITHMEIIC.
18mo, 4s. 64.

EXAMINATION PAPERS IN ARITHMETIC, 18mo,
1s, 64, The same, with Answers, 18mo. 25, Answers, 64.

KEY TO EXAMINATION PAPERS IN ARITAH.
METIC. 18mo. 4. 6d. '

THE METRIC SYSTEM OF, ARITHMETIC, ITS
PRINCIPLES AND APPLICATIONS, with numerous
Examples, written expressly for Standard V. in National
Sehools. New Edition. 18mo. cloth, sewed. 3d.

A CHART OF THE METRIC SYSTEM, on a Sheet,

size 43 in. by 34 in. on Roller, mounted and va.rmshed,pme
3s. 64. New Edition,

Also a Small Chart on a Card, price 14. ' '

EASY LESSONS IN ARITHMETIC, combining Exercises
in Reading, Writing, Spelling, and Dictation, Part L for
Standard L in National Schools. Crown 8vo. 9d.

EXAMINATION CARDS IN ARITHMETIC. (Dedi-
cated to Lord Sandon.) With Answers and Hints.

Standards I, and II, in box, 15, Standards IIL, IV, and V.,
in boxes, 15, each, Standard VL in Two Parts, in boxes,
1s. each,

A and B papers, of nearly the same difficulty, are given so as to
prevent copying, and the Colours of the A and B papers differ in
each Standard, and from those of every other Standard, so that a
master or mistress can see at a glance whether the children have the
Proper papers.
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SNOWBALL — THE ELEMENTS OF PLANE AND
SPHERICAL TRIGONOMETRY ; with the Construction
and Use of Tables of Logarithms, By J. C. SNOWBALL, M. A+
New Edition. Crown 8vo. %s. 64,

SYLLABUS OF PLANE GEOMETRY (corresponding to
Euclid, Books I.—V1I.). Prepared by the Association for the
Improvement of Geometrical Teaching. New Edition. Crown
8vo. 1s.

.

TAIT and STEELE—A TREATISE ON DYNAMICS OF

A PARTICLE. With numerous Examples. By Professor

TAIT and MR. STRELE. Fourth Edition, revised. Crown 8vo,
128,

THBAY - ELEMENTARY MENSURATION FOR
SCHOOLS. With numerous Examples. By SepTIMUS
TEBAY, B.A., Head Master of Queen Elizabeth’s Grammar
School, Rivington., Extra fcap. 8vo. 3s. 6d.

'ronnun'rnn—Works by I. ToDHUNTER, MLA., FR.S., of
St. John’s College, Cambndge.

¢“Mr. Todh is chiefly to stud of Math ics as the
author of a series of admmble mathematical tex&-bool:.s, which possess
theme ualities of being clear in style and ab free from
ical or othu "—SATURDAY REVIEW.
THE ELEMEN TS OF EUCLID. For the Use of Colleges
and Schools, New Edition, 18mo. 3+, 64.

MENSURATION FOR BEGINNERS. With numerous
Examples. New Edition. 18mo. 2. 64. v

ALGEBRA FOR BEGINNERS. With numerous Examples,
New Edition, 18mo. 25 64.

KEY TO ALGEBRA FOR BEGINNERS. Crown 8vo.
6s. 64.

TRIGONOMETRY FOR BEGINNERS. With numerous.
Examples, New Editlon. 18mo., 2 64

KEY T0 TRIGONOMETRY FOR BEGIIVNERLS‘.
Crown 8vo, 8. 64,
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Tonnvnmn Continsued—

MECHANICS FOR BEGINNERS. With numerous
Examples, New Edition. 8mo. 4s. 64. .

KEY TO MECHANICS FOR BEGINNERS. Crown
8vo. 6s. 6d.

ALGEBRA. For the Use of Colleges and Schools. New
Edition, Crown 8vo. 7s. 64.

KEY TO ALGEBRA FOR THE USE OF COLLEGES
AND SCHOOLS. Crown 8vo. 10s. 6d.

AN ELEMENTARY TREATISE ON THE THEORY
OF EQUATIONS. New Edition, revised. Crown 8vo.
ws. 64,

PLANE TRIGONOMETRY. For Schools and Colleges.
New Edition, Crown 8vo., §s.

KEY T0O PLANE TRIGONOMEZTRY. Crown 8vo.
105, 64,

A TREATISE ON SPHERICAL TRIGONOMETRY.
New Edition, enlarged. Crown 8vo. 4s. 64.

PLANE CO-ORDINATE GEOMETRY, as applied to the
Straight Line and the Conic Sections. With numerous
Examples, New Edition, revised and enlarged. Crown 8vo.
7s. 6d,

A TREATISE ON THE DIFFERENTIAL CALCULUS.
With numerous’ Examples, New Edition. Crown 8vo.
105, 64. .

A TREATISE ON THE INTEGRAL CALCULUS AND
I7S APPLICATIONS. With numerous Examples, New
Edition, revised and enlarged. Crown 8vo. 1xos. 64,

EXAMPLES OF ANALYTICAL GEOMETRY OF
THREE DIMENSIONS. New Edition, revised. Crown
8vo. 4.

A TREATISE ON ANALYTICAL STATICS. With
numerous Examples. New Edition, revised and enlarged
Crown 8vo. 105, 6d.
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TODHUNTER Continued—

A HISTORY OF THE MATHEMATICAL THEORY
OF PROBABILITY, from the time of Pascal to that of
Laplace. 8vo. 18s.

RESEARCHES IN THE CALCULUS OF VARIA-
T10NS, principally on the Theory of Discontinuous Solations :

an Essay to which the Adams Prize was awarded in the

University of Cambridge in 1871. 8vo. 6s.

A HISTORY OF THE MATHEMATICAL THEORIES

OF ATTRACTION, AND THE FIGURE OF TRHE

EARTH, from the time of Newton to that of Laplace. 2 vols,
8vo, 24s. .

AN ELEMENTARY TREATISE ON LAPLACE'S,
LAME'S, AND BESSEL'S FUNCTIONS. Crown 8vo.
105, 6.

WILSON (J. M.)—ELEMENTARY GEOMEZTRY. Books

I. to V. Containing the Subjects of Euclid’s first Six
Books. Following the Syllabus of the Geometrical Association,
By J. M. WiLsoN, M.A., Head Master of Clifton College.
New Edition, Extra fcap. 8vo. 4s. 64,

SOLID GEOMETRY AND CONIC SECTIONS. With

Appendices on Transversals and Harmonic Division. -For the’

Use of Schools, By J. M. WILSON, M.A. New Edition,
Extra fcap. 8vo. 3s. 64.

WILSON—GRADUATED EXERCISES IN PLANE TR!-
GONOMETRY. Compiled and arranged by J. WILSON,
M.A., and S. R, WiLsoN, B.A. Crown 8vo. 4s. 64.

““The exercises seem beaunful raduated and adapted to lead a student
oc-;mst dggee.nﬂy and pleasantly.”—E. f Routs, F.R.S., St. Peter’s College,
nbri

WI1LSON (W. P.)—A4 7TREATISE ON DYNAMICS. By

W. P. WiLsON, M.A., Fellow of St. John’s College, Cam-

bridge, and Professor of Mathematics in Queen’s College,

Belfast. 8vo. 9s. 64,
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WOLSTENBOLMEB~MATHEMATICAL PROBLEMS, on
Subjects included in the First and Second Divisions of the
Schedule of Subjects for the Cambridge Mathematical Tripos
Examination, Devised and arranged by JosepH WOLSTEN-
HOLME, late Fellow of Christ’s College, sometime Fellow of
St. John's College, and Professor of Mathematics in the Royal
Indian Engineering College, New Edition greatly enlarged.
8vo. 18s. ,

SCIENCE.

SCIENCE PRIMERS FOR ELEMENTARY
SCHOOLS.
Under the joint Editorship of Professors HuxrLEy, Roscog, and
BALFOUR STEWART, .
$¢These Primers are extremely sim mdnmcﬁve,andwy
answer their. purpose of just leading eNyoung beginner up to the thresh.
%%fﬁu;h:g avénuesin the Palace of Nature which these titles suggest.”

¢*They are wonderfully clear and lucid in their instruction, simple in
style, and admirable in plan. "—EpucarioNaL Times,

INTRODUCTORY By T, H. HuxLEY, F.R.S., Professor -of
Natural History in the Royal School of Mines, 18mo. 1s,

CHEMISTRY — By "H., E. Roscor, F.R.S., Professor of
Chemistry in Owens College, Manchester, With numerous
Ilustrations. 18mo, 1s. New Edition, With Questions,
G’;;A very model of perspicacity and accuraey.”=Cuxmisr AND DRuG-

PHYSICS_By BALFOUR STEWART, F.R.S., Professor of Natural
Philosophy in Owens College, Manchester.,  With numerous
Ilustrations. 18mo. 1Is. New Edition. With Questions,

PHYSICAL GEOGRAPHY—By ARCHIBALD GEIKIE, F.R.S.,
Murchison Professor of Geology and Mineralogy at Edin-
burgh. With numerous Illustrations. New Edition, with
Questions. x8mo. 1s.

“lvuyogaofﬂllumsis-nked by simplicity, elearness, and
cerrectnoss."—ATHENZUM, .

GBOLOGY — By Professor Geikig, F.R.S. With numerous

Illustrations, New Edition. 18mo. cloth, 1Is.

- _*“Itis hardly possible for the dullest child te misund d the i
of a classification of stones after Professor Geikie's explanation. "~Scroor
CHRONICLE,

Boarn
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’

SCIENCE PRIMERS Confinued—
PHYSIOLOGY—By MicHAEL FosTEr, M.D,, F.R.S. With
numerous Illustrations. New Edition. 18mo, 1s
¢ The book seems to us to leave nothing to be desired as an elementary
text-book, "—~ACADEMY.
ASTRONOMY — By J. NorMAN Lockyer, F.R.S. With
numerous Ilustrations. New Edition. 18mo, 1s. °
*¢This is altogether one of the mest lx.kely attempts we have ever seen to
bring astronemy down to the capacity of the young child,”—Scuoor
BoARD CHRONICLE,
BOTANY—By Sir J. D, Hookeg, K.C.S.I, C.B, F.R.S.
With numerous Ilustrations. New Edition, 18mo, 1s.

““To teachers the Primer will be of msumablo value, and not only
b of the y of the 1 and the with which the

sub ect matteris mx«f, but also on account of its cor from the highest
ishing positive inf as to most suitable
1 of botany.”—NATURE.

I.OG!O—By Professor STANLEY JEVONS, F.R.S, New detlon.
18mo, Is.
to“h".x'ﬁe to us "'i“ d ‘tomebothuml:ﬁoducﬂon

scient reasoning, ane -sagmaetoswndjudzmmtm reasoning

in the ordinary affairs mg of life.”—AcADEMY,

POLITICAL ECONOMY-—By Professor STANLEY JEVONS,
F.R.S. 18mo. 1s,

* Unquestionably in every respect an admirable primer.”’=~Scxoot -
BoarDp CHRONICLE.

In preparation :—
Z0OOLOGY. By Professor HuxLry, &e. &ec,

onty, and 50, far

ELEMENTARY CLASS-BOOKS. !

ASTRONOMY, by the Astronomer Royal.
POPULAR ASTRONOMY, With Illustrations.” By Sir
G. B. Airy, K.C.B,, Astronomer Royn.l. New Edition,
18mo. 4s. 64.

ASTRONOMY.
ELEMENTARY LESSONS IN ASTRONOMY. With
Coloured Diagram of the Spectra of the Sun, Stars, and
Nebule, and numerous Illustrations, By J. NORMAN LOCKYER, *
F.R.S, New Edition, Fcap. 8vo. 5s. 64,

“Full ¢lear, sound worthy of attention, not only as a popular
exg but as a sciensific * Index.’ "—ATHENZUM.
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ELEMENTARY CLASS-BOOK S Comtinucd—
QUESTIONS ON LOCKYERS ELEMENTARY LES-
SONS IN ASTRONOMY. For the Use of Schools. By
JoHN FORBRS-ROBERTSON, 18mo, cloth limp. 1s, 64.

PHYSIOLOGY,
LESSONS IN ELEMENTARY PHYSIOLOGY. With
numerous Illustrations. By T. H. HuxLey, F.R.S., Professor
of Natural History in the Royal School of Mines, New
Edition. Fcap. 8vo, 4+, 64, .

Pumgold throughout, "--GUARDIAN,
bly the el and most ec-%:n duumnri"m
onthumbjecnhswepomsmmyhnmc. ESTMINSTER

QUESTIONS ON HUXLEY'S PHYSIOLOGY FOR
- SCHOOLS. By T, ALCOCK, M.D, 18mo. 1 64,

BOTANY.
LESSONS IN ELEMENTARY BOTANY, By D.
OLiver, F.R.S,, F.L.S., Professor of Botany in University
College, London, With nearly Two Hundred Illustrations,
New Edition, Fcap. 8vo. 4s 6d.

' OHEMISTRY,

LESSONS IN ELEMENTARY CHEMISTRY, IN-
ORGANIC AND ORGANIC. By HenNrY E. ROSCOE,
F.R.S., Professor of Chemistry in Owens College, Manchester,
With numerous Illustrations and Chromo-Litho of the Solar
Spectrum, and of the Alkalies and Alkaline Earths, New
Edition, Fcap. 8vo. 4s. 64,

'm..wmmm:gm:om.mm -
SPRCTATOR.

“We unhmn pronounce it the best of all our elementary treatises
EDICAL Times,

A SERIES OF CHEMICAL PROBLEMS prepued with
Special Reference to the above, by T. E. Thorpe, Ph,D.,
Professor of Chemistry in the Yorkshire College of Sc\enoe,
Leeds, Adapted for the Preparation of Students for the
Government, Science, and Society of Arts Examinations. With
a Preface by Professor Roscoe. New Editlon, with_ Key.
18mo. 29,
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BLEMENTARY CLASS-BOOKS Comfinsed— ,
POLITICAL BCONOMY.
POLITICAL ECONOMY FOR BEGINNERS., By
MILLICENT G. FAWCETT. New Edition. 18mo, 2s. 64,

e piaa] ad Labous have merer bo: mege
¢“The tions of capi our have never or
more clearly expounded.”—CONTEMPORARY REVIEW, nnply .

LOGIC
ELEMENTARY LESSONS IN LOGIC 5 Deductive and
Inductive, with copious Questions and Examples, and a
Vocabulary of Logical Terms; By W, STANLEY JEVONS, M.A.,
Professor of Political Economy in University College, London,
New Edition. Fcap. 8vo. 3s. 64
¢ Nothing can be bettu- for a school-book. "—Gunnuul.
“p alike si ting, and mennﬁc. ATHMW-
PHYSICS,
LESSONS IN ELEMENTARY PH. YSICS By BALFOUR
STEWART, F.R.S., Professor of Natural Philosophy in Owens
College, Manchester. With numerous Illustrations and Chromo-
litho of the Spectra of the Sun, Stars, and Nebuls, New
Edition, Fcap. 8vo. 4s. 64,

** The beau-ideal of a scientific text-book, clear, accurate, and thorough,”
~—EDUCATIONAL TimEs,

PRACTICAL CHEMISTRY,
THE OWENS COLLEGE YUNIOR COURSE OF
PRACTICAL CHEMISTRY. By FRANCIS JONES, Chemical
Master in the Grammar School, Manchester, With Preface by
Professor RoSCOE, and Illustrations, New Edition, 18mo.
2s. 6d.

CHEMISTRY.
QUESTIONS ON CHEMISTRY. A Series of Problems
and Exercises in Inorganic and Organic Chemistry, By
FrANcIs Jongs, F.R:S.E., F.C.S., Chemical Master in the
Grammar School, Manchester, Fw.p. 8vo. 35

ANATOMY.
LESSONS IN ELEMENTARY ANATOMY, By Sr.,
GEORGE MIVART, F.R.S., Lecturer in Comparative Anatomy
at St. Mary’s Hospital, Wnth upwards of 400 Illustrations.
Fcap, 8vo, 6s. 64.°

_“Itmay haquumedwhethumyothuwukonmtmymmm in
like mass of information. "—LANceT. *

‘“The vmrkxs exeellent, and : sb.ould be in the hands of every studeat of
haman anatomy.”—M=picar Timzs

b m——— - - ™y o oy
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ELEMENTARY OLASS-BOOKS Continued—

MECHANICS OF MACHINERY,
AN ELEMENTARY TREATISE. By A. B. W,
. KENNEDY, M. Inst. C.E., Professor .of Engineering and Me-
chanical Technology in University College, Londen. With
Tlustrations. . [2n the gress,

STEAM.
" AN ELEMENTARY TREATISE, By JouN PErey,
Professor of Engineering, Imperial College of Engineering,
- Yedo. With numerous Woodcuts and Numencal Examples
. and Exercises. 18mo. ¢s. 64.

“ The young engineer and those seeki: fora h
the use, powu,anﬂemomyofm,mldmhvenmm
work, as it is very intelligible, well arranged, aad practical throughout.”—

IRONMONGER.

PBYSIOAI. GEOGRAPHY. 3
ELEMENTARY LESSONS IN PHYSICAL GEO-
GRAPHY. By A. Grikig, F.R.S., Murchison Professor
of Geology, &c., Edinburgh, With numerous Illustrations.
Fcap. 8vo. 4, 6d.

QUESTIONS ON THE SAME, 1s, 6d.

GEOGRAPHY.
CLASS-BOOK OF GEOGRAPHY. ByC. B.CLARKE, M.A.,
F.R.G.S. Fcap. 8vo. New Edition, with Eighteen Coloured
Maps. 3s.

NATURAL PHILOSOPHY.
NATURAL PHILOSOPHY FOR BEGINNERS. By
L TopoHUNTER, M.A,, F.R.S. Part L The Properties of
Solid and Fluid Bodies. 18mo. 3s. 64.
Part IL. Sound, Light, and Heat. 18mo. 3s. Gd.

MORAL PHILOSOPHY.
AN ELEMENTARY TREA TISE By Prof. E, CAlrD,
of Glasgow: University, [7n preparation.

ELECTRICITY AND MAGNETIMS,
ELEMENTARY LESSONS IN ELECTRICITY AND
MAGNETISM, By Prof. SYLVANUS THOMPSON, of Uni-
versity College, Bristol. With Illustrations. [/n preparation,

T C
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BLEMENTARY CLASS BOOKS Continucd.
SOUND.

AN ELEMENTARY TREATISE. By W. H. STONE,
M.B. With Illustrations. 18mo. 3. 6d.

PSYOHOLOGY.
ELEMENTARY LESSONS IN PSYCHOLOGY. ByG.
CroOoM ROBERTSON, Professor of Mental Philosophy, &c.,
University College, London. ’ [n gresaration.

AGRICULTURB—EZLEMENTARY LESSONS IN AGRI-
CULTURE. By H. TANNER, F.C.S., Professor of Agri-
cultural Science, University College, Aberystwith, .

[ 12 preparation.

MARSHALL—7HE ECONOMICS OF INDUSTRY. ByA.
MARSHALL, M.A,, late Principal of University College,
Cheltenham, and MarY P. MARSHALL, late Lecturer at
Newnham Hall, Cambridge. Extra fcap. 8vo. 2s. 6d.

““The book is of sterling value, and will be of great use to students and
teachers.”—ATHENXEUM.

Others in Preparation,

MANUALS FOR STUDENTS.

Crown 8vo,

DYER AND VINES—7HE STRUCTURE OF FPLANTS. By
Professor THISELTON DYER, F.R.S., assisted by SYDNEY
Vinges, B.Sc., Fellow and Lecturer of Christ's College,
Cambridge. With numerous Ilustrations.  [/# preparation.

PAWCETT —4 MANUAL OF POLITICAL ECONOMY.
By Professor FAwceTT, M.P. New Edition, revised and
enlarged. Crown 8vo. 125 6d.

PLEISOHER—A SVSTEM OF VOLUMETRIC ANALY-
SZS. ‘Translated, with Notes and Additions, from the second
German Edition, by M. M. ParrisoNn MuIr, F.R.S. E. With
Tllustrations, Crown 8vo. 7s. 6.
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- MANUALS FOR STUDBNTS Conlinucd.

PLOWER (W. H.)—AN INTRODUCTION T0 THE OSTE-
OLOGY OF THE MAMMALIA. Being the substance of
the Course of Lectures delivered at the Royal College of
Surgeons of England in 1870. By Professor W, H. FLOWER,
F.R.S, F.R.C.S, With numerous Illustrations, New Edition,
enlarged. Crown 8vo. Ios. 64.

POSTER and LANGLEBY—A COURSE OF ELEMENTARY
PRACTICAL PHYSIOLOGY. By MicHAEL FOSTER,
M.D,, F.R.S., and J. N, LancrLey, B.A, New Edition."
Crown 8ve. 6s.

HOOKRR—7THE STUDENT'S FLORA QF THE BRITISH
ISLANDS. By Sir J. D. Hookzr, K.C.S.I, C.B.,
F.R.S., M.D,, D.C.L. New Edition, revised. Globe 8vo.
105, 64

HUXLEY—PHYSIOGRAPHY. An Introduction to the Study of
Nature, By Professor HuxLey, F.R.S. With numerous Illus-
trations, and Coloured Plates. New Edition. Crown 8vo. 74,64,

HUXLEY and MARTIN—A COURSE OF PRACTICAL
INSTRUCTION IN ELEMENTARY BIOLOGY. By
Professor HUXLEY, F.R.8., assisted by H, N. MARTIN, M.B,,
D.Sc. New Edition, revised. Crown 8vo. 6s.

HUXLEY and PARKER— ELEMENTARY BIOLOGY.
PART I1. By Professor HuxLey, F.R.S., assisted by
T. J. PARKER. With Illustrations, [In Dpreparation,

JBYVONS8—T7THE PRINCIPLES OF SCIENCE., A Treatise
on Logic and Scientific Method. By Professor W. STANLEY
Jxvons, LL.D., F.R.S. New and Revised Edition, Crown
8vo. 12s. 64,

EXERCISES IN DEDUCTIVE LOGIC. By Professor
W. STANLEY JEVONS, LL.D,, F.R.S. Crown 8vo.

[/n the press.

OLIVER (Professor)—F/RST BOOK OFINDIAN BOTANY.

By Professor DANIEL OLiver, F.R.S,, F.L.S., Keeper of
the Herbarium and Library of the Royal Gardens, Kew.,
With numerous Illustrations, Extra fcap. 8vo. 6s. 64,

c2
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MANUALS FOR STUDENTS Confinucd—

PARKER and BETTANY—7HE MORPHOLOGY OF
THE SKULL. By Professor PARKXR and G. T, BETTANY.
Illustrated. Crown 8vo, 10s. 64.

TAIT—AN ELEMENTARY TREATISE ON HEAZ. By

Professor TAIT, F.R.S.E. Tlustrated, [ the press.
THOMBON—Z00LOGY. By Sir C. WyviLLs TrHoMsoN, F.R.S,
Tllustrated, [Zn preparation.

TYLOR—ANTHROPOLOGY. An Introduction to the Study of
Man and Civilisation, By E. B. Tyror, M.A,, F.R.S.
Tllnstrated. [In the press.

Other volumes of these Manuals will follow,

SCIENTIFIC TEXT-BOOKS.

BALPOUR—A TREATISE ON COMPARATIVE EMBRY-
OLOGY. With Illustrations. By F. M. BaLrougr, M.A.,
F.R.S., Fellow and Lecturer of Trinity College, Cambridge.
In 2 vols, 8vo. Vol L 18s. now ready. [Vol.Z, in the press.

BALL (R. 8., AM.)—EXPERIMENTAL MECHANICS. A
Course of Lectures delivered at the Royal College of Science
for Ireland. By R. S. BaLL, A.M,, Professor of Applied
Mathematics and Mechanics in the Royal College of Science
for Ireland. Royal 8vo. 16s.

OLAUSIUS—MECHANICAL THEORY OF HEAT, ByR,
Crausius, Translated by WALTER R. BROWNE, M.A., late
Fellow of Trinity College, Cambridge, Crown 8vo. 10s. 64,

DANIBLL—A TREATISE ON PHYSICS FOR MEDICAL
STUDENTS. By AL¥REp DANIELL. With Illustrations.
8vo, [Zn preparation,

POBTER—A TEXT-BOOK OF PHYSIOLOGY. By MICHAEL
FosTaz, M.D., F.R.S, With Illustrations. Third Edition,
revised. 8vo. 21s.
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SCIENTIFIC TEXT-.-BOOKS Confimucd—

GAMGEE —A 7EXT-BOOKX, SYSTEMATIC AND PRAC-
TICAL, OF THE PHYSIOLOGICAL CHEMISTRY OF
THE ANIMAL BODY. Including the changes which the
Tissues and Fluids undergo in Disease. By A. GAMGEER,
M.D., F.R.S., Professor of Physiology, Owens College,
Manchester. 8vo. [ the press.

GBGENBAUR—ELEMENTS OF COMPARATIVE ANA-
TOMY. By Professor CARL GEGENBAUR. A Translation by
F. JerrReY BELL, B.A. Revised with Preface by Professor
E. RAY LANKESTER, F.R.S. With numerous Illustrations.
8vo. 21s.

.GBIRIB—7EXT-BOOK OF GEOLOGY. By ARCHIBALD
GEIKIE, F.R.S., Professor of Geology in the University of
Edinburgh. With numerous IHustrations, 8vo. [/ #he press,

@QRAY—STRUCTURAL BOTANY, OR ORGANOGRAPHY
ON THE BASIS OF MORPHOLOGY. To which are
added the principles of Taxonomy and Phytography, and a
Glossary of Botanical Terms. By Professor Asa GraY,
LL.D. 8vo. 10s. 64.

NEWCOMB-—POPULAR ASTRONOMY, By S. NEWCOMB,
LL.D., Professor U.S. Naval Observatory. With 112 Illus-
trations and 5 Maps of the Stars, 8vo. 18s.

"Inumkhan ngebeofihhnd,mdwillbaofmminah
nine-tenths of the books

eulating & of astronomy than hich
have app.ud subject of hﬁeyeln”—smx "

REULEAUX — 7HE KINEMA TICS OF MACHINERY.
Onutlines of a Theory of Machines. By Professor F. REULEAUX.
Translated and Edited by Professor A. B, W. KENNXDY,
C.E. With 450 Hlustrations. Medium 8vo. 2Is.

ROSCOE and SCHORLEMMER'— /NORGANIC CHEMIS-
TRY. A Complete Treatise on Inorganic Chemistry. By
Professor H. E. Roscogr, F.R.S., and Professor C. SCHOR-
LEMMER, F.R.S. With numerous Illustrations, Medium 8vo,
Vol. I.—The Non-Metallic Elements, 215, Vol. II.—Metals.
Part I. 18s. Vol. IL Part II,—Metals, 18s.



38 MACMILLAN’S EDUCATIONAL CATALOGUE. .

, SCIENTIFIC TEXT-BOOKS Conlinued—

ORGANIC CHEMISTRY. A complete Treatise on Or-
ganic Chemistry. By Professors RosCOE and SCHORLEMMER.
With numerous Illustrations, Medium 8vo. [ 2 the press.

~ SOHORLEMMER—A MANUAL OF THE CHEMISTRY OF
THE CARBON COMPOUNDS, OR ORGANIC CHE-
MISTRY. By C. ScHORLEMMER, F.R.S., Professor of
Chemistry, Owens College, Manchester, With Illustrations.
8vo, 145,

THORPE AND RUCKER—A TREATISE ON CHEMICAL
PHYSICS. By Professor THORPE, F.R.S., and Professor
RUCKER, of the Yorkshire College of Science. Illustrated,
8vo. [/» preparation.

NATURE SERIES.

YHE SPECTROSCOPE AND ITS APPLICATIONS. By
J. NormaN Lockyer, F.R.S. With Coloured Plate and
mumerous Ilustrations. Second Edition. Crown 8vo., 3+, 64

THE ORIGIN AND METAMORPHOSES OF INSECTS.
By Sir Joun Lussock, M.P,, F.R.S,, D.C.L. With nume-
rous Illustrations, Second Edition, Crown 8vo, 3s. 64,

THE TRANSIT OF VENUS. By G. ForeEs, M.A., Pro-
fessor of Natural Philosophy in the Andersonian University,
Glasgow, Illustrated. Crown 8vo. 3s. 64,

THE COMMON FROG. By St. GEORGE MIvarT, F.R.S.,
Lecturer in Comparative Anatomy at St. Mary’s Hospital,
With numerous Illustrations, Crown 8vo. 3s. 64

POLARISATION OF LIGHT, By W. SPOTTISWOODE, P.R.S.
With many Ilustrations, Second Edition. Crown 8vo.
3s. 6d.

ON BRITISH WILD FLOWERS CONSIDERED IN RE.
LZATION TO INSECTS. By Sir JouN Lumsock, M.P.,
F.R.S. With numenous Illustrations. Second Edition. Crown
8vo. 4». Gd.
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NATURE llR!Bl Continsed—

THE SCIENCE OF WEIGHING AND MEASURING, AND
THE STANDARDS OF MEASURE AND WEIGHT,
By H., W. CHisHoLM, Warden of the Standards.. With
numerous Illustrations, Crown 8vo. 4s. 6d.

' HOW TO DRAW A STRAIGHT LINE: a Lectare on Lisk-
ages. By A, B, Kempr, With Illustrations. Crown 8vo. 1s. &4,

LIGHT: a Series of Stmple, entertaining, and Inexpensive Expe-
riments in the Phenomena of Light, for the Use of Students of
every age. By A. M. MAYER and C. BARNARD, Crowit8vo,
with numerous Hlustrations, 2. 6d.

SOUND : a Series of Simple, Entertaining, and Inexpemsiveé Ex-
periments in the Phenomene of Sound, for the use of Studeats
of every age. By A. M. MAYER, Professor of Physiss in
the Stevens Inmstitute of Techmology, &c. With numerous
Ilustrations, Crown 8vo, 3. 64.

SEEING AND THINKING. By Professor W. K. .CLIFFORD,
F.R.S: With Diagrams, Crown 8vo. 3 64

DEGENERATION—By Prof. E. RAy mexsnm, F.R.S.
With Illustrations, Crawn 8vo. 25 64,

Other volumes to fillow:

EASY LESSONS IN SCIENCE.
Edited by Prof. W, F. BARRETT,

HEAT. By Miss C, A. MARTINRAU, Ilhstnted. Extra fcap,
8vo. 2s..6d.

LIGHT. By Mre. Awpry. Illustrated. 2s. 64,

ELECTRICITY. By Prof. W. F. BARRETT. [F» preparation.

SCIENCE LECTURES AT SOUTH
KENSINGTON.

VOL. I. Containing Lectures by Capt. ABNEY, Prof. STOKES,
Prof. KENNEDY, F. G. BRAMWELL, Prof. G. Forsgs, H. C.
Sorsy, J. T. BorroMrey, S. H. VINEs, and Prof. CARRY
FosTER., Crown 8vo, 6s.
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VOL, 1. Containing Lectures by W. Srorriswoopr, P.R.S.,
Prof, ForBrs, Prof. P1GoT, Prof. BARRETT, Dr. BURDON~
SANDERSON, Dr. LAUDER BRUNTON, F R S., Prof. RoscOE,
and others, Crown 8vo. 'Gs.

.MANCHESTER SCIENCE LECTURES

FOR THE PEOPLE.

Eighth Series, 1876-7. Crown 8vo. Illustrated. 6d, each.
WHAT THE EARTH IS COMPOSED OF. By Professor
. Roscog, F.R.S.

THE SUCCESSION OF LIFE ON THE EARTH., By

Professor WiLLIAMSON, F.R.S.

WHY THE EARTH'S CHEMISTRY IS AS IT IS. By

J. N. Lockyeg, F.R.S.

Also complete in One Volume, Crown 8vo. cloth. 24,

ALEXANDER~ZELEMENTARY APPLIED MECHANICS;
being the simple and more practical Cases of Stress and Strain

* - wrought out individually from first principles by means of’

Elementary Mathematics. By T. ALEXANDER, C.E., Professor
of Civil Engineering in the Imperial College of Engineering,
Tokei, Japan., Crown 8vo. 4s. 64.

BLANFORD—T7HE RUDIMENTS OF PHYSICAL GEO-
GRAPHY FOR THE USE OF INDIAN SCHOOLS; with
a Glossary of Technical Terms employed. By H. F. BLANFORD,
F.R.S. New Edition, with Illustrations. Globe-8vo. 2s. 6d.

BVERETT—UNITS AND PHYSICAL CONSTANTS. By
* J.-D. Everert, F.R.S., Professor of Natural Philosophy,
Queen’s College, Belfast. Extra fcap. 8vo. 4s. 64,

GBIKIE.—OUTLINES OF FIELD GEOLOGY. By Prof.
GEIKIE, F.R.S. With Illustrations, Extra fcap. 8vo. 3s. 64.

GORDON—AN ELEMENTARY BOOK ON HEAT. By
*J. E. H, GorDON, B.A., Gonville and Caius College, Cam.
- bridge. Crown 8vo. 2s.




HISTORY. A &

LANDAUBR BLOWFIPE ANALYSIS. By ]J. LANDAUER.
Authorised English Edition by J. TAYLOR and W. E. Kay, of
Owens College, Manchester. Extra fcap. 8vo. 4s. 64,

MUIR—PRACTICAL CHEMISTRY FOR MEDICAL STU.-
DENTS, Specially arranged for the fixst M.B. Course, By
" M. M. ParrisoN Muig, F.R.S.E. Fecap. 8vo. 1s. 64,
M’KENDRICK—QUZLINES OF PHYSIOLOGY IN ITS
RELATIONS TO MAN, By J. G. MKENDRICK, M.D,
F.R.S.E. With Illustrations, Crown 8vo. 12s. 64.
MIALL—S7UDIES IN COMPARATIVE ANATOMY.
No. IL.—The Skull of the Crocodile: a Manual for Students.
By L. C. M1aLy, Professor of Biologyin the Yorkshire College
and Curator of the Leeds Museum, 8vo. 2. 64.
No. IL—Anatomy of the Indian Elephant. By L. C. MIALL
and F. GrReENwWooD. With Illustrations. 8vo. 5s.
SBHANN—AN ELEMENTARY TREATISE ON HEAT,IN
RELATION TO STEAM AND THE STEAM-ENGINE.,
By G. SHANN, M.A, With Illustrations. Crown 8vo. 4s. 64,
WRIGHT—METALS AND THEIR CHIEF INDUSTRIAL
APPLICATIONS. By C, ALpEr WRIGHT, D.Sc., &c.
Lecturer on Chemistry in St. Mary’s Hospital Medical School.
Extra fcap. 8vo. 3s. 64.

. HISTORY.
ARNOLD—7HE ROMAN SYSTEM OF PROVINCIAL
" ADMINISTRATION TO THE ACCESSION OF CON-
STANTINE THE GREAT. By W. T. ArNoLp, B.A,

Crown 8vo. 6s.

““Ought to prove a valuable handbook 'to the student of Roma
history,”—GUARDIAN.

BEEBSLY—S7ORIES FROM THE HISTORY OF ROME,
By Mrs. BEesLY, Fcap. 8vo. 2s, 64,
mureT:':n.‘“: Femaeives, and are 1old with puﬁetnmplmym“pﬁ
feeling.”—DaAILY NEWS.

PREEMAN (EDWARD A.)—OLD-ENGLISH HISTORY.
By Epwarp A, Freewman, D.C.L., LL.D,, late Fellow of
Trinity College, Oxford. With Five Coloured Maps, New
Edition, Extra fcap, 8vo. half-bound. 6s.
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GRBEN—A SHORT HISTORY OF THE KENGLISH
PEOPLE. ByJoHN RICHARD GREEN, M.A,, LL.D, With
Coloured Maps, Genealogical Tables, and Chrenological
Annals, Crown 8vo. 8s. 64. Sixty-third Thousand.

A ¢¢ Stands alone as the one general history of the country, for the sake

of which all others, if young and old are wise, will be speedily and surely
set aside,”—~ACADEMY.

READINGS FROM ENGLISH HISTORY. Selected
and Edited by Jouw RicHARD GREEN, M.A,, LL.D,,
Honorary Fellow of Jesus College, Oxford. Three Parts.
Globe 8vo. 1s. 6d. each., I Hengist to Cressy. IL Cressy
to Cromwell, III. Cromwell to Balaklava.

GURSY—LECTURES ON THE HISTORY OF ENGAAND

By M. J. Guest. With Maps. Crown 8vo. 6o,
“ It is not too much to assert that thisis one of the very best class books
of English History for young students ever published.””—ScoTsMaN.

HISTORICAL COURSE FOR SGHOOLS—rEdlted by
.. Epwarp A. FrREEMAN, D.C.L., late Fellow of Trinity
College, Oxford.
1. GENERAL SKETCH OF EUROPEAN HISTORY.
By EpwArD A, FREEMAN, D.C.L. New Edition, revised
and enlarged, with Chronological Table, Maps, and Index.
18mo. cloth. 3s. 64,
“ 1 supplies the great want of a good foundation for historical ‘teaching.
The scheme is an excellent one, and this instalment has been execmed

a way that promises much for the volumes that are yet to appear,”—
EpvcaTioNaL Times.

I1. HISTORY OF ENGLAND. By EDITH THOMPSON.
New Edition, revised and enlarged, with Maps. 18mo. 25 64
III. HISTORY OF SCOTLAND. By MARGARET
Mmmm:nmn. New Editiom. r8mo. za
hable as to faets, and putting them
in the clearest and most unpamal light attainable.”—GUARDIAN.
IV, HISTORY OF ITALY. By the Rev. W. Hunt, M.A.
18mo. 3s.
i ¢ th lid it predecessors . . . . the
seru) . ous care ab:meﬁgy mdewl? 3“ Itis dasnnﬁl me
on art, ar and social polmcs, in whi¢h the vm
%’p is seen by the ﬁrmmslnnd clearness of his —Enuunoxu.

V. HISTORY OF GERMANY. By J. SmuE, M.A.

¥mo. 35,

*“ X remarkably clear and impressive history of Germany. Its great
events are wisely kept as central uﬂ;su:es and the smaller events are care-
fully kepg not only subordimate subservientt; bt most sl&lfully woven
into texture of the historical' tapestry presented to the eye.”—=

S'rumnn.
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HISTORICAL COURSE FOR SCHOOLS Continucd—

V1. HISTORY OF AMERICA. By Jomn A. Dovix.
‘With Maps. 18mo. 4:161:; .
“Mr. Doyle has task with admirabl fuln d
elurn:-, ﬁ'fm thmmm we ]Iﬂﬂ‘flof schools ane a?cuﬁ’nn ane:is{n::r-
témghmoqofham, from the carliest to the presemt time.”—

'TANDARD.

EUROPEAN COLONIES. ByE. J. PAYNe, M.A. With

Maps. 18mo. ‘4s. 6d.
“We bave seldom met with an nistorian capable of forming & more
sive, far-seeing, and uoprejudiced esMmate of events and
Ko nndwenncommend th:.slutlowotku one certaia to prove of
hest interest to all thoughtful readers.’*~T1mzs.

IRANCE By CHARLOTTE M Yongk, With Maps. 18mo.

. 6d,
3{‘ An admirable text-book for the lecture room."*~—AcapEnY.
GREECE. By EDWARD A, FrREEMAN, D.C.L.
[Zn preparation.
ROME. ByEDWARD A, FREEMAN, D.C.L. [/n preparation,

BISTORY PRIMERS—Edited by JoEN RIGHARD GREEN,

Author of ‘‘ A Short Histary of the English People.”
ROME. By the Rev. M. CrriGHTON, M.A., late Fallow
and Tutor of Merton College, Oxford. With Eleven Maps.
18mo. 1s.
““The suthor has been curiously successful in ulling in an intelli-
t way the story of Rome from first to last.”—Scmoor BbARD
RONICLE,
GREECE. ByC. A. Fyrre, M.A,, Fellow and late Tutor
of University College, Oxford. With Five Maps. 18mo, 1s.
“We nv- our unqualified praise to this kittle manual, "—Scmoor-
MASTER.
EUROPEAN HISTORY. By E. A, Freemax, D.€C.L.
LL.D. With Maps, 18mo.
- n.':grk is almcle‘gr, -nd'tgmng Inminous h;xol‘nmpean

GREEK ANTIQUITIES. By the Rev, J. P. MAHAFFY,
M.A. Tlustrated. 18mo. 1=

s All that is y for_the schol. wlnowhuﬂ-omp-edyyet
so fully, and in a style so interesting, that it pombkﬁ:tevndm
dullenboytolookon this little work mﬂ\eme light as he regards his
other school books. *~~SCHOOLMASTER.
CLASSICAL GEOGRAPHY, By H. PF. Tozmx, M.A.

t8mo, 1o .
¢ Another valuable aid to the study of the ancient werld , .. It

contains an enormous quantity of information packed into a small

?duhmmw in & very readsbls shase.*—Jorn
ULL.
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HISTORY PRIMERS Comtinued— :
GEOGRAPHY. By GRrRorGE Grove, D.C.L. With Maps,
18mo. 1Is.

“Anodelofwhumcbnmkshouldbe. . « « we know of no short
treatise better suited to infuse life and spirit into "the dull lists of proper
names of which our ordinary class-books so often almest exclusively
consist. ”~TiMes.

ROMAN ANTIQUITIES. By Professor WILKINS, Illus-
trated. 18mo. 1Is.

“Aﬁulebookthntthmzn blase of light on Roman History, and

is, g.""~School Board Chronicle.
FRAIVCE. By CHARLOTTR M. YONGE. 18mo. 1s
““ May be considered a wonderfully successful piece of work. . Its
general merit as a vigorous and clear sketch, giving in a sma]l spaoe
vivid idea of the history of France, remains undeniable.”’—~§ATURDAY
REVIEW.
In preparation :—

ENGLAND, By]. R. GREEN, M.A,

LETHBRIDGE—A SHORT MANUAL OF THE HISTORY
OF INDIA, WITH AN INTRODUCTORY ACCOUNT
OF INDIA AS IT IS. By RoPErR LETHBRIDGE, M.A.,
C.LLE. Crown 8vo. [ 77 the press.

MICHELET—A SUMMARY OF MODERN HISTORY.
Translated from the French of M. MICHELRT, and continued to
the Present Time, by M. C. M. S1mpsoN, Globe 8vo, 4s. 64.

OTTB—SCANDINAVIAN HISTORY. By E. C. Otk
With Maps, Globe 8vo. 6s.

PAULI—PICTURES OF OLD ENGLAND. By Dr. R
PAULL  Translated with the sanction of the Author by
E. C. Orri. Cheaper Edition. Crown 8vo, 6s.

RAMSAY—Ad SCHOOL HISTORY OF ROME. ByG. G.
RaMsay, M.A., Professor of Humanity in the University of
Glasgow. With Maps. Crown 8vo. [1n preparation.

PAIT—ANALYSIS OF ENGLISH HISTOR Y, based on Green’s
¢ Short History of the English People,” By C. W. A. TAIT,
M.A,, Assistant-Master, Clifton College. Crown 8vo. 3s. 64

WHEBLER—A SHOR7 HISTORY OF INDIA AND OF
THE FRONTIER STATES OF AFGHANISTAN,
NEPAUL, AND BURMA. By ]. TALBoYs WHEELER,
With Maps, Crown 8vo. I2s.

It is the best book of the kind we have ever seen, and we recommend.
it to a place in every school library.”’—EpucaTioNaL TiMEs, |,
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YONGE (OCHARLOTTE M.)—A PARALLEL HISTORY 0OF
FRANCE AND ENGLAND : consisting of Outlines and
Dates, By CHARLOTTE M. YONGE, Author of ¢ The Heir
of Reddlyffe,” &c., &c. Oblong 4to. 3s. 64,

CAMEOS JFROM ENGLISH HISTORY.—FROM
ROLLO TO EDWARD II. By the Author of *The Heir
of Redclyfie.” Extra fcap. 8vo. New Edition. 5+, ,
A SECOND SERIES OF CAMEOS FROM ENGLISH
HISTORY—THE WARS IN FRANCE. New Edition,
Extra fcap. 8vo. §s.
A THIRD SERIES OF CAMEOS FROM ENGLISH
HISTORY—THE WARS OF THE ROSES. New Edition.
. Extra fcap, 8vo. §s.
A FOURTH SERIES—REFORMATION TIMES Extra
Fcap. 8vo. 5.
EUROPEAN HISTORY. |Narrated in a Series of
Historical Selections from the Best Authorities, Edited and
arranged by E. M, SEWELL and C, M. YoNGE, First Series,
1003—I1154. Third Edition. Crown 8vo, 6s. Second
Series, 1088-—1228. New Edition. Crown 8vo. 6s.

DIVINITY.

*.* For other Works by these Authors, see THEOLOGICAL -

CATALOGUR,

ABBOTT (REV. B. A)—B/BLE LESSONS. By the Rev.
E. A, AsBoTT, D.D., Head Master of the City of London
School, New Edition, Crown 8vo. 4s. 64.

*¢ Wise, suggestive, and really profound initiation into religious thought.”’
==GUARDIAN,

ARNOLD—4 BIBLE-READING FOR SCHOOLS—THE
GREAT PROPHECY OF ISRAEL’S RESTORATION
(Isaiah, Chapters xl.—Ixvi.). Arranged and Edited for Young
Learners By MATTHEW ARNOLD, D.C.L., formerly
Professor of Poetry in the University of Oxford, and Fellow
of Qriel. New Edition. 18mo. cloth, 1s.

ISATAH XL.—LXVI. With the Shorter Prophecies allied
to it. Asranged and Edited, with Notes, by MATTHEW
ArnNoLp., Crown 8vo. §s5. -
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CURTEIS—MANUAL OF THE THIRTY-NINE AR-
TICLES. By G. H. CurTEls, M.A,, Principal of the
Lichfield Theological College. [/ preparation.

GASKOIN—7HE CHILDREN'S TREASURY OF BIBLE
S7ORIES. By Mrs. HERMAN GaskoIN. Edited with
Preface by the Rev, G. F, Maclear, D.D. ParT I.—OLD
TESTAMENT HISTORY. 18mo 1s. PART I.—_NEW

" TESTAMENT. 18mo. 1s. ParT IIL—THE APOSTLES :
ST. JAMES THE GREAT, ST. PAUL, AND ST. JOHN
THE DIVINE. 18mo. Is.

GOLDEN TREASURY PSALTER—Students’ Edition. Being
an Edition of “The Psalms Chronologically Arranged, by
Four Friends,” with briefer Notes. 18mo. 3s. 64,

GREEK TESTAMENT. Edited, with Introduction and Appen-.
dices, by CANON WgsTCOTT and Dr. F, J. A. Horr. Two
Vols. Crown 8vo. [7n the press.

BHARDWICK-—Works by Archdeacon HARDWICK.

A HISTORY OF THE CHRISTIAN CHURCH.
Middle Age. From Gregory the Great to the Excommuni-
cation of Luther. Edited by WiLLIAM STUBBS, M.A., Regius
Professor of Modern History in the University of Oxford.
With Four Maps. Fourth Edition. Crown 8vo, 10s. 64.

A HISTORY OF THE CHRISTIAN CHURCH DURING
THE REFORMATION. Fourth Edition. Edited by Pro-
fessor STUBBS, Crown 8vo. 1os. 64.

EING—CHURCH HISTORY OF IRELAND. By the Rev.
RoOBERT KING. New Edition. 2 vols. Crown 8vo.

[/n preparation,

MACLEAR—Works by the Rev. G. F. MacLeag, D.D,,
Warden of St. Augustine’s College, Canterbury. _

A CLASS-BOOK OF OLD TESTAMENT HISTORY.
New Edition, with Four Maps. . 18mo. 4s. 64,

A4 CLASS-BOOK OF NEW TESTAMENT HISTORY,
including the Connection of the Old and New Testament.
With Four Maps. New Edition. 18mo. 5§+ 6d.

A SHILLING BOOK OF OLD TESTAMENT
HISTORY, for National and Elementary Schools, With
Map. 18mo, cloth. New Edition, /
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MAOGCLEAR Continued—
A SHILLING BOOK OF NEW TESTAMENT
HISTORY, for National and Elementary Schools. With
Map. 18mo. cloth. New Edition.
These works have been carefully abridged from the author’s
larger manuals,
CLASS-BOOKX OF THE CATECHISM OF THE
CHURCH OF ENGLAND. New Edition. 18mo. cloth.
1s. 6d. :
A FIRST CLASS-BOOKX OF THE CATECHISM OF
THE CHURCH OF ENGLAND, with Scriptwre Proofs,
for Junior Classes and Schools. 18mo. 64. New Edition,
A MANUAL OF INSTRUCTION FOR CONFIRMA-
TION AND FIRST COMMUNION. WITH PRAYERS
AND DEVOTIONS. 32mo.cloth extra, red edges. 2.
MAURICEB—THE LORD'S PRAYER, THE CREED, AND
THE COMMANDMENTS. Manual for Parentsand School-
masters. To whichisadded the Order of the Scriptures, By the
Rev. F, DENISON MAURICE, M.A. 18mo. cloth, limp. 1s,

PROOTER—A HISTORY OF THE BOOKX OF COMMON
PRAYER, with & Rationale of its Offices, By Francis
PROCTER, M.A. Fourteenth Edition, revised and enlarged.
Crown 8vo. 10s. 6d.

PROCTER AND MACLEBAR—AN ELEMENTARY INTRO-
DUCTION T0 THE BOOK OF COMMON PRAYER.
Re-arranged and supplemented by an Explanation of the
Moming and Evening Prayer and the Litany. By the
Rev. F. PrROCTER and the Rev, Dr. MACLEAR. New
and Enlarged Edition, containing the Communion Service and
the Confirmation and Baptismal Offices. 18mo. 2s. 62,

PEALMS OF DAVID CHRONOLOGICALLY ARRANGED.
By Four Priends. An Amended Version, with Historical
Introduction and Explanatory Notes. Second and Cheaper
Edition, with Additions and Correctiong. Cr. 8vo, 8s, 6d.

RAMSAY—THE CATECHISERS MANUAL ; or, the Church
Catechism Illustrated and Explained, for the Use of Clexgy-
men, Schoolmasters, and Teachers. By the Rev. ARTHUR
Ramsay, M.A. New Edition. 18mo. 1s. 64.
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S8IMPRON—AN EPITOME OF THE HISTORY OF 7HE
CHRISTIAN CHURCH. By WILLIAM SIMPSON, M.A,
New Edition, Fcap. 8vo. 3s. 64 :

TRENOH—By R. C, TRENCH, D.D., Archbishop of Dublin.
LECTURES ON MEDIEVAL CHURCH HISTORY.
Being the substance of Lectures delivered at Queen’s College,
London. Second Edition, revised. 8vo, 12s.

SYNONYMS OF THE NEW TESTAMENT. Ninth
Edition, revised. 8vo., 12s.

WESTCOTT—Works by BROOKE Foss WEsTCOTT, D.D., Canon
of Peterborough,

A GENERAL SURVEY OF THE HISTORY OF THE
CANON OF THE NEW TESTAMENT DURING THE
FIRST FOUR CENTURIES. Fourth Edition, With
Preface on * Supernstural Religion.” Crown 8vo. 105, 64.

INTRODUCTION TO THE STUDY OF THE FOUR
GOSPELS. Fifth Edition, Crown 8vo. 1I0s. 64,

THE BIBLE IN THE CHURCH. A Popular Account
of the Collection and Reception of the Holy Scriptures in
the Christian Churches, New Edition. 18mo. cloth.
45, 64,

WILSON—7HE BIBLE STUDENT'S GUIDE to the more
Correct Understanding of the English Translation of the Old
Testament, by referenceto the original Hebrew. By WILLIAM
‘WiLsoN, D D., Canon of Winchester, late Fellow of Queen’s
College, Oxford, Second Edition, carefully revised. 4to.
cloth. 25s.

YONGE (CHARLOTTE M.)—SCRIPTURE READINGS FOR
SCHOOLS AND FAMILIES, By CHARLOTTE M. YONGE,
Author of ‘“The Heir of Redclyffe,” In Five Vols.
FIrsT SERIES. GENESIS TO DEUTERONOMY. Globe 8wvo.
1s. 6d. With Comments, 35, 64,
SkcOND SERIES, From JoSHUA to SoromoN., Extra feap.
8vo. 1s. 64 With Comments, 35, 64,

~ il
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CHARLOTTEB M. YONGE—Continucd,
THIrD SERIES, The KINGS and the PROPHRTS. Extra feap.
8vo. 1s. 64, With Comments, 3s. 64.

FourTH SERIES, The GospeL TiMms. 1s. 64, With

Comments, extra fcap. 8vo., 3s. 64,

FIFTH SERIES. APOSTOLIC TiMEs. Extra fcap. 8vo, 1s. 64

With Comments, 35. 62.

MISCELLANEOUS.,

Including works om Modern Langmages and Lilevatire, Art
Hand-books, &*., &<,

ABBOTT—A SHAKESPEARIAN GRAMMAR. An Attempt
to illustrate some of the Differences between Elizabethun and
Modern English. By the Rev, E. A, ABBorT, D.D., Head

Master of the City of London School. New Edition. Extra’

feap. 8vo, Gs.

* ANDEBRSON — LINEAR PERSPECTIVE, AND MODEL
DRAWING. A School and Art Class Manual, with Questions
and Exercises for Examination, and Examples of Examination
Papers, By LAURENCE ANDERSON. With Illustrations.
Royal 8vo, 2s.

BARKER-FIRST LESSONS IN THE PRINCIPLES OF
COOK1NG. By LADY BARKER, New Edition. 18mo. 1.

BOWEN_FIRST LESSONS IN FRENCH, By H, Coux-
THOPE BOWEN, MLA, Extra fcap, 8vo. 1s.

BEAUMAROCHAIS—LE BARBIER DE SEVILLE. Edited,
with Introduction and Notes, by L. P. BLOUET, Assistant
Master in St. Paul’s School. Fcap, 8vo, 3s, 64,

BERNEBRS—F/RST LESSONS ON HEALTH. By J. BEz-
NERS, New Edition, 18mo. 1s.
d

e
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\KISTON—Z7HE TEACHER. Hintgon School Manage
ment. A Handbook for Managers, Teachérs’ Assistants, an(
Pupil Teachers; By J. R. BLAKISTON, M.A. Crown 8vo
2s. 6d. (Recommended by the London, Birmingham, anc
Leicester School Boards.)

* Into a comparatively small book he has crowded a great deal of ex
ceedingly useful and sound advice. It is a plam. oommon-senseb
full of hints to the on the g his school and hi
children,—ScrooL BoArD CHRONICLE.

IYMANN—Works by HERMANN BREYMANN, Ph.D.,‘ Pro
fessor of Philology in the University of Munich.

A FRENCH GRAMMAR BASED ON PHILOLOGICAI
PRINCIPLES. Second Edition. Extra fcap. 8vo. 4s. 64
FIRST FRENCH EXERCISE BOOK. Extra feap. 8vo
4s. 6d.

SEE‘?ND FRENCH EXERCISE BOOK. Extra fcap. 8vo
2.'.

YORB—MILTON, By Rev. STOPFORD BROOKE, M.A
Fcap. 8vo. 1s. 6d. (Green’s Classical Writers.)

'LER— KA UDIBRAS. Edited, with Introduction and Notes
by ALFRED MILNES, B.A. © [2n preparation

"DERWOOD—HANDBOOK OF MORAL PHILOSOPHY
By the Rev. HENRY CALDERWOOD, LL.D., Professor o
Moral Philosophy, University of Edinburgh. . Sixth Edition
Crown 8vo. 6s.

NTB—7HE PURGATORY OF DANTE. Edited, witl
Translation and Notes, by A. J. BUTLER, M.A,, late Felloy
of Trinity College, Cambridge. Crown 8vo. 12s5. 6d.

AMOTTE—A BEGINNER'S DRAWING BOOK. B
P. H. DELAMOTTE, F.S.A. Progressively arra.nged. Nev
Edition improved, Crown 8vo. 3s. 6d.

VORTT—7ALES IN POLITICAL ECONOMY.
MILLICENT GARRETT FAWCETT. Globe 8vo. 3.



~

MISCELLANEOQUS.

PEARON—SCHOOL INSPECTION. By D.  R. FEARON,
M.A., Assistant Commissioner of Endowed Schools. Third
Edition. Crown 8vo. 2s. 6d. ' ’

FREDERICK—HINTS 70 HOUSEWIVES ON SEVERAL
POINTS, PARTICULARLY ON THE PREPARATION
OF LECONOMICAL AND TASTEFUL DISHES. By
Mrs, FREDERICK. Crown 8vo. 2s5. 67,

4 This unpretending and useful little vol distinctly supplies a de-

sideratum. . . . . The author steadily keeps in view the simple aim of
‘making every-day meals at home, pasticularly the dinner, attractive,’
without adding o the ordinary household exp »_Saturday Review,

@LADSTONE—SPELLING REFORM FROM AN EDU-
CATIONAL POINT OF VIEW. By]. H. GLADSTONE,
Ph.D,, F.R.S., Member of the School Board for London.
New Edition. Crown 8vo. 1s. 6d.

GOLDSMITH—7HE TRAVELLER, or a Prospect of Society ;

- and THE DESERTED VILLAGE, By OLivir GoLD-

SMITH. With Notes Philological and Explanatory, by J. W.
Hares M.A. Crown 8vo, 6d. )

GRAND’HOMME—CUT7ING - OUTAND DRESSMAKING
From the French of Mdile. E. GRAND’HOMME. With Dia-
grams, 18mo, 1Is,

GREEN—A SHORT GEOGRAPHY OF THE BRITISH
ISLANDS. By JoHN RICHARD GREEN and ALICE
STOPFORD GREEN. With Maps, Fcap. 8vo. 3s. 6d.

. The Times says :—*“The method of the work, so far as real instruction
is concerned, is nearly all that could be desired. . . . Its great merit, in
addition to its scientific arrangement and the attractive style so familiar
to the readers of Green's Skort History is that the facts are <o presented
as to compel the careful student to think for himself. . . . The work may
be read with pleasure and profit by anyone ; we trust that it will gradually
find its way into the higher forms of -our schools. With this text-book as
his guide, an intelligent teacher might make geography what it really is—
one of the most interesting and widely-instructive studies.””

BALES—LONGER ENGLISH POEMS, with Notes, Philo-
logical and Explanatory, and an Introduction on the Teaching
of English, Chiefly for Use in Schools. Edited by J. W.
HaLes, M.A, Professor of English Literatyte at King’s
College, London, New Edition, Extra fcap. 8vo. 4s. 64
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LB—A GENEALOGICAL STEMMA OF THE KINGS
OF ENGLAND AND FRANCE. By the Rev. C. HoLE.
On Sheet. ’

ENSON’S LI/VES OF THE POETS, The Six Chief Lives
{Milton, Dryden, Swift, Addison, Pope, Gray), with Macaulay’s
“Life of Johnson,” FEdited  with Preface by MATTHEW
ARNOLD, Crown 8vo. 6s.

'SRATURE PRIMERS—Edited by JOHN RICHARD GREEN,
Author of *“ A Short History of the English People.”

ENGLISH GRAMMAR. By the Rev. R, Morris, LL.D,,
sometime President of the Philological Society., , 18mo.
cloth, 1s.

ENGLISH GRAMMAR EXERCISES. By R. MOKRIS,
LL.D,, and H. C. BoweN, M.A. 18mo. 1Is.

THE CHILDREN'S TREASURY OF LYRICAL
POETRY. Selected and arranged with Notes by FrANCIS
TURNER PALGRAVE, In Two Parts, 18mo. 1Is each.

BNGLISH LITERATURE. By the Rev. STOPFORD
BROOKE, M.A. New Edition. 18mo. 1s.

PHILOLOGY. By]J. PEnLE, M.A. 18mo. 1s.
GREEK LITERATURE. By Professor JEBR, M.A. 18mo. 1.
SHAKSPERE. By Professor DOWDEN, 18mo. " Is. -

HOMER. By the Right Hon. W. E. GLADSTONE, M.P,
18mo. 1Is.

ENGLISH COMPOSITION. By Professor NicHOL. 18mp.
S
In preparation :—
LATIN LITERATURE. By Professor SEELEY,

HISTORY OF THE ENGLISH LANGUAGE. By
J. A. H. MurRay, LL.D,
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MACMILLAN’S COPY-BOOKS—

Published in two sizes, viz. :—
1, Large Post 4to. Price 44. each.
2. Post Oblong. Price 24, each,

L. INITIATORY EXERCISES & SHORT LETTERS,
2. WORDS CONSISTING OF SHORT LETTERS.

*3. LONG LETTERS, With words containing Long
Letters—Figures.

*4. WORDS CONTAINING LONG LETTERS.

48 PRACTISING AND REVISING COPY.BOOK, For
Nos. 1 to 4.

*S. CAPITALS AND SHORT HALF-TEXT. Words
beginning with a Capital.

*6. HALF-TEXT WORDS, beginning with a Capital—
Figures.

*9. SMALL-HAND AND HALF-TEXT. With Capitals
and Figures. :
*8, SMALL-HAND AND HALF.TEXT. With Capitals
snd Figures.
8a, PRACTISING AND REVISING COPY-BOOKX. For
Nos, 5to 8, <
*9. SMALL-HAND SINGLE HEADLINES—Figures.

10. SMALL-HAND SINGLE HEADLINES—Figures,
*11. SMALL-HAND DOUBLE HEADLINES—Figures.

‘12, COMMERCIAL AND ARITHMETICAL EX-
AMPLES, &,

128. PRACTISING AND REVISING COPY-BOOK. For
Nos. 8 to 12. .

8 These numbers may be had with Goodman's Patewt Sliding
-Copias, Large Post 4to. Price 64, each.
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WMACMILLAN’S COPY-BOOKS Confinued—

By a simple device the copies, which are printed upon separate
slips, are arranged with a movable attachment, by which they
are adjusted so as to be directly before the eye of the pupil at
all points of his progress. It enables him, also, to keep his

m faults concealed, with perfect models constantly in view

' imitation, Every experienced teacher knows the advantage -

the slip copy, but its practical application has never befors
en successfully accomplished. This feature is secured ex-
isively to Macmillan’s Copy-books under Goodman’s patent.

TILLAN'S PROGRESSIVE FRENCH COURSE—By
EUGENE-FASNACHT, Senior Master of Modern Languages,
arpur Foundation Modern School, Bedford. -
—FIRST YEAR, containing Easy Lessons on the Regular Ac-
lence., Extra fcap. 8vo. 1s,
.—SECOND YEAR, containing Conversational ILessons. on
stematic Accidence and Elementary Syntax. With Philo-
zical Illustrations and Etymological Vocabulary. 1s. 64.

L—THIRD VEAR, containing a Systematic Syntax, and
ssons in Composition. . [£n the press,

IILLAN’S PROGRESSIVE FRENCH R!SADERS—
' G. EUGENE-FASNACHT.

RST AND SECOND YEARS. [In the press..

CILLAN’S PROGRESSIVE GERMAN COURSE—By
EUGENE FASNACHT.

1t L—FIRST YEAR. Easy Lessons and Rules on the Regular
:cidence. Extra fcap. 8vo. 1s. 6d.

1t II.—SEcOND YEAR. Conversational Lessons in Sys-
natic Accidence and Elementary Syntax. With Philological
ustrations and Etymological Vocabulary. Extra fcap.
0. 2s. .
IN — THE POET'S HOUR: Poetry selected and-
ranged for Children. By FRANCES MARTIN, Third
lition. 18mo. 2s. 64.

RING-TIME WITH THE POETS: Poetry selected by
LANCES MARTIN. Second Edition. 18mo, 3s. 6d.
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HASSON (GUSTAVE)Y—A COMPENDIOUS DICTIONARY
OF THE FRENCH LANGUAGE (French-English and
English-French). Followed by a List of the Principal Di-
verging Derivations, and preceded by Chronological and
Historical Tables. By GUSTAVE MASSON, Assistant-Master
and Librarian, Harrow School. Fourth Edition, Crown 8vo.
half-bound. 6,

MOLIERB—LE MALADE IMAGINAIRE. Ediied, with
Intioduction and Notes, by FRANCIS TARVER, M. A., Assistant-
« Master at Eton. Fcap. 8vo. 25, 6.

MORR(8—Works by the Rev. R. Morrrs, LL.D,, Lecturer
on Englith Language and Literature in King’s College
School,’

HISTORICAL OUTLINES OF ENGLISH ACCIDENCE,
comprising Chapters on the History and Development of the
Langnage, and on Word-formation, .New Edition. Extra
fcap, 8vo. '6s.

ELEMENTARY LESSONS IN HISTORICAL
ENGLISH GRAMMAR, containing Accidence and Word-
formation, New Edition, 18mo: 25, 64,

PRIMER OF ENGLISH GRAMMAR. 18mo. 1s.

NICOL—HISTORY OF THE FRENCH LANGUAGE,
with especial reference to the French element in English. By
HENRY NicoL, Member of the Philological Society.

[ 79 preparation.

OLIPBANT—7HE OLD AND MIDDLE ENGLISH, A
New Edition of ‘“7HE SOURCES OF STANDARD
ENGLISH,” revised and greatly enlarged. By T. KINGTON
OL1PHANT, Extra fcap. 8vo. 9s. .

PALGRAVE—7HE CHILDRAN’S TREASURY OF

LYRICAL POETRY, Selected and Arranged with Notes

- by FrRANCIS TURNER PALGRAVE. 18mo, 2s5. 64. Also in
Two parts, 18mo. Is. each.

PLUTARCH—Being a Selection from the Lives which Illustrate
Shakespeare, North’s Translation. Edited, with Intro-
ductions, Notes, Index of Names, and Glossarial Index, by
the Rev. W, W, Skeat, M.A. Crown 8vo. 6s,
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DERT—NEW GUIDE TO GERMAN CONVERSA-
[ON: containing an Alphabetical List of nearly 800 Familiar
ords followed by Exercises, Vocabulary of Words in frequent
2 ; Familiar Phrases and Dialogues ; a Sketch of Geyrman
terature, Idiomatic Expressions, &c, By L. PYLODET.
mo. cloth limp, as. 6.

SYNOPSIS OF GERMAN GRAMMAR. From the
ove, 18mo. 64,

ING BOORS—Adapted to the English and Scotch Cod.es
»nund in Cloth,

RIMER. 18mo. (48 pp.) 24.

00X 1. for Standard I. 18mo. (96 pp.) 44.
II. » II. 18mo. (144 pp.) 54.
s IIL » IIL 18mo, (160 pp.) 64.
s IV. " IV. 18mo. (176 pp.) 8a.
V. V. 18mo. (380pp.) Is.
» VI " VI. Crown 8vo. (430 pp.) 2.

t VL is fitted for higher Classes, and as an Introduction to
1 Literature,

‘‘They are far ahove any others that have appeared both in form and
ibstance. . . . The editor of the .present series has rightly seen that
ading books must ‘aim chiefly at giving to the pupds the power of
:curate, and, if possible, apt and s ; at cul g in
em a good literary taste, and at arousing a desire of furthu
his is done by taking care to select the extracts from true English classu,

in Stan VL course to Chaucer, Hooker, and Bacon, as vlell

orth, Macaulay, and Freude. . . . This is quite on the n§ - -
nd:. and indicates justly the ideal which we ought to set befere us.”—
UARDIAN,

\ESPEARE—4 SHAKESPEARE MANUAL. ByF.G. .
LEAY, M.A., late Head Master of Skipton Grammar School,
:cond Edition. Extra fcap. 8vo. 4s. 64.

N ATTEMPT 70 DETERMINE THE CHRONO-

9GICAL ORDER OF SHAKESPEARE'S PLAYS.

r the Rev. H. PAINE Stoxes, B.A. Extra feap. 8vo.
a ‘

HE TEMPEST. With Glossarial and Explanatory Notes.
r the Rev. J. M. JEpHsON. New Edition. 18mo. .1s
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7

SONNENSCHEIN and MEIKLEJOHN — 7HE ENGLISH
METHOD OF TEACHING 70 READ. By A, SoNn-
. NENSCHEIN and J. M. D, MEIKLEJOHN, M.A. Fcap. 8vo.

COMPRISING :

ZHE NURSERY BOOK, containing all the Two-Letter
Words in the Language, 1d. (Also in Large Type on
Sheets for School Walls, §s.)

THE FIRST COURSE, consisting of Short Vowels with
Single Consonants. 6.

* THE SECOND COURSE, with Combinations and Bridges,
consisting of Short Vowels with Double Consonants, 6d.

THE THIRD AND FOURTH CQURSES, consisting of
Long Vowels, and all the Double Vowels in the Language

6d.
“ These are admirable books, b they a prin.
ciple, and that the simplest principle on vlhu:h it is possible to lwn toread
English.' —SprecTATOR

TANNER—F/RST PRINCIPLES OF AGRICULTURE. By
H. Ta~xNER, F.C.S., Professor of Agricultural Science,
" University College, Aberystwith, &c. 18mo. 1s.

'TAYLOR—WORDS AND PLACES; or, Etymological Illus.
trations of History, Ethnology, and Geography. By the Rev.
Isaac TAVLOR, M.A. Third and cheaper Edition, revised
and compressed. With Maps. Globe 8vo. 6s.

rAYLon—A PRIMER OF PIANOFORTE PLAYING., By
FRANKLIN TAYLOR, Edited by GEORGE GROVE. 18mo, Is,

TEGETMEIER — HOUSEHOLD MANAGEMENT AND
COOKERY. - With an Appendix of Recipes used by the
Teachers of the National School of Cookery. By W. B.
TEGETMEIER, Compiled at the request of the School Board
for London. 18mo. 1s. '

¢ Admirably adapted to the use for which it is designsd.’*—A rHENAEUM.

‘A seasonable and thoroughly practical manual. . . . It can be consulted
readily and the information it contains is given in the nmples: language.”*
—Parc MaLt Gazrrrs.

e
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BNTON—F/RST LESSONS IN BOOK-KEEPING, By
. THORNTON, Crown 8vo. 2s. 64.

The ‘object of this volume is to make the theory of Book-keepmg suf-
iciently plain for even children to understand it.

ING—Works by EDWARD THRING, M.A., Head Master of
Jppingham,

"HE ELEMENTS OF GRAMMAR TAUGHT IN
INGLISH. With Questions. Fourth Edition. 18mo. 2.
NCH (ARCHBISHOP)—Works by R. C. TrRencH, D.D.,
wrchbishop of Dublin,

TOUSEHOLD BOOK OF ENGLISH POETRY, Selected
nd Ammgcd with Notes. Third Edition. Extra fcap. 8vo.
5. 6d.

W THE STUDY OF WORDS. Seventeenth Edition,
svised. Fcap. 8vo. 35s. .
INGLISH, PAST AND PRESENT. Tenth Edition,
evised and improved. Fcap. dvo. 5s.

| SELECT GLOSSARY OF ENGLISH WORDS, used
yrmerly in Senses Different from their Present. - Fifth
.dition, revised and enlarged. Fcap. 8vo. 5s.

GHAN (6. M.)— WORDS FROM THE POETS. By
>« M. VAUGHAN, New Edition, 18mo. cloth, 1s.

JENT and DICKSON—HANDBOOK TO MODERA
FREEK. By EDGAR VINCENT, Coldstream Guards, and
[. G. DicksoN, M.A. With Preface by Professor J. S.
JLACKIE, Extra fcap. 8vo. 5s.

““This i dx‘sagnmmar and convemnon book in one, and avoids with great

e too and the silliness too’
sommon in conversation books. . . . . It will not be Messrs, Vincent and
Dickson’s fault if their work does not contribute materially to the study
»f Greek by English as a living language.”’~PaLL MaALL GAzZETTER.

TNEY—Works by Wit D, WHITNRY, Professor of
ianskrit and Instructor in Modern Languages in Yale College.
{ COMPENDIOUS GERMAN GRAMMAR Crown
vo. 4s. 6d.

1 GERMAN READER IN PROSE AND VERSE, with
Jotes and Vocabulary. Crown 8vo. 5s
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WEITNEY AND EDGREN—4 C OMPENbI OUS GERMAN
AND ENGLISH DICTIONARY, with Notation of Cor-

respondences and Brief Etymologies. By Professor W. D,
‘WHITNRY, assisted by A. H. EDGREN. Crown 8vo. 7s 6d.

THE GERMAN-ENGLISH PART, separately, ss.

WRIGHT—7HE SCHOOL COOKERY BOOK. Compiled
and Edited by C. E. GUTHRIE WRIGHT, Hon. Sec. to the
Edinburgh School of Cookery. 18mo. 1s.

Sir T. D. AcLAND, Bart,, says of this book :—*I think the ‘* Schoo
Cookery Book ** the best cheap manual which I have seen on the subject.
I hope’ teachers will welcome it. But it seems to me likely to be even
more useful for domestic purposes in all ranks short of those served by
professed cooks The receipts are numerous and precise, the explana-
tion of principles clear. The chapters on the adaptation of food to
varying d! age, ¢l ploy , health, and on infants’
food, seem to me excellent.”

YONGE (CHARLOTTE M.)—7HE ABRIDGED BOOK OF
GOLDEN DEEDS, A Reading Book for Schools and
general readers. By the Author of *The Heir of Red-
clyffe,” 18mo. cloth, 1s,





