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PREFACE.

THE present volume contains the solutions of the problems and

riders set in the Mathematical Tripos Examination for 1878; in

several cases where it was thought that useful information could

be given, additional remarks on the subject of a question have

been added. For example, pp. 162 169 may be regarded as a

brief general statement of the method of least squares. Although

the Moderators and Examiners are collectively responsible for the

questions set in the examination, the solutions here given are due

to the proposers of the questions individually and have not been

submitted to the other examiners; so that each author is alone

responsible for the solutions to which his name is attached. I

may also state that although my name appears on the title-page

as editor, my duties have been confined to the arrangement of the

solutions and their passage through the press, &c. : I have not in

any way altered the solutions as written or attempted to secure

uniformity even in matters of notation.

It may be convenient to state that the examination occupies

nine days, the first four days being separated from the last five days

by an interval of ten days. The examination began on Monday,

December 31, 1877, and ended on Friday, January 18, 1878. The
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subjects of examination on the first three days (Monday, December

31, 1877, to Wednesday, January 2, 1878) were the following:

Euclid. Books I. to VI. Book XI. Props, i. to xxi. Book XII.

Props, i., ii.

Arithmetic; and the elementary parts of Algebra; namely, the rules

for the fundamental operations upon algebraical symbols with their

proofs, the solution of simple and quadratic equations, ratio and propor-

tion, arithmetical, geometrical and harmonical progression, permutations

and combinations, the binomial theorem and logarithms.

The elementary parts of Plane Trigonometry, so far as to include the

solution and properties of triangles.

The elementary parts of Conic Sections, treated geometrically, but

not excluding the method of orthogonal projections ; curvature.

The elementary parts of Statics; namely, the equilibrium of forces

acting in one plane and of parallel forces, the centre of gravity, the

mechanical powers, friction.

The elementary parts of Dynamics; namely, uniform, uniformly

accelerated, and uniform circular motion, falling bodies and projectiles

in vacuo, cycloidal oscillations, collisions, work.

The first, second, and third sections of Newton's Principia; the pro-

positions to be proved by Newton's methods.

The elementary parts of Hydrostatics; namely, the pressure of

fluids, specific gravities, floating bodies, density of gases as depending

on pressure and temperature, the construction and use of the more

simple instruments and machines.

The elementary parts of Optics; namely, the reflexion and refraction

of light at plane and spherical surfaces, not including aberrations ; the

eye; construction and use of the more simple instruments.

The elementary parts of Astronomy ; so far as they are necessary for

the explanation of the more simple phenomena, without the use of

spherical trigonometry; astronomical instruments.

The subjects of examination on the fourth day (Thursday,

January 3, 1878) and on the last five days (Monday, January 14,
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1878 to Friday, January 18, 1878) are contained in the following

schedule of the divisions of the subjects.

First Division.

Algebra. Differential Equations.

Trigonometry; Plane and Spheri- Statics.

cal. Hydrostatics.

Theory of Equations. Dynamics of a Particle.

Analytical Geometry ;
Plane and Dynamics of Rigid Bodies.

Solid. Optics.

Finite Differences. Spherical Astronomy.
Differential and Integral Calculus.

Second Division.

Higher parts of Algebra and of the Higher parts of Differential Equa-

Theory of Equations. tions.

Higher parts of Finite Differences. Calculus of Variations.

Elliptic Functions. Theory of Chances, including corn-

Higher parts of Analytical Geome- bination of observations.

try.

Third Division.

Newton's Principia, Book I., Sec- Laplace's Coefficients.

tions ix. and XI. Attractions.

Lunar and Planetary Theories. Figure of the Earth.

Higher Parts of Dynamics. Precession and Nutation.

Fourth Division.

Hydrodynamics. Vibrations of Strings and Bars.

Theory of Sound. Theory of Elastic Solids treated as

Physical Optics. continuous.

Waves and Tides.

Fifth Division.

Expression of arbitrary functions Heat,

by series or integrals involving Electricity,

sines or cosines. Magnetism.
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The Examination was conducted according to the following

schedule.

DATS.
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SOLUTIONS OF SENATE-HOUSE PROBLEMS
AND RIDERS,

FOB THE

YEAR ONE THOUSAND EIGHT HUNDRED AND SEVENTY-EIGHT.

MONDAY, December 31, 1877. 9 to 12.

Mr PEIOE, Arabic numbers.
Mr FEKEEKS, Eoman numbers.

1. PARALLELOGRAMS on the same base, and between the same

parallels, are equal to one another.

In a given triangle it is required to inscribe a parallelogram

equal to half the triangle, so that one side is in the same straight
line with one side of the triangle and has one extremity at a given
point of that side.

Let ABC (fig. 1) be the given triangle ;
D the given point

in EG ; and let BD < DC.
Bisect AB, AC in E, F. Join EF, ED. Draw FG- parallel to

ED to meet BC in G. EDGF is the required parallelogram.

Join EC, FB. Then &AEF=&BEF, these being on equal bases;

similarly AFE=&CFE; therefore &BEF=&CFE; therefore EF, B(J

are parallel ; therefore, by construction, EDGF is a parallelogram, and

- 2*EBF = ABF = &ABC.

2. If a straight line be bisected, and produced to any point,
the square on the whole line thus produced, and the square on the

part of it produced, are together double of the square on half the

line bisected and of the square on the line made up of the half

and the part produced.
If a straight line AB be bisected in C and produced to D so

that the square on AD is three times the square on CD, and if GB
be bisected in E, shew that the square on ED is three times the

square on EB.

We have, by the proposition,

sq. on AD + sq. on BD- 2 sq. on AC + 2 sq. on CD;
and by hypothesis, 3 sq. on CD -

sq. on AD.

S.-H. P. 1
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Adding these equals to the above equals, and then taking from each

sum the sq. on AD + 2 sq. on CD, we have

sq. on CD + sq. on ED = 2 sq. on AC
= 2 sq. on CB = 8 sq. on CE.

But by the proposition,

sq. on CD + sq. on ED = 2 sq. on CE + 2 sq. on ED,
therefore 2 sq. on CE + 2 sq. on ED = 8 sq. on CE,

therefore 2 sq. on ED = 6 sq. on CE,
therefore sq. on ED = 3 sq. on CE = 3 sq. on EB.

3. The opposite angles of any quadrilateral figure inscribed

in a circle are together equal to two right angles.
If a quadrilateral be inscribed in a circle, and the middle

points of the arcs subtended by its sides be joined to make another

quadrilateral, and so on : shew that these quadrilaterals tend to

become squares.

Let A^BfiJ}^ A^Bf}y
D

z ,
A

3
B

3
C

3
D

3
be three successive quadri-

laterals, made as the question directs, the order of points being given by

Then 2 arc AJS^ arcA^ + arc B&,
2 arcB

tCa
= arc B

l
C

l
+ arc

Let .4,^ be the greatest; B l
C

l
or C^D^ the least of the arcs -4^,

-BjC, ,C 1
D

l , D
l
A

l
. Then the above equalities shew that the arc A

a
B

3
is less

than the greatest and greater than the least of these arcs, and that the

same is true for the arcs B
2
C

a ,
C

2D^ D
2
A

g
. Hence A

3 a
C

2
D

3
has no

side so great and no side so small as the greatest and least sides of

A
1
B

1
C

1
D

1 respectively: i.e. A
2
B

2
C

2
D

3
is more nearly equilateral than

A^Jf^D^. and so on. Hence the quadrilaterals tend to become rhombi,
but the only rhombus that can be inscribed in a circle is a square,
therefore the quadrilaterals tend to become squares.

Or the proof may run thus :

We have
2 arc A

a
B

a
- arc A

l
B

l
+ arc Bfi^

2 arcB
a
C

a
= arc B

l
C

l
+ arc ,>, ;

therefore 4 arc A
3
B

3
= 2 arc A

g
B

s
+ 2 arcB

a
C

a

= arc A
l
B

l
+ 2 arc B

l
C

l
+ arc C

1
D

l
:

also 2 arcD
1
A

l
+ 2 arc B

l
C

l
= 2 arc A^, + 2 arc C

l
D

l
:

therefore, adding these equalities, and taking from each side 2 arc -5,^,,
we have

4 arc A
3
B

a + 2 arc D
1
A

l

= 3 arc A
1
B

1
+ 3 arc C^D^.

Similarly 4 arc B
3
C

a
+ 2 arcA

l
B

l

= 3 arc B
l
C

l
+ 3 arc D

}

A
t
.

Now arc A
l
B

l
+ arc D

l
A

l
= arcB

l
C

l
+ arc D

l
A

l ;

therefore 4 arcA
3
B

3
+ 2 arc C

t

D
}

= 4 arc B
3
C

3
+ 2 arc A

,5, ;
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therefore the difference of the adjacent arcs A^B^ D^A^ = twice the

difference of the adjacent arcs A
&
B

3 , 3
C

3 ;

therefore the qiiadrilaterals tend to become rhombi; therefore as before,

they tend to become squares,

iv. Inscribe a circle in a given triangle.
Prove that four circles may be described, touching the three

sides of a triangle, and that the square on the distance between
the centres of any two, together with the square on the distance

between the centres of the other two, is equal to the square on the
diameter of the circle passing through the centres of any three.

It is known that the line joining any two of the centres of

these circles is perpendicular to the line joining the other two. Let
then 0, P, Q, R (fig. 2) be the four centres, and through Q, R draw

QE, RE respectively parallel to OR, OQ. Then the angle ERQ is equal
to the angle RQO, and therefore is the complement of the angle PRQ.
Hence PRE is a right angle. Similarly PQE is a right angle. There-
fore the points P, Q, R, E lie on the circumference of a circle, of

which PE is a diameter. Again OREQ is a parallelogram, and there-

fore ER is equal to OQ. Hence the square on OQ and the square on
RP are together equal to the square on PE, the diameter of the circle

PQR.

v. If the sides of two triangles, about each of their angles, be

proportionals, the triangles shall be equiangular to one another,
and shall have those angles equal which are opposite to the homo-

logous sides.

The side BC of a triangle ABC is produced to D, so that the

triangles ABD, ACD are similar. Prove that AD touches the
circle described about the triangle ABC.

Since the triangles ABD, ACD (fig. 3) are similar to one

another, and the angle at D is common to both, it follows that the

angles ACD, BAD must be equal to one another, and the angles DAG,
ABC equal to one another. Hence A D is to CD as BD is to A D, and
therefore the square on DA is equal to the rectangle contained by
DB, DC. Hence DA touches the circle described about the triangle
ABC.

vi. If two straight lines be cut by parallel planes, they shall

be cut in the same ratio.

If an equifacial tetrahedron be cut by a plane parallel to two

edges which do not meet, the perimeter of the parallelogram in

which it is cut shall be double of either edge of the tetrahedron
to which it is parallel.

Each edge of an equifacial tetrahedron is equal to the edge
opposite to it.

Let A, B, C, D (fig. 4) be the four angular points of the given tetra-

hedron. Draw a plane, parallel to the edges AB and CD, meeting the

12
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edges AC, AD, EG, BD in E, F, G, H respectively. Then, EFGH will

be a parallelogram. And EF is to CD as AE is to AC. Also EH is to

AB as CE is to AC. Therefore EF and EH together are equal to half

AB and CD together. Or the perimeter of the parallelogram EFGH
must be equal to the sum of the edges AB and CD.

vii. In the parabola, prove that the distance between the foot

of the ordinate of any point and the foot of the normal at that

point is equal to half the latus-rectum.

Inscribe a circle in the segment of a parabola cut off by a double

ordinate.

Let QV (fig. 5) be half the bounding ordinate of the parabola.
From the axis cut off VN equal to Q V, draw NP at right angles to the

axis, and draw PG the normal at P; G shall be the centre of the required
circle.

For

= QV2 - 2NG . QV ;

therefore PG* = QV*- 2NG . QV + NG*
= NV* - 2NG . NV+ NG*

= GV*;
therefore PG = GV;
and therefore G is the centre of the required circle.

viii. Prove that the tangent, at any point of an ellipse, makes

equal angles with the focal distances of that point.
From the foci of an ellipse, perpendiculars are let fall to the

tangent at any given point of the curve. With the feet of these

perpendiculars as foci, an ellipse is described touching the axis

major of the given ellipse. Prove that the point, in which it

touches the axis major, will be the foot of the ordinate of the

given point, and that the ellipse described will be similar to the

given ellipse.

Let SY, HZ (fig. 6) be the perpendiculars from the foci on the

tangent. Draw PN perpendicular to the axis major, and join SP,
HP, YN, ZN. Then, since SYP and SNP are each right angles, a
circle can be described about the quadrilateral SNPY, and therefore the

angles SNY, SPY are equal to one another. Similarly the angles
HNZ, HPZ are equal to one another. Therefore the angles SNY, HNZ
are equal to one another, and an ellipse described with Y, Z as foci, and

passing through N, will touch SH at N.

Again, SP is the diameter of a circle in which NY subtends the

angle NPY, and HP is the diameter of a circle in which NZ subtends
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the angle NPZ, and these angles are supplementary. Hence NY is to

NZ as SP is to IIP. And if through Z we draw ZV parallel to Sff,

meeting SY in F, we see that VZ is the diameter of a circle, in which
YZ subtends the angle YVZ, which is supplementary to NPY. There-

fore SH is to YZ as SP is to YN, i.e. as SP + HP is to YN+ZN.
Therefore the distance between the foci of the new ellipse is to its axis

major as the distance between the foci of the old ellipse is to its axis

major; or the ellipses are similar.

ix. Define conjugate diameters of an ellipse ;
and prove that

the sum of the squares on any two conjugate diameters is constant.

A system of parallelograms is inscribed in an ellipse whose
sides are parallel to the equi-conjugate diameters

; prove that the

sum of the squares on the sides is constant.

CP, CD (fig. 7), being the equal conjugate diameters, we have,
with the usual notation,

PV. VG : 7" :: CP3
: CD';

therefore PV.VG=QV*.
But PV . VG = CP* - CV2

(Euc. ii. 5),

therefore the sum of the squares on the sides of the parallelogram is

constant.

10. The tangents drawn from any point to a conic subtend

equal angles at the focus.

If P be any point of an hyperbola whose foci are S and H, and
if the tangent at P meet an asymptote in T, the angle between
that asymptote and HP is double the angle STP.

Let HP (fig. 8) meet the asymptote in K. Join /SP, and from
S draw SL parallel to the asymptote.

Then TP and the asymptote are the tangents from T, and TSL is

the angle subtended at the focus by the asymptote ;

therefore P$T= TSL = STK= STP + JC&*;

therefore PST+ STP = 2STP + KIT,
A A

TPS= TPK;
therefore adding, and reversing sides, we have

28TP + KTP + TPK= PST + STP + TPS
=. 2 right angles

= PKT+KTP+TPK;
therefore 2STP = PKT.
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11. If two chords of a rectangular hyperbola be at right

angles, each of their four extremities is the orthocentre of the tri-

angle formed by the other three.

If four such points and the tangent at one of them be given,
find the centre of the hyperbola.

Let A, B, C, P (fig. 9) be four such points, each being the ortho-

centre of the triangle formed by the other three, and let the tangent at

P be given.

(1) The centre of any rectangular hyperbola passing through
A, .B, C lies on the nine-point circle of &AC. (Besant's Conies, Art.

139.)

(2) Let T'PT be the given tangent. Join AP, and produce it

to meet EG in L. From L draw LQ parallel to T'PT to meet the

nine-point circle in Q. Join QP, and produce it to meet the nine-point
circle in 0; then is the required centre.

For, let AP be bisected in V; then V is on the nine-point circle.

Join VO. Then VOP = VLQ = 7PT; therefore (Besant's Conies, Art.

136) VO is the diameter conjugate to AP; therefore is the centre of

the hyperbola.

12. The section of a cone by a plane, which is not perpen-
dicular to the axis and does not pass through the vertex, is either

an ellipse, a parabola, or an hyperbola.
In a given plane are drawn a series of confocal conies, upon

which stand cones with their vertical angles right angles. Shew
that the locus of their vertices is given by the intersection of an

hyperbola, whose vertices are the foci of the conies, and a circle

concentric with the hyperbola and passing through its foci.

Let the given plane intersect at right angles the plane of the

paper (fig. 10) in the line A'HSA, and let S, H be the given foci. Let V
be the vertex of the cone which cuts the plane in the conic whose foci

are S, H, and vertices A, A', Then the circle inscribed in the triangle
VAA' will touch AA' at S or H. Let it touch it at S, and let it touch

VA, VA' at L, L'.

Then A'V- AV=A'L' - AL = A'S- AS= constant. Hence V is a

point on the hyperbola whose foci are A, A' and vertices S, H.

Also, by hypothesis, AVA' is a right angle; therefore Flies on the

circle of which AA' is a diameter, and this is a circle concentric with
the hyperbola, and passing through its foci.



PROBLEMS AND RIDERS.

MONDAY, December 31, 1877. l to 4.

Mr GLAISHEK, Arabic numbers.
Mr GBEENHILL, Roman numbers.

1. Obtain the value of TT to six places of decimals from the
series

If and
n

p be converted into circulating decimals, find the

relation between the figures in their periods, n being supposed to

be prime to 10 and p less than n.

The series are

The work is as follows, every figure that has to be written

being printed,

^ = 0-013333 33 1

16^
0-013 333 33

213 333 3 213 33
12 3 66

77|255 999

36 57

0-00144
2

3)0-00288
0-00096

1-013 550 39

28_
8 108 403 12

20 271 007 8

First series = 2-8 379 410 92

1

1152 0-000 960 00
96 1 11

6912. 1-000 961 11

10368 30 336

110592 6 005 766 66
30 028 833 3

300 288 333
30 028 833 3

30 365 156 2
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First series - 2-837 941 092
Second =0-303 651 562

TT = 3-141 592 654

Thus, value of TT to six places is 3-141 593. The true value is 3-141

592 653 589..., so that the above calculation is correct to the last figure.

(ii)
Let

p _ ay... n-p _ ay...
w~999...9' n

'

999. ..9
'

and, since the sum of the fractions is equal to unity,

ay...+a'/3y...f = 999. ..9

so that, the number of figures in each period being the same,

+ =. ..=( + ? = 9.

[The principal rules relating to the conversion of vulgar fractions

M
into decimals are as follows : Let

-^
be a proper fraction in its lowest

terms, then (1) ifN is of the form 2
m
5", the decimal terminates after r

figures from the decimal point, r being the greater of the numbers m and
n

; (2) ifN be prime to 10 the decimal circulates from the figure next to

the decimal point (i.
e. is a pure circulate) and the number of figures in

the period is equal either to < (N), or to a submultiple of
</> (N), <f> (N)

denoting the number of numbers less than N and prime to it
; (3) if

N=2m
on

lt, R being prime to 10, there will be r figures between the

decimal point and the first figure of the period, r being the greater of the

numbers m and n, and the number of figures in the period will be equal
to

<j> (R), or to a submultiple of < (E). It is to be noted that if N be a

prime, then
<f> (N) = JH-l.

If the period,of -~ (Of prime to 10) contains n figures, then the period

M
of

-y (M any number prime to N} also contains n figures, and the total

number of different periods obtained by giving all admissible values to M,

is -
. Thus if the period of -^ contains ^V 1 figures (in which case

n N
N must be a prime, though the converse is not true, viz. if iV be a

prime the number of figures in the period is either JV 1 or a submultiple
of Hi 1), then there is only one distinct period. For example

i=-l42857, f=-285714, f=-428571, | = -571428, |=-714285, =-857142,
and the periods all contain the same figures in the same order, though
beginning with a different figure. Also when the period contains N 1

figures, the second half of the period is complementary to 9 to the first

half (i.e. the two portions when added together = 999... 9 : take for

example the period of }, here 1+8 = 9/4 + 5 = 9, 2+7=9).
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If -rr has a period of n figures, -p
of p figures, -^

of q figures. . .
,
and

if N, P, <?...be primes, then ^ has a period of a figures, a being

the least common multiple of n, p} q But the demonstration does

not apply to the case of a power of a prime. Generally howevef, t has

a period of nN figures, ^ of nN'2 figures, &c., but for an obvious reason

this is not true when N 3 (a factor of 10 1), and it is also not true of

the number 487, for ^ has a period of 486 figures, and -p i has also a
4b7 4o7

period of 486 figures. It is, however, true for all other primes less than

1000*, so that if AT
, P, Q... be any primes, each less than 1000 (3 and

487 excepted), the period of ,. contains a figures, where a is the

least common multiple of waV01 - 1
, pP&~ 1

, qfy~
l

]

2. Prove that, if <> (x) be a rational and integral function of

x which vanishes when x is put equal to a, then x a is a factor

of
<f) (x).

Shew that

is a complete cube.

By actual development the expression is found to be equal to

3. Explain to what extent the equation am . an = am+n admits

of being proved. Obtain the values of a and a~^.

-LX *P \) ~~r ~X 9 \*^)
~" "~"

Ir ~-T
a + a a + a

shew that

, ^ ,A _ </> (^) + <^> (y]

w . '*- F(x)F(y]+ y>-\ + <l>(x)t(yy

The equations are at once verified by substituting the values of

<j> (x), <f> (y\ F (x), F (?/),
in the right-hand members, and performing

some slight reductions.

4. Find the sum of the cubes of the first n natural numbers
;

and shew that every cube is the difference of two squares, such

*
Desmarest, TMorie des Nombres (raris, 1852), p. 295.
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that if the cube contains an uneven factor a3

,
each of the squares

is divisible by a8
.

Find the sum of the cubes of n consecutive terms of an arith-

metical progression ;
and shew that it is divisible by the sum of

the corresponding n terms of the arithmetical progression.

(i)
Since 1 + 2

3
. . . + na = {%n (n + 1 )}* it follows that

n' = {J(+ I)}
2

-{Jn(n-l)}.
Let n = ab, we have to shew that ^b(n+l) and \ b(n-l) are

integers. This is evident, for (1) suppose n even, then since a is uneven,
b is even and 6 is an integer ; (2) suppose n uneven, then (n 1) is an

integer.

(ii)
a3 + (a + b)

3
. . . + {a + (n

-
1) b}

3

= no? + 3a'& .$n(n-l) + Sab". {(n
-

1) n (2w
-

1)} + b
3

.
{Jrc (n

-
I)}

8

(n-l) b} {a* + (n -l)ab + \n (n
-

5. Solve the equations :

x* - (2a
- b - c} x + a8 + 6

s + c
2 - bo - oa - ab =

;

a? 2xy y*=bx ay)
'

If cc
2

=px + q, shew that

an -/3
ft

"

where a + @=p, aj3
=

q.

If a? =^M;
8 + qx+r, express xn in the form Ax* + Bx + C.

(i)
The roots of the equation are

a + 6o) + ceo
2
,

a + Jo* + cu>,

where w is an imaginary cube root of unity.

(ii) Adding and subtracting the equations, we have

2
(tc

8 -
3^)

=
(a + b) x + (b

-
a) y, kxy = (a-b)x + (a + b)y,

which may be written

or, putting x ^ (a + b)
= u, y \(a b)

= v, these are u" v" -
uv = ^% (a

3

b*),
which give on solution

u=

(where t
2 = -

1, as usual), leading to
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(iii) Let as" = Ax + B, then we have

x" - Ax - B = 0, a"-^la--B = 0, P"-Ap-B = Q,

whence, eliminating A and j5,

a-" (a
-

j8)
- aj (a"

-
0") + a/3 (a"'

1 -
yS"'

1

)
=

0,

which gives at once the required equation.

(iv) The result is obtained by the elimination of A, B, C from the

equations

xn=Ax*+x + C, an=Aa.3 + a + C, ft"
= A(3* + B(3 + C, y"

= Ay
s + By+C,

where a, ft, y are the roots of x3

px* qx r = Q. It is of course best

expressed as a determinant.

6. Prove that the logarithm of the product of any number of

quantities is equal to the sum of the logarithms of the quantities.
Given that a" + V* = 1 and that

log 2 = 0-3010300, log (1 + a)
= 0-1928998, log (! + &)

= 0'2622226 ,

find log(l + a + 6).

Since a* + b* = 1, we have,

1 + a + b = J2 (1 + a) (l+b),

as is evident by squaring both sides of the equation. Thus

log (1 + a + b)
= i. {0-3010300 + 0-1928998 + 0-2622226}
= 0-3780762.

[The numbers in the question correspond to a = sin 34.]

vii. Define the Trigonometrical Ratios of an angle so as to be
true for all magnitudes of the angle ;

and make a table shewing
the values of the trigonometrical ratios in terms of any one of them.

Prove that the equation tan x = kx has an infinite number of

real roots.

As x increases from mr JTT to mr + JTT, tan x increases through
all real values from -co to oo

,
and therefore passes through a root of

the equation tan x kx
',
and to every positive root there is a correspond-

ing negative root.

viii. Prove geometrically

(i) sin A + sin B = 2 sin %(A + B) cos \(A -
J5),

(ii) cos A - cos B = 2 sin % (B + A) sin (fl
- A) ;

and explain how such formulae are shewn to be true universally

for all magnitudes of the angles A and B.
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COS (g + ff + 0) _
COS (7 + g + 6}

sin (a + $) cos
2

7 sin (7 + a) cos
2
/3

'

and /3 and 7 are unequal, prove that each member will be equal to

cos Q8 + 7 + 0}

sin(/3 + 7) cos
2
a'

and that
sin (/9 + 7) sin (7 + a) sin (a + (3)cot0 =

cos (/3 + 7) cos (7 + a) cos (a + /3) + sin* (a + /3 + 7)
'

From the given equation

sin (a + ft) sin (y + a) cos
2
ft sin (y + a) sin (a + ft) cos

2

y
cos (a + ft) sin (y + a) cos

2

ft cos (y + a) sin (a + (3)
cos

2

y
'

of which the numerator

= sin
(ft + y) sin (y + a) sin (a + ft) sin (y ft),

and the denominator

= |{cos (a + ft)
sin (y + a)

- cos (y + a) sin (a + ft)

+ cos (a + ft)
sin (y + a) cos 2/3

- cos (y + a) sin (a + ft) cos 2/3}

= 1(2 sin (y-ft) + sin (2a + ft + y)(cos 2/3-2 cos 2y)

f ski (y
-

ft) (cos 2ft + cos 2y)
= ^sin (y

-
ft) {2 + cos 2a

+ cos 2ft + cos 2y
- cos (2a + 2/3 + 2y)}

= sin (y -/3){4 sin
2

(a + ft + y) + cos 2a + cos 2ft + cos 2y

+ cos (2a + 20 + 2y)}
= sin (y -ft) . {sin

8

(a + ft + y)

+ cos (a + ft)
cos (ft + y) cos (y + a)}.

Throwing out the factor sin (y ft), which is common to the numerator
and denominator, this becomes the expression for cot 6 in the question,
and since it involves a, ft, y symmetrically it follows that each side of

the given equation also

cos (ft + y + 0)~
sin (ft

+ y) cos
2 a

'

ix. Find an expression for all angles having a given sine.

If A+S+ C+D = 27r, then

cos ^.4 cos|Z) sin^jBsin^ G cos% B cos^Csin^ A sin^D
= sin (A + B) sin \(A + C) cos (A +D).

cos -4 cos # sin .5 sin J (7- cos .5 cos ^Csia^A sin |Z)
= i

{cos $(A-D) + cos %(A + D)}{cos %(B-C)- cosJ (5 + C)}
-
1 {cos %(A-D)~ cos | (4 + D)}{oo8 ^(5

-
C) + cos | (5+ 0}

- | cos 1
(4 + D) cos !(-e)-JcoSjK4- ^) cos J C8 + 0)

- 1
{cos 1(5- C) + cos (4

-
D)} cos i(^ + Z>)

- cos (A + B - G- D) cos l(A - B + G - D) cos %(A + D)
= sin | (^ + B) sin |(^ + (7) cos
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x. Prove that, in any triangle, a2 = Z>
2 + c'

2
26c cos A

;
and

hence prove that

a b c

sin A sin B sin 6Y
*

In a triangle ABC, AB = AC+BC, and 5(7 is divided in
so that BO : OC :: I : 3; prove that the angle AGO is twice
the angle AOC.

If A is the perpendicular drawn from the angle A on the side

BC, andc = 6 + i, 6>(7= |,
sin 2AOC = 2 sin AOC cos ^ 0(7

A ''2 - 8

-S y-l AOA 2AO . 00

, OC2+AC2-20C.AC.cosC+OC!i -AC*
(OC

2 + AC2 - 20C . AC . cos C)OC

_ i T& Q? + b
2 ~ ab cos C +

-^g-
<*
2

b
2

(T& d* + b
2

^ab cos C) f a

l^-K^ + ^-c 2

)

-

(Aa
2

-fi&
2 + fc*)f a

a3 - &
2 + 6

2 + 06= ,

* "
/ > T T O\ O

(f 0,6 +6)f a

=
7-
= sin (7 and therefore angle AGO = 2 angle AOC.

xi. Solve a triangle in which one angle at the base, the oppo-
site side, and the altitude, are given ;

and explain when the solu-

tion is ambiguous or impossible.
If the angle is 36, the opposite side 4, and the altitude \/5 1,

solve the trianle.

15 1
Since sin 18 = ^ -r

,
there is therefore one triangle satisfy-

ing the given conditions, with angles of 18, 36 and 126, and sides

. sin 18 , ,
sin 126 J5 - 1 , , J5 + 1

4 -' 4 and 4 or

xii. Find expressions for the radii of the inscribed and cir-

cumscribed circles of a triangle.

If the centre of the inscribed circle of a triangle be equidistant
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from the centre of the circumscribed circle and the orthocentre,

prove that one angle of the triangle is 60.

If be the centre of the circumscribed circle, / of the inscribed

circle, and P the orthocentre,

IP2 = IA 3 + AP3 - 2IA . AP cog IAP.

And IA = ^V-7 ,
AP = 2#cos A,

. angle IAP = \* -C -\A = \(B -C}.

Therefore if OP = IP3
,

^--7 + 4 a
cos8 A - cos |(

-
C).

sin
2

1 .4 sin J.

/# o&c
And r = -, = ^,

* ---
therefore -7 --

r aocs aoc

= 4 sin ^^t sin ^5 sin i (7.

Therefore 1 -8 sin A sin .Z? sin JO*

- 16 sin
8 5 sin

2 C + icotfA - 16 sin | sin |(7cos^ cos 1(5- C),

or 1 2 cos -4 2 cos52 cos (7+2

= 4 (1 cos .Z?)(l cos
(7)

+ 4 cos
8
-4 4 cos A sin 5 sin C

-16 cos ^ sin
8

\E sin* 6f

= 4 (1 cos -S)(l cos C} + 4 cos -4 (cos -4 sin5 sin (7)

4 cos A (1 cos 5) (1 cos C)

= 4(1- cos JB) (1 cos C) 4 cos .4 cos B cos (7

4 cos -A (1 cos B) (1 cos (7),

or 1 2 (cos .4 + cos B + cos (7) + 4 (cos 5 cos (7 + cos C cos -4 + cos A cos 7?)

8 cos A cos 5 cos (7=0,

or (l-2cos^)(l-2cos^)(l-2cos(7) = 0;

therefore cos A or cos J5 or cos (7 = f ,

and therefore A or 5 or (7 is 60.
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TUESDAY, January 1, 1878. 9 to 12.

Mr GLAISHEK, Arabic numbers.
Mr GBEEXHLLL, Roman numbers.

1. Define the resolved part of a force in any given direction.

OA, OB, 0(7... are any number of fixed straight lines drawn
from a point and spheres are described on OA, OB, 0(7... as

diameters. Any straight line OX is drawn through and a point
P taken in it so that OP is equal to the algebraical sum of the

lengths intercepted on OX by the spheres. Find the locus of P.

Let OX make angles l5 2 ,
... with OA, OB,...; then

OP = OA cos 0j + OB cos 2 + &c., that is, OP - the resolved part in the

direction OX of forces represented by OA, OB, ... If, therefore, OR
denote the resultant of the forces OA, OB..., the locus of P is the sphere
described upon OR as diameter.

2. If three forces are in equilibrium, they must lie in a plane,
and meet in a point or be parallel.

A uniform rod hangs by two strings of lengths I, I', fastened to

its ends and to two points in the same horizontal line, distant a

apart, the strings crossing one another. Find the position of equi-
librium, and shew that if a, a' be the angles that I, I' make with
the horizon,

sin (a + a') (I'
cos a' I cos a)

= a sin (a a').

In fig. (1 1) G the centre of gravity of the rod is vertically under

0, the point of intersection of tlie strings, so that the perpendiculars Cm,
Dn are equal. Thus OC cos a OD cos a, that is

(I
1 - OB} cos a! = (l-OA) cos a.

And since

OA
_ OB _ a

sin a sin a sin (a + a')

this equation becomes

( a sin a ) ( a sin a' )
<i : -. r. > COS a = < I : ; ^ > COS a,
( sin(a + a)J ( Sin(a + a)J

viz. sin (a + a') (I

1

cos a' I cos a) a sin (a -a') (1).

If be the inclination of the rod to the horizon, and b be its length,

b sin 6 = I' sin a' I sin a, b cos = 1 cos a + I' cos a' a,

and these, with (1), give the value of in terms of I, I', a, b.

3. Two parallel forces P and Q have a resultant R which lies

between them and is distant a and b from them respectively. Find
the relations connecting P, Q, R, a, b.

ABCD is a quadrilateral, and two points P, Q are taken in

AD, BC such that AP : PD :: CQ : QB. From P, Q straight
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lines PP', QQ are drawn equal to, parallel to, and in the same
directions as EG and DA respectively. Shew that forces repre-
sented by AB, CD, PP', QQ are in equilibrium.

Replace QQ' by parallel forces Slt S2 acting at B, G (fig. 12):

CO GO AP CO
then Slt in magnitude, = . QQ =-. AD = AP

,
since =-

Similarly Sa
is equal in magnitude to PD. Thus /% and AB acting at B

have as their resultant PB, and S
a
and CD acting at G have as their re-

sultant CP, so that the four forces AB, CD, PP, QQ' are replaced by
PB, CP, PP' which, since PP = BC, are in equilibrium by the triangle
of forces.

4. Given the centres of gravity of a body and of any part of

it, find the centre of gravity of the remainder.

A body consists of two parts, and one of them is moved into

any other position ;
shew that the line joining the two positions

of the centre of gravity of the whole body is parallel, and bears a

fixed ratio, to the line joining the two positions of the centre of

gravity of the part moved
;
and apply this theorem to find the

position of the centre of gravity of a circular arc.

Let W be the weight of the whole body, and w that of the part
moved. Let g (fig. 13) be the centre of gravity of the fixed part, and

ffii 93) &\i @a
the centres of gravity of the moved part and of the whole

body in the two positions. Then gGl
: gg l

= w : W, and gGt
: gga

= w : IF;
so that Grfiy is parallel to g^a ,

and bears to it the ratio of w : W.
To apply the theorem to find the centre of gravity of a circular arc

AB of radius a subtending an angle 2a at the centre
(fig. 14), remove

from the end of the arc, A, to the other end of the arc, ,
an element

subtending at the centre an angle 0. The effect of this is to turn the

arc through the small angle 0, and therefore to move the centre of gra-

vity through a distance xO, x being the distance between the centre

and the centre of gravity. The element is moved through a distance

2a sin a, and the weights are proportional to aO, and 2aa, so that, by the

theorem,
xO : 2a sin a = aO : 2aa,

sin a
and hence x =- a.

a

5. In the Eoman steelyard the distances of the graduations
from a certain point are in arithmetical progression, and in the
Danish steelyard in harmonica! progression.

A brass figure ABDC, of uniform thickness, bounded by a
circular arc BDC (greater than a semicircle) and two tangents
AB, AC inclined at an angle 2, is used as a letter-weigher as

follows. The centre of the circle, 0, is a fixed point about which
the machine can turn freely, and a weight P is attached to the

point A, the weight of the machine itself being w. The letter to
be weighed is suspended from -

a clasp (whose weight may be
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neglected) at D on the rim of the circle, OD heing perpendicular
to OA. The circle is graduated and is read by a pointer which

hangs vertically from : when there is no letter attached, the

point A is vertically below and the pointer indicates zero. Ob-
tain a formula for the graduation of the circle, and shew that if

P=^wsin
2

a, the reading of the machine will be | w when OA
makes with the vertical an angle equal to

, ((TT+ 2a) sin
2
a 4- 2 sin a cos a)- - -tan

Let a be the radius of the circle, and G the centre of gravity of

the machine
(fig. 15). Taking moments about 0,

Wa cos 6 = (w . OG + Pa cosec a) sin 0,

W being the weight suspended from D, and the angle made by OA
with the vertical. Suppose OG determined; then

Wa
tan0=- . _ p

- ..................... (1),w . OG + Pa cosec a

and putting for W values corresponding to the weights to be engraved

upon the limb of the machine, this formula gives the positions of the

graduations.

To find OG, we have
(fig. 16) area of sector BODC = a* (|TT + a), area

of triangle BOG = a2
sin a cos a, area of triangle ABC = a2

cos
3 a cosec a,

and Gj, G^ G
3 being the centres of gravity of these areas,

OG
a
= f a sin a, OG3

= asina + J a cos
2 a cosec a;

whence, noticing that OG
t
is negative,

OG . a* (|7r+a+cota)=^
3

(
2coso+ 2cosasin2 a + 3 cos

3
a + cos

5
a cosec

8

a),

= ^ a
3
cos

3
a cosec

2 a
;

and therefore

\j\j -ST / ; ~ p: \ .

(IT + 2a + 2 cot a) sui
2 a

Substituting this value in (1)

A (ir + 2a) sin
2 a + 2 sin a cos a

tan 6 = JF-5 '-^-3 ^-f-r jr-r-^ .
, ,

|w cos a + P
{(?r + 2a) sin a + 2 cos a}

and the result in the question follows at once on putting

6. State the laws of friction
;
and explain how they may be

verified experimentally.
Two rings, each of weight w, slide upon a vertical semicircular

wire with the diameter horizontal and convexity upwards. They
are connected by a light string of length 21 (supposed less than 2a,

the diameter of the semicircle) on which is slipped a ring of weight
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W. Shew that when the two rings that slide on the semicircle

are as far apart as possible, the angle 2a subtended by them at

the centre is given by the equation

(W+ 2w? tan2

(a + e) (f
- a2

sin
2

a)
= TPa2

sin
2
a,

where tan e is the coefficient of friction between the rings and the

wire.

Let 20 (fig. 17) denote the angle between the portions of the

string, and let T be the tension of the string when the rings are at

A, JB as far apart as possible. Then W=2Tcos0, and the normal

pressure on the wire at A is w cos a + T cos (0 a). Resolving along the

tangent at A

T sin (0 a)
= w sin a 4- tan e {w cos a + T cos (0 a)},

whence Tsio. (0 a
e)
= w sin (a + e),

W
viz. s-T-

2 cos
v

This gives
-

.

,
.

tan = tan (a + e).

But Z sin - a sin a, so that this becomes

2w^
- *al1 (a + C

)'-7772
-

2 2 \
-

TT7-

V^ a sin
2

a)

vii. State Newton's laws of motion, and explain the bearing
of the second law upon the definition of force : prove also that a

force may be measured by the kinetic energy generated in the unit

of length.
Given that a quadrant of the Earth's surface is 109

centimetres,
and the mean density of the Earth is 5 '67, prove that the unit of

force will be the attraction of two spheres each of 3928 grammes,
whose centres are a centimetre apart, the acceleration of gravity
at the Earth's surface being 981

;
a centimetre, second, and gramme

being the units of length, time, and mass.

The attraction F between m and m' grammes at a distance I

centimetres is

_ ~rara'

"F'
where (7 is a constant.

To determine
(7, consider a gramme on the earth's surface, attracted

by the earth.

09 o
Then ^=981, w=l, m' =^ x 1027 x 5-67, Z=-xl09

;
O7T 7T

VF 3 x 981
and therefore (7 =

mm' 8 x 10" x 5-67
'
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To find the number of grammes wi, which at a distance of 1 centi-

metre from an equal mass would be attracted with the unit of force, we
have , xv 2

1 = (7m
2

;

/T
and therefore m = ^ / -

Fl 3928.V c

(Everett, The Centimetre-Gramme-Second (C. G. S.} System of Units,

p. 32.)

viii. Describe the theory of Atwood's machine, and explain
how it is used to verify the laws of motion.

If the groove in the pulley in which the string runs be cut to

that depth at which it is found that the inertia of the pulley may
be divided equally between the moving weights, and if Q be the

weight required to be added to overcome the friction of the axle

of the pulley when equal weights P are hung at the ends of the

string, prove that an additional weight R will produce acceleration

R
2P+2Q+R + W g>

where W is the weight of the pulley.

All the mass of the pulley may be supposed collected into a ring
of certain radius (the radius of gyration), and if the groove in which the

string runs be cut down to this depth, the inertia of the pulley may now
be allowed for by dividing the mass of the pulley equally between the

moving weights.

Suppose now the pulley weightless, and P + J W the weights sus-

pended from the string: let a be the radius of the groove, b of the

axle of the pulley; < the angle of friction of the bearing.

If be the centre of the pulley, A the point of contact of the axle

in the bearing (fig. 18), then when the pulley is in motion or bordering on

motion, the inclination of OA to the vertical is <.

If the pulley is bordering on motion when Q is added to one weight,
then for equilibrium, taking moments about A,

Suppose f the acceleration when an additional weight R is added,
and let T and T' be the tensions of the strings.

Then T(a-bsin<j>) = T' (a + b sin<),

_ -T_ T-P-\W~

Therefore

T _ a + b sin
<ft_

T ~
a-

22
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1

i+/^ + e
9

therefore /T>__
2P + 2# + Jff+ JF*

The same result will be obtained supposing the pulley to retain its

weight W ;
for then taking moments about A when the weight Q is

added, and the pulley is bordering on motion,

(P + Q) (a
- 1 sin <) = P (a + b sin <) + Wb sin <,

as before.

And when the weight R is added, and the acceleration of the system
is f, if T, T be the tensions of the strings; for the motion of the

pulley, taking moments about O,

g~ Wa

and for the motion of the weights

T T'-P

,and

g P+Q+R P

Therefore T = (P + Q + R) (1 -"A
,

\ 9 /

T' = P

b sin < Q
a 2P +Q+W

f R
Therefore J -

g 2P+2Q +K+W
as before.

ix. If a body, attached at its centre of mass to one end of a

string of length r, the other end of which is attached to a fixed

point on a smooth horizontal plane, make n revolutions a second,

prove that the tension of the string is to the pressure on the plane
as 47rVr to g.
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Prove that at the equator a shot fired westward with velocity
8333 or eastward with velocity 7407 metres per second will if un-
resisted move horizontally round the Earth in one hour and

twenty minutes and one hour and a half respectively.

Let r be the radius of the earth, w the angular velocity, and v
the velocity with which; the shot is fired westward relatively to the

earth.

Then since the earth turns round from west to east,

(V Y(ol
I

r

or v = ro> ,Jyr

MV ro>

= ro>(l17)
= 18r<o or 16rw.

The earth's equatorial circumference being 4 x 10r
metres, the velocity

at the equator due to the rotation

4xl07

rw
~27x 60x60'

and therefore 18ro>=8333, 16rio = 7407; and the shot will go round

the earth in
j^.

th or J^-* of day: that is, in one hour and twenty
minutes, or one hour and a half.

x. Prove that the path of a projectile if unresisted is a para-
bola, and that the velocity at any point is due to the level of the

directrix.

A shot of m pounds is fired from a gun ofM pounds, placed on

a smooth horizontal plane and elevated at an angle a. Prove that,

if the muzzle velocity of the shot be F, the range will be-

Ti>) tan? a9 1

Let u, v be the horizontal and vertical components of the

velocity of the shot, U the velocity of recoil of the gun, and 8 the angle
of departure of the shot.

v v
Then - = tan B ; ^ = tan a, and mu MU.

u u+17

Therefore tan ft
-
(\ 4-

-^.J
tan a.
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Vs

The range =2 sin (3 cos ft

f */

F* tanjS

g 1 + tan
2

/

-TV I tan
2

xi. Define an impulse, and explain how it is measured. Find
the velocity of a particle of given elasticity after oblique impact at

a fixed smooth plane ;
and prove that, after impact on two planes

at right angles, the velocity of the particle is reversed in direction.

If a stream of particles of elasticity e all moving in' parallel
directions with velocity u impinge successively on two smooth
fixed planes at right angles, prove that the average resultant of

the pressures on the planes is Mu (1 + e), where M is the mass of

the particles which strike each plane in one second.

After impact on the two planes, the particles form a stream

moving in the opposite direction with velocity eu, and therefore momen-
tum has been communicated, Mu(l+e) per second, to the original
incident stream; Mu (1 + e) may therefore be taken as the measure of the

average resultant of the pressure due to the continued impact of the par-
ticles on the planes.

xii. Prove that the kinetic energy of two particles is equal to

the kinetic energy of a mass- equal to the sum of their masses

moving with the velocity of the centre of mass, together with the
kinetic energy due to the motion of the particles relative to their

centre of mass
;

and extend this to the case of any number of

particles or a material system.
Of the kinetic energy of a material system in free space, how

much is available for conversion into work ?

(Maxwell, Matter and Motion, Articles LXXIX., LXXX., LXXXI.)

TUESDAY, January 1, 1878. 1| to 4

Mr PRIOR, Arabic numbers.
Mr FERRERS, Boman numbers.

1. From the behaviour of known fluids under the action of

external forces obtain a definition of a perfect fluid; and deduce
the characteristic property of the internal forces in such a fluid.

If the linear dimensions of a fluid medium at rest under

parallel forces uniformly distributed throughout it be varied

uniformly in the ratio 1 : n, shew that the pressure at any
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point is varied in the ratio nz
: 1; and that, if A, B, C be

three specified elements of the fluid, the moment of the pres-
sure on the plane AB C, about the line AB, is varied in the ratio

1 : n.

Let A\ B', C' denote the elements A, B, C after the variation.

Let iff be the pressure at (7, tzr' that at C"; and let M be the moment of

the pressure on the plane ABC about AB, M' the same for A'B'G'
about A'B'.

Then since the whole pressure on the area ABC is equal to that on

A'B'C', we have in the limit, when ABC is made indefinitely small,

& x area ABC = m x area A'B'C',

w area A'B'C' n9

therefore
us' area ABC 1

Again, since the pressures on any area before and after the variation

are equal, and when these areas are indefinitely diminished, their dis-

tances p, p' from AB before and after the variation are as 1 : n,
we have

M= 2 (pressure on any small area x.p}

M' 2 {pressure on the corresponding area x
/>'},

therefore n^ {pressure on the corresponding area x p},

therefore -=-?,
= -

.M n

2. The difference between the pressures at any two points of

a? homogeneous liquid at rest under gravity is proportional to the

distance between the horizontal planes in' which the points lie.

A regular tetrahedron of thin metal, whose weight is equal to

the weight of water it would contain, is emptied of water, and cut
into two halves by a central section parallel to two opposite edges.
If one half be held fast in any position, shew that the force

required to draw away the other half from it will be the same,

provided the centre of the tetrahedron be always in the same
horizontal plane.

Let W be the weight of the half-tetrahedron, II the pressure at

the centre C of its base, a an edge of that base. Let a be the angle
which each face of the half-tetrahedron makes with a line CX perpen-
dicular to its base, the inclination of CX to the vertical. The pressure
on each of the faces is equal to the product of its area into the pressure
at its C.G., and has a component along (7X= this product x sin a. Then
the component along CX of the pressures on two similar faces is, by
symmetry, = 2 sin a x the product of the area of each into the pressure
due to the depth of the point in which the line joining their centimes of

gravity cuts CX. Therefore the component of all the pressures
= 4rra

2

{II gph cos 6}, where h is the distance from C of some fixed point
G on CX, G being the centre of gravity of the surfaces pressed by the
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water, and p being tho density of water. Let F be the force required to

draw away the half-tetrahedron. Then we have

F9 =W {n - gph cos 9} + TFcos 0.

But by symmetry, when 6 = JTT,
since the tetrahedron would be in

equilibrium,
Fn = 47ra

2
n,

2

therefore W must =

therefore FB = 47ra
2
II.

Or thus :

Since the weight of the tetrahedron is equal to the weight of water
it would contain, suppose it replaced by water which would then be at

rest, and the half-tetrahedron of water could be moved by any the

slightest force
; therefore the force which would move one half-tetra-

hedron of metal from the other is the force across the plane that

separates the half-tetrahedrons of water; which force is- constant,
because the centre of this plane is always at the same depth.

3. Find the conditions for the equilibrium of a solid body
floating in a liquid of greater density than the solid; and shew

that, when it is in stable equilibrium,, the height of the common
centre of gravity of the solid and liquid is a minimum.

If a body be floating in a liquid contained in a cylindrical

vessel, and be pressed down through a small distance c, shew that

the common centre of gravity of the liquid and body will be raised

B c*

through a height \ -3
-

^ -r, where A, B are the areas of the cross-
A. Jj Qi

sections of the cylinder and solid in the plane of floatation, and d
is the height of this plane above the base of the cylinder.

Let W be the sum of the weights of the liquid and body, which
remains unaltered

;
and let z be the original height of the c. G. of W.

Let z be the height through which it is raised. The plane of floatation

A
is raised through a height

-
^c, and the weight of liquid raised

A. Jj

above the original plane of floatation is Acgp where p is the density of

the liquid. Suppose the change made by lowering the whole system

through -a depth c, and then raising a weight Acgp from below the

original base of the cylinder to the top of the Liquid. This process gives
the equation

therefore

But W= Agpd, because the weight of the body is equal to the weight
of the fluid displaced.
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Therefore c + -,(d + % .

^
c
J

-4 -~*' A-B'.d'

4. Explain the statement " when gases of different kinds are

placed in the same vessel, each acts as if the other were a vacuum" :

and from it deduce Boyle's Law.
The original pressures of three gases contained in vessels

A, B, C of equal volume are a, /3, 7. If aa , {3a , ya be their pres-

sures when - th of the contents of B and C have been transferred
n

to A; aab> ftab, Jab their pressures when -th of the new contents
%

of C and A have been transferred to B-
} aabc , /3a&c , yaf,c their pres-

sures when - th of the last-formed contents of A and B have been
n

transferred to C; and if other symbols have similar meanings,
shew that

O-bca aabc _ abca ~ ^cab _ &cab
~ aabc _ g + ft + 7

2n 1 n n I n*

By tlie conditions of the question

1,_ x n n 1 _ n 1
= + -(/? +y), ^* =-rA ^--^-^
w-l w-l /0 . _ 1 w2 -w + l_ 1 (w- 1 )

2

^--^-^-^ + r)y ^- =-+ -
w2 ^+-y, y^^r-r;

7i-l
s

(w-1
2

,, . . n-l na-2n*+2n-l n-l
'

therefore by cyclical changes we obtain

y;

n-l

,_
therefore a^ - a^ = (a + /3 + y),n

(
a + P + 7>f

/

n-l
,

_ .

=
a" (

a + P + y)'
IV
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5. Describe Nicholson's Hydrometer; and explain its uses.

An old Nicholson's Hydrometer is found with its stem uni-

formly coated with rust. Two weights of unknown magnitude are

also found with it. The stem has three marks A, B, C upon it

which marked the surface of some unknown liquid when the

hydrometer (free from rust) floated in it either free, or with one or

the other of the two weights in its upper pan. When it is now

placed in a liquid, the surface in the three cases is at A', B', C'.

Shew that

AA' . EC-AC. BB' + AS. (7(7 = 0.

Let M?J, io
g
be the two weights; p, p the densities of the two

liquids; a, a' the areas of the stem of the hydrometer when free from
rust and when rusty respectively. Then, whatever be the weight of the

hydrometer, we have

w
l

= AB . pa and = A'B' . pa,

w
a
= AC.pa and = AC' . pa ;

,, AB A'B'
therefore

therefore AB (AC + CO' -AA') = AC(AB + BB' - AA')

therefore AA' (AC - AB) -AC . BB' + AB . CC' = 0,

therefore AA'.BC-AC. BB' + AB . CO' = 0.

6. State clearly the argument which shews that rotating.

liquid under forces symmetrical with respect to the axis of

rotation may be dealt with as if at rest under the given forces

and an additional force passing through the axis: and, in the case

of heavy homogeneous liquid rotating about a vertical axis, shew
that vertical sections of the surfaces of equal pressure are para-
bolas.

A spherical shell is partly full of water at rest. If the water
be made to rotate about the vertical diameter, shew that the

greatest depression of the free surface exceeds its greatest eleva-

tion.

Let AB
(fig. 19) be a vertical great circle of the sphere, CD the

intersection of the surface at rest with the plane of the paper, MVN the

intersection of the rotating surface with the same plane. Round the

sphere describe a cylinder with axis vertical, and suppose the space
between it and the sphere filled with water to the height GCDH. If

this water be made to rotate with the same angular velocity round the

axis, its surface will intersect the plane of the paper in MK, NL, being
continuations of the parabola MVN.

Now the volume of the paraboloid between KL and V=\ the

volume of the cylinder between these levels
;
and also, since the mass of

water is constant, this volume is equal to the volume of the cylinder
between KL and GH; therefore the volume of the cylinder between KL
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and GH is \ its volume between KL and V; therefore F and KL are

equidistant from GH; therefore V is depressed below CD more than

M, N are raised above CD.

vii. Distinguish between a real and a virtual image; and

prove that the image formed by a convex njirror is always virtual,
but that that formed by a concave mirror is real or virtual,

according as the distance of the object from the centre of the

mirror exceeds or falls short of a certain amount. Prove that, in

these cases, the image is erect or inverted, according as it is

virtual or real.

viii. State the laws of refraction.

A small cylindrical pencil of rays is incident on the curved

surface of a solid right cone with a flat base, formed of a refracting

substance, the axis of the cone coinciding with the axis of the

pencil. Determine the position of the point from which the pencil
will diverge, after transmission through the cone.

The pencil, after entering the cone, will diverge from the
vertex of the cone, and therefore, after emergence, will diverge from a

point on the axis, at a distance from the base =
//,

times the height of

the cone.

ix. Find the geometrical focus of a small pencil of rays after

direct refraction into a medium bounded by a spherical surface.

A luminous point approaches a refracting medium bounded by
a spherical surface, the point moving along the axis of the medium.
Prove that the point and its geometrical focus always move in

the same direction, and that the least distance between them is

r, p being the refractive index, and r the radius of the sur-

face. Which is then nearer to the surface ?

Let u, v, be the respective distances of the luminous point and

its image from the surface of the medium. Then, r being the radius of

the medium, we have

v u r

Now, as the luminous point approaches the medium, u diminishes.

Hence, - increases, therefore - increases and v diminishes. Or, the
u v

luminous point and its image move always in the same direction.

Again, putting u v = y, we have

V- 1 = /*- 1 -

u y u r
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{(/*- 1) M + y} r = (/*- 1) (u-y) u,

(pqj

w* - (r + y) u ^-r = 0.
U,- 1

or

Hence, that u may be real, we must have

(r + y)
3
H ^-

= a positive quantity,
/A 1

y 4- 2
"

-
ry + r^a, positive quantity.

/A 1

Thus, y cannot be intermediate in value between the two quantities

(both of them negative) which satisfy the equation

//,

These are -Jfi
*,

//* +

Hence, y is initially infinite, and diminishes till it attains the value

Since this is negative, we infer that u is less than v, and

that the luminous point is the nearer to the surface.

x. Define the focal length of a lens
;
and prove the formula

--- =
-j.

,
the symbols having their usual meanings.

Two lenses of crown-glass and flint-glass are placed with their

surfaces in contact and coinciding; determine the relation between
their refractive indices and the radii of their surfaces, in order

that a pencil of parallel rays may continue parallel, after trans-

mission through the combination.

If /j, fa
be the focal lengths of the lenses, Fthe distance from

which the pencil diverges after transmission from the first lens,

11
V~f
11
v~f

Hencey+y = 0, or one lens must be convex and the other concave,
or the focal lengths of the lenses must be equal and opposite.

And, if
p., p.'

be the respective indices, r, r' the radii of the

surface of the first lens, v', s of the second,

r

the required relation.

1 u! 1 a' a"- + ' -J- = 0,
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xi. Define the optical centre of a lens; and prove that there
are two points which satisfy the definition. When are the two

points coincident
;
and when is one of them infinitely distant ?

The centre of a lens is the centre of similitude of its surfaces.

Hence there are two such points. They will be coincident when the two
surfaces of the lens are portions of concentric spheres; and one of them
will be infinitely distant when the radii are equal and opposite.

xii. Describe the Astronomical Telescope; and find its mag-
nifying power and field of view. Where should the eye be placed,
to receive the most light ?

Trace a pencil, from a distant object near the axis of the tele-

scope, to the retina.

To receive most light, the eye should be placed at the image of

the object-glass formed by the eye-glass ; or, more strictly, the centre of

the pupil should coincide with the image of the centre of the object-

glass formed by the eye-glass. For the section of the surface which

envelopes all the pencils diverging from the several points of the object-

glass will here be smallest.

WEDNESDAY, January 2, 1878. 9 .to 12.

Mr PEIOK, Arabic numbers.
Mr GLAISHEE, Roman numbers.

1. ABC is a triangle, and the centre of its inscribed circle.

Shew that AO passes through the centre of the circle described

round BOG.
Let D (fig. 20) be the centre of the circle escribed to AEG,

which touches BC externally. Then AOD is a straight line, because

AD, AO both bisect the interior angle at A. Also since BO, CO bisect

the interior angles at B and C
;
and BD, CD bisect the exterior angles

at B and C ;
therefore OBD, OCD are right angles; therefore AO

passes through the centre of the circle described round BOCD.

2. Between three towns A, B, C there is a continual migra-
tion of families, so that the number of families in each town is

unaltered, while the whole number of families migrating at any
specified time is always even. Shew that, if by the end of any
time an even number of families have left A for B, then by the

end of the same time the number of families that have left B for

A is also even.

Let AB be the number of families migrating at any time from
A to B, and let similar symbols be employed for the other towns. Then

by the given conditions we have

and AB + A c + Bc + BA + CA + CB
= an even quantity = In say.
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Now, adding the two first of these equations, we obtain

and substituting this result in the last of the equations, we have

AB + A + 20A + 2CB = 2n.

If then AB be an even number, so is BA .

iii. If

23
~

4

23 -
4

shew that the difference of a and b, the quotient of 6 divided by a,

and the sum of the squares of a and 6 are all equal.

It has to be shewn that

a-b = - = a' + F,a

and the values of a and b are such that b = 2a*. The first equation
therefore becomes 2a3 + 2a* = l, and the second 4a6 2a- 1. The
latter is deducible from the former, for squaring

4a =
(1
- 2a2

)

2 = 1 - 4a2 + 4a4
,

= 1 - 4a2 + 2a (1
- 2a2

),

= l-4a2

+2a-2(l-2a
2

),

= - 1 + 2a. .

It remains therefore only to prove that 2a3 + 2aa = 1 : and this

readily appears, for writing the first equation in the question in the form

3a + l= (a +/3^ + (a -/?)*,

we have (3a + I)
8 = 2a + 3 (a

2 -
/8

2

)* (3a + 1),

that is 27a
8 + 27aa +9a + l=^+3(3a + l),

viz. a3 + a2 =
J.

4. If # + y + z = 0, shew that

x y z = 9.
x y z

} \y z z x x y
(y z z x x y\ x .. x z x x x yWe have \
-- + - +-- t -=! + -.- + -

.
--

(. x y z ) y % y y z % y %

- xz(

= 1 [

yz(y-z)

(x y z)\ y '
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,, ,. (i/-z z-x x-y} ( x y z )
therefore - H + -} {

- + -? + >x V z ) (y z z x x-y)

xyz

for, since x + y + z = 0, x3 + y
3 + z

3 -
3xyz = 0.

5. Find the real roots of the equations :

cc
2 + z'

2 + y'
2 = a2

, yz + x (y + z)
= be,

z
2 + y

2 + x'
2 = b

2

,
z'x + y (z + x)

= ca,

y'
z+ x 2 +22 = c

2

, x'y + z (x + y)
= ab.

We liave

b
2
c
2 =

{z'
2 + y

2 + x'
2

} {y'
s + x'

2 + z
2

}
and = {yV + x'(y + z}}

2

,

therefore =
(z'x' yy'}

2 +
(z'z x'y'}

2 + (yz x'
2
}

2
.

Since then all the quantities are real, we must have

yz = x'
2

,
and similarly zx = y'

a
, xy = z'

2
.

Hence, substituting in the three first equations, we have

x2 + xy + xz = a2

, xy + y
2 + yz b

a

, xz+yz + z
a - c

2

,

,, . x y z 1 , x + y + z
theretore -, = =- = = and = -= ^a o c x + y + z a +b + c

therefore x + y + z = Jo,
2 + b

2 + c
1

,

a2
b
2

c^
/ 2 '. T~9. ! 2 ' & / ~Q '. T~Q O 9 I o 7~c

be
, ca

,
ab

which satisfy all the equations.

vi. If a and b be positive quantities, and if a
t =| (<z

fr,
= (apy, a

z
=

^ (a^ + 6J, &
2
=

(a2JJ^ and so on, shew that

= 6

Shew that the value of TT may be calculated by means of this

theorem.

Leta=6cos<, then a^
=

6

&c.
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Thus 0,= 6 = 6 cos <cos;<cos...

-
cos V-T

o

To calculate the value of ir it is only necessary to give a and b such

values that -r- shall be the cosine of iir or i?r or 4w, &c.
6

The simplest case is that of a = 0, b = 1, when we have

2
a -b =- .

it

[The result in the question is, in fact, Euler's product under a

slightly different form : for Euler's product, viz.

sin <

4>

may be written

where p l
denotes the previous factor {|(1 +p)} , pa

denotes the previous

factor {|(1 +p l )}^,
&c.

Now let p = -7 , p^ji, &c., then

so that we may take
x

=
| (a + 6), 6j

=
(a, 6) , &c., as in the question.

The quantities a
1?

6p a
a,

6
2
... converge to the value of TT very slowly.

I have calculated the values for the case of a = 0, b = 1, which are as

follows :

a -0-0000000, b =1-0000000,

, =0-5000000, 6, =0-7071068,

a, = 0-6035534, b
a =0-6532813,

a
3 =0-6284173, b

a =0-6407287,
a
4 =0-6345730, b

4 =0-6376435,
as =0-6361083, fts =0-6368754,

a6 =0-6364919, bt =0-6366837,

a. =0-6365878, 6, =0-6366357,

8 =0-6366117, 68 =0-6366238,

9 =0-6366178, b9 =0-6366207,
a

10
= 0-6366193, 610

= 0-6366200,

u
= 0-6366197, 6U

= 0-6366199,

a
)2
= 0-6366198, 6,^

= 0-6366198.
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In this case the formula gives

2
and the value of - is OG3G61977...

7T

The method, regarded as a means of obtaining the value of TT, is in

fact only the method of polygons in a not very convenient form, for if

=
, thenm

7T 7T 7T

6=6 cos -_
- cos -^ . . . cos - -

,2m 2*m 2
Hm'

7T 7T
= b sin -f 2"sin ^z ,m 2 m

so that the value of the circumference obtained from b
n is equal to the

perimeter of an inscribed regular polygon of 2"m sides. The formula

used above (viz. for the case a = 0, 5 = 1) is in fact

_, N , v
TT~ 2

*

2 2 "t *

and was given in a form equivalent to this by Vieta
;
but it does not

appear to have been actually employed in the calculation of w. The
formulae that were employed were eqxiivalent to

2"m sin and 2"m tan ?-
2 in 2 m

for the inscribed and circumscribed polygons, i.e. Tan Cteulen would
have calculated

erence
(involving

n\ square root signs, and which = sin
J

,
in prefere

to the fii*st n 1 factors of (1), which = cos| TT COS^TT ... cos
.]a

vii. In the sides BC, CA, AB of a triangle three points
A', B', C' are taken such that

BA' : A'C = Pl : qlt
CB' : B'A =ps

: qv AC' : C'B = pa
: g3 >,

shew that if BE' and CC', CO' and AA, AA and BB intersect

in A", B", C"
;
then the area of the triangle A"B"C" is to the

area of the triangle ABC as

Since CC' (fig. 21) is a transversal of the triangle A SB',

BA" .B'C.AC' = BC' . AC . B'A",

whence
BA" _ AC BC' _ Pjt qt y3'"-- AC'~

'

3

-
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Thus
A BB'C BBf papa

+ qaqa
+ paq3

and
p,

AC

so that
Pig3

Now A A"B"C" = A ABC - A BA"C - A CB"A - A AC"B,

so that

A ABO

which, after some reduction,

viii. If PQ be a focal chord of a parabola, and R any point
on the diameter through Q; shew that the focal chord parallel

Let pq, pr (fig. 22) be the tangents parallel to PQ, PR, and let

f denote the focal chord parallel to PR.

Let rp meet the diameter through q in t. Then pt =pr.

Hence, and by ^similar triangles,

PQ2
.: PR*=pq* : pt*=pq* : pr*,

PR3

Therefore F
--^-

.

ix. If OP, OQ are two tangents to an ellipse, and CP', CQ'
the parallel semidiameters, shew that

OP. OQ + CP'. CQ'=OS. OH,

S, H being the foci.

Since by orthogonal projection the triangle CP'Q' (fig. 23) is

equal to CPQ, the angles between any two diameters of a circle being

equal to those between their conjugates ;
and since the triangles SPQ,

CPQ, HPQ on the same base PQ have their altitudes, and consequently
their areas, in arithmetical progression ;

therefore

A CP'Q' = A A SPQ + 1 A HPQ.
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Hence A OPQ + A CPQ' = \ OPSQ + \ OPHQ = \p.AA',

where AA' is the major axis, and p the common magnitude of the four

perpendiculars from to the focal distances SP, SQ, HP, HQ.

Let HP produced to *S" be equal to A A'.

Then, from above, A OPQ + A CFQ' = A OS'H;

and, the angles at and C in the three ti'iangles being equal, and the

length OS' being equal to OS, therefore

OP.OQ+CP'.CQ' = OS.OH.

This proof is due to Mr C. Taylor, of St John's College.

10. A rhombus is formed of four rods of length a, hinged
together. Two opposite rods are supported in a vertical plane by
two smooth pegs, which are separated by an horizontal distance h
and vertical distance k. Shew that the product of the horizontal

distances of either peg from the ends of the nearer unsupported
rod is ^ (k

2 2ah + K2

), and that there is no bending moment
round a point in either supported rod, whose distance from its

supporting peg is three times the shorter of the distances of that

peg from an unsupported rod.

Let ABCD (fig. 24) be the rhombus
; P, Q the pegs ;

and let

the reactions at the hinges be denoted by the letters in the figure, the

weight of each rod being JF. Let AP = x,CQ =
x'., ADC = 0.

Resolving horizontally, we see that

X^X^JT^X^Xsay.
.Resolving vertically for the unsupported rods, we have

F, + w= F
4 , F, + IT= F

3 ,
therefore F,

-
F, + F,

- F
4
= o j

and taking moments round the centres of these rods, we have

(Fa
+ F

a )
cos - 2JTsin = 0,

therefore F, + F
2
+ F

3
+ F

4
=

;

and since F,
- F

2
+ F

3
- F

4
= 0,

we have Y
>
= ~ Yv Y^~ Y

t
-

Now, taking moments about P and Q for the supported rods, and

using previous results, we have

X - F
3 (-') + TF

(
a - x) = 0,

x = x.

g_o
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Hence, if PN be drawn perpendicular to DC,

DN= a-x h and also = a cos 6 + x,

therefore 2x = a (1
- cos 0)

-
h,

therefore x = % a(l-cos6)-^h,

a - a; - A = | a (1 + cos 0)
-
1 A,

therefore AP . DN = x (a
- x - h)

= - cos
8
6,

Next let R be a point in AB such that PR = 3x
;
then the bending

moment round R is

.

Now, we Lave

Y
t =-Y,-W,

and r
i as-r,(o-aj)

therefore F, a
- TF (| a

-
2x) = 0,

therefore 7
S
- TT^^ - 0,

<oCt

therefore there is no bending moment round R.

xi. An elliptic lamina of eccentricity e rests upon a perfectly

rough equal and similar lamina, the two bodies being symmetri-
cally situated with respect to their common tangent at the point
of contact. If a be the inclination of the major axis of the fixed

ellipse to the horizon, and 8 be the inclination, measured in the
same direction, of the major axis of the moving ellipse in a position
of equilibrium, then

sin ^ (6 + a)
= e

2
sin 9 cos (0 a).

In fig. 25 OM is horizontal, PG' is the normal, C" the centre,
and PN' perpendicular to A'O'. In the position of equilibrium C'P is

vertical, so that the angle PC'O = %* 6, and since OP bisects the angle

C'OC, the angle C'OP= | (0
-

a).

,
and

C'G' : C'P :: sin $(6 + a) : cos|(0-a).
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Also C'N' = C'P sin 0,

whence
"

C'P = e
a C'P sin 0,

cos \ (0
-

a)

giving the equation in the question at once.

[Or, otherwise, since PO is parallel to the diameter conjugate to C'P,

b2

tan POC' tan OC'P = -a : that is,a

tan|(0-a)cot0 = -2 ,
viz. 1 - tan % (0

-
a) cot =

e*.]

12. A cube with two faces horizontal is pressed against a

rough vertical wall by two strings in vertical planes perpendicular
to the wall which are attached to the ends of a rod which forms
the upper edge of the face furthest from the wall, and passing over

pullies in the same horizontal line in the wall support equal

weights. If the coefficient of friction be tan/3(/3>|7r), where
tan 3/3 4- tan /3

= 2, and if the ratio of the weight of the cube to

each of the supporting weights be 4 sin ft, shew that, in the two

limiting positions of equilibrium, the directions of the slant por-
tions of the strings are inclined to each other at an angle 4/3 TT.

In any position of equilibrium, let the pressure between the

cube and the wall be E and let the vertical force due to friction be F.

If the upper horizontal face of the cube be above the pullies as in

fig. 26, where ABDG is one vertical face of the cube and E is one

pulley, let L ACE = 0. If on the other hand it be below the pullies, as

in fig. 27, let L AGE =
<f> ;

and let this difference of notation distinguish
the two cases.

Let W be each supporting weight, and 2a an edge of the cube.

Firstly, so far as turning round the edge B is concerned, there will be

equilibrium if

2JFcos0. 2a

or cos - sin > sin ft.

But tan 3ft + tan ft
=

2, therefore sin 4/3
= 2 cos 3ft cos ft,

therefore 4 cos 2/3 sin ft cos /3
= 2 cos 3/3 cos ft,

therefore 2 cos 2/3 sin ft
= cos 3/3,

therefore sin 3/3 sin ft
= cos 3/3, therefore sin 3/3

- cos 3ft
- sin ft.

Hence there will be equilibrium, while

cos sin > sin 3/3 cos 3/3,

i. e. while cos - sin > cos (3ft
-

TT)
- sin (3ft

-
TT),

i. e. while cos cos (3/3 TT)
> sin sin (3/8 TT),

. 3ft-7T-0 . 3/3-7T +
'

. 3ft-TT-0 3ft-TT + l

i. e. while sin
^ sm -

^
> - sm ^ cos _
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, 3/3-7T-0. . 3/3-7T + 3/3-7T +
i. e. while sin

^
is +

,
for sin > cos

i.e. while 0<3/3-7r.

Secondly, so far as turning round the same edge is concerned, there

will be equilibrium, if

2W sin<.2a+2JFcos<. 2>4 Wsmft.a,
or sin

<f>
+ cos < > sin ft,

> cos (3/3
-

TT)
- sin (3/3

-
TT),

or sin < + sin (3/3 TT)
> cos (3/3 TT)

cos
<f>,

i o O JL Q'^ _i_ JL _i_ Q f-t jJL Q ^ j

or sin ~ cos ^- > sin ^- sin--
m f

or tan -?-
^~
- < 1,

or - <_, or^><-^.
Thirdly, so far as turning round the edge A is concerned, there will

be equilibrium, if

2*JF sin
<f>

. 2a < 4 W sin^ . a,

or sin < < sin /8y or <f>< (3.

Now /? < 3/J ^ ;
hence the cube will not be in equilibrium, unless

*A
As far then as turning is concerned, the limiting positions of equi-

librium are given by =
3/3 TT, and ff>

=
j3,

where we notice that

6 +
<t>
= p-ir.

It only remains then to shew that for positions of the cube between
these it has no tendency to slip.

If 0<3-w, we have .8 = 2W cos 0, F = 2Wsui8+ 4IFsin/?,

therefore .8tan0-.F=2TF(cos0 tan /3- sin 0-2 sin /?)

= 2F sec ft {sin (ft
-

0)
- sin 2)8}

.

TI7
. ft + e 3ft- e= 4 JK sec ft sin ~ cos -^-^ ;^ '

3B 6
therefore F< jfttanyS, if cos-^r be negative,

Le. if 3/8-0>7r,

i,e. if < 3^8
- TT.

Again, if <j><ft, we have H = 2TTcos^, ^-
therefore H tan ft- F= 2 TT(cos ^> tan ft + sin <

- 2 sin ft)

= 2 TFsec /8 {sin (ft + <f>)- sin 2/3} ;
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therefore F< R tan
/?, if sin

(ft + <) > sin 2/?,

if /?+<< 2/3 or >7r-2/?,

!<</? or >TT- 3/3, which is negative.

Therefore, between the limiting positions of equilibrium given by
6 = 3ft

- TT and
</>
=

/?, F < -S tan /3, L e. the cube will not slip.

These are therefore the true limiting positions of equilibrium.

13. A particle is projected from a platform with velocity F
and elevation /3. On the platform is a telescope, fixed at elevation

a. The platform moves horizontally in the plane of the particle's

motion, so as to keep the particle always in the centre of the field

of view of the telescope. Shew that the original velocity of the

platform must be F--.
-

, and its acceleration q cot a.sma

Let A (fig. 28) be the point of projection ; BC the position of

the telescope, P that of the particle at the time t.

Then AB =AM-BM

= V (cos /3 sin /3 cot a) t + \g cot a t'

.,. sin (a B) .

= V-\
- t + \g cot a $*.

Sin a

Since this is true for all values of
,
we learn that the original velocity

of the platform must be F-^ and its acceleration a cot o.
sin a

xiv. Two bodies are projected from the point A in the same
direction with velocities v

l
and V

2
. P and Q are any two points

on their respective trajectories, and PM, QN the perpendiculars

upon the horizontal plane through A. If AM, AN, be denoted by
a

iy
cc
2 ,
and the angles PAN, QANby a

t ,
or
2 ,
then

4 2 cosa. 4 2 cos a
av* aj

2- + gvfa*2 1cos ax cos a
2

= 2w
tV (ff

a
i
a
*

s (a*
- a

i)
+ (v?ai

~ V
*a3 sin (^-ai)l-

Let i be the angle the direction of projection makes with the

horizon, and let t be the time of flight of the first body from A to P
(fig. 29) : then

a
l
tan a

t
=

0,
sin i . t - %gt

a

,
a

l

= v
l
cos i . t,

whence a, tan a
l

= a
t
tan i-\ ^ sec

2
i,

viz. gal
tan8

i - 2v* tan i + 2v* tan a, + gat

= 0.

Similarly ga2
tan2

i - 2v* tan i + 2w/ tan a, + ga.2
= 0.
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Eliminating tan i from these two quadratic equations,

(Zgatf - 2gaa
v

l

s
) {2v* (2va

* tan a
2
+ gas }

- 2v
a

'

(2v* tan a, + ga t)}

=
\9<*i (

2v
**
tan a

*
+ 9a,)

~
ff
a
* (^v i

tan a
i
+ 9<*i)Y>

which, on reduction, at once assumes the form given in the question.

15. Two buckets P; Q hang at the ends of a light string
which passes over a smooth fixed pulley. Above each bucket is a

fixed point from which hangs a light string supporting very small

balls of mass m at equal intervals a. Initially, the lowest ball of

the string above P is just touching the base of P, while a number
of balls of the string, above Q are coiled upon the base of Q, so that

Q descends and at the first instant of the motion one ball is lifted

from its base. Find the acceleration of the system after r balls

have been lifted off Q.

Shew that when the square of the mean velocity throughout
a complete interval from ball to ball is to ga as the difference

between the total descending and total ascending masses in that

interval is to m, the velocity at the end of the interval is approxi-

mately the same as it was at the beginning.

Let P, Q be the masses of the buckets, m the mass of each ball,

N the mass of balls initially on the base of Q. The geometrical condi-

tions of the problem shew that the number of balls in motion is always
the same ; therefore the moving mass is always P + Q + N.

At the tune let r balls have been lifted off Q: Let u
r
be the

velocity just after the impact last before < ; v
r
that just before, ur+l

that

just after, the next impact.

During the interval in which t lies, the weight on $'s side is

(Q+N- mr).g, and on .Ps side (P+ mr)g; therefore during this interval

the acceleration is

_Q+lF-P-2mr
P+Q +N P+Q + N 9'

And at the ensuing impact, since the velocity of one ball is destroyed
by the string above Q, we have

(P+Q+N) u
r+l

= (P+Q + N-m}vr
.

Now the space throughout which the system has the above accelera-
tion is a,

therefore (P + Q + N) {v*
-
u*} = 2 (Q +&- P -

2mr) ga,

, P+Q+N
V =

therefore (P + Q + N)
2 u

r^ -
(P + Q + y - m)

s u*

P+Q + N
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If then u
rJrl

u
r approximately, we have

\ o (Q+A
r
-P-2mr)(P+Q+N-mYa *= -

P+Q+N
or, approximately,

therefore * = ~ {Q +N-P- 2mr} ..... (1).-m r

) m l

But, if T be the time in which the complete interval is described, the

indefinitely small time of one impact being included, we have

Q +N-P-2mr
V=",+ P+Q +N ^

P+Q+N P+Q +N
P+Q +N-m ' P

therefore m
{p
P
+

+

Q
Q
+

+
/_m u

r

}
= (Q + N-P- 2mr) gr,

From (1) and (2) we obtain

a= g
{Q + N-P -2nvr}.m l

Now, if w be the mean velocity, WT = a
;
therefore r*= -

t ;

hence,
mw3

={Q + W P -
2mr} ga,

or w* : ga :: {(Q + N-
mr)

- (P + mr)} : m.

xvi. Prove that the periodic time of a body describing an

elliptic orbit under an attraction to a fixed point within the
O_ - S

ellipse is =-
,
where p is the perpendicular from the centre of

v/*
the ellipse on the polar of 0; assuming the acceleration of the

body at distance r from to be ^ ,
where p is the perpendicular

from the body on the polar of 0.

In Newton, Section n., Prop, vn., Cor. 3, it is shewn that the

force under the action of which a body P revolves in any orbit about a

centre of force C is to the force under the action of which it can revolve

in the same orbit in the same periodic time about any other centre of

force 0, as OP3
. CP to CG3

,
CG being drawn parallel to OP, and cutting

the tangent at P in G.
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Now let C be the centre, so that the law of force is fir and the
o

periodic time -p. : then (fig. 30)
N/V

force to CG3

force to 0~ OF.CP'
/CG\* /CY\*

therefore force to = u
(^ } OP = * ( -^ } OP,
\urj \VAj

CY and OZ being perpendicular to the tangent at P.

Now if UV be the polar of and CY', PZ' are perpendiculars let

fall upon it

OZ PZ1

so that

force to =

and the periodic time is r- : so that if the law of force be, as supposed
sfri

U.T f)
in the question, 5 ,

the periodic time will be 2w
-*y-

.

P v /*

The proposition (1), the truth of which is suggested by the wording
LUfF

of the question in which the law of force CL is given, may be readily

proved as follows. We have (fig. 31)

perpendicular from on tangent at P _ OR
perpendicular from C on tangent at P GR '

perpendicular from P on polar of LN
perpendicular from C on polar of CN'

PL being parallel to the polar of 0. It remains therefore only to shew
OH LN . ... ... , ,

that -^-75
=

J^TJ-, and this is readily seen to be true for
G-fl/ C-/V

fO CT
CO.CN= CV*=CL.CR, whence ^ =

^-,

A, , CR-CO CN-GL .. OR LN
and therefore -- =--, that is

[This is only a particular case of a more general proposition, in which
P and the tangent at P may be replaced by any point P and its polar :

see Salmon's Conies, 5th edition, Art. 101, where the proposition is proved
for circles. The simplest proof is analytical, viz. let the coordinates of

and P be h, k and h', k', then

pei-pendicular from P on polar of hh! kk'
1

perpendicular from centre on polar of a* b*

perpendicular from on polar of P
perpendicular from centre on polar of P '
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The proposition that an elliptic orbit might be described about any
/XT*

point under the action of a force Cj is due to Sir W. R. Hamilton
;

but the formula for the periodic time is, I believe, new. If coincide

with the centre, then the polar is at infinity, so that ^ = -^ = const = pf

suppose; thus the force is tiV, and the periodic time is j-, . If

T
coincide with the focus S, the polar is the directrix, so that p = -

:

&

thus the force is ^, and the periodic time is !-.(] , that is the

f
^ ^

force is
a ,

and the periodic time 17 It can be deduced from the law
r */P-

1X7*

,
that the most general laws of force such that, whatever be the cir-

cumstances of projection in the plane xy, the body will always describe

a conic, are

p.r

(ox +
and

Independent proofs that a body subject to the action of either of

these laws of force will describe a conic about the origin as centre of

force, and that these are the most general laws for which this is true,

are given by MM. Darboux and Halphen, Comptes Eendus, t. 84, pp.
760762 and 936941 (1877).]

xvii. A semicircle is immersed vertically in liquid with the

diameter in the surface; shew how to divide it into any number
of sectors, such that the pressure on each is the same.

Consider the pressure upon the sector BOP (fig. 32), AOB
being the surface of the water. The pressure is equal to the area of

the sector x pressure at the centre of gravity
= Ja

2

#.p j-J sin|0,
B*

a being the radius, and the angle BOP. Thus the pressure oc 1 - cos 6,

that is, <x the versed sine BN.

The construction therefore is : divide the diameter AB (fig. 33) into

n equal parts in N
I}
N

a ,
2?

3
..> and draw vertical lines N^M^ aJt^

&J&4 then the pressures upon the n sectors OBM^ , OM^M^ OM3
M

3,
. . .

are equal.

18. A fixed vertical circular tube full of air has within it two

diaphragms of weight w
1}
w

2
which fit the tube closely, and are

originally in contact with one another. They are separated by
water being forced into the tube through a small hole which is

closed when the weight of water forced in is w
s

. Shew that in the

position of stable equilibrium the line joining the weight to
t
to the
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centre of the tube is inclined to the horizon at the angle

-i wiY + Wa7 cos y + w3
s*p 7

w
a (I cos 7) + W2y sin 7

'

where 7 is the angle subtended at the centre of the tube by the

water.

Let O
l
be the angle required, O

s
the corresponding angle for w

3 ,

being positive when below the horizontal. Let or be the pressure of the

water at the lowest point of the tube, p the pressure of the air. Let a
be the radius of the tube. Let the area of a cross section be unity, and
let p be the density of the water.

At the diaphragms the pressures of the water are or - gpa (1
- sin 0^

and or - gpa (1
- sin O

t ) respectively, where O
l
+ y + 6

2
= ir.

Hence, resolving along the tube at w
lt

to
2 ,

we must have, in

equilibrium,

p + w
l
cos O

l
= or - gpa (1

- sin
8^),

p + w
a
cosO

a
= vr- gpa (1

- sin
2) ;

therefore w
t
cos 6

l
w

a
cos O

s
= gpa (sin 6l

sin
3).

Now gpay = wa
and 6

a
= ir-0

l -y,
therefore

J,y
cos O

l
+ w

ay cos (O l
+ y)

= w
3 {sin O

t
sin (6 l

+ y)},

therefore

{wjj-y
+ w

ay cos y + W3
sin y} cos

t
= {wa (1 cos y) + M?

2y sin y} sin
0,,

therefore ^ g to.y + to.y COB y + u>.
am y

^W
3 (1 cos y) + ws

sin y

xix. In order to determine the vapour-density of a liquid, a
small quantity of the liquid is sealed up in a thin bulb of glass and

weighed. The bulb and its contents are then placed in a glass
tube full of mercury, which is inverted in a bath of mercury. The
tube is graduated so* ais to- shew the volume measured from the

closed end. The upper end of the tube is now warmed so that

the bulb bursts, and the whole of the liquid is evaporated, and
becomes vapour above the mercury. Obtain a formula for the

vapour-density of the liquid in terms of m, the weight of the

evaporated liquid, v the volume of the vapour, t the temperature
of the vapour, 6 the height of the barometer in the room, h the

height of the mercury, over which the vapour is, above that in the

bath, and e the pressure of the vapour of mercury for the tempera-
ture t.

Ifm be measured in grammes, v in cubic centimetres, 6, h, e

in millimetres, and if t be the temperature centigrade, then the formula

for the vapour density is

m 1 + 0. 003665 1 760

~v 0.001293 b-h-e'

(See KohlrauscKs Physical Measurements, London, 1873, p. 50.)
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xx. Any two parallel rays are incident upon the surface of a

reflecting parabola. Give a geometrical construction for finding
the point of intersection of the reflected rays; and employ the

result to find the point in which any reflected ray cuts the caustic

by reflexion of a parabola, the incident rays being all inclined to

the axis at a given angle.

Let TP (fig. 34) be one of the rays, cutting the axis at

an angle a, let PT' be the reflected ray and PG the normal. Then
L SPT' = L SPG + L GPT = L SGP + L TPG = a. Therefore / SPF is

constant for parallel rays. Hence if P, P' be the points of incidence of

two parallel rays, describe the circle circumscribing SPP
1

,
and it will

cut either of the reflected rays in the point required.

Hence, to find the point on the caustic corresponding to the ray TP,
draw SQ perpendicular to tiP and QR perpendicular to the reflected

ray : R will be the point on the caustic.

21. A and B are fixed points, A being a luminous point and

B the nearest point of a glass sphere with refractive index p.

C a point on BA produced is the image ofA as seen by an eye on

AB produced beyond the sphere. Shew that A C is least when
. 3/A-2 ATt

the radius of the sphere is -=-AB.
Lt PI

Let the radius of the sphere be r, BA = u, AC =
oc; and let

be the centre of the sphere, and D the image of A .after refraction into

the sphere.

Then we have the equations :

JL l -^~ 1

OA OD~ r

J_ JL -./*" *

OD 00
~

r

therefore - = 2 ~'

or
r + u

therefore

therefore

therefore x = \ ,
if A = -/

T-
X

.

\r - u 2 (ft
-

1)

The least value of x will be found by solving this equation as a

quadratic in r.
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The equation is

r* + r (2u
-
Xx) + u

3 + x =
;

which has real roots if

(2w
-

A*)
8 > 4 (u* + ux),

or Xs
o; >4:u(l + X).

Thus the least value of x is * -
w, and the corresponding value

- .. /2(1+X) \ 2 + X 3/*-2
of r is (Xa;

-
2w) = f i-r- ' - 1

J
u = r u = ~- u.

22. If the Earth be supposed at rest, shew that Venus will

have the same apparent brightness at both points of her orbit

which have the elongation

COS

where e, v are the distances of the Earth and Venus respectively
from the Sun.

Hence shew that there are positions of Venus in her orbit

besides inferior and superior conjunction at which her apparent
brightness is a maximum or minimum.

Let S, E, V (fig. 35) represent the Sun, Earth and Venus re-

spectively, and ECfiCy the line of conjunctions.

Let SE =
e, SV= v, EV= x, SEV= 0, VSC, = <.

The projection on a plane perpendicular to EV of the illuminated

area is proportional to 1 + cos
(</> 0), and its distance from E is x.

Then the apparent brightness / is proportional to

l+cos(<-0)
X3

J

(a; + v)*
- e

2

therefore 7 = p. ^ ,
where /u is a constant.

The two values of x (xiy
x

s),
which correspond to one value of 0, are

given by the roots of the equation,

x3 + e
1

v*
cos = ~ . or x9

2xe cos $ + e* - v* = 0,
2xe

therefore x
i
x
z
= e* va = c* say.

It is required to find two points P,, P2
in Venus' orbit with the same

elongation 0, for which Ip^
= Ipt

. When these are equal, we have

or ,r,X
2

(x,
-

,)
+ 2w,at (x'

- x>) - <? (x,
3 - x) =

;
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therefore c
4 + 2vc* (xg + ,)

- c
2

{(xa + xtf
- c

2

}
= 0,

therefore (xa + xj*
- 2v (xa + x

} )
+ v* = v

a + 2c
2 = 2e

2 - v3

,

therefore x
s
+ x

t

= v J'2e* u2

;

and since e > v, N/2e
2 v2 > v, so that we must take the upper sign.

XT Q x2 + e
2 -v3

x,
3 + x,x x.+xaNow cos Q = = ^ = 3

/2e
2 - v^- v

Thus for this value of 6, /Pj = 7p2
= p ^ ^

^ 7/

Hence between Pj and P
a
there must be some point at which 7 is

a maximum or minimum.

WEDNESDAY, January 2, 1878. 1 to 4.

Mr FERRERS, Arabic Numbers.
Mr GREENHILL; Roman Numbers.

1. ENUNCIATE and prove Newton's first lemma.
A point P moves in such a manner that its distance from

a given point $ varies inversely as P^, the perpendicular let

fall from it on a given straight line. Prove that, if the tangent
to the path of P meet the straight line in Q and the line SB,
drawn at right angles to SP, in B, PR is equal to PQ.

Let P'
(fig. 36) be a point on the locus of P, join SP", and draw

FN' perpendicular to the given straight line. From SP' cut off SV
equal to SP, then when P' is indefinitely close to P, P V is perpendicular
to SP. Draw PU perpendicular to PN.

Now SP. P'N' = SP.PN ;

therefore (SV+ VP} (PN - PU} = SP . PN,

whence, since SV=SP,
VP' . PN- SP.PU= VP' . PU.

But VP', PU are each indefinitely small, as compared with PN or SP.

PP' PP'
Hence PN .

~ = SP~
;

therefore PN sec NPF = SP secSPP
;

therefore PQ - PR.
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2. Find the radius of curvature at any point of an ellipse.

If the centre of curvature, corresponding to a point on an

ellipse, fall on the conjugate diameter, the area of the corre-

sponding circle of curvature is equal to that of the ellipse.

This gives, with the usual notation,

radius of curvature = CD,

CD3

_^ n
AC.BC~

therefore CD' = AC . EC,

whence the result follows at once.

3. Given the velocities at three points of a central orbit,

determine the position of the centre.

If the velocities be proportional in magnitude to the sides of

the triangle formed by their directions, the centre of force coincides

with the centre of gravity of the triangle.

Let ABC be the triangle, S the centre, SP, SQ, SR the

perpendiculars on EG, CA, AE respectively. Then, SP, SQ, SR are to

one another inversely as EC, CA, AE, or SP . EC = SQ . CA = SR . AE.
Thus the areas of the three triangles, SBC, SCA, SAB, are equal, or S is

the centre of gravity of the triangle.

iv. Prove that a body, attracted to a fixed centre, will describe

areas about the centre proportional to the times of describing
them.

Define the hodograph of an orbit; and prove that, if the

velocity in the hodograph is proportional to the angular velocity
of the corresponding point in the orbit about the centre of

attraction, the orbit will be an ellipse described about the focus.

The velocity in the hodograph being proportional to the acce-

leration in the orbit, the acceleration is therefore proportional to the

angular velocity about the centre of attraction.

But the angular velocity about the centre of attraction in a central

orbit is inversely proportional to the square of the distance, by the

principle of the equable description of areas.

Therefore the acceleration is inversely proportional to the square of

the distance, and the orbit is therefore a conic section described about a

focus.

v. Find the law of attraction under which a body will describe

an ellipse about a focus.

Prove that, when the distance between the centres of the
Sun and the Earth is r, the attraction between them is

47r
2 SE a3

T
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where T is the periodic time, S the mass of the Sun, E of the

Earth in astronomical units, and a is the mean distance between
their centres.

(Maxwell, Matter and Motion, Article cxxxiv.)

vi. State Kepler's laws
;
and give Newton's dynamical inter-

pretation of them.
Prove that, neglecting the disturbances produced by the

planets on each other's orbits, the statement of Kepler's third

law should be amended to
" The cubes of the mean distances of

the planets from the Sun are as the squares of the periodic times

multiplied into the sum of the masses of the Sun and the planet."

(Maxwell, Matter and Motion, Articles cxxxvi, cxxxvii.)

vii. Explain the different methods used in Astronomy for

defining the positions of terrestrial and celestial objects.
Describe the shortest course of a steamer which is to go from

one point to another without going beyond a certain latitude,

supposing the great circle course to cross that latitude.

If a string be stretched between the two points on a terrestrial

globe, wrapping it on the parallel of latitude, the string will represent
the shortest course, which therefore consists of two great circle arcs,

touching the parallel of latitude, and the intercepted arc of the small

circle of latitude.

viii. Give the arguments in favour of and the proofs of the

Earth's rotation.

If, at any instant, the plane of vibration of a Foucault's pen-
dulum pass through a star near the horizon, prove that the plane
will continue to pass through the star so long as it is near the

horizon.

The angular velocity of the vertical plane through the pendu-
lum is equal to the resolved part of the apparent angular velocity of the

celestial sphere about the vertical, and consequently the plane of

vibration of the pendulum will follow a star near the horizon. (Maxwell,
Matter and Motion, Article cvi.)

ix. Describe the transit-circle, and the residual errors of

adjustment to be allowed for in the reduction of an observation.

If a north and south collimator be made to collimate with

each other, and if a be the micrometer reading for the coincidence

of the moveable wire of the transit with the cross wires of the

north collimator, ft the reading for the south collimator, and 7
for coincidence with its image when pointed downwards at a

trough of mercury, prove that the level error is 7 ^ (a + /3).

The line of collimation is the line drawn from the centre of the

object-glass through and perpendicular to the line of the pivots.

S.-H. P. 4
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Therefore if c be the micrometer reading for the line of collimation,
C = J(a + 0).

If / be the level error, then I = y c ;

and therefore I = y | (a + /?).

10. Describe and explain the phases of the Moon.
Mars rotates on his axis in 24 hours, and the periods of

sidereal revolution of his two satellites around him are 7| hours

and 30 hours respectively. Find the length of the lunar day for

each
;
and describe and explain the appearances respectively

presented by them, between two successive transits over any
meridian of Mars. In what directions do they respectively appear
to move across the sky?

If Zj ,
L

2
be the number of hours in the lunar day for the first

and second satellites respectively,

= -A - AV, therefore A = ICtf
.

therefore L = 120.

Hence the lengths of the respective lunar days are \\\ hours, and
120 hours, respectively.

Since the time of the sidereal revolution of each satellite is very small

as compared with that of Mars, the length of a lunation will be sensibly
the same as that of a sidereal revolution. The first satellite will there-

fore go through its phases about 1^ times between two successive

culminations, and the second about four times, The first satellite, since

it revolves round Mars in less time than that in which Mars rotates on
its axis, will rise in the West and set in the East. The second will rise

in the East and set in the West.

11. Define a True Solar, and a Mean Solar, Day. From
what two causes does the difference between them arise ? Define

the Equation of Time
;
and prove that it vanishes four times

a year.

Assuming that, if the orbit of the Earth were a circle with

the Sun in its centre, the Sun's right ascension (a) and its lon-

gitude (I) would be connected by the equation tan a = tan I cos &>,

where w is the obliquity of the ecliptic, prove that the equation
of time will have its greatest value when tan a = Jcos to, and that,

if be then the difference between the Sun's longitude and right

a (sin i u>Y
ascension, tan = .

-
.

x/cos a)

The Equation of Time, in the case supposed, would arise only
from the obliquity, and will therefore have its greatest magnitude when
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the difference between a and I is greatest. Now

/ 7 x ,
1 cos a)

tan (I
-

a) = tan I

1 + tan* I cos W

. sec w 1= tan I
sec ID + tan2

1
'

TT a , sec w 1
Hence tan I + sec to =

,

-^-rtan I :

tan
(I a)

*
__

T

therefore tan
2
1 - - --r- tan I + sec to = 0.

tan (I
-
a)

Hence, in order that tan I must be real, we must have

fsecoj-l)
2

< 7 n-\ c
- 4 sec w not negative.

(tan (I
-

a))

If 6 be the value of I - a, when this quantity = 0, we have

)

8

= (sin&m)*

cos o>
'

COS to)

Hence, this is the greatest value of tan
(I
-

a).

12. Explain the cause of Eclipses. Why are the intervals

between the Solar ecliptic limits larger than between the Lunar ?

Having given that the line of nodes of the Moon's orbit makes
a complete revolution, in a retrograde direction, in 6799*5 days,
and that the length of a lunation is 29'53 days, prove that

eclipses will recur, in an invariable order, after 223 lunations.

If S be the number of days in a synodic revolution of the Sun and
the line of nodes, then, since the nodes move in a retrograde direction,

S~ 365-25 6799-53

7164-78

2483528-3325

1

346-630089 nearly.

Hence, 19 synodic revolutions of the Sun and the line of nodes

= 6585-97169 days nearly.

And 223 lunations = 6585-19 days.

It thus appears that 223 lunations are very nearly equal to 19

synodic revolutions of the Sun and the line of nodes, and therefore that,

42
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at the end of this period, the Sun, the Moon and the line of nodes will

be nearly in the same relative positions as at the beginning of it.

Hence, eclipses will recur after the lapse of this period in an invariable

order.

THURSDAY/ January 3, 1878. 9 to 12.

Mr GKEENHILL, Arabic numbers.
Mr NIVEN, Roman numbers.

1 . SHEW how to find the convergents to a continued fraction.

Prove that the ascendin continued fraction

a, aa an a
l a^

The logarithm of the radical

leads to the expression

log R = log& + log & + g P* + log&
1 . 3

<*

But, by reduction,

a,aa ...a... aa ...n 34 ...n n

fift, & ... /?_,/?,

and therefore

Putting log /?,
=

J, , log /33
= 6

2 ,
. . . log (3n

= bn ,
we obtained the re-

quired equality.

2. Prove that in a spherical triangle,

cos a = cos 6 cos c + sin b sin c cos ^4,

and hence prove that

21 _ *an2 i ^ ~ ^ tan 5 tan ^ c cos -4 + tan
2

^ c

1 + 2 tan 6 tan c cosA + tan
2

^ 6 tan* c
'

If -4
t ,
A

t ,
A

s,...An be w equidistant points on a' small circle

of a sphere of which the pole is 0, and if P be any other point on
the sphere, prove that

tan
2

| f^i tan
2

^P^ tan
2 PA n

tan2" %OA-2 tan" \ OA tan" \ OP cos nPOA + tan
2"
|OP

"1 + 2 tan" i 6U tan" \ OP cos nPOA + tan2" 0.4 tan
2"
| OP

'
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Denoting the angle POA l by 0,

tan8

1PA ,
tan2 PA

a
. . . tan8

1P^B

r=n _l tan2

$OA-2 tan J 04 tan |0Pcos (
+
0)

+ tan8 0P

r=0 1 + 2 tan 04 tan \OP cos ( + 0\ + tan
2
A 04 tan2 40P

\ n /

which is equal to the required result, by De Moivre's property of the
circle.

3. Find the length and the equations of the shortest line

joining the straight lines whose equations are

x a, _y b _z c

cos a cos ft cos 7
'

x a y b' z c
and r

= ^
57
= j.

cos a cos ft cos 7

Prove that the volume of the tetrahedron of which a pair of

opposite edges is formed by lengths r, r on these straight lines is

a a', b b', c c

cos a, cos ft, cos 7
cos a', cos ft, cos 7'

If d be th shortest distance and the angle between the

opposite edges, then the determinant is equal to d sin (Frost, Solid

Geometry, 60) ;
and the volume of the tetrahedron formed by the given

opposite edges, being ^ rr dsin.0, is equal to the given result.

4. Prove the theorem for the differentiation of a product any
number of times; and deduce the theorem

Prove that

d\ n
f d V / d\r dn

i

Putting x = e, and using the theorem

n d
n

y
dxn

we have
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dx) dxn '

5. Form the general equations of equilibrium of an inexten-

sible string under given forces
;
and prove that the form of the

chains of a suspension bridge with uniform horizontal load is a

parabola.
If an endless chain be placed round a rough circular cylinder,

and pulled at a point in it parallel to the axis, prove that, if the

chain be on the point of slipping, the curve formed by it on the

cylinder when developed will be a parabola ;
and find the length

of the chain when this takes place.

The chain being on the point of slipping, the friction at every

point is parallel to the generating lines of the cylinder, and therefore the

resolved part of the tension of the chain perpendicular to the generating
lines of the cylinder is constant.

Therefore the pressure and consequently the friction at any point per
unit length of the chain is proportional to the cosine of the angle be-

tween the tangent line to the chain and the generating line.

The chain is therefore in equilibrium under forces, similar to those
on a chain with uniform horizontal load, wrapped round a smooth ver-

tical cylinder, and therefore the curve formed by the chain when deve-

loped will be a parabola.

Analytically, if x be the abscissa of any point in the developed curve,
and

\j/
the inclination of the tangent to the axis of x,

T

Therefore -=- (tan \li]
= - cos \b,

as ^ a

or **!-
dx*~a'

the differential equation of a parabola of latus rectum .

P~

The required length of the chain, when on the point of slipping, is

2(6
therefore the length of the arc of a parabola of latus rectum

,
com-

prised between the ordinates - ira and ira.
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vi. Shew that two similar curves, if similarly placed, have

always one centre of similitude
;
and that, if not similarly placed,

they have always one pair of homographic points coincident.

A triangle, the magnitudes of whose angles are given, moves
with its vertices on three given right lines, shew that corresponding

points of the triangle always lie on right lines, except one point
which is fixed.

Two similar and similarly situated figures may always be

brought by a movement of pure translation to have any assigned pair of

liomographic points coincident; and, starting from this position, any
movement of pure translation given to one of them will bring one pair
of kornographic points into coincidence

; those, namely, which lie in the

direction along which the translation takes place, ond whose distance is

equal to the given translation. In the original position, therefore, one

pair of homographic points coincide and form a centre of similitude.

Any relative position of two similar figures in a plane may be

attained by moving one through a given angle. After turning through
a given angle a, a pair of homographic points will come into coincidence

in P, where APA' = a, and AP : A'P ratio of similitude of the two

figures. P is therefore found as the intersection of two circular arcs.

Let the three fixed lines form a triangle ABC (fig. 37), and let afty
be the triangle of given form. If circles be described round the triangles

Afty, Bya, Caft, they will intersect in a point P, at which the sides of

the triangle afty will subtend constant angles, it is therefore one of the

homographic points of the triangle, and may be shewn to be fixed, for

i. BPa. = L ftya, and CPa = Cfta, and therefore

L SPG = 27T-
(ft

+ y)
-

(TT- A) = TT + A -
((3

+ y),

a constant angle. Similarly APB and APG are constant angles; P is

therefore fixed. It may also be proved that any homographic point 8 of

the triangle describes a straight line; for describe circles round aP8,

yPS, to cut C, BA in C'A'.

The angles P8G' + PSA' = two right angles, for they are respectively

equal to PaB, and PyB, which are together equal to two right angles.

Hence A'SC' is a straight line. Further, the angle PC'S = angle P8a,
and is therefore fixed. Hence C', and similarly A', are fixed points.

[The theorem, as well as the above elegant demonstration of it, are

due to Mr McFarlane G-ray, of the Board of Trade.]

It may also be proved analytically ; for, if x^ yl
be the co-ordinates

of a, x
2y2

those of ft, ay/3
those of y, we have

(x3
-

aij)
sin y= (xg

-
x^) sin ft cos a- (ya

-
y,)

sin ft sin a,

(y3
~ y^ sin y = (ya

-
y^} sin ft cos a + (xa

- xj sin ft sin a.

The co-ordinates of any fourth homographic point are given by

(I + m + n) xi
lx

l
+ mx

a
+ tvc^

(l+m + n}yt
=

ly l
+ my2

+ nya ,

where I : in : n are given ratios. These equations being all linear, it
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follows that, if a^y,, ay/2> xaya satisfy linear relations, we can express
a?/ in the form

where A
1
S

1
C

1
D

1
are linear functions of I, m, n

;
the locus of the fourth

point will thence be a straight line, except for the particular values of

I : m : n which make A
l

=
0, Cl

=
;
in which case the fourth point is

fixed.

vii. In the moon's motion there occurs an inequality whose

argument is (2 2m)pt 2/3 ; investigate the magnitude of the

corresponding term in the expression for the longitude, and explain
the physical meaning of the term.

viii. Define the specific heat of saturated vapour ;
and shew

that, if h be the specific heat of the vapour, c that of the liquid
from which it is derived, at the same pressure and temperature,
L the latent heat, then

dL L

What conclusion can be drawn from a knowledge that h is

positive for some substance ?

Trace the entropy of a pound of water from the solid into the

gaseous state.

The following brief sketch of the fundamental formulae in Ther-

modynamics may perhaps help the student. We shall suppose that we
are dealing with a fluid body, so that the variations of the thermodynamic
quantities due to changes of the state of strain may be neglected, and
that therefore, of the three magnitudes pressure p, volume v, temperature
6, one is a function of the other two. We shall also suppose the heat

expressed in mechanical units, and suppose that we are dealing with
unit of mass of the body. To change the state of the body from v, 6 to

v + dv, 6 + d0, 8H units of heat must be added, where

%H=Mdv +KvdO ........................... (1),

increase of energy contained in it

dE = m-pdv ............................. (2);

and the First Law is equivalent to assuming that dE is an exact dif-

ferential with regard to v, 0.

[SIT
For a reversible cycle, the Second Law gives I = 0, so that if

(3),

d$ is an exact differential; in other words, between any two states,
E - E and <

- < are independent of the mode in which the passage
between them has been effected.
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"We may write equation (2) in the form

dE=6d^-pdv ............................
( 4) ,

and from this equation flow at once a variety of elementary results. We
may choose any two of the five magnitudes v, 0, p, <j>,

E as the two

independent variables, and imagine the other three expressed in terms
of them by means of three relations which are proper to the substance

itself, and do not depend on the manner in which its changes of state

take place.

We shall here content ourselves with considering the ordinary case,
in which v and 6 are chosen, as variables. In this case

and the condition, that the right-hand member may be an exact differen-

tial, is that

d<j> _ rip

dv
=

7ie
'

This result is equivalent to Carnot's theorem,

for since 6d<j>
= Mdv + K

t dO,

ir
fi

<t<l>
fi
dpM = V - - = V
-jfi

.

dv do

To this may be added the other result A' = 9 -.^ .

av

The most important case of this theorem is when the body passes
from the liquid to the gaseous state. For let

<J>
and <., be the values of

the entropy just before and just after the transformation has been
effected

; then, being constant,

dH^L
e 0'

where L is the latent heat
;
and therefore, if h and c be the specific

heats of the body as saturated gas and as liquid on the point of

boiling,

When h is positive, as in the case of ether, hdd is the quantity of

heat which must be given to a pound of saturated ether to raise its

temperature d&, it being still kept .saturated. If, therefore, it were kept
in a non-conducting vessel and the pressure were suddenly increased,
the temperature could not at the .same time rise to the corresponding
saturation temperature, unless heat were added

; therefore, if no heat

were added, the ether would be partially condensed. The reverse takes

place with steam.

To trace the entropy of a pound of water from ice to steam.

To avoid considering the strains in ice let us suppose it just on the

point of liquefaction at state
v,,^,,.

and let 0,''^ be the corresponding
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values when it becomes gaseous, and 6vp the final values iu the state of

perfect gas.

In liquifying < receives the change <

' -
<

o
= .

where K, is the capacity of water for heat
;
and if we suppose that it is

[hK
sensibly incompressible, the change of < will be I

"
dO.

JOo
"

In evaporating, the change of < is </ - <,
=

-^

l
.

In passing from state v
l
$

l
to vO as a perfect gas, < receives a

change

where c is the specific heat of dry steam under constant volume : if k be

its specific heat under constant pressure,

pv = (Jc c) ;

Adding all these changes together, we find

The value of
</>,

so found, is evidently independent of the temperature
and pressure at which the evaporation takes place.

ix. State the laws of the magnetic action of a current, and

investigate the magnetic strength of the field inside a long solenoid.

An electro-magnet is constructed by winding a wire uniformly
round n long coaxal circular cylinders of soft iron of equal thickness

and length, enclosing each other
;
the number of layers of wire

between two adjacent cylinders being always the same and equal
to the number of layers outside the last cylinder; shew how to

find the magnetic moment of the combination.

Solve fully the case where n = 2.

In this problem we suppose the force inside a solenoid to be

uniform, and thus neglect the disturbing effect of the ends ; and the iron

cylinders will be magnetized uniformly, if we neglect in addition their

mutual induction which would thus depend only on their ends.

The force on the outside will thusjbe, to the same approximation,
sensibly zero.
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The solenoids being all of equal thickness and similarly wound, the

force on unit pole inside any one of them will be uniform and equal to

4:Trmi, where i is the strength of the current, and m the number of turns

per unit length. This magnitude we shall denote by F.

If A
I}
A

3 ,...\>e the areas of the sections enclosed by the coils,

beginning with the outside one, JB
l , 3 ,

...those of the cores, K the

coefficient of induction for soft iron
;
the strengths of the poles of the

iron cores will be

Thus the total number of lines of force from the electro-magnet will be

^a(
and its magnetic moment will be

lmi^(
I being the length of the electro-magnet.

x. Define the electric capacity of a conductor, and the co-

efficient of electric induction between two conductors
;
and shew

that the latter is negative, and numerically less than the former

which is positive.
If the capacities of two bodies are A, a when they are each at

an infinite distance from any other body, shew that when they are

at a distance R, great compared with their dimensions, their capa-
cities are increased in the ratio IF : R* Aa.

Call the two conductors (A), (a),
and let (A) be charged with

E
a quantity E of electricity ;

the potential at (a) is -=
; and, if (a) be

uninsulated, there will be induced on it a charge ^ . The potential
Sk

due to this charge at (A) is - - E, which being sensibly constant over
fm

this conductor, will not alter the distribution of its electrification. The

total potential at (A) will therefore be f-r - ^\ E. But, if (a) were at

p
an infinite distance, the potential at (A) would be

-j
. The capacity of

fL

(A) is therefore changed in the ratio R3
: E3 - Aa, The same result is

evidently true of (a).
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THURSDAY, January 3, 1878. 1 to 4.

Mr FEEBEBS, Arabic numbers.
Mr NrvEN, Boman numbers.

1. IF the equation f(x) = have two equal roots, one root of

the equationf (x)
= will be equal to either of them.

If the equation ax3
-f 35a;

2 + 3c# + d = have two equal roots,

they are each equal to i ra* ac b

If the equation ax3 + S&cc
2 + 3cx + d=0 have two equal roots,

they must be equal to one of the roots of the derived equation

ax* + 2bx + c = 0.

Hence the expressions ax3 +
ybx*

+ 3cx + d, ax9 + 2bx + c, must have
a common factor, or the equations

033
s + 2bx + c = 0,

bx" + 2cx + d = 0,

must have a common root, to which the two equal roots of the given

equation must be equal. Hence the value of this root is given by the

equations

x* 2x 1

bd c* be ad ac b
3 '

Hence the equal roots are each equal to i rs , or to 2 = , ,2 ac - b be -ad
which two expressions are equal to each other, when the given equation
has two equal roots.

2. Sum the series

m cos 6 % m
3
cos 30 + m5

cos 50 ... ad infinitum,

m being less than unity ;
and prove that it has always the same

sign as m cos 0.

Trace the curve

r = a (cos a cos 6 $ cos 3a cos 30 + cos 5a cos 20 . .
.).

Express the doubly infinite series

2
m=0

2
n=

/
jyn+n

cos mx cos ny
m=i n=\ * '

mn(m
2 + n2

)

in the form of a singly infinite series of cosines of multiples of y.

(a) If C denote the sum of the series

m cos -
1 m3

cos 3$ + ^ m* cos 50 - , . . ad inf.,
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we have

20 =meo - * m3
c3

* + 1 m5

+ me-^9 -
$ m3

e-^~ + *

= tan m" 1 me^i* + tan' 1 we

_. 2m cos
= tan -r ,

'

1 -m
,, . ~ ,

, _,2wcos0
therefore C7 = A tan -=-r .1-m2

This result holds for all values of 6, since m is less than unity, and
since 1 m2

is positive, C has always the same sign as m cos 6.

(/?)
We have

2r = cos(0-a)-icos3 (0-a) + icos5(0-a) ...

4- COS (04- a) -^cos 3 (04-a)4-icos5(0-a) ...

Now it is known that the upper line of the right-hand member of

this equation is equal to ^TT from =
(|TT a) to =

%ir + a, and to

ir from & = ^TT + a to = TT + a.

And that the lower line is equal to ^TT from 6 = (^Tr + a) to

6 = ^TT a, and to ^TT from 0= JTT a to =
^ir a.

Hence the whole expression is equal to from = -(ir + a) to

=
(ITT -a), to \ir from (|TT a) to =

^ir a, to from
= Tr a to -TT 4- a, and to TT from ^ = 'R + a to O TT a.

Therefore the curve represented by the above equation will be an
arc of a circle, radius \ira, subtending an angle IT 2a at the centre; and
also (corresponding to zero values of r) the centre itself.

(y) It will be sufficient, for this purpose, to sum the coefficient of

. n cosny . .,/_ 1)"
2 viz. the series

n

cos a; cos 2x * -rt cosmos
I ^ a _i j_ 1 I ^^_____^^__ _t.

Call the sum of this series u, then

d*u 3
cos 2x cos 3sc

-= ^
~~

7?f U ^~ COS w "
_. "T* n ' ~""

dx* 23
c^W) 4- log(l 4-e-i

= | log (2 4- 2 cos #)
=
log 2 + log cos

This holds from x = - it to a; = TT,
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therefore u = Aenx + e~
n*

fX
y>

fX
y>

2 lg 2 +""* I c"* log cos = dx + *"*
I

e~"* log cos - dx,n Jo * Jo

A and B being arbitrary constants.

To determine A and B we observe, first, that the value of u is

unchanged by a change in the sign of n. Hence A = B. And putting
x = 0, and denoting

1 1

(")
= 2.1- log 2,

therefore A = | < (w) +
-
2 log 2.

3. If a> be the angle between the positive directions of the

axes of as and y, prove that the axes of the curve

ax2 + 2hxy + by*=l
are represented by the equation

(a cos to h) a? + (a b) xy + (h b cos w) y
2 = 0.

If x, y be the rectangular co-ordinates of a point, and

and a, /3 be the values of
, rj at a focus of the curve

prove that a
2 = = ^ , /3

2 = -7 r, .

ab h ab h

We may determine the foci of the curve

by the consideration that the two tangents drawn from either focus

satisfy the analytical condition of representing a circle.

Now, these tangents are given by the equation

(aa
2 + 2Aa + 6)8*

-
1) (a? + 2h&] + brf

-
1)
=
{(aa + hp)+(ha + bj3)rj- I}

2
.

Hence, since for a circle the coefficients of 2 and if are each zero

a (aa
2 + 2Aa + bp*- 1)

-
(aa + A) =

b (aa
3 + 2hap + bft*

-
1)
-
(Aa + 6/3)

2 = 0,

therefore (ab -h*)P*-a = Q

., f
therefore = rs , -7 ra .

6 - k* ab - h"
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4. Shew how the values of J cos" xdx and f sin" xdx may be
made to depend on those of jcos

n~* xdx and J sin"~
2

xdx; and prove
that

[*
' * 1

fl
(2r>

-
1) (271-1) (2yi-3) )

J
S1

2(n
+
n(n -I)

+
n(n-l)(n-2)

H
"}

(2-l)(2n-3)...37r"

2n(2n-2)...4.2 4
'

"We have (sin a;)

2" =
(sin a;)

2*"2

(1 cos
2

a;).

i /"/ \2-2 / \2 7 (sin a;)*""
1

cos a? 1 f. .And I (sin a:)

2" a

(cosxrdx = ^- = +-^ =- Uswx^dx,
J 2n 1 27i ij

therefore

f . r, . (sin a;)
2"" 1

cos x If..
/(sma;) ao;= ((sina:) ax - ^ ^ ^ =- Hsina;) oa;

;
v

J
v

2?i - 1 274 - 1
,/

v

2?i 1 f. . ._ 7 (sui a;)*""
1
cos x

= I (sin x) dx .

Hence, writing un for I (sin a;)

2"
dx,

Jo

271-1 1

.=-ar-i-^i

c . .. .

Similarly 8 2'. (-!)'

j f
4

2 7 /"

* 1 - cos 2ar TT
and M,

= I sin* x dx =
\

= dx = ^ .

/o ^o *

1
/I

2re-l (2n-l)(2n-3) |
^--2^i|-

+
w(ri

_ 1 )

+
w(w _ 1

) (w _2)-j

(2M-l)(2ro-3)... 3 w
h

2?i(2?i-2) ...4.2 4'

5. Prove that the Action, through any arc of the path of a

projectile, is proportional to the area subtended by that arc at the

focus
;
and express it in terms of the chord joining the ends of

the arc, and the sum of the focal distances of those ends.

The action, in general, =
fvds, and in the case of a projectile

v= ( -
) p, 4a being the latxis rectum of the parabola, and p the perpen-

\w
dicular on the tangent.
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Hence the action = 2
(
-

) A, A being the area subtended by the arc

at the focus.

And this may be expressed in terms of the quantities mentioned in

the question, by Lambert's Theorem.

vi. Investigate the "
equation of continuity

"
in fluid motion

;

and explain clearly what its physical signification is. What form
does it assume in the case of an incompressible fluid moving ir-

rotationally ?

A stream of uniform depth and of uniform width 2a flows

slowly through a bridge consisting of two equal arches resting on
a rectangular pier of width 26, the bridge being so broad that

under it the fluid moves uniformly with velocity U. Shew that,

after the stream has passed through the bridge, the velocity poten-
tial of the motion is

a brr 2a 7 s 1 . iirb iirv _!^- Ux H-- - Z, -* sm cos - e a .

a TT i ^ a a

the axis of x being in the forward direction of the stream and the

origin at the middle point of the pier.

Find the equation of the path of any particle of the water.

The water is supposed to issue from the bridge with uniform

velocity U, and the motion will be evidently irrotational, if we neglect
friction.

The velocity potential satisfies the following conditions :

a-b ,,
<b =- . Ux, x - GO

,a

= U when x = 0, except from y = -btox = + b, when it =
;

-^-
= at the banks, or when y = a and y = + a.

These conditions are evidently satisfied by the function

provided

. r_-SrU|C08^-0 from y=0 toy = b,
(t & Oi

= U from y = b to y
- a.
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A
i
is easily found by Fourier's theorem

; we have

a - b ,,
f'

a
i-rry iriA.

f
a

iiry f
a

ivy .

. U
/

cos dy /
cos

8 - dy = U I cos * dy.a Jo a a J a Jb a

The first of these integrals vanishes, and the integration of the two
others furnishes

2aU 1 ivb

whence

a- b T. 2aU , 1 . iirb iiry - i

. Vx 4 3- . 2, sin cos - e a
.

a ic r a a

The stream lines, which in this case coincide with the lines of flow of

the individual particles, are given by

dif/ d(f> d{(/ d(f>

dy dx ' dx dy
'

hence \b = \( -^ . dy - -=? . dx]
J\dx

J
dy )

a-b TT ZaU^l . iirb . ivy -=2
= - .U.y g- 2*^sm sin - e .

a TT i a a

vii. Investigate the phenomena observed when a star is viewed

through a telescope, and the object-glass is limited by a small

rectangular opening.

When the opening is a parallelogram of any shape, shew that

the bars of the same order form parallelograms similar to it, but
turned through a right angle.

We have to consider the image formed on the focal plane of

the telescope. When the parallelogram is rectangular, we find from

Airy's tract on the Undulatory Theory (Prop. 20), that the dis-

placement at any point (p, q) of the focal plane is

/ f . 2ir / px + qy\
\dx\dy sin ( vt - B + -~

\
,

b being the focal length of the object glass, dxdy any element of area of

the rectangle, and the origin of co-ordinates being the projection of the

centre of the rectangle on the focal plane.

The total intensity of light at p, q, is also found to be the square of

X 2irpe\ ( b\
sin -== 1 (

-- - -

/ \2irqf b\ /

2e, 2/ are the sides of the rectangle in the direction of the axes of

x and y.

If the parallelogram be oblique, the angle between two sides being

o>, and we choose axes parallel to its sides, we must substitute dxdy sin w
for dxdy. If -&, K be the contra-ordinates of the point on the i'ocal

S.-H. P. 5
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plane considered, the function px + qy for rectangular axes becomes, for

oblique axes, TSX + ay. The contra-ordinates of a point referred to

oblique axes are the intercepts cut off by perpendiculars on the axes of

x and y ;
in fact & =p + q cos <a, K q + p cos o>.

The edges of the parallelogram being again 2e, 2f, the intensity of

illumination for any given colour is, at any point, the square of

/ b\ 2irvre\ f l\ .

4e/sm a) I s
- sin - - -.sin 7

/ .

\Zirwe b\ J \2irKf b\ J

The bright or dark bands of any colour are given by

b\ , , b\
=
^.J, tf=fr.J,

where J is a pure number.

They are therefore lines at right angles to the axes
; and, since

us : K :: f : e, they therefore evidently form figures similar to the open-

ing, but turned through a right angle.

viii. Investigate the velocity of transmission of sound through
a uniform gas ; stating the correction to Newton's result introduced

by Laplace, and explaining how the magnitude so introduced may
be found by experiment.

A gas is formed by mixing a number of simple gases in the

proportions by mass of m
1

: m
z

: m3
...... The specific heats of

these gases at constant volume and pressure are, respectively,
c
t , &J ;

C
2 ,
&
2 ;

. . .
,
and the velocities of sound in them are w

x ,
w

2 ,
U

B
. . .

;

shew that the velocity of sound in the mixture is given by

^ /mew2

^2 ___
2 (mk) \ k

2 (me)
'

S (m)

k
If the simple gases be such that - is the same for all, what will

c

this result become ?

r0 f)j

The velocity of sound in a gas is given by MS
-^r-2

. . y,

where v is the volume of a pound of gas at pressure pg
and temperature

n ,
6 is the temperature of the gas under consideration, and y = k : c.

Let there be a mass of gas ml
+ m

a
+ ...... consisting of the given

gases in the proportions ml
: m

a
: m

a ,.., and let it be kept in a vessel

of given volume, and let heat be applied to raise the temperature of the

whole 86 degrees ; then the quantities of heat absorbed are m^cfiO,
m

2cj>0, ... while, if C be the specific heat of the whole mixture under
constant volume, the total heat absorbed = (m }

+ ni
a
+ ...) C&O ;

therefore (m l
+ m

t
+ m

a
+ . .

.)
C = m^ + m

a
c
a
+
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In a precisely similar manner

K$ (w) - 2 (mty.

Now, if F be the volume of 1 Ib. of the mixture at po) 0)

We see from the equations written down above that

hence we have

6
Q ''C

me

S (mk)

A;

If - were the same for each of the component gases

S(m^)- '

ix. Give the theory of Wheatstone's Bridge; and explain how
it can be applied to determine the position of a fault in a telegraph
wire.

If A and B be the ends of a wire with one fault, and R, S the

resistances to a current sent from A when B is insulated and to

earth respectively ;
and if R', S' be the corresponding resistances

to a current sent from B, prove that R : S : : R : S'.

Prove also that the same result will be true if there are two
faults.

In Cumming's Electricity, Art. 192, it is proved that, if the

fault be at (7, and the resistances of AC, CB, and of the fault be,

respectively, xyz, then, for a current sent from A,

a y*
f-f / _L <v ,X O* -L

J-1t *KS T &j fj tO
~

y

similarly, for a current sent from B,

A comparison of these expressions at once shows that

E : S :: R' : S'.

"We may similarly solve the case where there are two faults, one at

C, and another at D.
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Let AC=x, CD =
y, DB=z,

and let the resistances of the faults at C, D be u, v.

First, let the current go from A to B, and let B be to earth, and let

the potentials at A, C, D (fig. 38), be V, F,, F
2 ,
and let the currents in

AC, CD, DB be i
lt

i
2 ,

i
a ,

and those through the faults

also
i,
= i

a +j l ,
and i

y
= i

3 +ja
.

If we eliminate from these equations all the currents and potentials

except ij
and V, we obtain

(! 1 1 1 1}
V{ + + +_ + __ I

(uy uz uv yz yv)

.(11111111)= ^,x\ + + + + + -t- + -.

(xy xz xv uv uy uz yz yv)

But since V = Rl^ we find ,

(! 1111)
R{ + + 4- + >

\uy vy uv uz yz)

fl 1 1 1 1 1 1 1)= X< + + + + + + 4- I.

(xy yz uy vy uv xv uz xz)

To find S we may suppose the resistance in DB to be infinitely great,
that is z = oo .

This gives us

l 1 1\ /I 1 1 1 1\+ + )
= x( + +-- + + 1 .

y vy uv/ \xy uy uv vy xvj
oS

uy vy uv/ \xy uy uv vy

The corresponding expressions for R' and $' are found by inter-

R
changing x, z and M, v; but the symmetry of the expression for -~

o
shews that it will be not be altered by this change ; that is to say,

R : S :: K : S'.

MONDAY, January 14, 1878. 9 to 12.

Mr PRIOB, Arabic numbers.

Mr NIVEN, Roman numbers.

1. A BODY being subject to any given forces, find the condi-

tions of equilibrium.

A gipsy's tripod consists of three uniform straight sticks freely

hinged together at one end. From this common end hangs the
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kettle. The other ends of the sticks rest on a smooth horizontal

plane, and are prevented from slipping by a smooth circular hoop
which encloses them and is fixed to the plane. Shew that there

cannot be equilibrium unless the sticks be of equal length ;
and if

the weights of the sticks be given (equal or unequal) the bending
moment of each will be greatest at its middle point, will be inde-

pendent of its length, and will not be increased on increasing the

weight of the kettle.

Let DA, DB, DC be the sticks ; ABC the hoop, D the common
end from which hangs the kettle. Let

to,,
w

a ,
w

3
be the weights of the

sticks, TF that of the kettle.

Firstly, the forces on DA are its weight, the reaction at D and that

at A. Hence, taking moments about a vertical through D, we see that

unless the horizontal reaction at A meets this vertical it will produce an
unbalanced couple round it, and there will not be equilibrium.

Thus the reactions at A, B, C must all meet in the vertical

through D ; also being normal to the hoop they meet in its centre;
therefore the vertical through D passes through the centre of the

hoop ; therefore the sticks are of equal length. Similarly we learn that

the reactions at D on DA are in the vertical plane through DA.

Secondly, let the inclination of each stick to the horizon be 6 and
its length 21. Then if X

1}
Y

l
be the horizontal and vertical com-

ponents of the reaction at D on DA, we have, taking momenta
about A,

X, 21 sin Y, 21 cos + W Icos 0.
i i i *

therefore 2Z
l
tan = 2Y

1
+ w

l
.

Similarly if X
2 ,
Y

a ,
X

a ,
Y

3
be the reactions at D on DB, DC, we

have

therefore 2 (Xl
+ X

a
+ X

3)
tan 6 = 2

(
Y

l
+ F

2
+ F

3)
+ w

l
+ iv

a
+ w

3 .

Also, since the hinge at D is in equilibrium, we have

sin 2A sin 2 sin 2C
'

From the four last equations we obtain

sin 2A . cot 6

sin 2A + sin 2 + sin 2C

sinV OAAA m*M, I
jjp.

IV T^ H/' T^ IV I M/.

1

=
sin 2A + sin 2 + sin 2C \ ~~2 J

~
2

'
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The bending moment about a point P of DA, at a distance z from

w % z
-Jy- .

g
cos + Y

l
z cos -X

l
z sin 0,

and is therefore greatest when

w. z cos Q n -V

-i-HT + r, cos -
JT, sin =

0,

2?
i e. when = (X}

tan - TJ

therefore the bending moment is greatest at the middle point of each
rod.

The bending moment about the middle point of DA is

Z cos 0. 1+7X

cos w
l _ aw

l

~T~ ~~8*

where a is the radius of the hoop : therefore the bending moment about
the middle point of DA is independent of I and W.

2. Find the intrinsic and Cartesian equations of the common
catenary.

A string of length 21 hangs over two smooth pegs which are in

the same horizontal plane and at a distance 2a apart. The two
ends of the string are free and its central portion hangs in a cate-

nary. Shew that equilibrium is impossible unless I be at least

equal to ae
;
and that, if I > ae, the catenary in the position of

stable equilibrium for symmetrical displacements will be denned

by that root of ce
c = I which is greater than a.

In any position of equilibrium let 2s be the length of the

catenary. Then we have

and, by equating the tensions on each side of a peg, we have

therefore I = ce?,

an equation which gives c when I is given.
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It is plain that we may increase the value of I indefinitely. The least

possible value of I is given by
? - a

= e
c - c<? .

-
2 ,

or c = a,

and then I = ae.

a

The roots of the equation ce = I are separated by those of its first

derived equation

-- e
c = 0,

a

which has only one root, c ~ a.

Therefore cec I has only two roots, one less and one greater
than a.

It would appear from general reasoning that the root less than a

corresponds to unstable equilibrium ;
for if I be very large, this root will

give a catenary consisting approximately of two vertical portions which
will clearly rise or fall, if a portion of string be pulled over each peg.
The following is a more formal proof.

Suppose s slightly increased by pulling over a length Ss of each

straight portion. Then the tension T
l
on the catenary side of the peg is

w (y + By) and that T
a
on the other side w (I s 8s), where w is the

weight of an unit length of string, y is the height of the peg above the

directrix of the original catenary, y + S?/ its height above the new
directrix.

/t
<* _t - a _a

Now = ^ + e c
~

* = --

therefore S?/
= Sc

]
--

j- [ ;

(c c )

therefore T
l
-T

2
= w(y + 8c^~ -I + s + 8c

\ c

But y + s = cec =
I,

therefore T^-T2
= -

f- (c
-

a) I.

c

c - --

Again, cs - ay= -
{(c a) ec (c + a) e c

\

~
I / N

5 '((e-a)
^-, -^oc 3
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where we observe that the successive numerical coefficients in the ex-
2a

pansion of e c dimmish.

Therefore (cs
-
ay) = |

<f
{(*

-
2)

L +
(*-*)^3

+
...j

,

and is therefore negative.

(cs ay)Now &? = 3c -I 5-^ >
,

therefore 8s and 8c are of opposite signs.

If then 8s be positive, 8c is negative, and T
l
T

2
has the same sign

as a c; i.e. if c> a, the equilibrium is stable for this displacement;

and, if 8s be negative, the result is clearly the same.

The problem may also be readily solved by finding the depth of the

centre of gravity of the whole string beneath the horizontal plane

through the pegs and forming the condition that this should be a
maximum.

iii. Determine the conditions of stability, for small displace-

ments, of a body floating in water.

A vessel, which may be treated as a cylinder symmetrical about

a plane parallel to its length, floats in apparently neutral equili-
brium : prove that the equilibrium will really be stable for small

displacements if a/c < sin a, where 2a is the breadth of a transverse

section at the water-mark, a the inclination to the horizon, and K
the curvature of the side at that point.

If the vessel be displaced through a small angle, discuss the
nature of the motion which takes place in righting.

Let G be the centre of gravity of the vessel (fig. 39),

H that of fluid originally displaced,

AB original plane of floatation,

A'B' the new plane after the vessel has turned through an

angle ft.

Let A B and CD cut in 0, and let OC = c,

Let the equation of section referred to Cx and GGz be

x* = as + 2bz+(e-I)z* (I),

higher powers than z* being neglected.

When the origin is transferred to 0, the equation will be

(x + c)
3 =a* + 2bz + (e

-
I)*

8
.

If we put x = r cos 0, z = r sin 6,

+ c*-as =
(2).
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"We shall now approximate on the supposition that /3 is small
;

it is

clear that c is a small quantity of the order /?, as the calculation itself

verifies. With this understanding, it is clear that in (2)

(TI
- r^ = 4

2

(1 + S), where S =& +
~

-
,

and therefore r
l

- r
s
= 2a (1 + $).

Since the volume of the fluid displaced is always the same,

(ri
_

rf) dO = 0, therefore bfi*
-

2c/3
= or c = | 6j3.

o

The turning moment consists, partly of the weight of the fluid

originally displaced acting through If, and partly of a couple, being the

weights of the two wedges on opposite sides of ; the latter, reckoned

as a righting couple.

But

therefore righting moment

*)n? fP
= -%- sin ft + a \ {e0V + 3 (bO

-
c)*

-
c"} d&,

The equation of motion of the vessel is

Since the equilibrium is neutral, F. GH=-=- ,
o

therefore '

The equilibrium will be stable if e be positive.

Now, from (1),

-, ,
dx d?x da ds 3

i3ut -^- = cot o, -7-5
= - cosec a . -j- . -7-

= cosec a . *,
a* a* as cc

hence c = cosec
3 a (sin a

-
UK) ........................ (4).
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The equilibrium will therefore be stable if ax < sin a.

The equation of motion (3) shows that the righting oscillations are

not harmonic
; (3 may be expressed in terms of t by means of elliptic

functions.

If /? be the extreme angle through which the vessel swings, the

period of a complete oscillation is

V a3

Jo jR*-&'

iv. A particle moves in a plane curve
;

state the expressions
for the accelerations along and perpendicular to the radius vector

from a fixed point, and investigate the differential equation of the

path when the forces acting on the particle pass through the fixed

point.

A particle describes a parabola under two forces, one constant
and parallel to the axis, and the other passing through the focus

;

prove that the latter force varies inversely as the square of the
distance from the focus.

Shew also that, if the force through the focus be repulsive and

numerically equal, at the vertex, to the constant force, the particle
will come to rest at the vertex; and find the time occupied in

describing any arc of the curve.

Let the force along the focal radius vector be P, and the con-

stant forceft
then the equations of motion are

(fig. 40),
2

^=fx-fPdr
+ const....................... (1),

But, in a parabola, p" = ar, therefore - = ^ ,

p Z'r

therefore v3 = 2r (/+ P)

also (1) may be written v" ~ 2fr 2 fPdr + const, j

therefore, substituting, we obtain 2fPdr + 2Pr = const.,

Pr* = const, or P oc - .

r

If P be repulsive, and = ^ where ,,= f,
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This vanishes when r = a : the particle, therefore, comes to rest at

the vertex.

To find the time in any arc of the curve,

therefore
. dt - -

. .

(*
-
a) A/?* + a

Let r + a = cm*,

_ A-. + g
1 V a '

/ /
, -r i* n + a

where

and
fj ,

r
a
are the focal distances of the extremities of the arc.

v. A particle moves on a smooth plane curve under given
forces; shew how to determine the motion and to find the pressure
on the curve.

The force between two small masses attracting according to the

law of the inverse square of the distance is equal, at distance a, to a

very small fraction - of the weight of either. They are suspended

by two strings of length I from points a apart in a horizontal plane,
and set to perform small vibrations in the same vertical plane ;

prove that the motion of each will be compounded of two harmonic
2

motions whose periods are very nearly as 1 : 1-1-- .

no,

Let the strings at any instant make angles 0, < with vertical :

and let m be the mass of each particle (see fig. 41).

In finding the small oscillations of the system we may neglect squares*
and products of 6, </>.

The horizontal distance between the masses

= a + 1 (sin <
- sin 0)

the vertical distance between them

= I (cos <
- cos 6)

=
0,

and therefore the distance between them = a + 1
(<j> 0), to the same

degree of approximation.
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The equations of motion, remembering that the force between them

at unit distance = . are
n

. -_.
n{a+l(<f>-0)}

3 n na vr

4= --ff^ + (4-0).n na vr

From these equations we derive the following by addition and sub-

traction,

the solutions of which are

+ <k = JL + A sin (pt + a)
no,

<f>
= B sin (p't + a'),

where p> =
g-

,
and p" =?(l-}.a a\ na/

21
When n is very great, p : p' :: 1 + : 1 nearly.

6. State D'Alembert's principle; and explain its relations to

the principles of Conservation of Energy and Momentum.
Two particles A, B are moving always with equal velocities

starting from rest at the same time. A is of constant, B of variable

mass. Shew that at any instant when the mass of B is equal to

that of A, twice the kinetic energy of B has the same rate of

change as the sum of the amounts of work done by the actual

forces producing the motion of A and B.

Let v be the velocity of each particle at time
t,

and suppose
them to be moving in lines parallel to the axis of x, Xlt

JT
8 being the

forces then acting upon them.

Their equations of motion are

. dv -, d . _ . _

Now, the kinetic energy of B =

= Av -r + v
-j- (Bv) (at the instant

ut ut

when B = A)
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or

which is the theorem as stated.

7. When a rigid body is moving in two dimensions, shew that

at every instant there is an instantaneous axis of rotation
;
and

that, if the moment of the effective forces about this axis be equated
to the moment of the impressed forces about it, the time of small

oscillations may thus be found.

Two circular rings, each of radius a, are firmly jointed together
at one point so that their planes make an angle 2a with one another,
and are placed on a perfectly rough horizontal plane. Shew that

the length of the simple equivalent pendulum is

(1 + 3 cos
2

a) cos a
a--

; -r-r- --
2 sura

If m be the mass of each ring, their moment of inertia about

an axis through their centres is

2mas
cos

2 a + mas
sin

2 a = ma* (1 + cos
2

a).

The motion of the rings may be made clear by considering that of

the horizontal cylinder passing through them. A cross section of this

cylinder will be an ellipse whose semi-axes are a and a cos a, the latter

being vertical in the position of equilibrium. As this ellipse rolls on
the plane in small oscillations, the normal at the point of contact always

passes through the centre of curvature at the extremity of its minor
axis

;
therefore both the pressures on the rings pass through an hori-

zontal axis at height a sec a above the plane. Let their sum be Ji.

Then, taking moments about the lowest generator of the cylinder, which
is the instantaneous axis of rotation, and denoting the angle turned

through by 0, we have

72/3

m {a
2

(1 + cos
8

a) + 2a2
cos

2

a} T = {2mg a cos a - Ra sec a} 0.
cit

Now the centre of gravity of the system has no vertical velocity in

the oscillations
;
therefore

R=2mg;
therefore the above equation becomes

dsOm {a
2

(1 + cos* a) + 2
2
cos

2

a} -^ = 2mga (cos a
- sec a) 6 ;

ut

therefore the length of the simple equivalent pendulum is

1 4- cos
2 a 4- 2 cos

2a (1 + 3cos2
a)coStt

a ^-.
-r - a

,
. .

2 (sec a cos a) 2 sin a
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viii. Determine the initial motion of a rigid body which re-

ceives a given impulse ;
and find the screw round which it will

begin to twist.

A perfectly rough inelastic heavy ring rolls, with its plane
vertical, down an inclined plane, on which lie a series of pointed
obstacles which are equal and at equal distances from each other,

and which are sufficiently high to prevent the ring from touching
the plane. If the ring start from rest from a position in which it

is in contact with two obstacles, prove that its angular velocity as

it leaves the (n + l)
th obstacle is given by

2g . l-cos4n
7

o> sin i sin 7 cos 7 .
-r--

,

a 1 cos 7

where a is the radius of the ring, i the inclination of the plane to

the horizon, and 27 is the angle which two adjacent obstacles sub-

tend at the centre of the ring when it is in contact with both.

The motion is supposed quite regular ; that is to say, it is not

supposed to have become so great that, in turning round one of the

obstacles, its centrifugal force is sufficient to carry it away.

The moment of inertia of the ring about an axis through its centre

perpendicular to its plane is Ma3

,
and about an axis through a point on

its circumference perpendicular to its plane 2Ma*
; therefore if o>

n
be its

angular velocity as it leaves the (n + l)
th

obstacle, and w' just before it

meets the (n + 2)
th

,
its increase of kinetic energy

where h is the space through which the centre has fallen in passing
between the two obstacles.

But, by the geometry of the figure (see fig. 42), h=&in.i* 2asiny,

therefore a> o>
* = sin i sin y,a

We have now to consider the impact at the (n + 2)
01 obstacle B. If C be

the centre of the ring, the impulsive forces will consist of two, R along
C, and the other T through E at right angles to EC. There will be

no impulse at A, because all force at that point is instantly relaxed at

the moment that the ring comes in contact with E and begins to turn

round it.

Before impact the velocity of C at right angles to CE is aw' cos 2y,
and after it a<n>n+1 ,

hence Ma(ian+l o/cos2y) = T.

Also, taking moments about the centre of the ring,



JAN. 14, 9 to 12] PROBLEMS AND EIDERS. 79

By combining these equations, wn+1 = w'cos2

y, hence substituting in

above equation,

2a
w2

. ,
sec

4

y ID
a = sin i sin y." a

To solve this put wn
s = A + B cos

4"

y,

2a sin i sin -y . cos
4
y

where 4 = --,
-"r r

.

a 1 cos y

To find B we observe that when n the motion is just commenc-

ing, and therefore A + B =
;

8 20 . . . l-cos4

"y
to = sm % sin y cos y . -.-T-=* .

a 1 cos y

The greatest possible value of O is given by

2 2g sin i sin y cos
4

y" = '

1 4
-

Ja 1 cos y

but it might happen that, before this is attained, the regular motion we
have supposed breaks up by the centrifugal force round an obstacle

overbalancing the effect of gravity in keeping the ring on the point.

Let us find the condition that this may take place in turning round
the (n + 2)

th
obstacle, and let the radius be then inclined at an angle to

the vertical.

The angular velocity is given by w2 - o>
n

2 + -
{cos (y

-
i)
- cos 6], and

QJ

the component of gravity along CB is g cos
;

the value of 6 for

which the normal reaction against the obstacle vanishes is given by

n

2

/ -\ n /l+ COS (y - ?) = 2 COS K.

9

If, therefore, ---=-~ '

- + cos (y - i) < 2, thei'e will be some
1 - cos y

period of the motion at which the ring will bound off from the obstacles,
and the foregoing investigation will not hold beyond this period.

ix. If a system of rays of light emanate from a point, shew

that, however they may be reflected or refracted, they will always
be normal to some surface

;
and apply this result to shew that a

small pencil of rays always passes through two focal lines at right

angles to each other.

A pencil of rays diverging from a point P, whose position is

variable, is incident on a refracting sphere at a given point in a

given direction
;

if Q be the corresponding primary focus after re-

fraction through the sphere, G the position of Q when the incident

pencil consists of parallel rays, Fihat ofP when Q is at an infinite

distance, prove that
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where a is the radius of the sphere, i the angle of incidence on the

sphere, and r the angle of refraction.

Shew how to find the corresponding theorem for a pencil re-

fracted through any number of spheres, the axis of the pencil

lying always in one plane.

Let the axis of the ray pass through the sphere in the direction

PABQ (fig. 43), and let AP = u, Aq l

=
u^ ,

and let the corresponding

quantities for B be BQ =
v, -* Bq l

=
v^ , q l being the primary focus after

refraction into the sphere at A.

The equation which gives u t
is

p. cos
8 r cos

8
i p. cos r cos i

u
t

u a

and /*= . . and a the radius of the sphere,smr

In the same way we find

p. cos
8 r cos

8
i _ p. cos r

- cos i

v
l

v a

we have to combine these with v
l

= u
1
+ 2a cos r.

I observe, first of all, that

X X

. sin i cos
8
r 1 sm(i r)

where X = -r-
sin r cos tea cos i sin r

We have then

2a cos r u v

Ac u c v c'

If the left-hand be written -
,
we get, on multiplying up,a

uv c (u + v) + c
8 = a {2uv c (u + v)},

uv (l-2a)-c(u + v)(l-a) + c
s

=Q,

1-a
,

. fc(l-a))
8

C
8

(l-a)
2

~ - '

(A).
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Xe sin i cos
2 r 1 sin i cos r

But
2 cos r sin (i ?) '2 cos r 2 sin (i r)

'

sin i cos r sin i cos r

1 2a 2 sin (i r) 2 sin i cos r 2 cos i sin r
'

a cos
8
i sin r

and c= ... .
,

sin
(i r)

therefore the right-hand member of equation (A) may be written

fa sin 2i cos r\
s

j.r2

\ 4 sin (i r)J

If we put the above equation in the form

(*-/)<-/)=*
we see that when u = oo

,
v =yj and when v = co

,
u =f;

u f is therefore what has been denoted by PF and v f by QG.

We obtain therefore PF. QG = K*,

. T_ a sin 2i cos r
where K= -

: -T-.
-r- .

4 sin (i r)

To extend the theorem, we observe that the distances of one pair of

conjugate foci P, Q from another pair P , Q are connected by a very
simple relation; for if P P = x, QoQ =

y, both being measured in the

same direction along the axis of the pencil, and if P
9
F= u

, QQ
G = v

,

we have

*Vo =^2
>

(u -x)(v +
?/)
= *.

It results from these that

- - - = I
x y

If we trace the foci corresponding to these foci through the system
of spheres, and suppose p, q are their last positions, then, if pq = X, we
have an equation of the form

A B
-y+ ~=LX x

This result is evidently of the same form as the theorem in the first

part of the question.

10. Give a formula for finding the parallax of Mars by two
observations made out of the plane of the meridian.

Shew that a small error in the place of the zero-point on the

graduated scale of the altazimuth will have no effect upon the

accuracy of this formula, if

/sin z sin z.\ /siri sin

gin A,/

'

\tauA, tanA

S.-H. P.
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where z
t ,

z
z>
h

l}
h

2
are the observed zenith-distances and hour-

angles of the planet at the two times of observation, and c is the

real decrement of its hour-angle during the interval between
them.

Hymers's formula (Art. 260) is

TJ , IT \ i (A-A-c)cosSP (parallax)
= i - v ' '

{-^ :
,' 2 sin \ (Aj

- h
a )

cos \ (Aj + A
2)

cos I
'

where 8, I are the declination of the star and latitude of the place of

observation respectively.

Then an error in the zero-point from which the zenith-distances are

measured will not affect the accuracy of this formula if 8 log P =
j

i.e. if

8A.-8A,, 8A.-8A. 8A, + 8A
a

~* "^ r~ i /~* r \" ^

A,
- A

8
- c 2 tan (A t

- A
2 )

2 cot J (A, + A
2)

Now cos z
l
= sin 8 sin I + cos 8 cos cos ^ ,

therefore sin z
l 82j

= cos 8 cos I sin h
l
8h

1
.

Similarly sin z
a
8z

a
= cos 8 cos I sin A

2
8A

2 ;

and, since the error is in the zero-point of z
lt

2
2,

8z
l

= 8a
2
.

Hence the above equation becomes

sin z sin z sin z sin 2 sin z
l

sin

sin A sin A sin A sin A sin A -=
'

2 cot J (A

therefore =
{cot J(A t

-
A.)

- tan l^ + A
2)}

si

sin z, cos 7i, sin 2;, cos h

2 sin Aj

'

sin |(Aj
-A

2)
cos ^ (Aa

+A
2)

2 sinA
2

'

sin |(A t

- A
2)
cos ^ (7^

+A
2)

sing
2 ")

1
"

(tanA, tanAj sin A,
- sin A

2

'

fsin 2, sin z,) fsin 2, sin 2;.) A, A. c
therefore {-s-V --= T f

+ i* 1^~ r ~~l^ f
=

^~^! r
(sin h sin A J (tan h tan A J sin A sui A
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MONDAY, January 14, 1878. 1 to 4.

Mr GIAISHER, Arabic numbers.
Mr GREEXHILL, Roman numbers.

1. IF the series a + ajc + a
2
x* + &c. and b + b^x + b

2
x* + &c.

be convergent, and equal to one another, for all values of so, give
the ordinary proof that a = b , a

1
= b

l ,
a

2
= b

2 , &c.; and point out

the difficulties in it.

Prove that, if a < 1,

(1 + ax) (I + a?x) (1 + a*x) . . .

_ - ax oV oV .

^
1 -as +

(1
- a2

)(l -a
4

)

+
(1 -a

2

)(l
- a4

)(l -a
6

)

*

(i) In order to make the ordinary proof complete it has to be
shewn (1) that we are entitled to put o;=0, and so obtain a = b (see
De Morgan's Algebra, chapter vin.). We then have left

ajc + a
a
x* + &c. = 6jc + &

2
cc

2 + &c., viz. x
(a^ -f a

s
x + &c.) = 0,

or say xS= 0. This implies either that x or that =0, and it might
be contended that for x finite, S was equal to zero, but that when x was
infinitesimal or zero, xS was zero in virtue of the factor x. It has
therefore to be shewn (2) that S must be zero for all values of x, and
the difficulty is to establish this without introducing conceptions with

regard to vanishing quantities that really belong to the differential

calculus.

(ii)
Let

(l + ax) (1 +a?x} (l+a
s

x) ... = 1 +^
1
a5 + ^l

2
a;

8 + &c-

Put a*x for x, and this becomes

(1 + cfx) (1 + cfx) . . . - 1 + A ^cfx + A g
a4
x* + &c.

Therefore

(1 + ax) (1 +A l
a*x + A

2
a*x* + &c.)

= 1 + A
t
x + Ajt? + &c.

Equating coefficients

a + A^a
2 = A

lt Ap
3 + A

a
a* = A

3 , A^+ A
3
a6 = A

3, &a,

whence

A -
a

A -
a*

A A -
a*

A &c
'~l-a2 ' 2 ~1-^ " ^

3 ~l- 8 2 ' *

and the theorem follows at once.

2. Obtain from Demoivre's theorem the exponential value of

cos x, and thence, or otherwise, find the expansion of cos x in

ascending powers of x.

62
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Prove that

_./tan20+tanh2<f>\ ,
_t

/tan0- tanh <f>\ _,, ,.
tan 1 -

od 4. v. ol I
-r tan

*

[

-
^ ,-U = tan '

(cot
\tan 20 tanh 2</ \tan + tanh <pj

where tanh and coth are denned by the equations

e*- e
-*

e*+e-*
tanh x = -5 ^ ,

coth x =
e
x -e~x

(i) By Demoivre's theorem

cos 6 + i sin 6 = (cos 1 + i sin I)
6 = k9 say,

therefore cos 6 i ski 6 = k~, and 2 cos 6 k + k~ e
,
2i sin 6 = k? k~.

Expanding the right-hand side of the second equation,

2i sin 6 = ^(O log k +^?^- + &c.\
\ l.^.o /

whence i ^~ = lg ^ + powers of d* (a convergent series).a

Proceeding to the limit 0=0, this becomes i = log k, whence k =ei
,
and

therefore 2 cos Q = &* +e~'i0, 2tsin B = e^-e~ i9
.

(ii)
"We have

tan 2a; = = -
^

= -. -
. if t denotes tan 0,

1 tan x t t

tanh 2x = = -
.-,

= ^rT ==
,
if T denotes tanh <i,s T l + T'

and

. 1

" 1

V. .. /
-

1

) V

.. /tan 2^ + tanh

tan 2^ - tanh

3. Shew how to obtain the sum of the mth
powers of the roots

of an equation in terms of the coefficients.

If sm denote the sum of the m01
powers of the roots of the

equation
xn + aX

1
' 1 + aX~

2
- . , + an = 0,

prove that am is equal to the coefficient of h
m
in the expansion of
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Let a,,
a

2 ,
... a

n
denote the roots : then

x" + a^"'
1 + a

a
x*~* ... + a

n
= (a3-a1 ) (x-ag)

...
(<e
-
aj,

whence, dividing by x* and putting x~ l = h,

I + aji + aji* ... + ah* = (1
-

aji) (1
- a

ah) ... (1
-
ah)

= g-sift . e~ *s*h3 . e~ JS3*
S

. . .

and the theorem follows by equating coefficients of hm.

4. Find the sine of the angle between the two straight lines

represented by the equation

Ao? + 2Hxy + By
1 = 0.

Prove that the equation of the locus of the points of intersec-

tion of pairs of tangents to the ellipse

r2
?/

-4--L-1
2 T^ T2

~~ A
a b

inclined to one another at a given angle a is

(tf

2 + y>-a
2

-&y = 4cota(ay +&V-a2 2

).

If a be the angle between these straight lines,

Tlie former equation is (A + B)* 4 cot
2 a (H*

- AB) = 0, and the

equation of the pair of tangents drawn from the point h, k to the ellipse

being (a*k* + b*h* - a2

b*) (a
2

y* + 6V - a2
6
2

)
-(% + b*hx - as

b*)
s = 0, we

have A = cfb
2

(V - b
2

),
H=- as

b
2

hk, - a*b* (h
2 - a2

),
and the result in

the question follows at once by substituting these values.

5. If ABCD be a spherical quadrilateral inscribed in a small

circle, prove that A + C= B+ D.

If a, &, c, d be the sides in order of a spherical quadrilateral
inscribed in a small circle, and a be the diagonal joining the inter-

sections of a, b and c, d, prove that cos
2

a =

sin | b sin c + sin ^ a sin \d

(i) Let
(fig. 44) be the centre of the small circle circumscrib-

ing ABCD', then, since OA, OB, OC, OD are all equal, therefore

L OAB = L OBA, iOAD=L ODA, L OCB = L OBC, L OCD= L ODC,
whence, adding these four equations, A + C = B + D.
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(ii)
Draw the chords AS, EC, CD, DA, ED then chord

AB = 2 sin &, chord EC = 2 sin ^ b, &c. We thus have a plane quad-
rilateral whose sides AS, ... DA are 2 sin a, ... 2 sin^c? and diagonal
ED is 2 sin \a. Now in the plane quadrilateral ABCD, whose sides

AB, BC, CA, AD are a', b', c', d', by a well-known theorem,

whence

(sin |asin|& + sin |csin|c?) (sin
~sin A ci

sin o sin Jc + sin %a sin ^a

Therefore

8 . sin 1 6 sin ^c (cos
2

|a+ cos
2

1 c? l)+sin|asin|e?(cos
2

^6
sin ^b sin ^c + sin ^asin^c?

and cos
8

|a + cos
8

\d 1 = J (cos a + cos
c?)

= cos \ (a + d) cos \ (a
-
d) :

similarly cos
2

1 b + cos
2

1 c 1 = cos \ (b + c) cos | (6 c),

whence we have the formula in the question for cos
2

\ a.

vi. Prove that the equations of the generating lines through
the point

COB + _rSm + am
'

~
'

on the hyperboloid of one sheet

/> ^ A f *

are - = - sin + cos 0, r = cos + sin ;

a c be
'

0" 2 77 Z
and - = sin + cos <6. ^ = - cos <f> + sin <>.

a c 6 c

Prove that, if a model of a hyperboloid of one sheet be con-

structed of rods representing the generating lines, jointed at the

points of crossing; then if the model be deformed it will assume
the form of a confocal hyperboloid, and prove that the trajectory
of a point on the model will be orthogonal to the system of confocal

hyperboloids.

The equations of a generating line may be written

x a cos 6 y b sin r

asintf -&cos0
=

c
=

,y{(a*+ c
2

)
sin

2 6+ (6
2 + c

2

)
cos

2

0}'

where r is the distance of the point xyz from the plane of xy measured

along the generating line.
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33 ?y 2/

"VVlien the model is deformed, r, 0,
-

, ^ ,
- will remain unchanged,

Gt u C

provided a* + c
3 and &* + c

2 remain unchanged.

Hence when the model is deformed it assumes the shape of a con-

focal hyperboloid, and the trajectory of a point on the model is a series

of corresponding points, which is therefore orthogonal to the system of

confocals.

[Another solution is given by Prof. Cayley in the Messenger of

Mathematics, Vol. vii. pp. 51, 52 (August, 1878).]

vii. Find expressions for the co-ordinates of the centre of

curvature and the radius of curvature at any point of a plane or

tortuous curve, taking the arc of the curve as the independent
variable.

Prove that, at corresponding points of a plane curve traced on
a cylinder and its development when the surface of a cylinder is

developed into a plane, the ordinates drawn to corresponding axes

which are perpendicular to the generating lines of the cylinder
are in a constant ratio : prove also that the product of the radius

'

of curvature and the normal intercepted by the axis is the same
at corresponding points of the curve and its development.

Let AP
(fig. 45) be a plane section of a cylinder, and JBN a

transverse section, the planes of AP and BN intersecting in the axis

OM
;
and when the cylinder is developed into a plane, let the curve AP

be developed into the curve AP' and the curve BN into the axis BN',

corresponding to the axis OM.

Then PN= P'N' and the arc AP= arc AP'.

Hence if J/P = y, X'P' = y', and if a is the angle between the planes
of ^Pand BX,

y'
= y sin a

;

and therefore if y=f(s) in the curve AP, then y'
= cos af(s)

in the

curve AP', s denoting the arc AP or the arc AP'.

If p denote the radius of curvature at the point P of the curve AP,
and if the normal PQ be denoted by n and the angle MPQ by i^,

then

-j
= sin \1/ f' (s).

as

and cos
\fr

-~ =f" (s),
Ct/S

COSli
or p =

y
.

Also n = y sec
\j/
= sec \]/f(s),

therefore pn = *:,> .

'
.
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If p', n', i/r'
denote the corresponding quantities at the corresponding

point P of the curve AF,

dy' '

cos \lf' -7- = sin af" (s),
ds

or p =

and nf

y' sec i//
= sec

\j/'
sin af (s) ;

therefore pV= ,.
' =

pn.

[As an example, suppose the cylinder a right circular cylinder ;
then

the curve AP is an ellipse of eccentricity cos a, and the curve AP is

the curve of sines
;
and tlms it is evident that the surface generated by

the revolution of the ellipse AP about the axis OM is applicable on the

surface generated by the revolution of the curve of sines AP' about the

axis BN'\ that is, if the part of the surface, generated by the revolution

of an ellipse of eccentricity e about any axis parallel to its minor axis,
between two meridian planes inclined at an angle %ire be taken and the

ends joined, the meridian curve will become the curve of sines; a

problem due to Mr Droop, and set in the Senate House in I860.]

viii. Integrate :

1
,
and

Prove, by" means of the substitution

a x _a d c y
x b

~
b cy d'

that, if m be any positive quantity, and a > b > c> d,

(a x)(x d} (x b}(x c)
dx

a d b c )

1

'

,

f
(1) /

J
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are found by differentiating with respect to a and c respectively

f _
}
and this, when a > c, is equal to

2 _, /7+lc
. tan . / ,

Ja -c V a-c'

when a < c is equal to

then

or

1 . Jc + x-Jc-a-== log
y v

f dx

cos
if r

,
1JL t*y

(a>c) = -

a sin
(f>
+ c

1 a sin <A Jo? c
2

2a /^a
2

c
2 a sin < + Ja* c

8

1

"

ajx-c-xja'-c'

(a < c)
=

2aja
:> -c* a N/a;

2 -c2 + a; N/a
2 -c2 '

1

- a
itan"

1

v/c
2 -az

(iii)
If

-
cc_ a d c y

x b b c y-cT

dx dx dy dy
"P 5" "I"

a x x b c y

-6 7 c- d ,

dx = , dy.
a x .x b c y.y d

Also x = b.a-d.c-y + a.b c.y-

where

x d ad. c d.by-i-D,
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m, ,. a-x.x d x b.x c
Therefore 5 + =

a-d b- c

= a b.a d.c d. b y . c y + a b.b c.c d.ay.y d-!r D3

,

, , r , fa y .y d b y . c y\ ~,= a-b.a-d. b-c.c-d( 2 ^ + - ^ 2
)-f-I>

8
.

\ a-d o-c J

mi / f"
1

(a x.x c)"'"
1

,
Therefore /

1 , L dx
/a-x.x d x b.x- c\

Jb \ a d b-c )

S/a b. a d.b c.c d.a y. c y\
m~ 1

c d. a b.a d.bc

. I
^ J "

I
'

d. b c. c dfa y.y d b y . c(a b.a d.b c.c d/<

r ~&~ ~
v

i

a-d bc
(a-y.c-yr

1

,

fa v.jt d b-y .c- y\
m *

U y + ^ ^1
f<*

- y 3

\ a (
'

d \ a-d

ix. Shew how to integrate the differential equation

Obtain the complete primitive of the differential equation

and shew that exactly the same equation is obtained by expressing
the condition that p should have equal roots in the differential

equation as by expressing the condition that c (the arbitrary con-

stant) should have equal roots in the complete primitive; and
determine the geometrical meaning of this equation. Is it a sin-

gular solution ?

If 2y = xp + - ,

differentiating

dp a dp

dx .. a
or p-- x = --.

t

dp p

dx
P-J--X
dp a

~?~ ~y
d /x\ a

dp\pj~p*'
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and therefore

x _ a

p 3p
3 '

We have therefore to eliminate p between

xp* 2i/p + a
(1),

and cp
3

-xp* + ^ = Q ...(2).
o

The condition that (1) should have equal roots is y
2 ax = 0.

The condition that the equation in c obtained by eliminating p from

(1) and (2) should have equal roots reduces to (y
a

ax)
3 = 0.

The equation y* ax is not a singular solution, for it does not

satisfy the differential equation ; since it is obtained both by giving

equal roots to p and to c, we infer that it is not a tac-locus, and that it

is therefore a locus of singular points. It is in fact a cusp-locus.

x. Solve the difference equation aun+1un + bun+1 + cun + d 0.

Prove that the solution of the equations

vn = ,
and 11 .,

= .

C II H'Tl n\
I/ Un O Vn

subject to the condition that u =
0, is

sin nC 7 sin (nO B}
un=a- ffi gr, vH = b^

)
'

sm(nC B) sm(w + l)(7'

where A, B, C are the angles of the triangle whose sides are a, b, c.

a2 a2

_ a2

(c- un)

c-u
n

or cun+ ^un + (b
2 - c

2

)
un+l - a?u

n + a*c = 0.

To solve this equation (similar to the equation of the book-work)
put

to., b*-c3

u = -"-i-1--
therefore u

and the equation becomes

/".+. ^- CV^+1
b2 ~ c

'\

\wa+l
c J \wa c J

c \io
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as + b*-c* a*b
a

or w .

-- w .. + 2
- w =0,

c c

n ~
or w .

- 2 cos Cw . . + - w - 0.
c c

The auxiliary equation is

_ ab a2
b* ..m - 2 cos Cm + 5-
= 0,

c C*

i

and therefore m =
(cos C */ 1 sin C),

C

and lfl^*P/ J sin(w(7-a);

a& sin (w(7 + C - a) 6
2 - c"

therefore u =--
. .,

-
r

---
c sin (wo a) c

sin B sin (n(7 + G a) sin
2 5 sin

2 C
sin (7 sin (nC a) sin A sin (7

sin .Z? sin (nC + C -
a)
- sin (B C) sin (w(7

-
a)

sin C sin (w(7 a)

sin (nC +B -a)
,_ fm \

T _, . .
'-

sin (w(7
-

a)

Also since w =
0, therefore a => ^, and therefore

u a -7

sin

sn
. .- sin A sin nC

sin C7 - . ^sin (nC - B)

sin B sin (nC'- B)_
sin C sin (nC - B)

- sin A sin G
-
B)

[A solution of this question is contained in Prof. Cayley's paper" Note on the function x = a' (c x) -f- {c (c a;)
- b

2

}" Quarterly Journal

of Matliematics, vol. xv. pp. 338348 (1878).]
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TUESDAY, January 15, 1878. 9 to 12.

Mr GLAISHER.

1. THE sides BC, CA, AB of a triangle cut a straight line in

D, E, F; through D, E, F three straight lines DLOG, EHOM,
FKON having the common point are drawn, cutting the sides

CA, AB in L, G; AB, BC in M, H; BC, CA in N, K. Prove
that

AK.BG.CH_AG.BH.CK GD.HE.KF_HD.KE.GF
AM.BN.CL

~
AL.BM.CN LD . ME.NF~ ND.LE. MF'

Regarding GL (fig. 46) as a transversal of the triangle ABC,

AL.BG. CD = AG.BD.CL,

and BC as a transversal to the triangle AGL,

AC.GB.LD = AB.GD. LC,

BG AG.BD AB.GD
whence CL

=
AL~CD

=
IC^LD .................... (1) '

Similarly, regarding HM, CA as respectively transversals of the

triangles ABC, BHM,
CH _BH .CE_BC .HE
AM ~ BM . AE

~
BA~TME

"

and KN, AB as respectively transversals to the triangles ABC, CNK,

AK CK.AF_CA.KF (}
BN~ CN.BF~ CB.NF

"

whence, multiplying together (1), (2), (3),
and reducing in the second

product by the "relation AE . BF . CD-^AF. BD.CE (obtained by re-

garding DEF as a transversal of the triangle ABC), we prove the

equality of the first three ratios in the question. To prove that they
are equal to the fourth ratio, regard DEF as a transversal of the tri-

angles AGL, BHM, CKN ;
whence

AE . GF. LD = AF . GD . LE,

CD . KE . NF= CE . KF . ND,

multiplying and using AE . BF . CD =AF. BD . CE, we find

GD.HE.KF _ HD.KE . GF
LD. ME.NF

~
ND . LE . MF '
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This equation may also be obtained by regarding DEF as a trans-

versal of the triangles OGM, OHN, OKL ; whence

OD.GF.ME=OE.GD. MF,

OE.HD. NF = OF . HE. ND,

OF. KE.LD = OD.KF. LE,

and the equation follows at once by multiplication.

2. Prove that, if x be less than unity,

so x3
a?

+

"We have

x-afn+l x

l-X 1-C2" 4

x3
a;
2n+3

l-a;2"*

&c.

whence

x
*n+l

) (1
- a;

3

) (1
- o2"* 3

) (1 -a;
5

) (1
- of +5

)

i r x x3 x5

T -5, ( ^
- + ,
-

3 + .
-

5 + (fee. od inf.1-ar (l-x l-x l-x

a:
2""1

' 1

x*"
+3

1~- +1 ~-" +3
~ &C' ac?tV- ................. (1).

since, as being less than unity, the terms in each of the two infinite

series in (1) continually tend to zero.

[If x be greater than unity, then using the formula

x-x*"+ l

_ 1 1

(l-x)(l-x
2n+1

) ~T^~l-xSn+l)

x3 -x*n *a
1 1

(1
- a;

3

) (1
-

&c.
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the series

95

l-x2a+3

J _
l-x2n

(l-x l-x
" ,,v

since, x being greater than unity, the terms in the two series continually
decrease.

Thus, if x < I, the given series = (2), and if > 1, it = (3). The two
forms are readily deducible the one from the other; for in (1), since the

number of terms in each series is the same, there are n terms left over
y?

in the second series each = .--

(q infinite)
= 1 when x > 1, and thus

X OC

we must add to (2), if x be > 1, the term

1-af"

and this is easily seen to be the difference between (2) and (3), for

f 1 f3 1*V 4 A Vtr + Jt

l-x l-x' l-x3 1-*,3 i
&c.

nWe therefore have the given series = (2) if x < 1 and =
(2) + = -^

L "~ 6

if aj> 1, and the change of form is deserving of notice.]

3. If

F(x] =/(*)

prove that

xs

) + &c.(a?)

where only terms involving numbers that contain no square factor

appear in the second series, and the sign is positive or negative

according as the number of prime factors of the number is even or

uneven.

Let Ea be a symbol of operation such that when operating
/l\ th

upon a function of x it converts it into [ j of the same function of x",w
so that
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Then EaEb ^(x}^EbE^(x)^E^(x}^E^(x) =
^(x''

b

},

so that, in the question,

F(x) =
(l + E, + E3 + E4

+

2, 3, 5 ... being the prime numbers.

Therefore f(x) = (1
-
#,) (1

- E
a) (1

-E
5)

... F (x)

= (l-Ea
-E

3
-E6+ Es -&c.)F(x)

- F(x] -%F(x*}-*F (of)
-

F(x>) + &c,

the law of the terms being as stated in the question.

Or otherwise, thus. Substitute for F (x), F (a?),
F (x

3

),
... their

values in terms of f(x),f(x
2

), f(x
3

),
... given by the first series; we

thus have

!1 3 4 + x!i +ix6 + lx7 + x6 + x9 + -;
_ * _ i _i

IT 8 TIT
1 1~ 7 ~

9'

1
~T

+ TV

in which a?, x", x3
,

... are written for f(x),f(x
2

)) f(x
3

),
... to save space,

and the second line contains the value of ^ F (x
2

),
the thii'd line of

^F (a;

3

),
&c. It is evident that every coefficient that appears in the

f(x
m
)
column will be , so that we need consider only coefficients of

1

f(x
m
\ such coefficients being always + 1 or 1. Now in the case of

m = 6, we have a coefficient + 1 from F (x),
- 1 from J F (x

2

),
1 from

^F(x
3

),
+1 from ^ F (x

s

) ;
and generally for m = a

1
a
g
...aB ,

where
a

i>
a
a>

an
are Primes>

there will be a coefficient + 1 corresponding to

the factor 1, i.e. from F (x), a coefficient 1 corresponding to each of

the factors a
lt 2,

... a
n , + 1 corresponding to each product of two factors,

ja2 ,
a

t
a
3 , ..., 1 corresponding to each product of three factors,

ttja/Zj,,
and so on. Thus the whole coefficient

-
~

1.2
'

Now consider the term for which m=a
1

a-a .-.a
a
v

: the + 1's and 1's

will occur exactly as for the term for which m = a
l
a

a
... a

a
. This is

readily seen to be the case, for we only obtain a term from each prime
factor, or product of different prime factors in m; and these are the

same for aa ... a* as for a ... a.
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[It is evident that the theorem is still true if f(x
m
) and F(xm )m v ' m v '

be replaced by mp
f(x

m
)
and mpF (x

m
) ; p being any quantity, positive or

negative, or zero, viz. if

F(x) =f(x) + 2"f(x
s

)
+ 3"f(x

3

) +
p
f(x

4

) + &c.

then / (x)
= F (x)

- 2PF (x
2

)
- 3PF (x

3

)
- 5PF (x*) + &c.

In order to apply the first method of proof to the general theorem, it

is only necessary to define Ea by the equation Ea < (x}
= ap

<f> (x). The
theorem itself is due to Mobius. Grelle, t. ix. p. 105 123.]

4. If a spherical triangle AB be taken as the fundamental

triangle, and a, @, y be the spherical trilinear co-ordinates of a

point P on the sphere, and p, q,
r the spherical tangential co-ordi-

nates of any great circle passing through P, then

sin a sin a sin^? + sin 5 sin /3 sin q + sin c sin y sin r = 0.

Let XZPT be any great circle passing through P
(fig. 47),

and making angles 6, <, <^
with BC, CA, AB. Then sin a = sin PJTsin 0,

. sn .

snip =* sin AZsui ty
-

:
- - sin \

therefore sinA sin a sinp
- sin 9 sin < sin

ty . sinPX sin YZ,

and (observing that in the figure p is negative) it has to be shewn that

- sin PJTsin YZ+ sin PFsinZX+ sin P^sin XY*= 0,

and, putting PX = x, PY=y, PZ =
z, this expression on the left-hand

side

= sin x sin (y + 2) + sin y sin (x z) + sin % sin (x + y)

= | {- cos (y + s x) + cos (x + y + z) + cos (y + z x) cos (x + y z)

+ cos (x + y-z) cos (x + y + z)}
= 0.

Or, otherwise, thus :

sin a = sinBP sin PBC, sinp = sinAP sin APY,
sinBPG

sin a = sin CP -. ^jr^ ,
sin PBG

therefore sin a sin a sinp = sin AP sinBP sin CP . sin ^PF sin BPG.

The equation to be proved is therefore

- sin ^IPF sin BPC + sinBPX sin GPA + sin (7PFsinAPB = 0,

viz. putting z^tPF=a;, LBPY=y, iCPZ=z,

this is sin x sin (y z) + sin y sin
(as
+ 2) sin % sin

(:
+ ?/)=: 0,

which is at once seen to be true as above.

S.-H. P. 7



98 SOLUTIONS OF SENATE-HOUSE [TUESDAY,

[The equation in the question, which is due to Mr H. Hart, becomes,
when the radius of the sphere is made infinite, aap + b/3q + cyr

= 0,

which is the well-known relation between the tangential co-ordinates of

a line in pianoJ\

5. An ellipse, centre C, turns in its plane about one focus 8
as a fixed point, and intersects a fixed straight line SX in P

; along
the normal to the ellipse at P a distance PT is taken equal to CD,
the semi-diameter conjugate to CP; prove that the locus of T, in

the plane, is one or other of two circles, according as the normals
are drawn inwards or outwards.

First, suppose PT is measured inwards. In fig. 48 let

SP = x,ST= r, L XST =
0, then

ST2 = SP2 + PT2 - 2SP . PT cos SPT and cos SPT =~
,

therefore, since PT 2 = x(2a-x),
2ax-x2

-2bx=2(a-b)x ............... (1).

- - x-b
Also COB (9= - - -=- ........ (2),

on substituting for r2 the value just found. Whence from (1) and (2),

r2

rcosO = -z-
-

j-r
-

b,2 (a b)

viz. r2

-2(a-b)rcos6-2b(a-b) = 0.

The locus of T is therefore a circle of radius ae, and having its centre at

M where SM = a-b.

Similarly, if PT' be measured outwards, it can be shewn in exactly
the same manner that the equation of the locus of T' is

r2 - 2 (a + b) r cos 6 + 2b (a + b)
= 0.

The locus of T' is therefore an equal circle having its centre at M' where
SM' = a + b.

[We have GT2 = CP2 + PT2 -2GP.PT cos OPT = a2 + b
2 -

2ab,

whence CT=a-b, and similarly CT = a + b ; so that SM=CT=a-b
and SM' = CT'=a + b; also CS = TM=T'M' = ae. Thus SMTC and

SM'T'C are contra-parallelograms. For an account of the linkages with

which these contra-parallelograms are connected see Mr Hart's paper
" On some Cases of Parallel Motion," Proceedings of the London Mathe-

matical Society, Vol. vni. pp. 286289 (1877).]

6. Prove that

d_\
m

m -

dxj
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We have

l)x
a~ n+r~m

.

Differentiating r times and multiplying by xm+r
,
this becomes

= a (a 1) . . . (a n + r + 1) . (a n + r - m) (a n + r m 1) ...

(a-n-m+ l)x"~
n+r

,

which, differentiated m times,

= a (a -!)...( n + r+ l).(a-n + r-m)(a-n+rm-l)...(anm+l)
. (a-n + r) (a-n+ r- 1) ... (a-n + r-m + l)x

a~n+r~m

= xr

Thus the theorem is true when, the quantity operated upon is x",

and therefore it is true for
<j> (x), where <f>(x)

= Axa + JSx
b + Cxc + &c.,

that is, when < (x) is any function of x expressible in ascending or descend-

ing powers of x. The theorem must therefore be true when < (x) is

unrestricted, for it merely asserts an identical relation between the

differential coefficients of < (x), and the truth of such a relation cannot
be affected by the fact of whether (x) is or is not expressible in any
particular form.

[The above method of proof is of general application to formulae involv-

ing differentiations and multiplications as in the previous question ; and,
in order to obtain such identical relations, it is only necessary to start

with xa and so arrange the differentiations and multiplications that the

factors thus introduced may be the same for both sides of the equation.
/ d\a+l

Thus, for example, (--
J af=a( 1) ... (a n)x

tt~"~ l

,
and multiply-

ing by af+J and differentiating n times, we have

-1) (2a
-

2) . . . (2a
-

2n) 2a_s

2i+i

1 / ff \2n-f-l 1 / .7 \2n+l
^

8+1 ( ) (
c5

)

?a = -2Vl(
-

)
*"

.hence

The general principle upon which all such theorems depend is that

l-m & / \

since x
-j-

x . x =
(a + m) x

,

doo

the operation x l
~m

-j-x
m

is equivalent to multiplication by a + m, and
tvtv

72
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d . d
( /v m rvt 1 n

.

dx '

dx'
therefore any number of operators xl m

-=- ce
m

,
a;

1 "
-y- a", . . . are converti-

ble in regard to order
1

.

In reference to the extension from the case when the operand is a,"

to the general case when the operand is <
(a;),

it is to be observed that

the theorem asserts an identical relation between the derivatives of

</> (a;),
viz. < (x), <' (x), </>" (x) . . .

,
and that this is proved to hold good

when < (x) is of the form Axa + By? + Cxe + &c. It must therefore hold

good for all forms of <(a:) since the process of differentiation cannot

distinguish between whether
</> (x) is expansible in powers of x or not

;

(d
\"

-j- J
xm

<f>

(r)

(x) is

xn <
(r+ " )

(x) + nmx
m~ l

<j>

(r+H-
(x) + &c.,

whatever form
<f> (x) may have, and since the theorem merely expresses

the identity of the results obtained by applications of this formula, it

follows that, if we know that this identity holds good for all functions,

subject only to a restriction, which restriction could not influence the

direct proof, then we may assert the general truth of the theorem. It

is generally interesting in theorems obtained by an extension of this

kind to actually work out, by performing the differentiations, a particular
case obtained by giving numerical values to the letters m, n, r .... The

present is a good instance of a restriction, necessary in order that a

particular proof of a theorem may apply, and yet such that the theorem
itself shews obviously that it may be removed.]

/ /i \ *~r

Or, otherwise, thus. Put
(-T-)

< (x)
= ^ (a;)

and the equation

becomes

If 5- denote the operation x -r- , then the left-hand side
CHB

[Boole, in his Differential Equations, does not consider the operative

symbol x -=-
,
but puts x = & so that x -=- is replaced by -^ and xa

by e09.

It is however generally preferable not to make this transformation,

but to retain the symbol x -j- , or, say &, the fundamental properties of
CwB

which are (1) $V = aV,

(3) <f> ($) x"u = x"<l> ($ + n) u.]
1 See Proceedings of the London Mathematical Society, Vol. vm. pp. 47 51.



JAN. 15, 9 to 12] PROBLEMS AND RIDERS. 101

7. If

u = e-MX)
dj

eftw dx
(Co + Cp + Cj tmm + cnx

n
)f(x) dx + Ce -/*<*> dx

,

where c , C
1}
...cn ,

C are (n+ 2) arbitrary constants, and

= a + a^

where a
,
a

lt
...am are w given constants, shew that if m be not
du

greater than n,
-j-

,
obtained by the direct differentiation of u with

regard to x, contains only n + 1 arbitrary constants.

By differentiating the expression for u,

- <
(a?)

e-ftto a*feS*<*>** (e + cp . . . + cxn

}f(x)
- C$ (a?)

-

whence

(n\ J V
C 4- C X . . . + C,X ) ^j-

>

l
x...+cax

n

)f(x)dx-C

= c_

n*<

(x}
+ c I ~\ e&W dx

fe^*^ a;"/ (a?) c?a; J C

NOW .^w*., ."~
- dx

"'
da; <

whence, multiplying by a
, a,, ... am and adding,

therefore a B + a,5, . . . + am-Bm
= 5 (a constant) ;



102 SOLUTIONS OF SENATE-HOUSE [TUESDAY,

and, substituting for B0)

_L **** = i
{(c

- a C) + (aoCl -alCo)
B

l
... + (a cm -amc )

Bm ]

<p (X) UX tt

+ 'm+A +1 - + cA>
which only contains n + 1 arbitrary constants.

Or, otherwise, thus. We have

ueS<t>(*)dx - Jes<!>(x)te (CQ
4-

CjC ... + c
n
xn

)f(x) dx + G,

whence
-^

+ $ (x) u = (cc + c,a3
. . . 4- c

nx")f (x),

1 du
viz. -

-j-
+ (

a + a
i
x + amx )u = c + c

l
x ... +cn

x .

J (x) dx

Differentiate this equation m + 1 times, and we obtain an equation of

the form

1 dm+2u ,, du , , ,.

the coefficient of w vanishing. This is a differential equation of the

(m+ l)
th order in -=- and therefore -^- involves ra+ 1 constants in addi-

dx dx

tion to the n m constants c'm+1 ,
c'm+a ,

... c'n, that is, -y-
in n+ I arbi-

dw

trary constants.

[The above theorem is true whatever functiony (a?) may be of x ;
but

if
-f-r-r

b + 6,C . . . + 6
r c', it can be shewn in the same manner by

continuing the differentiations, that if r < n + 1 and m ^ %, then each

differentiation of u reduces the number of independent constants by one
d"~f+lu

until we come to +-, which only involves p + 1 constants, p being the
CvvC

greater of the quantities m, rlj]

8. Prove that

., T - w *& w/ *^ r>

Tlie coefficient of x" in r", that is in e"*
1

**",
=

^ Q1.2.o...

integrating by parts,

1 f I 1 n f 1

(log )
rf =^^ ^ (log

^)J o

-
7TTI I

V
"

(log*)- *
% TO-1 -2 1

whence the coefficient of x" = (-Y -,
--

' " +
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9. Two equal circular discs of radius a with their planes par-
allel are fastened at their centres to a bar, the discs being inclined

to the bar at an angle a. The two wheels thus formed being rolled

along a plane, prove that the intrinsic equation to the track of

either wheel on the plane is

. s
sm vr = cos a sin - .

a

The track of each wheel will be the trace of a circular section

of an elliptic cylinder when the cylinder is rolled on the plane.

If AP
(fig. 49) be one circular disc, BN a transverse elliptic section

of the cylinder ;
and if A'P', B'N' be the traces of AP, BN on the

plane; then the elliptic arc BN the abscissa B'N'; the circular arc

AP = the arc A'P', and the ordinates AB, NP=ihe ordinates A'B', N'P'

respectively.

Therefore if the arc AP or A'P' be denoted by s, and NP or N'P'

by y, we have y = c a cos a cos -
,
where c denotes the distance between

the centres of the sections AP, BN : therefore sin \l/ ^- = cos a sin - .

as a
Q

[The curve sin
\f/
= cos a sin possesses the property that the product

Cb

of the radius of curvature and normal at any point = a2

,
the normal

being terminated by the axis of the curve, i. e. the straight line which
divides it symmetrically. This is at once seen to be true, for the radius

of curvature =
-y- ,

and the normal = y sec
\ff,

where y = a cos o cos -
.]

a\if a

10. Prove that

'(tt-tQl*

!

_ en2

(u + v) en2

(u
- y)U

dn*(u + v) dn
2

(u v) \ _ 7 ,

1 - If sn
8

(u + v} srf(u
-

v}\

~ "

1 - sn
2 u F sn

2
v + &2

s

Writing x, y for sn u, sn v, then (Cayley's Elliptic Functions,

1876, p. 63),

sn (u + v) sn (u v)
=

(x
2

if) -f (1
- &Vy),

en (u + v) en (u
-

v}
=

(1
- x2 - y

2 + fcVy
8

)
-r (1

-
Jfa?y*),

dii (u + v) dn (u
-

v)
= (l- k2x2 -

tfy* + k*xY) -=-

(1
-
k*xY),

whence

f n 7
. en2

(u + v) cn
z

(u
-

v)} 7 , . . . .

.,

\l-Jc
2

-J-JT
-

(-r-~
-

( }
-r {1

- Jf sn
2

(u + v) sn
8

(tt
-

v)}
\ dn2

(u + v) dn
2

(u
-

v)J

(1
- k*x

s - Wy* + V?/)
2 -

k*(l
- x3-

y* + ffafy")' (1
-

(1
-
Vaty*)' -tf(x*- y

2

)

3

(1 -k
2x2-

The first fraction reduces to k'*, for, working out the numerator and

denominator, the former = k'
2

(1 k*x* Wif + k*x*y
4

},
and the latter
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= 1 - k'x* - k"y
4 + k4x4

y
4

j
whence the result in the question follows at

once.

Or, otherwise, thus. In the known equation

.
-

1 - k3 sn9
(u + v) sn

2

(u
-

v)
= - ^-J3 ,

-
g-^ *

....(1),
(1
- k sn2 u sn2

v)*

put K+uforu and we have

_ , gcn' (u + v) en2

(u
-

v) _ (dn
4 u - k* en4

u) (I
- 1? sn4

v)

dna

(u + v)dn*(u-v)~ (dn
2 w - k2 en8 w sn2

v)
8

and the result follows at once by dividing (2) by (1) and observing
that

dn4 w -F en4 w = &" (1
- & sn4

w)

dn8 u k* en* u sn8 v = 1 k2 sn
2 w k* sn2

v + &* sn2 u sn
2
v.

11. If 1, 2, 3, 4 denote the foci (lying in order on the circum-
ference of a circle) of a bicircular quartic, whose equation is

Pi> Pt> Pa being the distances of any point on the curve from the
three foci 1, 2, 3

; prove that

where 12 means the distance between the foci 1, 2.

Produce 12, 34 to meet in 0. Then, by a known theorem,
the curve is its own inverse in respect to 0. Let

01=a, 02 = b, 03 = c, 01 = d, OP = p, tP01=0, L 1 01 = a
(fig. 50).

Then

Pi
2 = P

2 - 2p cos 6 + a2

, Pg
* =

p*
-

2bp cos 6 + b*, Pa
' = p

a -
2cp co&(0 + a) +c

2

,

substituting in the equation l
Pl + mpa

+ npa
=

0, and clearing of radicals,
the equation becomes

I
4

{p
2 -

2ap cos 6 + a*}* + m* {p*
-
2bp cos + b*}* + n

4

{p*
-
2cp cos (6 + a) + c

2

}

2

- 2Pm' {p
2 -

2ap cosO+ a,*} {p*
-
2bp cos + b

3

}

- 2Fn* {p
3 -

2ap cos 6 + a3

} {p*
-

2cp cos (0 + a) + c
2

}

- 2mV {p
3 -

2bp cos + b
3

} {p
3 -

2cp cos (0 + a) + c
2

}
-

0,

or
>
saJ> ap

4 + p
3 + yp

2

+Sp + e=0 ........................ (1).

Now the cxirve is its own inverse in respect to 0, the modulus being
6,
=

cd, therefore (1) is not altered by substituting
- for p, so that

<x
4
6
4 + /3a

3
b
3

p + yarby + Sabp
3 + ep*

=
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is identical with (1).
Thus

g 4
5
4

_ pa*b* _ ya
2
b
3

_ 8ab _ e

~T~ T~ ~7~
"

7^~ a '

whence abft = 8. Putting for ft and 8 their values, this gives

oh {A cos Q + c (n
4 - I

2
n* - wfn2

)
sin 6 sin a}

= cosO + c (cV - aT-n* - b*mV) sin 6 sin a,

which is true for all values of 0, so that abA = B and

abc n3

(n*-P-m
2

)
= en* (cV - aT - bW),

viz. (06
- c

9

)
n3 + (a

3 -
ab) I

3 -
(ab

- b
2

)
m2 =

0,

viz. a (a
-

b) I
2 - b (a

-
b) m2 + c(d-c)n

a =
0, since db = cd.

Also a-b = l2, c-c =
34, and by similar triangles a :c=14 : 23

and 6 : c = 24 : 13, whence the equation becomes

F. 12.13. U-m2 23. 24 .H+w2 34.31. 32 = 0.

(It may be noted that the term corresponding to the middle one of

the three foci considered has the negative sign.)

12. Shew that the focal length of a lens equivalent to n given
lenses of powers K

I}
K
Z ,
K

S ,
. . . #, placed on the same axis at distances

ttj,
a
? ,
a

3 ,...an_1 apart, is given by the formula

ra 1 rows),1
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Writing these in the reverse order,

8 -"- 8 ==0

[TUESDAY,

whence

o,



JAN. 15, 9 to 12] PKOBLEMS AND EIDERS. 107

which expresses the obvious fact that the centre of gravity of the

system remains a fixed point during the motion. The kinetic energy
then becomes

fw (1 + sin
2

0) of e
3
........................... (2).

Now let p.
be the repulsion between two units of mass placed at unit

distance apart, then the force upon any one of the bars will be 3ma

p.r,

where r is the distance of the centre of the bar considered from the

centre of gravity of the system. The work done by this force from the

commencement of the motion is clearly

where r is the initial value of r. The work done on the system by its

mutual repulsions is thus

3i2

/x {|x
2 + (x

- a sin 0)
2 + (a + a cos O)

2 -
|a

2

}.

By eliminating x we reduce this to

2

-|} .................. (3).

The expressions (2) and (3) are equal, and being equated lead easily
to the result in the question.

The second part of the question is easily solved by an application of

Lagrange's equations. We may however solve it otherwise as follows :

Let the middle bar be brought to rest by applying to the system a
reversed acceleration equal to x. The equation of moments about the

fixed end of either of the outer bars is then

m . ^ a = m2
. 5a/x . aO + mxa,

whence by means of (1) we have

15mu
viz. 6 = r^- i

/~~2~The time required is therefore 2-n- . / rV lomu

14. Prove that, when the angular velocity of a vertical cylin-
drical shaft of radius a, revolving in two bearings at a distance I

m?a IE
apart, exceeds \ ^- */ , where m is the least root of the equa-

L v p
tion cos m cosh m =

1, the shaft will tend to bend laterally under
the influence of the rotation

;
and find the curve assumed by the

axis when the deflection is small
;
E being the modulus of elasti-

city, and p the density of the shaft.

Let the shaft turn in fixed bearings at and B
(fig. 51), and let

OPAB be the curve assumed by the axis of the shaft when the deflection

due to the rotation is small.
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Take as the origin and OB as the axis of x ; and let G be the

bending moment at due to the constraint of the bearing.

Then, if a> denote the angular velocity, the bending moment at P will

be equal to

G + 7ra
2

pco
2

/ (a;
-

x') y' dx' ;
JO

d*y
and, since the curvature at P is approximately -7-5 ,

therefore

=
dor

/ being the moment of inertia of the circular section about a diameter,

and therefore El the flexural rigidity of the shaft.

Differentiating twice,

EId̂x

=-i*
the differential equation of the axis of the shaft, when the deflection is

small.

The problem therefore becomes the same as the determination of the

lateral vibrations of a bar clamped at both ends (see Lord Rayleigh's

Theory of Sound, 172).

We must therefore have ra the least root of the equation

cosm coshm =
1,

m* 4pu
3

, ms a

7*=^> **

When the angular velocity exceeds this value, the shaft will tend

to bend laterally more and more as the angular velocity is increased

under the influence of the rotation.

(The shaft is supposed vertical in order that gravity may have no
influence upon the result).

15. Find an expression for the average energy transmitted

across a fixed vertical plane parallel to the fronts of an infinite

train of irrotational harmonic waves, of given small elevation,

moving on water of uniform depth.

Let H be the maximum elevation of a train of waves of wave-

length X, moving parallel to the axis of x. Then, if K - 27TX"
1

,

n=*'2TrV\~
l

,
where V is the velocity of propagation, the elevation at

any point x at any time t may be taken to be

h =H cos (nt KX).
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By the known theorem the velocity of propagation is connected with
the wave-length and the depth of the water I by the equation

ft f)K.(/ _ f> JCt

K eK + e-

and the corresponding velocity-potential < is given by

z being measured downwards from the surface. In fact, < satisfies

V 2

<j>
=

0, and gives a value for ~ equal to zero when z = I, and equal
((2

to --T- when s = 0.
at

By the equations of hydrodynamics the part of the pressure due to

the motion is

whence, if the square of the motion be neglected,

= cmVH - j
--

-,

- cos (tit
-

KX).
gKl e -Kl

The rate of transmission of work at any moment is found by in-

tegrating 8p^ dz from z=btoz = l. Thus

f/TF yrarr?
-

, . ,^ '

n which
/

j

Jo

Introducing the value of F we get

dW . f, 4K?=^p^2 Fcos2

^-Kx)
[_l+^_

or, on integration over a long range of time,

[

16. An ellipsoidal conductor is placed in a uniform field of

electric force, the potential of which is Ax + By + Cz, the axes

(2a, 26, 2c) of the ellipsoid being taken for co-ordinate axes. Prove
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that the density of the induced electricity at a point (SB, y, z) on

the surface of the conductor is

where

d\

This problem is easily solved by the use of ellipsoidal co-ordi-

nates, for an explanation of which see Mr Ferrers's Treatise on Spherical

Harmonics, Chap. VI. The following solution, which is of general

application in the case of the sphere, does not apply readily to ellip-

soids, except in the one case stated in the question, viz. when the

potential is a linear function of or, y, z.

Let U be the potential at any outside point due to a solid ellipsoid

of uniform density, then I -7- + m -= I- w -=- is the potential at an out-
dx ay dz

side point due to an ellipsoidal shell of the first degree, viz. a shell

formed by the coexistence of two solid ellipsoids, of equal uniform

densities, one attracting and the other repelling, whose centres are infi-

nitely near and on the line whose direction cosines are I, m, n. If we

suppose the matter composing this shell to be an electrical distribution,

then the potential at any outside point due to the outside field and to

the supposed distribution is

,dU dU dU
Ax + By + Cz + I -j- +771-7- + n-T-

,ax dy dz

that is,

(See Thomson and Tait's Natural Philosophy, 522.)

Inside the shell the potential will be zero at every point, provided
the following relations hold good, viz.

where < is the value of
<f>e

when has the value zero, viz. at the surface
of the ellipsoid. If then I, m, n, M are thus determined, the supposed
distribution is in reality the distribution induced on the ellipsoid by the
outside field.
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The potential due to the induced electricity is therefore given, inside

the conductor, by

V=-(Ax + By + Cz\
and, outside, by

To find the density we have

dV dV
iwp = ------ -

.

an an

Now p~ = M
2^2 + b

2

(3
2 + c'y

2 + e,

therefore 2j) dn = de,

dV
,

dV
whence - = 2p = .

dii ae

In the expression for 4?rp it is clear that -=- will cancel those

parts of which depend on differentiating x, y, s, and therefore the
CLTli

only part which is left is that which depends on differentiating
-~

,

etc., and then putting e = 0. We finally obtain the result

Ax
rp ~

7- 2 -~~
a

t/6"

By putting
snr

and transforming the integral for <, we have

(10
J2

a*-bs

-y-- 3 . 2 ,
where k -

2
-

2
/ _,c /fa- -I

s

= / -cos
, /( H

tj((i c) a \/ \a -

17. A copper wire in the form of a complete circle is suspended-
so that it can turn without friction about a diameter which is per-

pendicular to the direction of the earth's magnetic force
;

it is set

in rotation and then left free, determine its subsequent motion,
the self-induction of the wire.
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The energy of the wire consists of two parts :

1. Its energy of motion \MTffr, where MJf is the moment of

inertia about the axis of rotation, and 6 is the angle between the normal

to the circle and the direction of the magnetic force.

2. The kinetic energy of the current \ y$
2

,
where y is a constant

representing the self-induction of the wire, and which will be presently

put equal to zero, and
<j>

is the current at time t.

Let A be the area of the circle, R the resistance of the wire, and E
the electromotive force round the wire at time t. Then

dA cos A a AE =
-j

= AanO. ;
ctt

also the heat generated in the circuit in time dt measured as equivalent

work = Rfidt ; this, added to the increment of energy of the wire, must be

zero viz.

We have also

Introducing now the assumption that the self-induction may be

neglected, and eliminating $, we have

4" sin
2 0.0 v

+ M,k* = 0,
Ji

w being the angular velocity when = 0;

whence t =

Î Ml? to -^ (0
- sin cos 0)

TUESDAY, January 15, 1878. 1| to 4.

MB GBEENHILL, Arabic nnmbers,
ME FEEBEKS, Boman numbers.

1. FIND the equations of the tangent and normal at any
point of a hyperbola.

Prove that the part of the tangent at any point intercepted
between the point of contact and the transverse axis is a harmonic
mean between the lengths of the perpendiculars drawn from the
foci on the normal at the same point.



JAN. 15, 1 1 to 4] PROBLEMS AND RIDERS. 113

Let the tangent and normal at a point P of the hyperbola
x2

y
2

Ti = 1 (fig. 52) meet the transverse axis in T and G, and let SZ, S'Z'
a b

be the perpendiculars from the foci on the normal at P.

If (xy) be the co-ordinates of P, then the equation of the tangent at

p is ^ _ y'y I and therefore OT= -.
a3

b* x

The equation of the normal at P is

and therefore OG =
5 x = e*x.

a2

Therefore TG = e
2x -- =

e
*x*- a*

,

x x

, SG = e*x ae,

S'G - e
sx + ae

;

and therefore111 1 S

SG S'G e
2x ae e

zx + ae e
2x2 a2 TG

'

Or, immediately, since PT, PG are the internal and external

bisectors of the angle SP/S', therefore GSTS' is a harmonic range.

Therefore, by similar triangles,

1 1 2

ZG +
Z'G

"
PG '

and therefore PG is a harmonic mean between ZG and Z'G.

ii. The three principal planes of the surface

(a, b, c, a, b', c'Jjx, y, z)
2 = 1

are represented by the equation

ax+ c'y+ b'z, c'x+ by+ a'z, b'x+ a'y+ cz

Ax + C'y + B'z, C'x + Sy + A'z, Ex + A'y + Cz = 0,

I* , y

where A, B, C, A, B1

, C' are the several minors of the deter-
minant

a, c, b'

c, b, a

b', a, c

S.-H. p. 8
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Consider the surface ay? + by
2 + cz* = 1

,
its polar reciprocal

Ax? + By* + Cz'=l, and the sphere of + y* + s? = r
2
.

Take any point on one of the co-ordinate planes, which are the

principal planes of the first two surfaces. Let its co-ordinates be 0, g, h.

Its polar planes with respect to the three surfaces are

bgy + chz = 1, Bgy + Chz =1, gy + hz= r*.

which are all parallel to the axis of x.

Hence, a principal plane of a given surface may be regarded as the

locus of a point whose polar planes with respect to the given surface,
to its polar reciprocal, and to a concentric sphere, are parallel to the same

straight line.

Now, the reciprocal of the surface mentioned in the question is

(A, B, C, A', ', C'$jK, y, *)*=!. Hence the result follows.

iii. (a) Integrate

dx

08) Prove that

fit frr

(1
- sin a cos 0)" dd = (cos a)

2n+1
r

Jo Jo (1-si(1
- sin a cos 0)

n+I

(/?)
Let (fig. 53) be the centre of a circle, Q any point with-

in it, PQP' any chord through Q,OP= a, OQ =
b, QOP =

0, QOF = &.

Then (a
2 + 6

2 - 2ab cos
fffi (a

3 + b
2 - 2ab cos

0')
=

(a
8 - 6

2

)
8

(1 ).

Again, if the chord PQP' turn through a small angle, so that P comes
to p, P' to p',

and

therefore



JAN. 15, 1J to 4] PROBLEMS AND RIDERS. 115

Put a = c cos Ja, b = c sin a, and we get

(1
- sin a coa 6)

n
dd = - (

cos "K*
1

rf^
(l-smacos60

Integrate this between the limits and TT of 0, which respectively

correspond to the limits TT and of 6', and we get (writing B for 6')

ft rn dQ
I (1

- sin a cos 6Y dd = (cos a)
2" +1

/
--

:
--

-^-^ .

Jo
^

Jo (l-sinacos0)"
+

This result may also be obtained by considering sin a as the eccentricity
of an ellipse, 6 as the eccentric angle of any point, & as its vectorial

angle, taking a focus as origin, and the positive direction of the prime
radius passing through the further extremity of the axis major.

iv. Shew how to integrate a linear differential equation with

constant coefficients.

Integrate the following differential equations :

d*y d?y
(
a
) T7 + (w2+ w

*) ^2 + nwry = cos (ra + n) x cos (ra ri)
x

;

(/3) -j2
= ax + hy + c, -j-=hx

+ 'by-\-e,

and determine the arbitrary constants in the latter system, having

given that when t = 0, x a., y = 0.

(a) The given equation may be written in the form

d*y . a, d*y , . , , ^

y 4̂ + (m + n ) -^ + raWy
2 = | (cos mx + cos nx).

Consider the equation

-^ + (m
2 + n2

} -j^ + m*n*y = \ (cos /xa; + cos vx).
doc ctxT

Its integral is

y = A cos mx + B sin mx + A' cos nx + B' sin tvc

cos px , cos vx
+ *

(
OT _^ (

n -
p")

+ *
(w - v

2

) (m
2 - v

2

)

'

But this assumes an indeterminate form (or rather the last two

terms become infinite,) when p. m and v = n.

The integral then assumes the form

y = A cos mx + B sin mx + A' cos nx -r jB'sin nx

x sin mx x sin nx

fan &n

82
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The given equations may be written

whence, eliminating y, we get

Hence, putting
a + b = ^ + /*2,

ab-h*

be -he

P
I}
P

3 being arbitrary constants.

To determine them we have, when t = 0,

doc
x = a --- =

therefore a = P. + P. - -

be - he
f _ -

therefore P, =

.
7

bc-he
(a
-

p.2)
a + hp + c +-

Hence x =-^i &
fH-f

/ \ 7 /I be
(a-u.) a + h

/T \ n T

(6
-

/A2) )8 4 ha + e +

Similarly y = -

. \ n -L
ae he

(a
- u

)
B + ha + e +

t*-
t

ae hc

5. Prove that, when a system is in equilibrium under gravity,
the centre of gravity of the system is at a maximum depth in

positions of stable equilibrium, and at a minimum depth in

positions of unstable equilibrium.
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A cylinder, the cross section of which is a spiral of Archimedes,
is placed inside a fixed cylinder, of which the cross section is a

parabola whose axis is horizontal, so that the pole of the spiral
is in the axis of the parabola. Prove that, if no slipping takes

place and the centre of gravity of the first cylinder is at the

pole of the spiral, the cylinder will be in neutral equilibrium
for finite displacements.

Let r = ad be the equation of the spiral of Archimedes : then
civ

the polar subnormal
(fig. 54) SG= ^z = a

?
and is therefore equal to the

subnormal of the parabola AP of latus rectum 2a.

Consequently the pole of the spiral, if properly placed, will describe

the axis of the parabola, and therefore if the axis of the parabola be

horizontal the equilibrium of the spiral will be neutral if the centre of

gravity be at /S, provided no slipping takes place.

6. State and prove the principle of conservation of energy
in the case of a material system moving in two dimensions under

gravity.

If I be the length of the simple equivalent circular pendulum
of the motion of a wagon rolling under gravity inside a fixed

horizontal circular cylinder of radius a, the radii of the wheels

being c
;
and if V, I" be the lengths of the equivalent pendulums

when the body of the wagon is slung so as to move in the same

way as in the cylinder (1) when the wheels are free to revolve,

(2) when the wheels are fixed
;
find I, I', I", and prove that

In the case of a conservative material system, moving under

gravity, the increase or diminution of kinetic energy is equal to the

weight of the system multiplied into the depth or height of the centre of

gravity of the system below or above a certain plane.

Let M be the mass of the body of the wagon, m of the wheels, h the

distance of the centre of gravity of the body of the wagon from the axis

of the cylinder, k the radius of gyration of the body of the wagon about
a parallel axis through its centre of gravity, K the radius of gyration of

the wheels about their axles.

Then, if 6 denote the inclination to the vertical of the plane through
the axis of the cylinder and the centre of gravity of the wagon, being
the angular velocity of the wagon,

(1) when the wagon rolls, will be the angular velocity of the
G .

wheels, and therefore the kinetic energy of the system

= | M(h* + &
2

)
8* + I m (a

-
c) 0" + $m (

Y K*6
2
,

\ c /

= H + {Mh + m(a c)}ff cos 6,
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by the principle of the conservation of energy ; and therefore

M (h* + k*) + m(a- cf l\ + -2
7= .

Mh + m (a
-

c)

(2) When the wagon is slung and the wheels are free, since the

wheels do not revolve, the kinetic energy

h + m (a-c)}gcosO,

by the principle of the conservation of energy ;
and therefore

M(h
a + k*) + m(a-cY
Mh + m(a-c)

(3) When the wagon is slung and the wheels are fixed, then 6 is

the angular velocity of the wheels, and therefore the kinetic energy

= H+ {Mh + m(a-c}}g cos 0,

by the principle of the conservation of energy ;
and therefore

_ M(h
2 + k*)+m(a-c)
Mil +m (a c)

Therefore
K
*

m(a-c)*-s

Mh + m (a
-

c)

'

I" _ i' =
m*

2

Mh +m (a c)
'

and therefore

c
3

(l-l
f

}=(a-c)
i

(l"-l'),

or, c*l+(a- c)
2

1' = <?V + (a- c)
2
1".

7. Prove that, if
t , 2 , 63

be the component angular velocities

of a system of rectangular axes Ox, Oy, Oz considered as a rigid

system moving about the origin 0, and h^ h^, A
3
be the component

angular momenta of any material system about the axes Ox, Oy,
Oz, then

with two similar expressions are the rates of change of A,, ^
2 ,
h
3

about axes fixed in space, with which Ox, Oy, Oz are coincident
at the instant considered.

Deduce the equations of motion of a rigid body moving about
a fixed point referred to three rectangular axes fixed in the

body.
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Prove that, if Watt's governor be constrained to revolve round
a vertical axis with constant angular velocity, and if the in-

clination 6 of the arms be included between a arid /3, then

[-37]
varies as (cos a cos 6} (cos cos /3), and that, if 6 = 7 in

the position of relative equilibrium, cos a. + cos y3
= 2 cos 7.

Verify that, at any time t, tan \Q = tan ^/3 dn (K ~
, kj ,

where

k' = tan | a cot |/3.

Considering the motion of either ball, and denoting by A, C,
the moments of inertia about the axes OA, OC (fig. 55), then AwsinO,
Cu cos are the components of angular momemtum of the system about
the principal axes OA, OC

',
and therefore

h^-Ae, h
a
= (C-A)<otaa0coa6, h

3
= (0 cos

8
6 + A sin

2

ff)
o>

;

also ^ = 0, 2
=

0, 3 =ta;

and
-777

~^A +^A = Mgli sin 0,

therefore - A 6 + (A
-
C) <o

2
sin cos 6 = Mgh sin ;

Mgh cos 6 - \(A -
C) w3

cos
8
0,

and integrating,

A C
or

2 =
-j

<a* (cos a - cos 0) (cos cos
/3),

jd

if ^ = when = a and 6 = /?.

In the position of equilibrium, = 0; and therefore y is given by

Mqh
COS = = COS a + COS

Again, suice

J. C
6* = -. w2

(cos a
- cos 0} (cos 6

- cos /3)

_A-C , (tan
2

1
- tan

2

1 a) (tan
2

1 /8
- tan2

1 0)

~A~ *

( 1 + tan8

0)
2

(
1 + tan2

J o) (1 + tan
8

therefore

sec
4

J
2

=^-j^ o>
2
cos

2la cos
2

i/3 (tan
2

|0
- tan2

|a
jft

or

/

\~ ot / A



120 SOLUTIONS OF SENATE-HOUSE [TUESDAY,

Now from the definition

dn'a;=l-&2

sn'a;,

and therefore

^8 sn
8 a;=l-dn2

a;,
F en2 x = dn8 x - k"

;

d
also -j-

sn x = en x dn as,

Cn0

-y- dna; = - If sn a; en x,
ax

= -J(l- dn2

aj) ^(dn
2
a; - A;'

2

).

Therefore, if tan \ = tan \ ft dnK^ ,
&' = tan |a tan |/3

= cot'J ft (tan
8

1
- tan

2

10) (tan
8 - tan8 \ a),

and therefore

A ..4 2 .-, . -210
Y*

= 4
4

w cos f a sm J P-

viii. An infinite mass of homogeneous gravitating liquid
rotates with constant angular velocity co about the axis of z.

Prove that a possible form of the free surface for relative equi-
librium is the elliptic cylinder

p being the density of the liquid.

If V be the potential of the infinite homogeneous elliptic

y? y
a

cylinder 2
+ ^ = 1 , at any point of its mass, we have

Of u

F- 2.poi (7l - * -
h \ a*+$ b

a

The evaluation of this definite integral would introduce an infinite

constant. But we get rid of this by observing that

dV _

dy~ a, + b
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And, if p be the pressure at any point, we have

fdV 2
\ . fdV ,

\ ,

dp = I -=- + co x
)
ax +

( + co y } ay.
\ax J \dy /

l

Hence, the form of the free surface is given by the equation

co
,

o
- -- ^ = const.

2

x3x v
If this coincide with the surface of the cylinder -5 + fj

=
1, we have

_

.1 /.
a2 -b2

3 ab(a-b)
therefore s co = ZTTO - S

j
-

,

2 a + 6

therefore w2
. .r
(a + 6)

2

ix. Find the precession of a given star in right ascension

and declination.

Prove that all stars, whose precession in right ascension is

equal to a given quantity, lie on the surface of a cone of the second

degree, one of whose axes is the line of equinoxes.

Let P
(fig. 66) be the pole of the equator, n of the ecliptic,

S the star, S' the position to which, in a given time, it is displaced rela-

tively to P, in consequence of precession. Then /SXLS" = 81, which is the

same for all stars, and SP/S' = 8a. Hence

S7
a =-= sin SP cos IlSP.

And if co be the obliquity of the ecliptic,

cos co cos SP cos SH
cos I1SP =

therefore 8a = 81

sinSP.sin/STl

cos co - cos SP cos /SH

Now, taking the line of the equinoxes as the axis of y, and the
earth's axis as the axis of z, and r as the radius of the celestial sphere,

cm 3 CYTT 2; cos co + a; sin CD xs + y*
cosSP=-, cos#n =-

, sm.SP=-~,r r r

,1 f c, ,v 7
cosco (x*+ y* + z

2

) a (2; cos co + a; sin co)therefore Sa = 81-s-s.-L-\-/

or (81 cos co - 8a) (x
3 + y

3

)
-8lsia<azx= 0,

shewing that all stars, for which 8a is equal to a given quantity, lie in a
cone of the second degree, one of whose axes is the axis of y, i. e. the

line of equinoxes.
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WEDNESDAY, January 16, 1878. 9 to 12.

Mr PRIOR.

1. THE locus of the foci of rectangular hyperbolas which have

a given diameter is a lemniscate.

Let QCP (fig. 57) be the given diameter ; S, H the foci of any
one of the hyperbolas.

Then, since CP=CQ, CS= CH, and L PCS = L QCH,
therefore SP = SQ.

But rect. SQ . QH= sq. on semi-diameter conjugate to CQ = CQ
3

,

therefore PS.QS=CQ2 = CP2

;

therefore the locus of 8 is a lemniscate with foci P, Q.

Or thus : let

Then, since P lies on a rectangular hyperbola of which $ is a focus and

C the centre, a2
cos 20 = r2

,
for this is the polar equation of that hyper-

bola, a, 6 being the polar co-ordinates therefore r* = a2
cos 20 is the

polar equation of the locus of S, r, being its polar co-ordinates : and

this is the polar equation of a lemniscate.

2. If the sides of a triangle ABO meet two given straight
lines in a

t ,
a
2 ;

b
1 ,b2 ;

c
lt

c
a respectively; and if round the quadri-

laterals fc^jjCVv CjC^ajj, &!<*$& conies be described; the three

other common chords of these conies will each pass through an

angular point of ABC, and will all meet in one point.

Let x = 0, y = 0, z = be the equations of the sides BC, CA,
AS of the triangle ;

and let u = Ix + my + nz = 0, u' = I'x + my + n'z =
be the equations of the two given lines.

Then the equations of the three conies are

uu' + k^yz
=

(1),

uu' + k
a
zx = Q ; (2),

uu' + k
zxy = (3).

Of these (2) and (3) have common chords whose equation is

k
s
zx - Tc

axy = ;

i. e. x = and k
a
z Jc/ = are the equations of their common chords.

Thus k
2
z k^/

= 0, k
3
x -

Je^z
= 0, kj/ k

2
x = are the equations of the

common chords of the problem, and each of these clearly passes through
an angular point of ABC, while they all meet in the point whose co-

ordinates are given by

== y. =
"'i "'o ff.
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3. If a chord of an ellipse be drawn to cut the evoluto of the

ellipse at right angles, three times the difference between its

segments intercepted between the evolute and the ellipse is equal
to the diameter of curvature of the evolute at the point of inter-

section.

Let
(fig. 58) be any point of the evolute, P the correspond-

ing point of the ellipse, centre G. (?,#(?.,
tlie chord through 0, perpen-

dicular to OP which is a tangent to the evolute.

Since OP is the normal at P, Q, Q, is parallel to the tangent at P
;

therefore PC produced bisects Q tQs , say in V :

therefore OQ l -OQa
=20V=2OP tan YPO.

Let p be the radius of curvature of the evolute at 0, a- the distance

of from a cusp measured along the evolute, \J/ the angle between PO
and the major axis of the ellipse; and let PO-r. Then cr=r, and

flcr dr

Kow let CA be the semi-major axis of the ellipse, and let the semi-

axes be a, b
;

let L PCA 0, and let p be the perpendicular from C on
the tangent at P.

Then

tan \1/ tan \1/

, ^ tan \1/- tan B u"
tan VPO = tan

(J/
-

V)
=

-, ^ = I2
1 + tan

i//
tan

(a
2 - b

2

)
sin

if/
cos ;

a2
eos

2

1//
+ b2

sin" \

a-b- a"b
2

Again r = = r-
,

V (a cos"
\l/
+ b sin"

i//)

2

therefore

therefore 3 (OQ,
- OQJ = Gr tan VPO =

2p.

4. If ABC be a triangle circumscribing a parabola whose
focus is &, and if SA, SB, SO meet BC, CA, AB in A', B', G'

respectively, shew that the lines drawn through A, B, G per-

pendicular respectively to the other tangents through A, B', G'

meet in a point.

This may be deduced from the reciprocal of the following :

If abc (fig. 59) be a triangle, and al, bm, en its perpendiculars meet
the circumscribing circle in a', b', c

',
and if s be any point on the circle :

then sa, sb', sc' meet be, ca, ab in points on a straight line which passes
throutrh o the orthocentre of abc.
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For, let sa', sb', sc' meet be, ca, ab in/, g, h; and join fo, go, ca'
}

cb'.

Then ifoc= ifa'c for the triangles foe, fa'c are similar.

Similarly, z goc = L gb'c.

Therefore ifoc + L goc = L/a'c + L gb'c
= 2 right angles ;

thereforefog is a straight line, and similarly h lies upon it.

Now, if we reciprocate with respect to a circle round S as centre, the

circle and inscribed triangle become a parabola (fig. 60) and circum-

scribed triangle ABC. The focus is at S, the point s becoming the line

at infinity. The line al becomes a point on BG which with A subtends

a right angle at S, i. e. A". Then the point a becomes the second tan-

gent A"P through A" ; sa' becomes a point at infinity on this tangent;
and f a line drawn through A parallel to A"P. Hence the reciprocal
theorem is, that this line and those drawn like it through E and C meet
in a point.

Now, let SA meet BC in A' and let A'P the other tangent from A'
meet A"P in P. Then the circle through A'A"S passes through P ; and
A'SA" being a right angle, so is A'PA". Therefore the line through
A parallel to A"P is perpendicular to A'P, and it has been shewn that
this line and those drawn like it through B and C meet in a point.

5. ABPCDQ is a twisted polygon all whose angles are right
angles ; AB, CD lying on fixed straight lines.

Shew (1) that if A, B, C, D be any points on their respective
lines the locus of P or Q is an hyperboloid of one sheet

; and (2)
that if A, B, C, D be so taken that P, Q are equidistant from the

greater real and imaginary axes of the hyperboloid, and if the sides
of the polygon represent forces, these forces have no moment about
the lesser real axis of the hyperboloid.

Let FG, of length 2c, be the shortest distance between AB
and CD, F lying on AB. Take the origin at its middle point, and let
OF be the axis of z. If 2a be the angle between AB and CD, their

equations may be written

J

Let x, y, z be the co-ordinates of P, and let FB =
h, GC=Jc.

Then the co-ordinates of B are h cos a, h sin a, c
;
and those of C are

k cos a, k sin a, c.

Then because the angles FBP, GCP, BPC are right angles, we have

(a:
- h cos a) cos a + (y

- h sin a) sin a = 0,

(x
- k cos a) cos a - (y + Jc sin a) sin a = 0,

(x-h cosa) (x
- k cosa) + (y- Asina) (y .+ A; sin a) + (*-c) (

+ c)
= 0.
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The two former equations give

h = x cos a + y sin a,

k = x cos a y sin a,

as is evident also by projection.

Substituting these values in the third equation, we obtain

(x sin
2a y sin a cos a) (x sin

2 a + y sin a cos a)

+ (y cos
2
a x sin a cos a) (y cos

2 a + x sin a cos a) + z
a

c
s =

0,

or (sin
2 a cos

2

a) (x
2
sin

2a y
2
cos

2

a) + z
2

c
2 =

0,

x3
y
2

z*
or - cos 2a sin

2a . -5- + cos 2a cos
2 a . ^ + -

2
=

1,
c c c

which shews that P and therefore Q lie on an hyperboloid of one sheet,
of which FG is the lesser real axis, the other real axis lying in Ox or

Oy according as 2a > or < TT.

Let x
}
, y,, 2^

be the co-ordinates of P, x
a, y# z

2
those of Q. Then the

components along the axes of the forces passing through P are

tCj (x l
cos a +

T/J
sin a) cos a, ^ (x l

cos a +
2/j

sin a) sin a, z^ c;

and

(iCj
cos a - y r

sin a) cos a x
lt
-

(xl
cos a yl

sin a) sin a - ylf
c 2^ :

the sum of which may be written

- 2y l
sin a cos a, 2x

l
sin a cos a,

- 2c.

Similarly the sum of the components of the forces passing through Q

is 2y2
sin a COS a, 2x

2
sin a COS a, 2c.

Hence the moment of the forces round FG is

x
l (

2x
l
sin a cos a) y l ( 2?^ sin a cos a)

+ x
a (2x2

sin a cos a)
- y2 (2ya sin a cos a)

= 2 sin a cos a (- x* + y* + x* - y*)

= 2 sin a cos a {(y? + */)
-
(y/ + *,)

-
(*/ + <) + (z' + x

a%
and therefore vanishes if

i. e. if P, ^ are equidistant from the greater real and imaginary axes of

the hyperboloid.

6. A rough rod AB, of length 26, whose centre of gravity is at

its middle point C, rests upon the ends of a diameter LM of a fixed

horizontal circular hoop of radius a, C lying between M and the

centre of the hoop. The rod is pulled by a horizontal force at B
perpendicular to it, which is gradually increased till the rod begins
to move. If k be the radius of gyration of the rod about C, and
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00 = c; then if a* c*<bc, the rod will turn about M; and if

aa
c*=bc, the rod will turn about a point P between L and C,

ft?

where P(7= T .

6

If a* c
8 > fo, what will be the initial motion of the rod ?

Let TF be the weight of the rod. Then the pressures at L, M
ft --- / /T J- /*

are - TF" and -^ TF. Let F be the horizontal force at B, and 6r

2a 2a

and .ff the consequent horizontal forces at L and M. Let
jit

be the co-

ft _ y

efficient of friction between the rod and hoop. If then G < -^ p.W,
Adi

the rod will not move at L ;
and ifH < -= /iTF, the rod will not move

2idi

at M. If then the rod be about to move, one at least of these inequali-
ties must be on the point of becoming an equality.

So long as the rod is at rest, G and H are found by taking moments
about M and L respectively. Thus

b+c-a b + c + a
Cr =-~- JP, J =-~- f .

2a 2a

(1) Let a* c
2 < 6c. Now the rod must be on the point of motion

at L, as soon as

b + c a,, a

' ^ '

and, when F has this value, then

a-c
b + c a' 2a

and this is < . fiW, if
ad

(b + c + a) (a
-

c)
< (b + c- a) (a'+c),

or a2 < (b + c) c,

or a3
c
8 < be, which is the case.

In this case, then, the rod will not move nor be on the point of

motion at M
; but is on the point of motion at L. Hence we infer

ft - (*

that, in this case, if F be just > --
. uTF", the rod will turn about M.

b + c a

(2) If a2 - c
3 = be, the values of G and H in terms of F become

Hence if F= -
. p.W, the rod is on the point of moving both at L

ct

and at M. The actual motion must therefore be investigated in this

case, as a kinetic question, and we shall find about what point the rod
will begin to turn.
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Let u' be the initial acceleration of 0, wf the initial angular accelera-

tion of the rod about C ;
and let m be the mass of the rod.

^
Since the rod will move at L and M. if F> . u,W. then

a '

and the equations of motion will be

mu' =F+G-H=F--
a

k*
therefore u' -r- o>' = 0,

b

k2

therefore the point P in LC, such that CP = ~r ,
will be initially at rest ;

i.e. the rod will begin to turn about P.

(3) If a2
c
2 > be, a similar argument to that in (1) would shew that

the rod will begin to turn about L.

(4) In (1) the assumption is made that as soon as G = -= p,W the
idl

rod will begin to move at L : this assumption would be correct were the

portion of the rod at L to be an independent particle. As, however,
this portion is part of a rigid rod, the objection might be raised that it is

not necessary for it to move as soon as G becomes = = p.W. A. similar
Zci

remark will apply to the argument spoken of in
(3).

In each of these

cases, therefore, the result may not be correct
;

for each case, being a

case of motion, is a kinetic question ;
we shall however find, on investi-

gating them kinetically, that these results are correct.

In both cases, if the rod initially turn about a point Q in LM, we
have the same equations as in (2) :

mu' = F--
a

ft

and the cases to be considered are those in which F< = or > -
a
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(a) If F<-fjuW, u' is negative, i.e. Q lies in CM. If CQ = y,
ct

u' +2/o)'
=

;
hence

ki(F-^w}+y^Fb-
a^^w} =

)

or

Since F is always < -ju-TF, and F + 6y is positive, we must have
Oj

a9
c*<bc, which shews that we are now considering case (1).

Now the position of Q is given by that value of y which makes F a

mimimum.

c _ (a
2 - c

2
Jc* be - a? + e

2
) ,

,

Putting F in the form - u.W < 5
--h 5

--^ ^
-

>, we see that
a r {be be k* + by J

'

F diminishes as y increases
;

i. e. F is a minimum when y = a c its

greatest possible value : ie. Q is at M
\
the same result as in

(1).

/*

((3) If F=-p,W, u' = Q, i.e. C is at rest: the rod will then turn
ct

about (7 if w' be positive, i.e. if Fb>
a ~

u.W, or -ulf?>^-^ uTT.
a a r a

or boa?- c
2

. But if this be the case, the rod will already have turned
about J/, as has been proved in

(a).

(y) If F>-pW, u' is positive, i.e. Q lies in LC. If CQ = yy

u'-y<a' = Q; hence

or

72t-11

C

k*-by

a'-c3

Since 7^ is always >-uTr.-rs , > 1: and we have again to
a k -by

distinguish between three cases :

fl
2

C*

(i) F-%>0;then&2-- y>k*-by, ora2

-c*<bc, and the

rod, as proved in
(a), will already have turned about M.

(ii) k*-by = 0, in which case the value found just above for F is

inapplicable, and we must return to the preceding equation, from which
we learn that a2

c
2 = be

; i. e. we are now considering case (2), the result
of which is thus confirmed.



JAN. 16, 9 to 12] PROBLEMS AND RIDERS. 129

a3 -e a

(iii) k2 -
by <

;
then. y k2 > by k', or a2

c
2 > be : i. e. we

c

are now considering case (3).

The position of Q is given by that value of y which makes F a

minimum. Puttin F in the form

c ,,, (a
2

c
2

k* a2
c
2

be}

a* (bc~~
+

bc by-V /'

we see that F diminishes as y increases : i. e. F is a minimum when
y = a+c, its greatest possible value : i. e. Q is at L

;
the same result as

in (3).

[The results of (ii) and
(iii)

have been obtained on the hypothesis
that b (a + c) > k2

. This, though presupposed in the question, is not

necessarily the case. If b (a + c)
= k3

,
there need be no change in the

results. If b (a + c)
< k

2

,
we must take into account the portion of the

rod outside the hoop beyond L, as Q, the point round which the rod will

turn, might be in that portion. If so, the equations of motion become

' = Fb+G(a + c)-H(a -
c)
= Fb.

Now u' yw =
0, therefore

or
k*-by>

k2

which shews that y must be < -=-
,
and F is a minimum when y is least,

i. e. when y = a + c
;
which confirms the result of

(iii),
but shews that the

result of
(ii) or of (2) is only true when b (a + c) > k9

. Accordingly if

b (a + c) < k2

,
and if also a8

c
2 =

be, the rod will turn about L and not

about P; or, in other words, the rod will not turn about P unless P be a

point in LC.~\

7. Water is revolving with angular velocity w in a smooth
fine circular tube of radius a which it completely fills, and which
rests on a horizontal plane. If the tube be made to revolve with

uniform angular velocity w about a pivot in its plane, shew that

the absolute angular velocity of the water round the centre C of

the tube is not altered. Also if w be the average pressure of the

water throughout the tube, shew that the mean pressure in the

water for a section through any point P of the tube is

sr + /irtcco'

2
cos 6,

and that the resultant pressure on the tube at P per unit length is

1- maw2 + 2mc(i)'
2
cos 0, where Q is the angle between CP and

/xa

00 produced, c = OC, m is the mass of water which would fill an

unit length of the tube, and p, that of an unit volume of water.

S.-H. P. 9
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At any time t the velocity of every element of the water rela-

tively to the tube is the same; i.e. the ring of water is moving as a

rigid ling.

Now all the pressures of the tube upon this ring are normal, and

therefore pass through its centre C. Hence there is no force to change

the absolute angular velocity of the ring round (7, which therefore

remains unaltered.

The accelerations of the element at P are compounded of those of C
and those of P relatively to C.

The acceleration of C is cw" along CO ; that of P relatively to C is

aw2

along PC.

Let p be the pressure of the water at P, E that on the tube there.

Resolving along the tangent to the tube at P we obtain

/I A (^P
Afiacw sin 6 A -^ ,

A being the area of a cross-section of the tube ;

therefore p = C + /xcww'
2
cos 6,

C being a constant.

But the average value of cos throughout the tube is zero, therefore

C =
is, therefore p ZZT + /xacw'

2
cos 6.

Resolving along the normal to the tube at P, we obtain

m (aw
2 + cw'

2
cos 0) = Jt

a

= E (& + /u.acw'
2
cos 0),

+ maw? + 2racto'
2
cos 6.

8. A cylinder of small radius a, which will submit to flexure

but not to torsion, has one end fixed in a horizontal plane, so that

that end of its axis is vertical. The axis is now slightly bent and
made to describe a surface of revolution, so that the cross section

through any point P on the cylinder always makes a small angle a

with the horizon. If Q be the point at which this cross section

meets the bent axis, shew that the path of P relatively to Q is

given by the equations

(a; + a cos
2

a)
8
-H tf

= a* sin* fa
s? = 2a cos

2

fa (x + a)J

a;, y, z being the co-ordinates of P referred to axes fixed in direc-

tion.



JAN. 1C, 9 to 12] PROBLEMS AND RIDERS. 131

Hence shew that, if the motion of the axis be so slow as to be

imperceptible to the eye, the cylinder will present the appearance
of rotation.

Let the axes of x, y be horizontal, that of z vertical
;
and in

any position of the axis, let be the angle between the plane xz and
that through the axis and the vertical. When = 0, let P be in the

plane xz, its co-ordinates relative to Q being then a cos a, 0, and a sin a.

In the position 6 = 0, the projections of QP on the line in the ver-

tical plane through the axis which makes an angle ^ a with QZ and
2i

on a perpendicular to this line in the cross section, which latter line is

the intersection of the cross section and the horizontal plane through Q,
are a cos and a sin 6. This is seen most easily by supposing the axis

first straightened from the position 6 and then bent into the position
= 0.

Hence the new co-ordinates of P are

x = a cos# cos a cos# - a sin sin 0, y=-a cos cos a sin# + a sin cos0,

z=a cos 6 sin a.

Therefore

x = a cos a cos
2 - a sin

2 = |a cos a (1 + cos 26) \ a (1
- cos 26)

= - a (1 + cos a) + 1 a (1
- cos a) cos 26

= a cos
2

\ a + a sin
2

\ a cos 26,

y = a(l cos a) sin 6 cos 6 = a sin
2

^ a sin 26,

z = a sin a cos 6 ;

therefore

(x + a cos
2

\ a)
8 + T/

8 = a2
sin

4 a cos
2 20 + a2

sin
4

| a sin
8
26 = a* sin

4

a,

and z
2 = a? sin

2a cos
2
6 = a2

sin
2 a ^ r = 2a cos

2
^ a (cc + a).

a (1 cos a)

If the motion of the axis be very slow, the eye will follow the lines

in which a vertical plane through the axis cuts the cylinder and will

suppose any point on either of these lines to be a fixed point on the

cylinder. As these lines revolve, the point will seem to travel round
the axis and the cylinder will seem to be twisting.

9. A roll of cloth of the small thickness e, lying at rest upon
a perfectly rough horizontal table, is propelled with initial angular

velocity ft so that the cloth unrolls. Apply the principle of

Energy to shew that the radius of the roll will diminish from a
to r (so long as r is not small in comparison with a) in the time

92

/ If 3 v2\$( 3 *$}
e V 3g

^

where 4 (c
3 - a3

) ^ = 3ft
2
a
4

.



132 SOLUTIONS OF SENATE-HOUSE [WEDNESDAY,

Is the application of the principle of Energy to this problem
correct ?

At the time t let the length of cloth unrolled he x, and let its

radius be r, and its angular velocity o>. Then

= 2irr8r ;

.. __- dx 2ir dr .

therefore -r = -- r -r : and it also = ra>.
at e at

The equation of Energy gives

a -xgr . r.

Therefore r*^ . f r8

(JY = f a4
ft

8 + 2g (a
3 - r

3

),

4_2 / f/r\2

^L
f 3r'

r|J
= 9a4 O2

=
12</(c

3 -r3

),

Hence -3
. t,

'-

If the cloth he the ideal mathematical cloth, all the forces except
that of gravity pass through the instantaneous axis, and, since the

motion is one of rolling, no work is done by or against them ; hence the

principle of Energy is applicable. If, however, the cloth be supposed
cohesive, so that each fold coheres to the rest

;
or again, if the cloth be

not perfectly flexible and elastic forces are called into play ;
the prin-

ciple is not applicable.

10. The umbilical geodesies at the extremities of the mean
axes of a system of confocal ellipsoids all touch one or other of two

planes.

a? rf z
s

In the ellipsoid 2
+ p + -5

=
1, we know that along any geo-

desic pd = const.

ac
But at an umbilicus pb

s = dbc, therefore p =
-j- ,

and d = b', therefore,

for umbilical geodesies, pd=ac. Hence d at the extremity of the mean
etc

axis for an umbilical geodesic is given by bd = ac; therefore d= -=- .
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If then 6 be the angle between this geodesic at the extremity of the
mean axis and the plane through the two greater axes, we have

b
2

,_
cos

s
sin2

a2
c
2
~

a2
c
2 '

&
2 -c2

whence tan2 = -5
a' - b

2

in which equation the right-hand side remains the same for all confocals

to the above ellipsoid.

Therefore the planes which pass through the mean axis and are

inclined at an angle 6 to the plane through the two greater axes are

touched by the umbilical geodesies at the extremities of the mean axes of

all the confocals.

11. The polar equation of a nearly spherical surface is

r = a + bPn ,
where Pn is a zonal harmonic of the nth degree,

and b is a small quantity whose powers above the second may
be neglected. Shew that the area of the surface exceeds the area

of a sphere of radius a by 2?r6
2

The area of an elementary annulus of the surface enclosed be-

tween two conical surfaces, whose common axis is the axis of the system
of harmonics, and whose semi-vertical angles are 6 and + 86, is

2-rr sin O.I ("!}+ A* 80
9/

2at>P
a
+ b

2

n

(/x
= cos 6}

i +
b-
P, + |

6
I(i -/)(f"Y|Va 2 a* v '

\ dp J )
'

(neglecting powers of b above b"}

Now the integration is to extend all over the sphere, i. e. from =
to =

IT, i. e. from /x,= l to
/x,
= 1.

Also we have

P.P4.-0; f
>-,

r
/.,
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Therefore the area of the given surface

,, ( 2 n(ra+l))= 4ira
2 + 27T&* < ~-=- + -T- >

(2 + 1 2n+ 1 J

_ 12= area of a sphere of radius a + JTTU
^
-

;

12. A uniform circular tube containing masses mv ra
2
of two

gases, which are separated by two adiathermanous pistons, is

placed in a hot fluid. Assuming the flow of heat across the

substance of the tube into the gases to be, at each instant, the

same for every point, find the temperatures of the gases when they
fill given portions of the tube.

Prove that the absolute temperatures tlt a
of the two gases are

constantly connected by the relation

where T
lt
T

2
are their initial temperatures, k

lt c,
and k

z , C2 their

specific heats under constant pressure and volume.

Let
} ,
6
s
be the angles subtended at the centre of the tube by

the gases when at temperatures t
t
,

t
2 ; and let 2irA be the volume of the

tube. Also let 2^8^ be the mechanical equivalent of the amount of heat

that flows into the tube in. any unit of time, and let p be the pressure
of the gases at that time, being the same for each. Then, since the flow

of heat across the substance of the tube is assumed to be at each instant

the same for every point, we have by Carnot's Theorem or by Joule's

result that in a gas no internal work is done except in raising its tempe-
rature,

Dividing these equations by 0,, O
a
and subtracting one from the

other, we obtain

Q _.. &, *A-- -

But by Gay Lussac's law, combined with Clausius' and Rankine's

Theorem,

M-ft-^K, i*.-' (*.-*.)'*
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Substituting these values for Ov 2 ,
we have

__._ ^>__A_V^_^
&1-V*. 5-v, 0, *.

Also, by taking the logarithmic differentials of Gay Lussac's equa-
tions and subtracting one from the other, we obtain

and, multiplying this equation by -=
- and subtracting it from the

* ~ C
2

last, we have

/ *.
c
2

\ &, *. /Sfl, 8fl.\ .

U'.-c, &
2
-c

2; ^ -S^vVi *J'

and, since 1 + 2
=

2-rr,
and consequently 8^ + S^

2
=

0, this reduces to

Hence, integrating and writing a
t ,
a for the initial values of

t ,

we have

whence

Similarly

These equations give the temperatures of the gases when they fill

given portions of the tube. They also prove that

13. In the case of steady rolling motion of two perfectly rough
spheres of which one of radius a and mass A moves on a perfectly

rough horizontal plane and supports the other of radius 6 and
mass B, so that the line joining their centres makes an angle a

with the vertical
;
shew that the radius of the circle described by

the centre of the lower sphere will be

oB sin a c

[7A + 5B (1+ cos a)} X
2 '
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where c = a + b, and X is the angular velocity in this circle, being

given by the equation

X2
c cos a (49A + 10B (1 + cos a)

2

}

- 2\ (vb + na cos a) {
7A + 5B (1 + cos a)}

+ 5g{ 7A + B (5 + 2 cos
2

a)}
= 0,

n, v being the angular velocities of the lower and upper spheres
about a vertical and the line joining their centres respectively.

Let be the centre of the circle described by the centre of the

lower sphere, and let r be its radius. Let OZ be the vertical through
0. Let P, Q be the centres of the lower and upper spheres at any time.

Since the motion is steady, Q also describes a circle round OZ, and the

vertical plane through P and Q makes a constant angle with the plane
POZ. Let this angle be y. Now let the axes at any time be OP, a

line through parallel to the direction of motion of P at the tune, and

OZ. Then the angular velocities of these axes about each other are

0, 0, X. Also let the forces exerted on this sphere by the plane at the

point of contact be X, Y, Z in the direction of these axes.

Let R be the point of contact of the two spheres, and let the forces

exerted on the upper sphere by the lower be F, G, II in the direction of

the axes.

The co-ordinates of P at any time are r, 0, ;
therefore its veloci-

ties are 0, r\, ;
and its accelerations r\2

, 0, 0.

Similarly the co-ordinates of Q are

r c sin a cos y, c sin a sin y, e cos a ;

therefore its velocities are

c sin a sin y . X, (r
- c sin a cos y) X, ;

and its accelerations

-
(r c sin a cos y) X

2
,

c sin a sin y . X2

,
0.

Then for the motion of P and Q we have, omitting unnecessary equa-
tions,

A (- r\*)
= X-F, E {- (r -c sin a cos y) X*} =F,
= 7-0, =

ff,

and = ff-g-,
which ive

,
(7 = 0, H = Bg.

Now, let au a
g,
a
3
be the angular velocities of the lower sphere ;

&, /?2 , /33
those of the upper sphere about axes parallel to Ox, Oy, Oz

through P and Q respectively. Then, since the point of contact between
the plane and the lower sphere is momentarily at rest, and its co-ordi-
nates referred to the axes of this sphere are 0, 0,

-
a, we have

- aa
3
=

0, r\ + aaj
=

;
while a

3
= n.
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Also, since the motion of the two points of contact on the lower and

upper spheres is momentarily the same, and its co-ordinates referred

to the axes of the lower sphere are a sin a cos y, a sin a sin y, a cos a
;

and referred to the axes of the upper sphere are b sin acosy, b sin asin y,
b cos a, we have

a sin a sin y . a
3
+ a cos a . aa

= c sin a sin y . X + b sin a sin y . (33
- b cos a . /?2 ,

r\ a cos a . a
l

a sin a cos y . a3
=

(r c sin a cos y) X + b cos a . ^1

+ b sin a cos y . /?3,

a sin a cos y . a
2
+ a sin a siny . a

l
= b sin a cos y . /22

b sina siny . /? t ;

also sin a cos y . ySt
+ sin a sin y . /?2 + cos a . /?3

= v.

If we write in these aa
t
=

rX, a
2
=

0, a
3
= n, the three first equa-

tions transposed become

b sin a sin y . f33
b cos a . /?2

= c sin a sin y . X a sin a sin y . w,

b cos a .
/?j

+ b sina cosy . J33
- (rcosa + c sina cos y)X a sina cosy . n

}

b sin a cos y .
/:?

+ b sin a sin y . /^ r sin a sin y . X
;

the fourth equation remaining unchanged.

We might solve these equations for f$v /32, /33
in terms of v ;

but the

work will be simplified if we first take into account the dynamical

equations of angular momentum.

Accordingly, taking moments about the axes through P, we have

firstly, since the motion is steady,

4 Aa?
{

a
2X} aT a sin a sin y H+a cos a G'}

which, combined with previous results, shew that siny=0; i. e. y=0,
for if y = TT the upper sphere would fall off the lower.

Secondly, using this result, we have

-|
Aa" {ajX}

= - aX a cos aF a sin aff,

which, combined with previous results, becomes

-
f AarX* = aX2

{Ar + B (r
- c sin a)} + a cos a . X2 B (r

- c sin a)
- a sin a Eg ;

hence r
{
-I A + B (1 + cos a)} A.

2 = Be sina (1 + cos a) X
2 + Bg sin a,

_ 5B sin a {c (1 + cos a) X
2 + g] ^

{7^1 + 55(1+ cos a)} X
2

the first result given.

The third equation for the lower sphere is not needed, but if formed

will be found to be consistent with previous results.

Again, taking moments about the axes through Q, and using previous

results, we have firstly

| Bb 2

{- /3 2 X}
= b cos a.G = ;

hence fa
- 0.
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Secondly, we have

| BV {ft A}
= - b coso. F- b sin a II'= bcosa. \*B (r-c sina)

- b sina.%;

hence 2b^\ = 5A8
cos a (r

- c sin a)
-

5<7 sin a.

We must now substitute these values in the geometrical equations

already found for
/?,, f}2, /33. Since /?2

= 0, the first and third equations

give no result, because y 0. The second and fourth become

cos a {5A
2
cos a (r c sin a) 5g sin a} + 2 sin a . b(33

\

= 2(r cos a + c sin a) X* 2 sin a . an\,

and - sin a {5A
2
cos a(r c sin a) 5g sin a} + 2 cos a . bfi3

\ = 2bv\.

Multiplying the first of these by cos a and the second by sin a and

subtracting, we obtain

5A2
cos a (r c sin a) 5g sin a = 2A2

cos a (r cos a + c sin a)

2>Csin a (vb + na cos a) ;

J7A
2
c cos a 2A (vb + na cos a) + 5g\ sin a

hence r = -*- ^-^-7^ ~--\
- -

A cos a (5
- 2 cos a)

Now equating this value of r to that already obtained, we have

5B {A
2
c (1 + cos a) + g] _ 7A2

c cos a - 2A (vb + na cos a)_
7-4 + 52? (1 + cos a) COS a (5 2 COS a)

therefore

A2
c cos a {49^ + 55 (1 + cos a) (7

- 5 + 2 cos a)}

2A (vb + na cos a) {7A + 5 (1 + cos a)}

+ 5g {7A + 5 (1 + cos a)
-B cos a (5

- 2 cos a)}
= 0,

or

A2
c cos a {49^1 + 105 (1 + cos a)

2

}
- 2A (vb + na cos a) {7^1 + 5B (1 + cos a)}

+ 5g {7A + B (5 + 2 cos
8

a)}
=

;

the second result given.

14. A string of natural length 2, and of equal elasticity for

compression and extension, hanging in equilibrium under gravity
over a small smooth pulley, is cut through at a point whose un-
stretched distance from the nearer end is \l. Shew that during

the time -
(where a is the wave-velocity) the velocity of separation

Oj

of the two new ends thus severed is , and at the end of that time
a

suddenly doubles. Shew also that the pressure on the pulley
during the second half of this time is half its initial value.

(1) Let us first consider the portion of string that falls freely.
Let its higher end be A and its lower end B,
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Take the origin at the equilibrium position of A, and the axis of x

vertically downwards. Let P be any cross section of the string, whose
unstretched distance from A is x, and let be its abscissa at time t.

Then the equation of motion for the element of string at P is

and its solution may be written

=%9? +f(x ~ at
)

Hence the velocity of the element at P is

v =
C

JI
= gt+a[-f(x-at)+F'(x + at)] ............... (1),

and the stress at P is

-l^E[f(x.~at}
+ F'(x + af)-\] .........(2),

where E is the coefficient of Elasticity or Restitution.

The terminal conditions are : when x = and when x = 1 1, X =

always : therefore

f(-at) + I"(at)
= l ........................ (3),

l+at)=l ............... (4).

The initial conditions are :

(1) when t = 0, v = for all values of x from to 1 1
;
therefore

'(x)
=

Q, x=0tol .................. (5);

(2) when 2 = 0, X=mg(\l x) for all values of x from to \l,
where E - ma2

',
therefore

o/
(6).

These equations and conditions enable us to find the values of f(z)
and F

'(z)
for all values of #, a typical variable.

Thus, from z = to 1 1,
we learn from (5) and (6) that

/>) = ^(*) =
|{l

+ fa

Then (3) shews that, from z = to
-| I,

/(,)=! -i{l+|,(i
+

*)}

=

and then (4) shews that, from = 1 1 to I,
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and, from z = I to f I, . .

Then (3),
used once more with these two last results, shews that,

from z = \l to I,

and, from z = I to f I,

These results suffice to give the motion of A from t = to
^-

.

Thus, from t to -
,

and, from = to ^- ,

a 2a

i. e. at the end of the time - the velocity of A is suddenly trebled.

(2) Let us next consider the portion of string that passes over the

pulley. Let its end that was attached to A be C and its other end D,
and let the cross-section that is passing over the pulley at time t be
denoted by E,

Take the equilibrium position of C as origin, and the axis of x along
the string CE, and suppose ED to be a continuation of CE so far as

measuring distances from C is concerned. Let the unstretched length of

CE be y. Then the eqxiations similar to (1) and (2) are in this case as

follows, unaccented letters referring to CE and accented letters to ED.

For values of x between and y, we have at time t

v = - gt + a [- <f>' (x
-

at) + & (x + at)],

X= E [<' (x
-

at) + $' (x + at)
-

1],

and for values of x' between y and \ I, we have at time t

v' = gt + a [- 1// (x
1 -

at) + *' (a/ + at)],

X' = E [tf(x'
-

at) + *' (x
1 + at)

-
1].

The terminal condition at C is that when x = 0, JT=0 always;
therefore

<j>'(-at)+& (at)
= l ........................... (7).
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That at E is, that when x=y, x =
y, v = v', X=X' always; therefore

-gt + a[-<l>(y- at] + $' (y + at)]
=

gt + a [- if/' (y
-

at] + *' (y + at}],

$ (y
-

at) + &(y + at}
= f (y

-
at) 4 *' (y + at)

from which we obtain

at)+^ ........................ (8),
cu

tf)- ........................ (9).

The terminal condition at D need not be introduced, as it would be

found not to interfere with the motion during the limited time in ques-
tion.

The initial conditions are :

(1) When t = 0, v = for all values of x from to
,
therefore

- <' (x) + <E>'
(a;)

=
0, x = 0tol ................ (10);

(2) When t = 0, v' = for all values of x' from ^ I to f I,
therefore

- f (x) + V(x') = 0, aj' = |?to| I ............. (11);

(3) When t - 0, X = mg (^1 + x) for all values of x from to ^ I,

therefore

^>' () + $ '

(^)
- ! = 4 (!*+) a;^ to i^ .........

(
12);

tt

(4) When < - 0, X' = mg (f Z -
')

for all values of x' from \l to f J,

therefore

f (O + ^'
(a/)

- 1 =4 (f Z- a/),

' = Ho f Z. ........ (13).
QJ

From (10) and (12) we learn that, from z = to ^ I,

(H),

and from (11) and (13) we learn that, from z = J to
,

Z-*)}
................. (15).

Then (7) shews that, from z = to -
| /,

Equations (14) and (16) suffice to give the motion of (7 from ^ = to

r ;
for during this time
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therefore during this time the velocity of separation of the two new ends

A A n yiA and C
' = VA + vc = .

a

Now, initially y \ I, and, by the principle of unique solution, y
will continue to be \ I, so long as this value will make the equation

v = = gt + a
[ <f> (| I at) + 3>' (| I + at)]

consistent with (8), (14) and (15).

Equations (8) and (15) give, till t = -
,

Oi

*
(!+<*)}

(17);

and (14) gives, till t = ~
,

therefore - $ (| I - at} + 3>' (%l + at]
= g-

,

o/

which is consistent with the above, making vs = till t = ^- .

2iQi

Now equations (7) and (17) will give the motion of C from t = - d̂

to pr- ; for we have
2a

[- <' (at) + $' (at)]

= - gt + a [- 1 + 2$' (at)] from (7)

= - gt + a

_

2a'

- 1 + 1 + ~ (^l + at)\ for this period, from (17)

xr - J ^ ^^ ^ . 31 Sal
Now, from =^ to -

,
v , = j- and from t = - to ^- v4 = -- .

2a a 2a' a 2a A
2a

Therefore from t = =- to - the velocity of separation = ^
, the same

2a a a
I I 31

as during the first period t = to ^-, and from t = - to -^- , the velocity' '-^-
a 2a

e. at the end of

of separation is suddenly doubled.

of separation = -~- + ~- = -$- i.e. at the end of the time - the velocity
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The initial value ofX at the pulley is clearly mgl = E 2 ;
as appears

Oj

also from (14), which equation shews further that this continues to be

the value of X there till t = -^- . When t = -r- we have at the pulley
2a 2a

x=

and so also till t = - we have
a

at}
-

1]

from (16) and (17)

i. e. the stress at the pulley, and therefore the pressure on it during the

time =- to - is half its initial value.
2a a

A more concise proof from general reasoning would run thus :

Equations (1), (2), (3), (5) and (6) shew at once that the initial velo-

city of A and of each successive cross-section of the string is
^- , i. e.

that a wave travels down the string with velocity a, giving to each cross-

section the velocity -, and so leaving the parts over which it has passed
aQi

at rest relatively to each other. Then equation (4) shews how this wave
is reflected at B at time 2a, being the only wave generated in the string,
and travels back with the same velocity, but doubling the downward

velocity of each cross-section it passes over. Being reflected again at A

at the time -
,
it imparts an additional velocity ^- to each cross-section

Oi Zcti

as it passes over it. Thus at time -
,
A begins to move with velocity

QJ

~
, having previously been moving with velocity J~ .

a ' *

Now the string at G is clearly in the same state of extension as that

at A ;
hence the cross-section there begins to move with velocity ^- ,at

and so does each cross-section of CD over which the wave passes. Till

the wave passes over a cross-section it is at rest
;

i. e. D remains at rest
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31
till the time r-

,
and during this time C is moving with an upward velo-

'2a

city . Hence at time the velocity of separation of A and is
J 2a a

doubled.

Again, during the time which precedes the ai-rival of the upward
wave at the pulley, the state of strain there is unaltered, i. e. the pulley
has to support the whole string. Directly the wave passes the pulley,

21
the string begins and continues for a time exceeding to move over the

ct

pulley with velocity 5- : hence the pressure on the pulley is the same
Mk

as if it were supporting a length \l of the string on each side of it
;

i. e.

at the time =-
,
the pressure on the pulley is suddenly diminished by one

ct

half, and continues thus for at least the second half of the time -
.

a

[For a different discussion of this question see Mr Niven's paper
" On a case of Wave Motion," Messenger of Mathematics, Vol. viu.

pp. 7580 (September, 1878).]

15. In the midst of an infinite mass of homogeneous incom-

pressible liquid at rest is a spherical surface of radius a, which is

suddenly strained into an equal spheroid of small ellipticity. Find
the kinetic energy due to the motion of the liquid contained
between the given surface and an imaginary concentric spherical
surface of radius c

;
and shew that if this imaginary surface were a

real bounding surface which could not be deformed, the kinetic

energy in this case would be to that in the former case in the ratio

C
5

(3a
5 + 2c

s

) :2(c
s -a5

)

2
.

Let r = <z(l + eP
2)

be the equation of the spheroid of small

ellipticity e
;
P

3 being a zonal harmonic of the second degree. Then the

displacement of any point is given by a (1 + ePs) a = acP
2

.

Let < be the velocity-potential in the liquid when its outer boundary
is a fixed spherical surface of radius c.

Then, since only harmonics of the second degree appear in the dis-

placements, we may assume

And when r = a. -j- = AaeP,, X being a constant : when r = c,
~ = :

dr ' dr
o n

therefore Xa = 2A a -*
,

a '
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-A 5

therefore A =
2(c

5 -a5

)'

2

3(c
5 -a5

)'

Now the kinetic energy | II I <(-~
J
+ ( ~\ s + (-^ )

I dxdydz
JJJ \Cft*Xs / \^'J/ / \ d / i

the integrations extending over the spherical surfaces.

But over the outer surface -~ = : and over the inner surface
an

<4 dtf)

-j
= j- = Aae/*.

an ar

Therefore the kinetic energy

3a5 + 2c
5

15
'

c
5 -a5 '

If now the bounding spherical surface of radius c be removed and
the fluid extend to infinity, we have

3S'
where, since Xae = --

-f-

Hence, over the spherical surface of radius a, -^-
= - \aeP

a ,
and over

that of radius c, -=-? = 7-*- P ,

an c

Therefore the kinetic energy in this case

i 3.5
' B' 47rc

8

a3 '

5 *
c
4

'

c
3 '

5

27T

5
'

( 3 3c
s

1

c
6 -as

15
'

c*

S.-H. P. 10
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Hence the ratio of the kinetic energy in the first case to that in the

second case is

TrXVe8 3a5 + 2c
s 2a-XVc3

c
5 -a5

15
'

c
5 - a' 15 c

5

or c
5

(3a
5 + 2c

5

) :2(c
5 -a5

)

2
.

WEDNESDAY, January 16, 1878. 1 to 4.

Mr GBEENHILL, Arabic numbers.
Mr NIVEN, Roman numbers.

1. DEFINE the terms invariant, covariant, and discriminant.

Prove that, if /be any invariant of the binary quantic (a ,
a
l}

a
2>"- anl>ix> 2/)

n
of the order p in the coefficients, the weight

of each term of / will be %np ; and that / will satisfy the

equations

a'za^L %a =

and na^i+tn-Da (n - 2) a H =0

Calculate the invariants of the quartic (a, b, c, d, e~$x, ?/)

4
for

which p is 2 and 3 respectively ;
and denoting them by S and

T, prove that the discriminant is S3
Z7T*.

(Salmon, Higher Algebra, 52, 56, 58, 137, 139, 203.)

2. Prove that

a +b2h cos o , ob I?
r-j and 2 .

c sin ft) c sm D

are invariants of the conic aa? + 2hxy + If + c = 0, the angle
between the axes being to.

Prove that, if u = be the rational equation of a conic in rect-

angular co-ordinates, the foci are given by

du du

Let

dx) \dy! _ dx dy _
tfu d'u

'

d?u
'

da? dy
2

dxdy

X-x Y-y
I m

be the equation of a straight line through a focus (xy).
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At the intersection with the conic u = 0,

,
du du\ , /T d2u ^, d*u

dx*

Now since the tangents to a conic through a focus pass through the

circular points at infinity, we must have, putting 1 = 1, m = J-I, the

equation

fdu . i-du\ , /d
2u n , r d'u d*u^

u + (du i^du\ /d3u _ /^^r d3u d 2u\ n
I ! /J 1

)
T + -k [ + 2,j 1

) r
\dx dy)

*
\daf dxdy dy

2
J

a perfect square is r ; and therefore

du - du

T*
L^r ^v^2

~
8

' x
^%/'

equivalent to

/du\* /du\* du duA 2

\dx) \dy _ dxdy =
dau dsu d'u

dy? dy* dxdy

the required equations of the foci.

3. Define the integral curvature, the horograph, and the

average curvature of any portion of a surface, and the specific
curvature at any point of a surface

;
and prove that the reciprocal

of the product of the principal radii of curvature at any point
of a surface measures the specific curvature.

Prove that the area of the surface, of which the specific
curvature at any point is constant and equal to a"

2

,
is 47ra

2
.

(Frost, Solid Geometry, 604, 605.)

If dS denote an element of the surface, do- the corresponding element

of the horograph; then

dS
&m**-*

therefore S = <ra
2

.

i

And <r 4ir ;
therefore S

4. Find the velocity of the liquid at any point in an elliptic

cylinder filled with liquid and rotating about the axis.

Prove that the stream lines of the liquid relative to the

cylinder are similar ellipses for all axes of rotation parallel to

the axis of the cylinder, and find the kinetic energy of the

liquid.
102
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A pendulum with an elliptic cylindrical cavity filled with

liquid, the generating lines of the cylinder being parallel to the

axis of suspension, performs finite oscillations under gravity.
If I be the length of the equivalent pendulum, and I' the length
of the equivalent pendulum when the liquid is solidified, find I

and /', and prove that

where M is the mass of the pendulum, m of the liquid, h the

distance of the centre of gravity of the whole mass from the

axis of suspension, and a, b the semi-axes of the elliptic cylinder.

First suppose the cylinder to be revolving about its axis with

angular velocity w, and let
(fig. 61) represent the centre of a plane

transverse section of the cylinder; 0, Orj fixed rectangular axes in the

plane, and Ox, Oy axes coinciding with the axes of the elliptic section.

Then

a2
b*

<f>
= a> -, j 2 ( cos +

-r]
sin 0) (- f sin +

t]
cos 6)

a'-b*

where < and
\]/

are the velocity- and the current-functions of the liquid.

If x denote the current-function of the liquid relative to the cylinder,

and therefore the relative stream lines are similar ellipses. (The motion
of the liquid will therefore be the same if the cylinder be bounded
internally by a similar, similarly situated, and co-axal elliptic cylinder.)

If the axis of revolution be parallel to the axis of the cylinder, then
the motion of translation of the axis of the cylinder due to this motion
will not produce any relative motion of the liquid, and the motion of
rotation about the axis due to this motion will produce the same rela-
tive motion as before. Therefore the stream lines of the liquid relative
to the cylinder are the same, that is, similar ellipses, for all axes of
rotation parallel to the axis of the cylinder.
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The kinetic energy of the liquid relative to the centre of mass of the
liquid is

,

where

K is therefore the effective radius of gyration of the liquid in the
cylinder about the axis of the cylinder.

If K denote the radius of gyration of the mass M of the pendulum
about the axis of suspension; if c denote the distance between the axis
of suspension and the axis of, the cylinder; and if -0 denote the angle the

plane through these axes makes with the vertical; then the kinetic

energy of the pendulum and the liquid

by the principle of energy ;
and therefore

-,

'

(M+m) h

If the liquid were solidified, the kinetic energy would be

= | MK*fr + 1 m {c
2 + I (a

2

and therefore

(
M 4- m) h

Therefore

4A

m as
b
a

I

M+m a? + l?h-*

5. Prove that, if the space between two infinite coaxal

circular conducting cylinders be occupied by a dielectric of specific
inductive capacity K, the capacity of the inner cylinder per unit

of length is | ,
where a is the radius of the outer cylinder

Io
5

and b of the inner.
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If a conducting circular cylinder of radius b be surrounded

by an uninsulated coaxal cylindrical grating of radius a, formed
of n thin wires, prove that the electrification at any point of

the cylinder, of which the radius makes an angle 6 with the

vector of a wire, is

_2_ a2" - 6*"

2-jrb
'

a?* - 2a"6" cos n0 + Vn '

where Q is the quantity of electricity per unit length of the

cylinder.

Suppose the potential of a single wire at a distance p to be
A log p ; then if we take the n negative images of the wires in the

cylinder (Maxwell, Electricity, 189), the potential of the wires and
their images at a point whose co-ordinates are r, 6 will be

r
z" - 2aV cos nO + a8"

= |Mog
gss

3T

r*" - 2 r" cos w0 + -5;a a*

by De Moivre's property of the circle.

If we put r = 6, then

F=w\log-,

a constant; and therefore if the cylinder r= b be electrified with super-
ficial density

4w dr '

the potential of the external wires and this electrification will be con-
stant in the interior of the cylinder; and therefore this will be the
electrification of the cylinder when insulated and surrounded by the

grating of n thin wires.

Now . (r = b)
4a- dr

b
3"' 1

n\ 6 '-,-&-.' own* n\
b

"~

^fT****
4rr b

2" - 2a"6" cos nO + a2"

2 - cos 1W + -s
a a2"

a" - 2a"6* cos

r___-
fl

L a?" -2ci47T& / a2" - 2a"b" cos nQ + b
s"
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therefore the electrification

Q^ aan - b-
n

~
2rf> a2" - 2a"b" cos nQ + b*

a '

[This rider and the result were obtained as a generalization of 189
of Maxwell's Electricity, but objections have been urged against the

accuracy of the result.]

vi. Find the expressions for the stresses at any point of an

isotropic elastic solid in terms of the strains at that point, and
deduce the value of Young's modulus in terms of the coefficients

of rigidity and the elasticity of volume.

A spherical shell of isotropic material and finite thickness

expands under the influence of a gas of given pressure contained
inside it

; prove that, if a thin shell whose unstrained radii are

r, r + 8r be strained into a shell whose inner radius is r + u,

the work required to produce the strain in this part is

fdu 2i*>

per unit volume, where n is the rigidity and k is the elasticity
of volume, and deduce from this result the strains and stresses

inside the shell.

How can the principal stresses at right angles to the radius
be found ?

One of the easiest methods of discussing the general problem
of elasticity of solid bodies is the comprehensive method of Green.

The geometrical elements of the strain in the neighbourhood of any
point are completely expressed by means of the six strains. If uvw be
the displacements of a point whose co-ordinates are xyz, and if the strain

be small, its components may be denoted by

du , dv _ dw
"~dx* '/= ^' 9=

dz

dv dw , dw du du dv
a = -j-+-i

-
)

= -=-+, c = -j-+-j-.dz ay dx dz dy ax

Of which the three former are called normal, and the three latter the

tangential, strains. The energy, W per unit volume, required to pro-
duce the state of strain of the element dxdydz is, for an isotropic

substance, a function of the invariants of the above system of magni-
tudes which is of the second degree in e,f...c, and is therefore of the

form

2W=m(e +/+ g)
2 + n (e

2

+/
2 + g*

-
2fg

- 2ge
- 2ef+ a2 + b

2 + c
2

)

(see Thomson and Tait's Natural Philosophy, Appendix C).



152 SOLUTIONS OF SENATE-HOUSE [WEDNESDAY,

n is the rigidity of the substance, and m is connected with the

elasticity of volume by means of the equation

m \ n Jc.

The value of W may be put into a somewhat more convenient form

thus,
2 TF= (&

-
f w) (e +/+ #)

a + rc (2e
8 + 2/' + 2/ + a2 + 6

2 + c
2

).

To obtain the components of the stresses and the general equations
of equilibrium, we observe that if XYZ be the components of the stress

on an element dS of the surface of any portion of the body,

f(X8w + T8v + ZSw)dS- fsW.dx dy dz = 0,

no impressed forces being supposed to act on the particles of the body,
and X, Y, Z being expressed in the usual manner in terms of the elastic

stresses. When we substitute for W in terms of e,f... and integrate

by parts, we may equate to zero the coefficients of 8u, 8v, Sw in the

different parts of the surface integrals and volume integral, we obtain

the general formulae for the stresses and the equations of equilibrium.

In the case of a spherical shell symmetrically expanded by a gas
inside it, these formulae are greatly simplified, for there are no tangen-
tial stresses, and the normal stresses are reduced to a stress ft in the
direction of the radius, and another S at right angles to it.

Let a be the outer and b the inner radius, and let P be the pressure
of the gas inside, P that of the medium surrounding it

;
in ordinary

cases P will be the atmospheric pressure, and may be neglected : we
shall however, for the sake of generality, include it.

When the shell is strained, let the radius r become r + u
;
the work

done by the elastic forces in producing a small arbitrary strain of a shell,
whose outer and inner radii are r and r

lt
is

R being reckoned as a traction, in the usual manner.

Let us now consider any rectangular element of an indefinitely thin
shell whose edges are dr, ra, rf3, a and /3 being two indefinitely small

angles.

It strains into a rectangular element whose edges are

and the three tangential strains are now zero
;
that is to say,

a = 0, b = 0, c = 0,

du - u u-

e= f n--
dr' J

r* * r'
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the work done in straining the shell is therefore

.' .'/', , ,/du 2u\* Vdu\* 2u*}W=l (*-!*){ j- + )+{( j-J + TiTi ............... (6)'

\dr r J (\dr/ r2
)

' v '

per unit volume.

The work done in straining the shell
(r, rj is

47r I r*Wdr;
Jri

the general equation of equilibrium is, therefore,

-
Rtfbu,^

= I r*8 W. dr.

-=- 8% .

dr

du 2u
__+
czr r

and

/

7

,

where

We see from these results that the condition of equilibrium is

^-0
dr '

and that

The solution of the former equation is

B
U =A+ -*>

and hence R = (K ri)
A --j- .

To find A and we observe that, when r = a, R = P, and when
r = b,R = P ; thus,
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To find the other stress S, consider the equilibrium of a hemisphere
of shell whose outer and inner radii are r, r + dr

;
it is acted on by a

traction perpendicular to the edge equal to

2Wr . S,

while the resultant of the stresses perpendicular to its curved surface is

hence r^ =
7

and thus, #=2 (k
-

n) Ar -\
--

vii. Describe and explain the appearances presented, with

divergent light, by a plate of a uniaxal crystal cut perpendicular
to the axis, placed between a polarizer and an analyzer.

Describe the appearances presented when the plate is cut

parallel to the axis.

If n equal and similar plates of a crystal be laid upon each

other with their principal directions arranged like the steps of

a uniform spiral staircase, and a polarised ray pass normally
through them; prove that the component vibrations of the

emergent ordinary and extraordinary rays have each the form

where X and Y are each of the form

A cos n<y + B sin ny, where cos y = cos B cos a
;

a being the angle between the principal directions of two con-

secutive plates, and 28 the difference of phase between the

ordinary and extraordinary ray in passing through one plate.
Determine also the condition that a ray originally plane polarised

may emerge plane polarised.

For the form of the lines seen with a plate of uniaxal crystal
cut parallel to its axes, see Verdet's Optique Physique, Art. 219, Yol. n.

To solve the second problem, let us first consider the relation between
the components of the ordinary and extraordinary ray for the first two

plates.

If the component vibrations along the two principal sections of the

first plate be

x= a cos
tf>
+ b sin <,

y - c cos < + d sin <,

< being the phase of the ray.
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After transmission through, the plate, these become

x' = a cos (<'
-

8) + b sin (<' 8),

y'
= c cos

(</>'
+ S) + d sin (<' + 8),

28 being the difference of phase established between the two rays by
their passage thixmgh the plate.

Resolving along the axes of the second plate, we find the components
to be

x' cos a + y' sin a,

y' cos a x sin a.

If these be written a' cos $ + b' sin <', c cos <' + d' sin <',

a a cos 8 cos a b sin 8 cos a + c cos 8 sin a + c?sin 8 sin a

b' = a sin 8 cos a + b cos 8 cos a c sin 8 sin a + d cos 8 sin a

c' = a, cos 8 sin a + b sin 8 sin a + c cos 8 cos a + d sin 8 cos a

d' a sin 8 sin a b cos 8 sin a c sin 8 cos a + d cos 8 cos a.

It follows from this that, if we put

I = cos 8 cos a, m = sin 8 cos a, p = cos 8 sin a, q = sin 8 sin a,

the relations between the components of two consecutive systems of rays
which are given by

xu
cos

<j>
+ yn

sin <, u
n
cos < + v

a
sin <,

are

x=-- lx im

(a).

v .. = qx py mu + Iv
n~r 1 -i n * *J n n n -*

To solve these, let

x XO" y = Y6" u = U6" v = V6m
.

On substituting, we find

(-6 + l}X -mY +pU +qV=0 (1),

mX + (-6 + l)T -qU +pV=Q (2),

- qX -pY - mU + (- + 1) 7=0 (4).

If x - - + I,
we find from (1) and (2)

(p
2 + q*} V + m(pX-qY) +x(pY+qX) = Q (6).

If we substitute these values in (3) or (4), we find that they are both

satisfied by
x2 + m* + 1? + q

2 = 0.



156 SOLUTIONS OF SENATE-HOUSE [WEDNESDAY,

From which it results that

- sn y.

x will therefore be of the form

-ny V^I = sn ny,

and we may put

Ai

and, at the same time,

J^l (A^^ - A
a
e- nt VIIi

)
= - G sin ny + D cos ny.

In a similar manner we may take

yn
=B^ +

a
e
- nv = E cos ny +F sin ny.

On substituting in (5) and (6), we shall obtain for U and V two

complex imaginary expressions of the form

The corresponding value of u
n
is therefore presented in the form

u
n
=H cos ny + J5Tsin ny.

This value may also be deduced from the equations (a), the first two
of which may be solved for u

n
and vn.

We may also employ these equations to find the values of the con-

stants (7, D...

For, put w =
0, C = a, JE = b, H = c...

and
X

1
= G cos y + D sin y = la mb +pc + qd,

y^
= E cos y + F sin y = ma +lb qc + pdt

M
t
=Hcos y + K sin y = etc.

y,
= etc.

The final expressions for the components are, therefore,

xn a, cos ny + (- nib +pc + qd)
-

yn
= b cos ny + (+ ma qc +pd) -

sin y

v = d cos ny + (qapb me) .
-

'

smy

08)-
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The general conditions that a ray may be plane polarised can be

easily found, for the two components are of the form

Pcos (</>-.4), Q cos
(<f>

-
A) ;

the condition, therefore, plainly is

xv yu =0 (7).n y a a \ r

In the present case, if we suppose a ray to enter plane polarised, we
may take a = cos (3, b-0, c - sin (3, d= 0.

Upon substituting the values of x
n , yn ... so found in (7), we shall

find on reduction that

tan (2/3 + a\ sin y
tan ny = . .

'
'-

.

cos o sin a

This is the condition that, after passing through n plates, the ray
may be again plane polarised.

viii. Prove that the complete solution of a partial differential

equation of the first order containing two independent variables

is afforded by the system consisting of a single complete primitive
with its accompanying general integrals and singular solution.

Find a complete primitive of the equation

dz(dz\ (dz~Y

\dx) \dy)

Present the complete integral of the equation

1 d*u _ d?u 2 du n (n + 1) u~ ~~
.m the form u n /l d\ n

= r -
^-

\r drj r

To find a complete primitive of the equation

Consider x and y as the co-ordinates of a point, and turn the axes

round through half a right angle ;
that is to say, take

By this transformation the equation will become
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to find a complete primitive of which, put

where a is an arbitrary constant
;

therefore J2Z = fj@?
-

*) ^ + (*/(* + rf) dr, + b,

b being another arbitrary constant.

These integrals belong to known forms, and may be readily found.

To present the complete integral of the equation

1 d*u_d*u Idu n(n+\) ....

tf~d?
==

drj+ r~dr r*~
U ................... ( '

in the form

u = r (
l d\ n

^(r + at} + ^(r-at}
\r dr/

'

r

Since the form given contains two arbitrary functions, it must be
the complete integral if it satisfy the equation at all. This is analogous
to the general principle that any solution of an ordinary equation which
contains the proper number of independent arbitrary constants is the

complete solution. We have therefore only to shew that u satisfies the

equation.

du a dv
Put u = r v

, -j- = r ~ + nr v
,

dr dr

d*u n d*v _ _.dv .

,-r^=r
n -

I ; + 2nrn ^ ^ -{- n (n - 1} r
n *v.

dr2
dr* dr

On substituting, and throwing away the factor r",

a* dt*
~

dr*

Operate with -
,
and let -

7
^ = w :

r dr r dr

..
a3

dt*
~

r dr*
' r dr

9

_d*w 2(n + 2) dw
dr3 r dr

'

If therefore V
H satisfy (3),

- " will satisfy the same equation when
i CiV

n -t- 1 is put for n.
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But, when n = 0, equation (3) becomes

1 ??o = d\ 2
ffy,

a2
<ft

3
dr* r dr '

the solution of which is

<jy (r + at) + ty (r a)
?

The solution of (3) is therefore

< (r + at) + \l>(r- at)_/l c?
. I

\r d
B

r dr/ r

and, therefore, that of (1) is given by the expression (2).

See also Mr Glaisher's paper
" On a differential equation allied to

Riccati's," Quarterly Journal, Vol. xn. pp. 129137 (1872).

ix. Determine the general conditions to be satisfied in any
problem of magnetic induction.

Find the magnetisation of an infinite elliptic cylinder of soft

iron placed in a uniform field of force.

This problem may be solved in a manner analogous to that

given in Maxwell's Treatise on Electricity and Magnetism, Vol. n., Art.

437, for an ellipsoid.

Let the equation of the cylinder be

and let the components of the external magnetic force be X, Y, Z, and
K the coefficient of induction for soft iron.

It may be shewn that all the conditions of the problem will be

satisfied by supposing the cylinder magnetised uniformly.

Let us assume that this is so, and that the components of the magne-
tisation are L, M, N ; then, since the potential of a uniform elliptic

cylinder of unit density is

. bx2 + av2

v - - 2ir - ^ -f const.
a + b

the potential, due to uniform magnetisation LMN, will be

li = (bLx + aMy).a + o

The total magnetising force will therefore have for components

: v _,

^i -~ JL ~~ "

- "*
a + b' a + b

'
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and L, M, N are given by the equations

whence we obtain

X, M=
.

These expressions, as well as the potential of the cylinder, may also

be derived from the results given in the article referred to above, by

putting

THURSDAY, January 17, 1878. 9 to 12.

Mr GLAISHEB, Arabic numbers.
Mr FEBBEBS, Eoman numbers.

1. DEFINE Bernoulli's numbers, and calculate the values of

the first two.

Shew that, when n is very great, the wth Bernoullian number is

very nearly equal to

Obtain the development of ---= 5- in ascending powers of
sin oc sin z.x

x, the coefficients being expressed in Bernoullian numbers.

(i)
B

n denoting the ntb Bernoullian number,

and n being large, (2n) ! = ^(2^ . 2n) .

whence B
n
= 2 . 2

2" +1
7r^-

2n
. n

when n is large.
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.... sin 3x
(11)

-
;
- = COt X + COt 2X

sin x sin zo;

1 2*R "

and cot x = ----_-,
l x----_-,
--r- * T^T

-
-

x 2! 4! 6!

2. Write down the formulae giving

sn(w + u), cn(u + v), di\(u + v)

in terras of sn u, en u, dn w, sn v, en v, dn v.

Prove that

sn w _ en | ?t dn ^ w . en J M dn t* . en ^ u dn w. . .

~tT
~

(1
-^ sn

4 1
u} (1

- k* sn
4

i M) (1
- ^ sn4 1

M) . ..
'

and that

1 + sn u
~

k'
2 sn

2

(it + .^T)

~(2Ku\ , T,/2^TM\
Assuming the g-senes for (

- -
J
and H I

- -
)

, prove the

relation

1 _ viu
~

'

(i) The equation is obtained by repeated use of the formula

i u en Jr

1 73 "4
1 - k sn

4

2 sn i u en Jr w dn J u
cn M =- " :L~

observing that, when n co
,

__ w w 74

2 sn-, cn-, dn^s, 1, 1

in the same manner as Euler's formula - - = cos i x cos la;... is ob-
98

tained in Trigonometry.

(ii) "Writing x for sn, we have (Cayley's Elliptic Functions,
N. 100, p. 72)

-
cn 2ti = --

pj-j ,
dn 2?<--

pj-j ,
-

^
-

pr-j
1 -4V 1 - k~x*

whence - -
=-7^-5
- 7^

--
^
--

,

dn2tt-cn2u k~x* k sirw

and the result in the question follows at once on substituting ^ (u + K)
TJ mi 7A

for w, since dn (u + K) -=
,
cn (u + K)= - Jc -= .

S.-H. P. 11
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(iii) Put =x, then
TT

&x = I - 2q cos 2w + 2q
4
cos 4w - 2q

9
cos 6u + &c.

= \-q (e*" +O + q
4

(e
4'" + e~')

-
q
9

(e
6i" + e~

6i

") + &c.

iirK' _ ***

Change x into x + iK', then M becomes u + -^ and e'" becomes e
1'*

2Jr
,

viz. <7*e~.
We thus have

(x + iZ')
= 1 - ? (?e

21" + ?-V
l

")
+ ?

4

(?V'
U + q-'e-*)

- &c.,

viz. j^ (x + iAT')
=

(e
ia -

e-")
-

(e*'
- e'

3

") + &c. = iH,

which is the theorem in the question.

3. Assuming the law of facility to be -r- e~h
'x
\ determine how

Y?r
n direct, and presumably equally good, observations of the same

thing are to be combined so as to afford the most probable result.

A, S, C, D are four places in order in the same straight line,

AB is measured a times, BG ft times, CD 7 times, AC 8 times,

BD e times, and AD % times
;

and the respective means of the

measures are, for AB, a; for BC, b; for CD, c; for AC, d; for

BD,e\ for AD,f. Find the most probable value of BC; and, in

the case of a = y3
= . . .

=
,
find its probable error.

It will be useful to give here a brief statement of the process
of the solution of equations by the method of least squares, and then to

work out the above question as an example.

Suppose that we are given m equations connecting the /x unknown

quantities x, y, z,... t, viz.

+ cmz ... +knt=K m

wherein the coefficients a
t , 6,,... A,, a

z ,
&
2 ,...

&m are supposed to be
known accurately by theoretical considerations or otherwise, and
n

t ,
n

g ,...nm &re m quantities which are obtained by observation (either

directly or indirectly) and are therefore liable to error. If m, the
number of equations, .were equal to p. the number of unknowns, these

equations would determine uniquely the values of the unknowns x,y,z,...t;
but the case contemplated in the method of least squares is when m is

greater than
/i,

and in general much greater. The object is to obtain
from the given system of equations (1), called the equations of condition,
the values of x, y, z, . . .t that are to be adopted as the ' most probable

'

values of these quantities. The process is as follows. Form the system
of

[j. equations called the normal equations,
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[aa] x + [ab] y + [ac] z . . . + [ak] t = [an]

ba] x + [bb]\y + be] z . . . + [bk] t = [b

n]
~|

n] \

[ka] x + [kb] y + [kc] z ... + [kk] t = [kn] j

where
[era]

denotes a* + a*. . . + am
2

, [ab] denotes a
l
b

l
+ a

g
b
2
... + anbm , &c.,

so that [pg]
=

[gp]-
The solution of these equations gives the most

probable values of re, y, z...t.

The normal equations are derived from the equations of condition by
multiplying each eqiiation by the coefficient of x in it, and adding all

the equations so formed
;
we thus have the first normal equation (the

c-equation) : similarly multiplying each equation by the coefficient of y
in it and adding we form the y-equation, and so on. Practically how-
ever when m does not much exceed

/u,
and both are small, it is often con-

venient to obtain the normal equations by differentiating the expression

(a^x + b$ . . . + kj
-ny+ (asx+b^/ . . . +k

s
t-n

i)

3
...+ (anx + bj/ . . . +kmt-nn)

3

with respect to x for the adequation, with respect to y for the t/-equation,
&c. The method derives its name from the fact that the most probable
values of x, y, z,...t are the values that render this expression a
minimum.

The next step is to form [w], the sum of the squares of the residuals.

Substitute X
Q , y ,

z ,...t the most probable values of the unknowns
found by solving the normal equations, in the equations of condition,
and let

then [w] = v* + v* ... + vm
2
.

Now let e be the mean error of an observation
(i.e.

of n
lt
n

2 ,...

or nm), cx , yv tQe mean errors of the values of x, y,... found from the

normal equations (i.e.
of x

, y ,...),
and X, Y,... the weights of x

, y ,...

then c = and e,
= -

, ,
= .JL

,
&c.

The weight X is the reciprocal of the value of x obtained by solving
the system of equations

[aa] x + [ab] y + [c] z . . . -f [ak] (=1,

[ba] x + [bb] y + [be] z ... + [bk] t = 0,

[ka] x + [kb] y + [kc] z ... + [kk] t = 0,

viz. these are the normal equations except that in the cc-equation the

right-hand member is unity, and in the other equations zero. Similarly
Y is the reciprocal of the value of y obtained from a similar system of

equations, the right-hand member in the y-equation being unity and in the

other equations zero
;
and so on.

112
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The probable error of any quantity is derived from the mean error by

multiplying it by the constant -674489..., this being the value of fj2,

where/ is given by the equation I e~^ dt = \ >J-ir.

It has been hitherto assumed that all the equations of condition are

of the same weight (unity). If the weight of the first equation be
/>,,

of the second, ps , &c., then the process is exactly as above, except that

the equations of condition are to be taken to be

The square roots disappear from the normal equations, as for example
the coefficient of y in the re-equation is [p*a ,p*b]

=
[pab]. We may also

obtain the normal equations by differentiating with respect to x, y, ...

the expression

Pi (
a

i
x + 1>

1y...+kl
t- ntf + P,

and the sum of the squares of the residuals by substituting the most

probable values of x, y, z, ... t in this expression. It may be observed

that, although in finding the values of x, y, z, ... t we may replace an

equation u = n of weight p, by p identical equations
1 each of which is

u = n, the probable error will not be the same in the two cases, as in the

former case the denominator of the value of e is ^(m /*),
and in the

latter Jfa +pa
... +pm - p.).

If x, y, z, ... t are known to be connected by one or more relations

which must be exactly satisfied (e.g. if x, y, z are the angles of a

triangle so that x + y + z = 360), then the most probable values of

x, y, z, ... t are the values that render (4) a minimum subject to these

conditions, and the rest of the process is as above.

It is also to be observed that if pp stand either for the mean error of

p or the probable error ofp, then

As an example,

x + x . . . + x //I 1 1 \ px.
P
-- =

^ / I ~2 + ~2 ' ' + ~3 I PX ,

~
Tl " P^, = P^o ' = PXn V V> n / Jn

An observation has a weight p if its mean (or probable) error is

equal to the mean (or probable) error of a result derived from the combi-
nation of p standard observations, i. e. of the arithmetic mean of the

p observations. Thus the weight of an observation varies inversely as
the square of the mean (or probable) error.

1 We can assume plt pv ...pm,
to be integers, as we may multiply the system of

equations of condition by any the same arbitrary quantity throughout.
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Applying the method to the example in the question, let

then the equations of condition multiplied by the square roots of their

weights are

atx

Py

Pa + y +*=#/.
From these, or by differentiating the expression

+ 8 (x + y - d)
s + e (y + z - ef + (x + y + z -/)",

we deduce the normal equations

(a + 8 +
)
x + (8 + ) y + * = aa + 8d + (/

+ e) y + (y + e +
)
z - yc + ee + f,

p
whence, working out the two determinants, we have x ^ ,

where

+ cy (Sc
- P) + dB (py + pe +P+ yc)

+ a/?e + a^3^ + ayS + aye + ay^ + aSe

pSe + pS + /?e + ySe +

When a=)8 = y = 8=e=^, the factor a*, which is common to all the

equations of condition, may be thrown out, and the normal equations
are

x + 2y + 3z = c + e +/,

whence x \ (2a-b + d e +f),

Therefore x- a = \ (- 2a-b + d-e+f),

x + y -d= % (a + b - c - 2d +/),

2e +/)
-

2f),
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and adding the squares of these six expressions we find

[w] = %(a' + b* + c
9 + d3 + e

2

+f* + ab-ad + ae-af+bc-bd

-be + cd-ce- cf- df- ef)

= ^Q say.

The equations giving x', the reciprocal of X the weight of x, are

z=l\

from which X -
2, and therefore the mean error of x

and the probable error is found by multiplying this quantity by
6 74489... viz. it = -674489... \ J&Q).

Whenever we have, as in the above example, the most probable
values of x,y,... given in terms of letters representing the results of

the observations, it is unnecessary to write down and solve the systems of

equations such as (5) in order to obtain the weights of x, y, ... for we can

write down at once the probable error of x in terms of the probable
errors of the observed quantities by means of the formula for

pf(x x* x# X3>---}-

Thus in the present case we have, from the value of x,

px=J{&(i + l + l + l

and therefore probable error of x

as before.

The method of least squares (including under this term all the pro-
cesses described above) is due to Gauss, and has retained the form and in

all essential respects the notation in which it was enunciated by him.

Gauss's description of the method is given in the Theoria Motus,
182186 (Werke, Vol. vn. pp. 237241), the Theoria Combination-is

Observationum and the Supplementum to it (Werke, Vol. iv.), and the

Disquisitio de Elementis EUipticis Palladia (Comm. Soc. Gott., Vol. I.

1801 1811) in which his characteristic notation and algorithm first

appeared. The most complete and systematic account of the mode of

solution of equations by means of the method was published by Encke
in the Berliner Astronomisches Jahrbuch for 1835. 'An abridgement of

Encke's paper is given in Chauvenet's Astronomy, Vol. II. pp. 469 558,
and to this work the reader is referred for further information upon the

subject. In the present account the notation employed in these works
has been very closely adhered to, the chief difference being that the

signs of MJ, n
a,...nm are changed so that the equations are written

a^x ... + k
l
t = n

l , &c., instead of ap. . . + kj + n
t 0, &c. For practical



JAX. 17, 9 to 12] PROBLEMS AND RIDERS. 1G7

applications of the method the reader is referred to Merriman's Elements
of the Method of Least Squares. It may be observed that it is usual to

employ probable errors and not mean errors in the statement of results.
The probable error conveys a definite idea to the mind, viz. it is the

quantity such that it is an even chance that the error falls short of or
exceeds it; also, there is a risk of confusion between the mean error and
the mean of the errors (see Chauvenet, pp. 490, 491).

The method of least squares presupposes that the law of facility of

error is e""^
2
-1

'2

,
viz. that the probability of an error lying between x

and x + dx is
-j-

e~ h
'x"dx. Thus the law of error is assumed to be alwaysv 71

"

of this form, but h is a disposable constant -which is larger the better
the observations. The parameter h is called the measure of precision,
and might be used in place of the mean or probable error to express
the degree of excellence of the observations, results, &c. : the con-

nexion between these quantities is mean error = -
, probable error

nj'2

f
7 > (/being as above). If we suppose a standard observation to be

one for which the law of facility is 7- e~^
x

', then an observation of
v/7r

weight p is one for which the law is
;

e~Ph!lx
*. Gauss does not

JW

that the law of facility is of the form e-fc
2
-*2

;
his reasoning seems to

v 77
"

have been of the following kind. We know that if we have n direct

and presumably equally good observations of any quantity, we obtain a

very good result and one that has been generally adopted, by taking the
arithmetic mean of these quantities as the most probable value of the

quantity observed, and it is required to extend this principle so as to

obtain corresponding values of x, y,... when given by a system of linear

equations such as (1). To effect this extension, assume that the arith-

metic mean is really the most probable value of the quantity observed
in the case of one unknown, and determine the law of facility which

this implies; this law is found to be t- e~h
^xZ

. Assuming now this to
V 71

"

be the law of facility, determine the most probable values of x,y... from
the system (1): this gives the method of least squares, which may thus

be considered the generalisation of the method of the arithmetic mean.
The analysis by which the extension is made is very simple. Let
x

} , Xj ... X
K
be n observed values of a certain quantity; we assume that

the most probable value of the quantity is (x l
+ x

f
. ..+ xn) -r n. Let a be

the true value of the quantity, then x
l a, x

i a,...xn a are the errors,

and if < (x) be the law of facility the a priori probability of these errors

is proportional to <
(a;, a) <f> (x2 )...< (xn a); whence it follows

that, after the observations have been made, the probability that a was
the true value is proportional to this same expression; which, therefore,

prove
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in order to find the most probable value of a, must be made a maxi-

mum. Differentiating with regard to a we have

.

^fa-a) <t>(xa -a)'" </>(*.-)

or, say, $ (x- a) + vf/ (xt
-

a) . . .+ ty (xn
-

a)
= 0, which by hypothesis is to

be satisfied by a = (xl
+ x

s
... + X

H )
4- n for all integer values of n. Put-

ting x =x = ... = xn
= x

l
na we have a = x

l (n
- 1

) a, and therefore

^ {(*ra
-

1) a] + (n
-

1) !// (
-

a)
= 0, viz.

*-!)} = *I=i> for all values of a
;

(n 1) a a

therefore ij/(x)
+ n is constant and

<}> (x)
= Ae***. Clearly ra must be

negative, = - 2h* say, and since the integral of <f> (x) dx between the

limits oo and oo is unity (for the error must lie between GO aud GO
),

we find A = h -r JTT, and thus obtain Gauss's function.

Assuming this to be the law of facility of the observed quantities

TO,,
n

a,...
in the system of equations (1), we see that the most probable

values of x, y,... are those which render

a maximum, that is which render

(,# ... +k
l
t Wj)

2+ (asx. .. + k
a
t- n

a)*.. . +
(O>MX. . . + kj,

- nm)

3

a minimum.

Various ineffectual attempts have been made to prove the 'principle
of the arithmetic mean' without reference to how the errors are sup-

posed to arise, and the principle has even been regarded as an axiom.

If the principle of the arithmetic mean could be proved, it would be

proved at the same time that the values of Xj y ... given by the method
of least squares are really the most probable values.

It follows from Laplace's analysis in the T/teorie des Probabilites,
that if an actual error be supposed to be made up by the addition of a

great number n of small errors e^ e
,

... e
n,
then whatever be the laws of

facility of
e,,

e
2
... (viz. if the law of c

l
be

<f> l (x), of
2
be <

2 (x), kc.) the

law of facility of c,
= e

l
+ e

2
. . . + e

n ,
will be of Gauss's form if n be very

great. The analytical statement of this is that the value of the integral

///... <#>, ( 1)^2 (f2)
<

( n)^ i ^V-'^e. subject to the condition that

/*i
e

i
+ MaV" + /*n

e
n
^es between e and e + de is of the form Ae'K^dt,

when n is very great, viz. this is the limiting form towards which the

integral approaches as n is increased, whatever be the functions

<,, <
2 , ...</>. Considering now the manner in which an actual error is

in reality formed, it appears that it is probably due to the combined
action of a great many small causes, which may be regarded as indepen-
dent and each of which produces separately a small error of varying
amount

;
so that we thus have an d, priori reason why the law of facility

should be represented by Gauss's function.
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Although Laplace's analysis admits of the application that has been

just mentioned, this is not the use that he makes of it himself. In
order to solve the system of equations (1), Laplace multiplies them by
/*,, fj.2

... p.m and adds them; his object being to find the values of

ftp ft.,... fjLm which give the most advantageous values for x. y, ... the laws
of facilities of n

lt
n

a ,
... being unknown functions

<f> l (x), <
2 (x), ....

When m the number of the equations is very great, we obtain the
method of least squares; but it is to be observed that it is assumed that
the equations are to be combined linearly. It is readily seen that the

analytical investigation is almost identical whether we combine linearly
a number of observations n^ n,2 , ... subject to arbitrary laws of facility,
or regard the error in. each observation as having arisen from the ad-
dition of a number of smaller errors. Laplace's investigation is very
condensed and difficult

;
and the reader who wishes to study it will

derive great assistance from Leslie Ellis's paper On the method of least

squares in Yol. Tin. of the Transactions of the Cambridge Philosophical

Society (reprinted in his Writings, pp. 12 37) and Todhunter's History
of the TJieory of Probability (1865), Chapter xx. pp. 560 588. The
article on Probabilities in the Encyclopaedia Metropolitana contains a close

reproduction of Laplace's work with comments by De Morgan; and the
different investigations of the law of facility are discussed in the Memoirs

of the Royal Astronomical Society, Yol. xxxix. pp. 75 124. A very
valuable and complete bibliography of the subject is contained in Mr
Mansfield Merriman's paper,

"A list of writings relating to the method
of Least Squares, with historical and critical notes" (Transactions of the

Connecticut Academy, Yol. iv. 1877).

iv. Prove that, along a geodesic line on an ellipsoid, pd is

constant, p being the perpendicular on the tangent plane, and d
the semi-diameter, parallel to the tangent line to the geodesic.

Prove that, if X, p. be the elliptic co-ordinates of any point on
cc

2
if z*

the surface of the ellipsoid -,, + fr + -
2
=

1, the geodesic line for
a b c

which pd = r- is represented by the equation
/

(o'+ x) (6
2+ x) 0*+ x) Cf+ x) (o

f+

If x, y, z, be the co-ordinates of a point on the geodesic line,

X, Y, Z those of an extremity of a parallel diameter, whose length is

2.ff, we have

dx _ dy _ dz _ ds
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X* V2
2*

And, since -; + -r2 +
-^

=
1,

a;
8

* + p,
b' + p. c

2 + ft

we obtain of -r4 7^7-

dx , / d\ du, \
whence = A I -5 r + TS

-
) j

cc
2
\a

2 + A b* + p.J

therefore ^ = 17-7 T^T-J ir (a
2 + X) (a

2

+/*)( r + -p^- ) ',4
(a

1! -62

j(a
sl-c2

)
v 'VaVA a* + nJ

fdx\
3

fdy\* /dz
therefore

(-)
+
(-|)

+

Now

-co-a-
; a2 +A62 + Ac2 +

_,, X
v f

^A2___dp?
'

>

{(a? + A) (6
2 + A) (c

2 + A) (a
2 +

/t) (6
2 + /*) (c

2 +

Also dx*

" ;28
,
a2

(c
4 - b

4

)
+ b* (a

4 - c
4

)
+ c

2

(6*
- a4

) (p

(6
_ c

2

) (c
9 - a2

) (a
2 - 6

2

) (a* + A) (6
2 + A) (c

2 + A)-.-.
~* VTX)(62 + A)(c

s + A
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,-r .
,.,<,

dx* + dy
2 + dz*

Hence since It =
?

--~~--

we obtain

__Ac/A
2_

pg (a
2 + A) (6

2 + A) (c~ + A) (-

!>

2

H-A)(c
2 + A) (a

2 +
/Lt)(6

2 + ^)(c
2 +

,

Also p
s - T .

A/A

And, along a geodesic, pR = p- ,
hence

A) (a
2 +

/*) (6
2

a^Vr <0
" _ _ __ __ j._ ftr

2 s
+ ~

2 2-' + "

therefore

A . c/A
2

ft,, dp*

(a
2

_ ft=

5. Integrate :

and explain why, in the lunar theory, Clairaut substituted cd for 0.

If QQ' be a small arc of an orbit described under a central

force P tending to and a perpendicular force T, and if Q'N be
drawn parallel to OQ and intersecting the tangent at Q, at N, and

jJTJJ be the perpendicular on OQ produced, then in the limiting

position .

Q'N

w-

^ being the angle between Q and the normal at Q.

If s = 7 sin (y 0) satisfies the differential equation

rf
2
5

+ s = 7 sin (u
-

6),

in which 7 and & are functions of v, and
-y-

= 1 --5 ,
c being a con-

stant, obtain the most general value of 7.
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(i)
Let QQ' (fig. 62) be described in time t,

and let S be the

position which the body would have occupied at the end of the time t,

if the velocity and direction of motion had remained the same as at Q
during the time t. Draw SV parallel to RN. Then L QNR = % and

Q'V
also f=2

,

t

O'N
therefore *._

PIT3 7f a fT
Also - ~- =

p-
where H* = h* + 2

l^dO
................ (2)

and the result follows at once from (1) and (2).

.... ds dy . , n , , /,./, dO\ dy . , c , .- -

sav-+ Cosv-.-s --cosv---v-.-2
=-

)
dv* dv2 v ' dv '

y / dv y
'

y
2

therefore -=-l s = 0, whence v=aj(y
z a2

c
2

)+6, a and 6 being arbitrary
dv y

/ J\\ 2

constants ; and therefore y*
= a*c* + (

J
.

[On the conditions in order that s = y sin (v 6) should be a solution

of the differential equation

d*s- + s + Py sin (v - 6) = 0,
dv

P and y being functions of v
}
see Plana, Theorie du mouvement de la,

lune, t. I. pp. 230 et seq.]

6. Prove the equation

da _ 2na2 dR
dt /A de

'

If I be the mean anomaly, v the true anomaly, g the angular
distance of the perihelion from the ascending node, A the longitude
of the ascending node in the fixed plane of reference,

the other letters having their usual meanings, and if R denote the
2

ordinary disturbing function + the term ~^ t prove that a?,y,,the

co-ordinates of the planet, referred to the fixed plane as the plane
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of ocy and to the line from which the longitudes are measured as

the axis of x, are given by the equations

Gx = Gr cos (v + g) cos h Hr sin (v + g) sin h,

Gy = Gr cos (y + g) sin h + Hr sin (y + g) cos A,

and, taking Z, <JT, h, L, G, H, as the six elements, prove that

dL^dR dG = dR dH _dR
dt~dl' dt~~dg> ~dt~~dh'

^, . da 2nas dR .
,
u$ da no* dRWe Lave = -

,
whence A^r = - _-

.

dt fjt.de' cfr dt
p
k de

Now n*a' =
[i,

and since e never occurs except through I, in the
,. 7 </.ff d/2

equation 4 = nt + e, -j~ = -jji
and we thus obtain the first equation.

The projection of the radius vector upon the line of nodes is

r cos (v + g), and on a line perpendicular to it in the plane of the orbit,
is r sin (v + g) ;

and projecting these on the axes of x, y, z,

x = r cos (v + g) cos h r sin (v + g) cos i sin h,

y= r cos (v + g) sin h + r sin (v + g) cos i cos h,

z = r sin (v + g) sin i,

and substituting for i its value in terms of G, H these become the

equations in the question.

The quantityH is double the areal velocity projected upon the plane
of xy, therefore

dH dR dR dR dx dR dy dR dz dR_ - / _ _ nt_.
- ___ _ 1 __ *^ _L _ _ -_

dt dy dx dx dh dy dh dz dh dh *

for, from the equations in the question for cc, y, z, we have

dx _ dy _ dz _
dh

= ~ y' dJr X) dh~

The quantity G is double the areal velocity, and therefore =

where R is supposed to be expressed in terms of r, v, G, H, g, h. Now
g does not occur except in combination with v in the form v + g, so that

r- = -= . and this equation is not affected when for r and v in R their
dv dg
values in terms of L, G, I are substituted. We thus obtain the third

equation.

[The results in the question are three of Delaunay's equations, the

other three being

dl__dlt dg___dR dh = dR_
dt ~dL' dt~ <JG' dt~ dH 1
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3

the term ~-
a is added to R in order that the first of these may hold

aju

good. The above proof is that given by Mr G. W. Hill in the Analyst,

Vol. in. pp. 65 70 (1876), where the other three equations are also

obtained in an elementary manner.]

vii. Prove that any function of a single independent variable

may be expressed by a series of zonal harmonics.

Prove that the series

9P _L v^ 00
f iu IAZ i i\ 1 3 . 5...^ 3) p2P

t + Vi (- 1)' (* + 1) 2 .4.6...(2i + 2)

p*i

is equal to p for all values of p from 1 to 0, and to p, for all

values of p from to 1.

Apply this formula to calculate the potential of a hemisphere,
whose density varies as the distance from a diametral plane, at an
external or internal point.

Let the required series be

Multiply by Pn,
and integrate from /t

= - 1 to /i
= + 1, then

20n f
l

[
3- =

/ p. P dp. \
u,P du.

2n+l J
r

]_r

f f
l

Now, if n be odd, I p.Pn dp = I p.Pn dp.; and therefore CH = 0.
J i J

/O

,-1

pPn diJi=- I p.Pn dp.; hence writing 2i for
-i Jo

(2 + l) ("p,tl^ + 2i fpv_,dfi.
Jo Jo

Again,
|-[(1 -rt^-'}+ (2i+ 1) (2i + S)^^ 0;

therefore (2i + 1) j>
.tl

therefore
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And when /A
=

2.4...

therefore

2.4... (2i- 2)'

3 ' g - 2t
'

+ 1 3 - 5 -

3.5...2-3f2-l)(2i + l) |
v '2.4... (2i-2)\ 2i(2i + 2) J

_ 3.5...(2i-3) (-4t-l)
1 ' 2.4 ... (2i-2) 2i(2i + 2)

And, if t = 0, we have

Hence the required series is

Hence the potential of such a hemispherical shell (radius a) will be

^a(lP . J-f lv+.8.5...(2i-3)
/rVi+1

^f^ + ^^-l)
2.4...(2i+2)

P W "

for an internal point, and

for an external point.

viii. Prove that the potential of an elliptic ring, cut out of a
lamina of uniform thickness and density by two consecutive, similar,

similarly situated and concentric ellipses, at a point whose co-ordi-

nates, referred to the axes of the ring, are #, y, z is

i r- M I

7T J n

M being the mass of the ring, a, b its semiaxes, and
/j,

the positive,

/i1? /^2 , the two negative, roots of the equation
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If the point be situated on the hyperbola

?/
= 0,

X
.

g
=1,

prove that the potential varies inversely as the mean axis of the

ellipsoid, passing through the point, of which the elliptic ring is a

focal conic.

dO
The mass of an element of the ring being M r-

,
the potential

will be expressed by

fZir

*. I

dO

{(x
- a cos 6)

2

+(y-b sin O)
2 + z

2

}*

'

We shall now change the co-ordinates, by taking the attracted point
as origin, and the axes of the cone, of which the attracted point is the

vertex, and the ring a section, as co-ordinate axes.

If f, 17,
be the current co-ordinates of the new system, and if

Pi Pi> J2' ke *ke PerPendiculars from the centre of the ring on the

respective principal planes of the cone, the cosines of the angles between
the old and new axes respectively will be expressed by the following
scheme.

px
a* + p

py pz

PJJ

PS

where
1 ^ x3

I x*

P*~ (tf + t

1 x'

*T~ a
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Hence, the co-ordinates of the element, referred to the new system
of axes, are

,. pa cos 6 pb sin 6
f- v\ _!_ r _ __ iiP

tf+f*. 6
2 + ft

y>

p t

bsm6~~

pet, cos pa bsmO
=P2

~
*
- -

Si
--

V-a* + p.2
&
2 +

ft3

b

& * J-2

We shall next shew that - + + = 0.

/* /*l P-,

For, we have in the first place

o o
a + ft a +

ft,
a + /x

b
3 +

ij.
b
2 +^ b' + ii,

Hence, k being any line whatever,

2

p
a

p* /t* _
72 "*

~7~
== L ^ 7~T3

therefore

^ y.' P.

/, (F + /,) ^(*- + ftj ft2 (^
2 + ft2) (* + ft) (If + ft,) (* + ft2)

'

whence, differentiating with respect to &*, and then putting k* = a?, we get

* a - b

Now, from the equations,

y? y*

a2 + fi b
a

+JJL fj.

_~
*>

it follows that, being any quantity whatever,

(iV^fe
2

+0(a
3

+^yV(a
2

+^(6
J

+^2
2

-(a
2

+^(6
7

+^^-(
S.-H. P. 12
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whence, putting 6 = aa
,

(a?
- b

2

)
oV -

(a
3 + p) (a

2 +
/*,) (a

3

therefore
P P

*

I

P
'

I'll"! ClUl t? / 2 \2
~ /2 \2 / U

Similarly

ia rf *
f

Hence, when the expression -f H is formed, it follows that the
P P-i ^

coefficients of cos
2 ^ and sin

z
# are each equal to -

1, and that the term

independent of is unity. Hence, the sum of these three terms is 0.

Again the coefficient of cos 6 sin 6 will be 0, as may be seen by
multiplying the equations (A) in order, by b^ a* and a3

b
2

,
and

adding.

And the coefficients of cos and sin are separately 0.

2 w2
/

Hence L+l+i_ = o.

/* ^i P*

& >2

We may therefore write
r)

3 = -n l

- cos
2
T,

2 = -
ju,3
- sin

2
T.

P /*

Hence the potential becomes

M

a cos pb sin
where %=p-

J --- x-^
a' +

fj.
b* + p.

Now, since

( /u,\i / a cos= I
-

) p. (I --5
- x -

V W fl
\

" +
/*,

.

acos0 bsinO \ ( /u,\i / a cos bsinO
l --5
- C - T^- V }

cos T-

and

/ acosO bsinO \ . / fj.\* / acos0

we obtain, differentiating these equations, and squaring and adding,

a3 + p. 6
2 +

/x, /

2 /asin0 bcosO \ 2
,.+p { j x r^ y I dv

\a + u. o + u. /
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(p* /asin.0 bcosO V
- -- - --

p* (a sin 6cos0 V") 7/12+
I -2
-- x ~ui- 2/) ?<^i^V+^ &" + /*///

2

/ n acos0 6sin0 \
2

,.

II --s
- x - -^

- y } dT*
p \ a2 +

/j.
b* +

fj.

y
j

(p* /asinO bcosO \
2

=-{( -3 x - -2 y )

(/iVa+M az +
fji.

y
j

p* fa sin 6 bcosO \
2

+ (-2
-- *-M-- 2/1

/Al V
2 +

/A)
6
2 + )it//

bcosO

On the right-hand side of this equation, it will be seen as before,

that the coefficient of (sin 0)
2
is

Similarly, that of (cos ^)* is 1, and that of cos^ sin is 0.

Hence,

X ~T*-, y
p \ U -t- /A

therefore

p. \ a*+
fj.

b
2 + p.

dO dT

pa cos pb sin Jp.
'

dTM f
2"

therefore the potential is ^- I

2*- ./o
(/x

-
/*,

cos
2T -

/*,
sin

=
2J//" 2 ^7 f

T Jo
(/x
- ^ cos

8^- /x2
sin

2!

Now, platting tanr=(^ ^
JW-M/

the limits of
i//

will be
/x.
and oo

;
also

therefore

T
~

/*

0*
-

/*i) (^
-

f*)

122
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and s'
therefore

therefore

therefore

Hence the potential is reduced to the form

Now, for any point on the hyperbola

a? z"

y-' yzp-p
we have /,

=
/*3
= 6*.

And the potential is

or, putting \j/
=

p. + i?
>
the potential becomes

Vjo 1?

7T

'

2

i. e. varies inversely as the mean axis of the ellipsoid
*

y* z*

aa + p, b* + p. p.

If in the result of question viii. we put \{/ p,
=

\, it becomes

Ijff
"" Jo

Now, the potential of an ellipsoidal shell, whose mass is M, whose

least semiaxis is 0, and whose other two semiaxes are *Jp- plt Jp- p-a ,

at any point on its surface, is

*r <*x

2 Jo {x(x 4 /* ,
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Hence, the potential of the ring mentioned in the question is to the

potential of such an ellipsoidal shell in the ratio of 2 to TT'.

In connexion with the subject of this question, Gauss' Determi'iiatio

attractionis (Gauss, Werke, Band in. p. 351) should be referred to.

r-o xx- /
z ~ P, sin

2
<4

[Putting ^ =/__?,
we shall find the potential to be

2MK

[** dd>
'wnere ^~

I ~7n JT.- 2 .\> ka = '

At a ]>oint on the focal hyperbola, p- l

= ^t
--b 3

;
and therefore

0, K=^ir, and the potential is

i

ix. If a cylindrical surface filled with water revolve with angu-
lar velocity &> about a fixed line parallel to its generating lines,

prove that the component velocities parallel to the axes of x and y

respectively of any particle of the water will be~
, -^, where

i/r
is a function of x and y, satisfying the equation

-~ + -^ = 0,
Ct>i CLII

and whose value at every point of the cylindrical surface is

the fixed line being taken as axis of z.

If the cylindrical surface be the sector bounded by the right
circular cylinder r = a, and the planes

=
a, 6 = a, prove that

cos 20

4- S-">ft]aV?
i= "

(- D iTl-- I ^ -
4a} [(2t + 1) TT] {(2t

Adopting polar co-ordinates, we have to find a function
\f/
which

satisfies the equation

1 For another solution of tins question, see Quarterly Journal of Mathematics,

Vol. xiv. p. 21 (December, 1875).
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and which is equal to ^ow
9

,
when = a and r is less than a, and also

when r = a, and lies between a and a. It also must not become in-

finite for any value of r less than a.

Now, putting \l/ |wr
8 =

x> we see that x must be = 0, at every point
of the boundary of the sector. Also we shall have

dx* dy
2
~

Hence if we conceive a sector of uniform density r
,
surrounded by

a film of repelling matter which will make the potential at the boundary
everywhere zero, the potential of this sector will be the required value

of x.

Now, the density of such a sector is expressed by'

4 ^ ( 7T0

7T
'

2?T

Now, the potential of such a sector as this is

1 (_2+l>0
8(0^/ -.xi

For this satisfies the equation

I

and is also = when = o.

We have now to add a series of terms which shall makethis equal
to when r = a, and shall themselves satisfy the condition

These will be

~

Hence, the required value of x may be expressed as

' 1

4-
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or 32waV2(-l)f+1

a

or 32

2t+l ir . COS
r \

7T0
2i+l JT COS ^

x <

/ V//{(2i + l)7r-4a}(2i+l)7r{(2i+l)7r + 4a}"
< "W

The coefficient of
(

-
J may be summed. For, putting

2i +1 irO
cos-

a

{(2i + 1) TT - 4a} (2i + 1) TT {(2i + 1) TT + 4a}
*

we get

d*u

4. _ r2l+l ?
\ 2 a

{(2i + 1) TT - 4a} (2i + 1) IT {(2i + 1) TT + 4a}
^ '

C
2 a

cos(2i+l)-

g- . -r
,
for values of between a and a,

16a2 '

therefore u = - 777-5 + -4 cos 20 + 5 sin 261

,

b-ia

^. and E being arbitrary constants.

Now B = 0, since the value of u is unchanged by a change in the sign

of0.

Also u = when 6 = a
;

therefore = - TT:-, + A cos 2a ;

therefore ~

or

Zi+l rr

2 a

cos 2^
cos ia9;
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Hence, since
\j/
= x + !#*,

we obtain

.cos 20

COS I'd

7T0
COS s- a

[In a quadrantal sector a = ^TT, and the first two terms in the value

of
\f/
assume the indeterminate form oo oo

,
and must be evaluated, by

putting a = ^TT <, expanding on the supposition that
<f>

is so small

that its square may be neglected, and finally putting <f>
= 0. Or, we

may take the first term of the expression (1) for ^ which assumes the

form
pr ,

and evaluate it as an indeterminate fraction.

It will be found that the remaining terms of the series for
i/r

can be

summed, and we shall find finally that for a quadrantal sector

& =_?V cos 26 log
- + r

2
sin 16 . 9

7T a 7T

a*\ . r4 sin 40 wa* _.2aVcos20-.
-, + -a )

sin 20 tan
l

-j
-

5
-- + tan '

.1

r*J a* + -4 cos 40 TT a4 -r* J

x. If v,, t>
2
be the velocities of propagation through a biaxal

crystal, of the two waves corresponding to a plane front whose
direction-cosines are I, ra, n, prove that

(a
2 - i

2

) (a
a - c

2

;

'

(6
s - c

2

) (6
2 - a2

)

If a plane be drawn, parallel to the axis of y, intersecting the

planes of ary and yz in straight lines, each of which joins two

imaginary conical points of the wave-surface, prove that this plane
will touch the wave-surface along a circle.

Any one of the four planes, mentioned in the question, meets
the wave-surface in a curve of the fourth degree with four double points,
which must therefore break up into two curves of the second degree. It

remains to consider the nature of the intersection of these curves with
the line at infinity in their own plane.

Now any one of these four planes is represented by the equation

(a
8 - c

2

)* b (i
2 -

c')* c (a
z -

&*)* x = 0,
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and therefore the four planes together are represented by

(V _ cy b* + (b
2 - c

2

)

2
z
4 + (a

s - b
3

)

2
x*

The planes parallel to them through the axis of y are therefore repre-
sented by

(b
2 - c

2

)

2
z
4 + (a

3-
&*)V - 2 (I*

-
c') (

2 - 6
2

)
sV = 0,

or {(&
2 -c2

)

2

-(a
2 -J2

)a;
2

}

2 = ..................... (2),

and these, of course, intersect the plane at infinity in the same lines as

those above mentioned. But since the left-hand member of (2) is a

square, these four lines become two double lines, and therefore each of

the planes (1) meets the wave-surface in a curve which has two double

points at infinity.

Therefore the curve of the fourth degree has six double points, and
must therefore degenerate into a double curve of the second degree, i. e.

each of the four planes touches the surface, along a curve of the second

degree. But this curve meets the wave-surface, at infinity, in the points
determined by the equations

from the latter of which it appears that the curve is a circle.

THURSDAY, January 17, 1878. 1| to 4.

MR FERRERS, Arabic numbers.

MR NIVEN, Eoman numbers,

1. IF a curve of the fourth degree have three double points,

prove that it will have four double tangents, whose points of con-

tact lie on a conic section.

If the curve be represented by the equation

(A, B, C, A', B', VXyz, zx, **,)*= 0,

prove that the equation of the conic will be

B Cx* + CAif + ABz
2 -

(A'x + By + C
'

zf = 0.

Hence deduce the equation of the four double tangents.

Write, for shortness,

2 = (A, B, C, A', B', r,3>, zx, xy)
a

,

S - BCx" + CAif + A Bz* - (A'x + By + C'z)
2

,
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Then S'-lABCl
- 4 v

Now this vanishes if co = +
?;
+

,
for it then becomes

IV) - S? (t + v + t)

= 0.

Hence ^ + 17+^-0 is a factor of /S
2 - 4ABC'S.

And the expression $
2 - 4^1^(72 involves

, 77, ^, w, symmetrically.

And the coefficient of
"
is unity.

Hence

S*-4AC2 = -(- +
r)
+ +<*)(-*) + Z+^^ + rj-Z + ^tf +

rj
+ Z-u)

identically.

Therefore, where any one of the four straight lines

-g +
r]
+ + u= 0, ->? + + <> = 0, ^ + 17-^ + 00 = 0, ^ + 17

+ ^-0 = 0,

meets the quartic 2 = 0, it also meets the conic $=0. That is, it

meets the quartic in two points only, and therefore is a double

tangent.

2. Integrate the following differential equations :

(i) z = px+qy-sxy,

(11) Z ^ -

o ,

rt s

(iii) <f(zpx qy] + (qs pt) zx = 0.

(i) z =px + qy sxy.

Differentiating with respect to x, we get

ds
p =p + rx + sy sy -j- xy,

ttX

ds
or o rx r . xy ;dx

., c ds dr ntherefore y -= r 0, i. e. y -, r = :

dx ay

therefore =f'(x} )
or -/- = vf"(x) :

y
' dx

therefore p = yf'(x) + ^> (y).

Similarly, q = x#(y) +f(x) ;

whence s =/'(*) + ^'(y) i
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therefore z px + qy sxy

y {x<f>'(y) +f(x)}

**y {/'(*)++W

z= PqS

rt-s*'

Putting p = X, q=Y, px + qy-z-
we obtain (see Boole's Differential Equations),

d*Z

whence the equation is reduced to

dx dy
which is of the same form as

(i).

(iii) q
2

(z
-px - qy) + (qs

-
pt) zx = 0.

Adding and subtracting yzqt, this becomes

q
2

(z -px -qy) + z {q (xs + yt)-t (px + qy)}
=

0,

or qz (xs + yt + q) (px + qy) (q
a

therefore qz (px + qy)
-
(px + qy)

-^
(qz)

=
;

therefore = a function of x, (f>(x) suppose ;
G3C

therefore x + \y z<f>(x)\ -^- =dx n
dy

or, changing the dependent variable from z to y,

therefore ---
jr dx +f(z)>

rt/ J XT

therefore writing -x I \' dx =
\f/ (x),

J x
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iii. State and prove Lagrange's Equations for the motion of a

dynamical system.

Shew that the kinetic energy of a system of mutually attracting

masses m

where u, v, w are the velocities of the centre of inertia of the

system, M its total mass, and Vn is the relative velocity of the

particles mr) mt
.

Thence obtain the general equations for the relative motions of

the system.

Let the masses of a system of particles be m
l?
m

2 ,
w

3 ..., and

their co-ordinates
cc, , ylt z^.., the kinetic energy of their motions is

JSm (*" + # +
*).

But, on expansion, it will be seen that

(m 1
+ ma + ra

3
+ . .

.) (mfi
2 + m

a
x
a

2 + ...)

= (m 1
x

1
-fm

2
x

i
+ . . . Y + m

1
m

a (x^ x3 )

a + m^ (x l x^f + ...

If therefore u, v, w, Vrt have the values stated in question,

M=
l

Mu = tnx

and the kinetic energy

= \M (u
2 + v2

.+ w2

) + .

m'' r>
.

\ I l \i

If there be n masses, the 3n co-ordinates of the system may be

represented by the three co-ordinates of the centre of gravity and 3n - 3

other generalized co-ordinates 0, <j>, i/^
... expressing the relative motion

;

the kinetic energy due to the relative motion is that given in the

second member of the equation ;
let us call it T,

The equations of relative motion are then of the form

iv. Prove that the vibrations of any dynamical system moving
under conservative forces about a configuration of stable equilibrium

may be resolved into a system of normal types, whose periods are

real.

Investigate the effect on the normal vibrations of introducing
(1) small variations in the constants which determine the constitu-

tion of the system, and (2) small frictional forces on the particles
of the system proportional to their velocities.
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If a system primitively free be restricted by constraints to r

degrees of freedom, prove that the periods of the constrained system
are all intermediate between the greatest and least periods of the
free system, and that the sums of the products s together of the

squares of the new periods lie between the greatest and least values

of similar functions of the original periods, s being any number
less than r.

The effect of a small alteration in the constitution of a con-

servative system has been analysed by Lord Rayleigh (Theory of Sound,

190). To trace the effect of introducing small frictional forces.

Let the generalized co-ordinates of the system be x
lt
x

g ...,
and let

the kinetic and potential energies be reduced to the normal forms ;

that is to -say,

When the frictional forces which act on the particles of the system
are proportional to their velocities, there exists a dissipative function,

The general equations of motion are of the type

dt
'

dx dx dx dx

For the case of small motions under contemplation, the equations
are

(bn x
l
+ bM xa +...)

= 0.

When the frictional forces are altogether neglected, the motion

consists of a series of normal types of which the periods are given by

Let us consider the effect of friction on the type plt
and put

therefore

Where friction is neglected, A t ,
A

a ,
... vaoaish, and therefore A

s .../ are

of the order of the small coefficients (&).

Neglecting, therefore, squares and products of small quantities, we

obtain

=0
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from these we obtain

, P-P,

The real system of vibrations which these indicate is

6n 73 fc fell .

as =.4 . e~Z 'cosJ, # =.4. -^ i e i sin,, &c.

Pa Pi a
s

Each normal vibration, therefore, gradually dies away, and is ac-

companied with other normal vibrations which are each a quarter of a

phase in advance or rear of it, according as p2
> or <p^

To investigate the motions of a constrained conservative system,

let y1? y2,
... ym be the new types in which the system can vibrate

;

then we must put

where A
iy
B

}
are new constants.

The kinetic energy

*-H
and the potential energy

^i{/3n2
where

a
ii
= M, S + <^ 2

2 +

fc.-cA' + CA2 + c

The equations of motion are

+'P^ +&2y2
+ . = o,

&c. = 0.

To solve these, put

y,
= Y cos ^, y,

= 7
2

cos ^, . . .

On substituting, and eliminating F,, . . .
,
we obtain for ^> the fol-

lowing determinant, wherein on , )&,,...
are replaced by their proper

values,

-a
Jp

a+c
l)A l'+(-aj>'+ca)A;+..:t (-alP

2+c
1)A l

B
l
+ (- aap* + c

11)A a
B

2 +..., &c.

..., (-a lp
t+c

l)B'+(-ajf+e^B'+... t
&c.

,
&c.

,
&c.

= ............... (I).
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This determinant may be split up by columns, and it will be ob-

served that any one of the new determinants found by taking two cor-

responding parts out of any two of the columns must vanish. To see

the law of decomposition let us take the 1st part of the 1st column, the
2nd part of the 2nd, and so on; and let us introduce the original

periods for (c) by means of the equations c
l

=
aj) *,.... The partial

determinant required is

a
l
a

2
a
3
...a

r (p*
-p

2

) (pa

2

-p
2

)
. . . (p*

-p
3

)

But each constituent of the determinant A consists of n terms, and
the determinant itself has r rows ; and it is evident that the result of

the decomposition is the following equation :

Sfoa, ... a
r (p

2 -
Pl

2

) (P
2

-P/) ... x (A 19
... JT

r)-
= ......... (II).

In this result (A lt B^ ... A"
r) represents the determinant on Sylves-

ter's umbral notation, and the summation denoted by 2 is extended
over combinations r together of the n symbols 1, 2, 3 ... n.

From this form of the equation in p, it is obvious that no value ofp
can be greater than the greatest of the original periods pjpa

... or less

than the least of them, it being remembered that a
lt
a
2

. . . are essentially

positive.

Let the roots of the above equation be
rar^,

OT
2

S

..., and let (or
2

),

denote the sum of the products s together of these quantities, (/>

2

),,<
the

sum of the products s together of the squares of any i of the original

periods

e
lt

e
2

... being the coefficients of the equation for p in its form (II). As

e^ e
2

... are all positive, it follows from a known theorem in Algebra
that

(tzr

2

).
is intermediate between the greatest and least of the series

5. Assuming the following equations for the determination of

the motion of the Earth about its centre of gravity, as affected by
the action of the Sun,

A *L& sin 0} -Cn^ = -3n*(C- A) cos n't sin n't sin 0,
dt\dt ) at

A^+Cn^sin0 = - 3n'
2

(G
- A) sin

2
n't sin cos 0,

ctt clt

prove that the pole of the earth, in consequence of solar nutation,

describes an ellipse with an acceleration tending to its centre, the

absolute acceleration being 4n'
2

,
and the semi-axes being

M C - A
sin e, and~ ~,

A
cos 0, respectively.

4/i G 4?i C



192 SOLUTIONS OF SEXATE-HOUSE [THURSDAY,

vi. Investigate the conditions necessary that

may be a maximum or minimum, discussing the conditions which

may be imposed at the limits.

Uniform elastic wire is held bent by proper forces between two

points A and B so that, the area between the wire and AB being

given, the work expended in bending the wire may be the least

possible. Shew that the curvature at any point varies as r* a2
,

where AB = 2a, and r is the distance of the point from the middle

point of AB. Shew also that, if the wire be bent completely round
to satisfy the same conditions, the form of the wire will be given

by rs=c8
cos30.

The work W done in bending the wire will be

where p is the radius of curvature and

l-^V^
p
2
"

\ds*)

The area A enclosed between the curve and AB

We have, therefore, according to Ohm's rule, to put

8W-\8A = ..................... (I).

Now
cPx d*Sx d*y d*Sy. ffcPx d*Sx d*y d*Sy\= a2

II -53 . -TT + -33 .
~-

)

}\df ds
1

ds* ds
2
J

,

ds

a dx d*y dy ,
1 ' s " + ~ a ~ +3 ~

and

therefore
da ds ds ds

The second term of the value of 8JF may therefore be put iu the

form

dy
dz

y d8 d3x\ d&y
d?'~dZd73)~&

c

ds
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dy dy

_ * (^y _ $L ffj?\% * i
d (^y _

^8 ^x
\

\da
3 dxds3

} J ds\ds
s
'~

dx ds
3

)
ds ds

dy
dsfdx j ds f d

J ds dx J ds

ds

ds.

ds . 8.

Substituting in equation (I), and equating to zero the parts under
the sign of integration,

= 0.

~dx da

y dy d3x~

ds
'

ds
a

ds
'

ds
3
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Let us introduce these conditions in equation II, and suppose
AB = 2a, the origin being at A

;

0-c'

^ 4a9 = lea ;
therefore c = \a.

Hence - = |X {(x
-

a)
3 + y*

- a2

}
= %\ (r

1 - a2

),

as in the problem.

When a = 0, the wire is bent completely round, and we may put

for - its value -~-
,

p rar

dp
therefore -7-

hence p = ^Ar
4
,

no constant being necessary because, when r = 0, p = 0.

Put |A = -5 ,
and remember that

c

1=1

we thus find

\dO

and this may be put into the form

vii. Determine the permanent temperature in a uniform plane

plate which extends to infinity in one direction and is bounded by
three straight edges two of which, are parallel and at right angles
to the third, the parallel edges being kept at temperature and
the remaining edge at temperature 1.

A plate extends to infinity in two directions and is bounded by
two straight edges which meet at right angles in A. Both edges
are at temperature except a portion AB of one edge which is

kept at temperature 1, prove that the temperature at any point P
of the plate is given by

- tan"
1

-^, and by -
( L APB - L APC),

7T a
i
O
l

7T

where a,, 6
t
are the axes of the ellipse, and

2 ,
&
2
those of the
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hyperbola which can be drawn through the point having A as

centre and B as focus, and where C lies in BA produced so that

AC=AB.

Fourier, in his TMorie de la Chaleur (p. 208), has given an

expression for the permanent temperature at any point of a rectangular
table infinite in length in one direction (that of x), of which the two

parallel edges are kept at temperature 0, and the third edge at tempera-
ture 1.

If 2 be the distance between the two parallel edges, and one of the

angles be taken as the origin, the temperature is

2 a
v = - tan~' o . .

Let the edges of the plate be AX and A Y, and let the confocal system
be drawn of which B is one focus and A the centre (fig. 63). Let

a, /3 be the thermometric parameters of any point in the plane.

Then the semi-axes of the ellipse and hyperbola which pass through

any point are, respectively,

c cosh a, c sinh a
;

and c cos #, c sin
j8.

The temperature satisfies the equation

d*V d3

V_
~fa*

+
d?

'

and also the following conditions,

along AB a = 0, V - 1
;
at the infinite boundary a = oo

,
V= 0;

along BX, 5 = and 7=0; along AT, /?
=
^and

F = 0.

The problem is therefore, analytically, the same as that of Fourier.

2 ./cos 5 sin fi\ 2. _, fa,J>\
Therefore F = -tan '(- ,^ .

)
= -tan *[-*?}

TT \cosh a suih a/ ir \ai"i/

The second form of the result may be thus derived.

Let XA be produced indefinitely to X', and take AC = AB, and sup-

pose AC kept at temperature
- 1.

Then the expression,

V= -
(/ APE - L APC),

7T

expresses the temperature in the infinite plate bounded by the edge

XX'; for (1), the angle APB, being = L PBX - t PAX, satisfies the

equation + =0; (2)
within AB, tAPB = ir and tAPC =

(IX
'I/

132
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and therefore V=l, (3) the temperature in AC is similarly = 1, and

(4) in BX and CX', F=0.

The above expression for V therefore expresses the temperature in

the plate, and since V for all points in A Y, the expression represents
the temperature at any point of the plate bounded by AX and A Y.

It is easy to prove, geometrically, that the two expressions are

equivalent.

8. If V, a, /3 be three functions of x and y which satisfy the

equations

_ ,

'

eto
2

cfy
3

and if

=0 ,

dx d& dy dy \dx) \dgj \dxj \dy

w
d) '

^
prove that

A plane area is bounded by a semi-ellipse and its axis major.
The elliptic boundary is maintained at the uniform temperature
unity, and the axis major at the uniform temperature 0. Prove
that the temperature at any point within the area is

4 /sinh d> . ~ Isinh3cf> . _., \
-I- 7-fffln^+o- EHTO 80 +...)-.
IT \sinh X 3 sinh 3A, /

where c cosh
<f>, csinh^; ccos^, c sin 9, are respectively the semi-

axes of the ellipse and hyperbola passing through the given point,
and confocal with the elliptic boundary, and \ is the value of

<j>
at

that boundary.

We have first to shew that < a-nd satisfy the equations

<**** #0 fO
dtf

+
dtf~ dtf dtf~

Now, x - c cosh < cos 0, y = c sinh < sin 0,

therefore x + J^l y = | (e* ev^ 9 + c~* c~ v -"ie
),

= c cosh
(<

-f ^- 1 0).

Similai-ly x -J 1 y c cosh
(</>

-
,/- 1 6) ;

therefore < = | /(cosh)"
X +^V + (cosh)-
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and therefore satisfies the condition -9-? + ^ =
:

dy? dy*

similarly $ =^^ {(cosh)-'

X+ J~ 1 V _
(cosh)

and therefore also satisfies this condition

dW d?0_
dx2+ dy*~

Now, if F be the temperature at any point, we require that

tfV <V_
dP dp

............................. "''

also V must be equal to 1 throughout the elliptic boundary and =

throughout the axis major.

Now, consider the series

4 /sinh <A . sinh 3<f> . \

-(-: -fsmfl+1 . .
; sin 30 + ... ).

TT \sinh \ 3 sinh 3A /

This evidently satisfies the condition (1) for every term separately
does so.

Also, throughout the elliptic boundary, < = A, and the above ex-

pression therefore becomes

4
(sin 6 + ^ sin 30 + i sin 50 + ...),

7T

which is equal to unity.

With regard to the axis major, we must consider separately the

portion included between the foci, and the two portions between the

respective foci and vertices.

For the former of these, (f>
=

0, and therefore every term of the

above expression vanishes separately.

For the latter, = 0, or =
TT,

and therefore also every term vanishes

separately.

Hence, all the boundary conditions are satisfied.

[The series for the tempei-ature expressed by elliptic functions is

|
tan" 1 Ik sn (^ 0, k\

tn^' <,
lAj

,

, K 7T

where =

It can be readily verified that this expression satisfies all the

required conditions.

The expression for the temperature is also the expression for the

current function of electricity flowing in the semi-elliptic area, the elec-

trodes being at the vertices of the major axis of the ellipse, and the

strength of the current being unity.]
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ix. A mass of fluid of variable density revolves uniformly
round an axis under the influence of its own attractive forces

;

assuming the layers of equal density to be surfaces of revolution,

investigate the equation which determines their form.

What external phenomena, due to the earth's attraction, are

independent of its internal constitution?

If the earth consisted of a nearly spherical mass of fluid of

density a, and mean radius 6, surrounded by a mass of fluid of

density p, and mean thickness a b, shew that, on the equilibrium

theory, the tides of the two fluids, due to a distant body situated

in the equator, would have constantly the same ratio at two places
in the same radius, and that that ratio is

c(5s + 2 + 3c
5

) : 5s + 5c
8
,
where s = ^

,
and c = -

.

cr p a

Let the axis of z coincide with the axis of rotation, and the axis

of x pass through the moon, whose distance suppose to be Z>, and mass M.

/M fV

Let xs + y* + z
z = rs

,
and \ = -

, u, = -
: and let

r r

iV 1
II

2 /?' J X 2

8. ^ ~ /* >
- ^

~ A

These are the two spherical harmonics upon, which the forms of the outer

surface of the earth and its fluid core will depend.

For the potential at any point due to rotation

and the potential due to the moon is

M Mf^ x 3r2

2Z>
2

The first two terms of the latter expression will not affect the form
of the earth, but merely the position of its centre of gravity ;

we shall,

therefore, neglect them, and consider only the third term S',
aU

Let the form of the outer surface be given by r = a (1 + Y2),\

and that of the fluid by r = b (1 + Z^,)'"^
''

Y
2
and Z

9 being two surface harmonics of the second degree.

If we put 8 = cr p, we may consider the attraction of the earth as

clue to two solid masses of densities p, 8.

The potential at any point of the outer surface consists of two parts

Fj. F
2,
due to the outer and inner spheroids

F _ _

3r 5r3 " ~
3r 3r3 *'
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Putting, in the first terms,

r- l

=a->(l-F8),

we find for the potential at the outer surface,

= const. + 4* (AZa
- Y

a),

5b*S
where ^ = F-?> & = Ers- ..................... (2).5a 15

The equation of equilibrium of the outer surface is

The potential at the inner surface will also consist of two parts

F, and F
8 ,
where

F,
= const. - f Trpr

2 + fWpra F9 ,

Putting now r = b (1 + Z^ we obtain for the complete potential at

the inner surface

F= const. + irb* (B'Ya
- A'Z

a},

where A' =^ (28 + 6/>),
JB' = |p,

and the equation of equilibrium of the inner surface is

If we solve (3) and (4), we see that F
2
and Z

2
are each the sum of

multiples of S
2
and S'

a
. The former of these terms express the forms of

the surfaces when the moon's action is altogether neglected : the latter

give the tidal effect of that action.

Considering only these, we find the parts of Y
a
and Z

a
due to

them to be given by
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It is clear, from these results, that the two tides have constantly the

same ratio at points in the same radius, and that that ratio is

Now

and

If, therefore, c = -
,
and s = K =- ,

a, o or -r p

the ratio becomes e (5s + 2 + 3c
6

) : 5s -f 5c
8

.

FRIDAY, January 18, 1878. 9 to 12.

Mr FEKBEBS, Arabic numbers.

Mr GEEENHILL, Roman numbers.

Mr NITEN, Greek numbers.

1. ENUNCIATE Sturm's Theorem.

Prove that, if a, /3, 7... be the roots of the given equation, the

successive functions are of the form

each with a constant multiplier.

(See Salmon's Modern Higher Algebra, Arts. 47 and 48, p. 45.)

ii. Define the elliptic functions sn x, en x, and dn x, and solve

completely the differential equations

(i) ^ + n2M + cm2 = 0; (ii)
~+ rfu + frf = 0.

Prove that, if a uniform chain fixed at two points rotate in

relative equilibrium with constant angular velocity about an axis

in the same plane with the line joining the two points, the form
of the curve assumed by the chain will be given by

y = b sn K -
,

a

the axis of rotation being the axis of x.
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if *=(V rf*
Jo v(l

then $ is called the amplitude of x, the modulus being k, and is denoted
by am (x, k), and sin 9 is the sine of the amplitude of x and is denoted
by sna;; cos $ is denoted by en

a;, and ^/(l
- &*sin

s

9) by dn x.

Consequently if y = sn a?, then

dy

if y = en x, then

f
1

^y
1.7

and if y - dn x, then

"fan
(i) If

multiplying by -y- and integrating,
etc

I. If C is negative or greater than^ 2 ,
the right-hand side has

only one real linear factor, and we must put

where a is greater than if (7 is greater than ^-5 ,
and is less than

'2a bo.

- -~- if (7 is negative.

We must now put

_ , 1 cos 9
1 + cos 9

'

and therefore

/ \ 2 s _ / -ft^~ cos
^*\

2
*

'

\ 1 + cos 9/

= (a - m)* + n
s

2b(a m) ^ r + b*
[ ^'

1 + 0089 \1 + cos

_ 1 - F sin*<jS

(1 + cos 9)
a '
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if b
3

AI du
Also = -

(1 + cos
</>)

2 '

, I r\ 2 Z /T 72 " 2 J \
tiiereiore I j I == jdo \^L

K sin
<p^,

and therefore < t= am < ^ (t -T), & >
,

where ^ =

and therefore u-a-b

II. IfC lies between and ^, the right-hand side of the equation

will break up into three real linear factors, and we must put

and the limits of u are therefore either - co and a, or 6 and c.

First suppose u to lie between - oo and a; we must put

u + a = (a b) tan
2

<,

and then u + b = - (a
-

b) sec
2

<,

r- . =- .

cos
<f> a + c

.. du o / i\ s^n <^Also -j-
= - 2 (a

-
b) ^ ;

d<>
' cos >

therefore =*a(a+c)(l- ^2
sin

2

^)),

/JT- N TTS

and therefore ^>
= am

j ^ (f -T), A;V, where ^ = |a(a + c);

^~
therefore w = -a-(a-6)tn

2

^ (t-r).

Secondly, suppose u to lie between - b and c; we must put

w = ccosz
< 6sin2

<, and then w + a = (a + c)(l A2
sin

2

^>

M + b = (6 + c) cos
2
<, c-w =

(6-f c)sin
z

</>;

where ^=:^-6
,

a + c
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and then
(^-j*

\ = A a (a + c) (
1 - k* sin

2

0),

(K ~\ Jf
3

and therefore < = am
|

-
(t
-

T), Tc I
, where

-^
= *a (a + c) :

and therefore u = c en2

^ (t
-

T)
- b sn2

(t
-

T).

multiplying by and integrating,

or

(7 must therefore be positive, and the right-hand side of the equation
will split up into two factors, so that we may put

u = a en
-^ (^ T),

[The approximate solution of these differential equations when u is

small is considered in Lord Rayleigh's Sound, 67.]

Suppose the chain to be revolving with angular velocity o>, and let

7?i be the mass per unit of length of the chain, t the tension at any

point.

Then the equations of. relative equilibrium are

d { dx\ A d

L

Therefore t -=- = T. a constant, and
as

d /dy\ _ wiw*" *" <v

Therefore, integrating,

ds nu> _^ since <_s when y m
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/dy\* mo2
... .. ( , mof ,ia ,,)

Therefore
ygj

=
-^ (&'

- y
fi

)
{
1 + -^ (b

-
</*)}

,

cc

and therefore y ~bsn.K- T
Cb

m< g
b* , K2

wio)
2
/. wko

* =
'

' 1= - r -

or

iii. State and prove Green's theorem, and deduce with the

usual notation that

Hence prove by putting Z7= -
,
that if an equipotential surface

be coated with matter so that at each point the surface-density is

T)

T , where R is the resultant force due to the original matter
4?r

acting outwards from that point of the surface
;
then the potential

of the coated surface at any point of the outside of the surface

will be equal to the potential at the same point due to that part
of the original matter which was on the inside of the surface

;
and

the potential due to the coated surface at any point of the inside

added to that due to the part of the original matter on the outside

will be equal to C, the potential at the surface.

Putting U- ,
where r is the distance of any point xyz from

a fixed point 0, and first supposing outside the equipotential surface;
then V2 7= inside the surface, and over the surface

A! TTSTT J dV T>Also VzF= 47rp, and -= = - R;an

therefore Green's theorem becomes

or

which proves the first part.

Secondly, supposing inside the surface, then Vaf= inside the

surface except at the point 0, and /// Ws lrdxdydz = - 47rF
,
where F
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is the value of V at the point 0; also

Therefore Green's theorem becomes

which proves the second part.

4. A material system in stable equilibrium, under the action
of a conservative system of forces, is subjected to a given displace-
ment. The kinetic energy of the actual motion will be less than
that of any other geometrically possible motion by the energy
of the motion which must be compounded with the actual motion
to produce the other motion.

(See Thomson and Tait's Natural Philosophy, Art. 317, p. 225.)

v. Prove that the velocity U of propagation of waves of small

displacement of length X in water of depth h is given by

TT2 <faU = n
Z7T

If liquids of densities p and p and depths h and h' be con-
tained between two fixed horizontal planes at a distance h + It

,

prove that the velocity U of propagation of waves of small dis-

placement of length X at the common surface is given by

where V and V are the mean velocities of the currents in the

liquids, and a and a' the angles the currents make with the

direction of propagation of the waves, the currents slipping over

each other.

Reducing the motion to plane steady motion by applying at

every point of the liquids the reversed velocity of the cross currents

and the reversed velocity of the wave propagation, and supposing the

equation of the surface of separation to be y--bsiamx; then if
ty, <//

denote the current functions of the liquids,

( . sinh TO (h + ?/) . )

* = (U- Fcos a) \y
- b

sinh^/; am
m*J

,

-
(
U-F COB a') (y

- b^^-/J sin
siuh mh
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For
\l/

and
i/r' satisfy the equation of continuity and the conditions

that w==^ = o when y = -h, and v = -- = wheny=Aj also wheny =
ax

in the coefficient of 6, that
ij/
and i//

both denote the same stream line

y = b sin mx.

The dynamical equations are

p

where g, q denote the velocities in the liquid, and H
t
H' are constants.

Neglecting b*,

fd\l/'\* ,,,,(, . coshra(A'-y) . )

q" = (-/-) = (Z7-F'cosaYn + 2mZ>-. ,

v -"sinmsy.
\%/ I sinhm/i J

At the common surface of the liquids p =p',

or P

or, putting y = in the coefficients of b,

% P'(U- F'cosa')
2 -

\{>(U- Fcosa)
a

4-m{(C
r- F' cos a')

2

p' coth mh' + (U- Fcos of p coth m/i}6 sin ma;

g(p p')bsin.mx pH p'H' ;

and equating to zero the coefficient of b sin mx,

w {( J7"_ 7' cos a')p' coth mA' + (U- Fcos a)p coth wA} -
g(p

-
p) = 0,

27T
and m = -r-

>A

giving the required result

(Z7- Fcos a)V coth~ -f (i7- F' cos a')
2

p' coth^ -^ (p
-

p')
= 0.

A A air

If we put p'=0, F-0, F'-O, we obtain

the result of the book-work.

Suppose however the motion not to be reduced to plane steady
motion; but denote by <f>, <fi the velocity functions of the actual motion
of the liquids; then if

<j>
= Fcos a. 03+ Fsina.z+.4 cosh m(h + y) cos (mx - nt),

<'= F'cos a', x + V sin a', z + A' cosh m(h'- y) cos (mx nt} ;
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then
(f)
and <' satisfy the equation of .continuity and the conditions that

-j-?
= when y = -h. and -7- = when y = h'.

dy dy

At the surface of separation the direction of motion of the liquid
relative to the moving surface of separation y = b sin (mx nt) must be
a tangent to the surface, and therefore

dy dy _dy

^-u~ ^--u dx '

dx dx

or, neglecting A
a and A'a

,

mA sinh mh cos (mx n)_ mA'sinh mh'cos (mx - nf)

Fcos a 7 V cos a (7

nib cos (mx nf),

A sinh mh A' sinh mh' r
r\T* _ -

-_ ____ _ -
.

- /)

Fcos a -tf" "F'cos a'- 7
~

and therefore

/TT rr\ *= Fcos a . x + Fsm a. z + (Fcos a - U) b . .
v

T
- cos (mx - nf)smhmA

'= F'cos a', x + F'sin a. z - (F

The dynamical equations are

'= F'cos a', x + F'sin a. z - (F'cos a-U)b ^ 7, cos (mx-nt).

and at the surface of separation p = p',

Also at the surface of separation, neglecting 6
2

,

q*
= F2 - 2F cos a

(
F cos a - U] mb coth mh sin (mx

-
nt),

q'*
= V'

3 + 2 F'cos a'
( F' cos a'- 7)w& coth mh' sin (w -

w<) ;

and therefore

ip'F'
2

--| PF
J

+{ F'cos a'( F'cosa- U)p'cot}imh'+ Fcos a(Fcosa- <7)p cothmh}mhsin(mx-nt)

-{(F'cos a'- Z7)p'coth m/i'+
(
Fcos a - Z7)p coth mh} nb sin (ma:

-
nt)

-
g (p p) b sin (mx nt)

=
p'/?' pJT;
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and equating to zero the coefficient of sin (mx nt),

{F'cosa'(F'cosa'- 7)p'coth ra/i' + Fcosa(Fcos a- U)pcothmh}m

{(V cos a- U}p coth mh'+ (
Fcos a - U)p coth mh} n

-g(p-p')=0,

and m = -r-, n= r- : leading to the same result as before.
A A

6. If a uniform horizontal bar, both of whose ends are fixed,

be so displaced longitudinally that, initially, one-half is uniformly
extended, the other uniformly compressed, prove that the dis-

placement (y~)
of any particle (x) at the time t will be

TTX

21 being the length of the bar, the middle point being origin, and
nl the initial displacement of the middle point.

The value of y must be such as to satisfy the equation

It must also, for all values of t, be equal to zero when x = l.

l x
And we require that, initially, y shall be equal to nl =, for all

L

i

- 1 and 0.

Now it is known that the expression

. TT x , . STTS; 1 .

is equal to T from x = to x = I, and to - T from x = -l to x=Q.
4 4

Hence, integrating with respect to x, we see that

21 C TTX 1 STTOJ 1
cos + * cos

- (2*+lWa:
cos - - + -

2 z 3* y -i

-
(2TTir 2

is equal to j (^
-
x) from a; = to x = I, and to j (/ + x) from x = l to

<c = 0, the arbitrary constant being determined by the fact that the

series vanishes when x = I.

4 nl
Hence, multiplying by - we obtain, for the initial value of y

7T I

8 <=, 1 (2i+l)7ra;
^ i<= 2Tn c< ~2 r
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and therefore, for the general value

8 . 1= 1 (2i+l)Trat (2i+l)-n-x
^ nl 2-

(STTp
cos

2
~

-I
cos ^T- I

>

since this satisfies the differential equation (1).

Describe and explain the phenomenon of external conical

refraction.

If one of the directions of vibration in a plane wave inside a

crystal make angles a, (3 with the optic axes, and the other make
angles 7, 8, prove that

cos a cos S + cos /3 cos 7=0.

Prove also that, if a ray be incident on the face of a crystal in

a plane passing through one of the optic axes, the directions of

vibration inside the crystal will be either perpendicular to this

axis, or will lie on the surface of a cone of the second degree.

Imagine a unit sphere drawn with centre at the origin 0,

and let the mean axis of the ellipsoid of elasticity be chosen as the axis

of z, and let its two circular sections be denoted by

Suppose, also, that any third central section BCD' (fig. 64) meets the

first circle in D, D' and the second in <7. Let F, ,
Fa be the middle

points of CD, CD' then F
t ,
and F2 are the two directions of vibration

in the wave.

Let ZC =
lf

ZZ> =
2 , ZD'^ir-e^ CD = ^.

The co-ordinates of C are sin Q
l
cos A, sin 6

l
sin A, cos 0, ,

........................D .... sin
g
cos A, sin

8
sin A,

............. ............D' ... -&in6
9 cosA, sin0

2 sin-4,

Those of F, (,, m^ nj by

2?j
cos \ty

=
(sin O l

+ sin
2)

cos A,
j

2m
l
cos |^ = (sin ^ - sin

2)
sin A

,
[ ............... (

1
).

2w, cos
Ji/f

= cos 6
l
+ cos

a

Those of F
g (lt ,

m
a ,
n

g) by

21
2
sin

|i/f
=

(sin O
l

- sin
2 )

cos A,

2m
3
sin^ =

(sin t
+ sin

2)
sin ^,

2w
g
sin

\\l/
= cos 0,

- cos
g

.

The optic axisO,, perpendicular ioZC is given by sin.4, -coaA,
0|^

S.-H. P.
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It is obvious from these equations that

cos V\0 l
cos V^0a

+ cos V1 a
cos F/>,

= ............ (a).

Let X, p, v be the direction-cosines of the normal to the wave
; then,

since it is at right angles to OC and OD,

\ cos A sin
0, + [*.

sin A sin 6
l
+ v cos O

l

=
0,

X cos A sin O
a /x sin .4 sin

2
+ v cos

2
= 0.

From these equations we obtain

2X cos A sin $
l
sin

S
+ v sin (^ + O

a)
=

|
,>

2/x sin J. sin^ sin
8
+ v sin (02

-
0j = J

"

But, turning to equation (1), we see that

, f /A A\ .. n*cos,*A-l*
therefore sin (0,+0a)^^-5

-
4 ,

cos (0. + 0.)
= -,
-

j-. =
,v l a/ P + n cos A ^ l *' n cos

2 A + ?

m

,, . .//,/,
therefore sin (0-6 =

5 a . a .
, OOB.f0. - 9)

=Vl 8 2 s ' Vl 2/

>(4).

From these we also derive

2 sin
Ot sin ^

2 (n
a
cos*A + f) (w

2
sin

8 A +w2

)
=

2n*(l
s
sin

3A - m* cos
2

A) ... (5).

. Suppose now the normal to a wave, incident upon a given face of a

crystal, to lie in a given plane; the normal to the refracted wave will

also lie in the same plane ; suppose, therefore, that we have

oX + ftp. + yv
=

(6),

where a, /?, y are the direction-cosines of the plane of incidence
;
the

above equations (3), (4), (5) enable us to determine the conditions

thereby imposed upon the directions of vibration.

We obtain, on substitution,

aln (m
2 + n* sin

2

A) - (3mn (f + n
2
sin

2

A)
- 7n

a

(l

2
Bu>

a A-m*cos>

A) = Q (7).

Rejecting the factor n from this equation, we see that, when the

normal to the incident wave lies in a given plane, the directions of

vibration lie on the surface of a cone of the third degree.

Let the given plane contain the optic axis 0, ,

then a sin -4 -/3 cos .4 = 0;

we may therefore take a = c . cos A,

= c . sin A.
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The cone (7) now takes the form

elm (m cos A -I sin A) - cna
sin A cos A (m cos A - 1 sin A)

+ yn (m
s
cos* A F sinM) = 0,

which breaks up into the plane

I sin A m cos -4 = 0,

and the cone

c (Im n2
sin A cos A) + yn(l sin A +m cos A) = 0.

The plane is evidently at right angles to the optic axis O
l

.

77. Obtain the general equations of equilibrium of an elastic

plate of small thickness, under given forces.

A thin uniform spherical shell of isotropic material, whose

weight may be neglected, is made to perform vibrations in the

direction of the radius, symmetrical about a diameter. Shew how

they may be found.

Prove that they are given by

Sr = a sin ntPi (/i),

where n2 =
(i
-

1) (i + 2) {A (i
-

1) (i + %}-},

A and B being constants depending on the radius, thickness and
substance of the shell, and i a positive integer, and the other

symbols having their usual meanings.

In the case of a strained plate, which was originally plane, the

work done to produce the state of strain is (see Lord Rayleigh, TJieory

of Sound, Art. 214) of the form

\A^ f 5 + 2
J
+ \E l

-
per unit of area;

or, as we might write it,

p t

and p2 being the principal radii of curvature of the surface.

It is an obvious extension of this result that, if the plate were

originally spherical and of radius a, the work necessary to strain it is of

the form

, 111111
where

pl
a o-

3 pz
a

at any point o

142
Here and are the changes of curvature at any point of the plate.

-
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The kinetic energy of the plate for transversal vibrations will be

p being the surface-density.

The equation giving the transversal motions will be

(2),

and we may suppose p to be incorporated with A, B, and so to be

put=l.

"We have now to find o^ and c-2
in the case where the sphere is

deformed into a surface of revolution.

Let
/Oj

be the radius of curvature of a meridional section, pa
= the

normal PG (fig. 65), and let the equation of the surface be

(3),

onfi 1 dr du
tan SPG = -

-JZ=-JE,r dd dO

treating u as a small quantity of the first order, and neglecting its

square.

To the same order of approximation,

sin SPG~, cos SPG = 1, and ds = a (1 +
) dO.

If = PGS, sin tp
=x sin - cos 6

-^ ,
cos <p

= cos + sin
-^ ,

sn04-sin< = a f 1 + w + cotfl

If we put /A
= cos O

t

a du /t .=
p.-r -u ...... . ..................... (4).- ^

Moreover,

p

If, d*u

j.i p a it <>\ d
gu du ....

therefore =
(1 -u.') -, -M-J- 4-w (5).

o-j
' d

fj. dp.
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"We have now to substitute these values in (1); and, before pro-

ceeding to take the variation of W, we shall integrate as far as possible,
because any variation of the terms which appear outside the sign of

integration will not affect the equation upon which the vibratory motion

depends.

Now dS=-2-rra2

dfj.,

and the constant part of this expression will disappear from equation

(2) ;
so we may neglect it.

If we put
du d*u ddt

u. --- w=w, P--r~2
= j~'r

dp. dp: dp.

I
a" [(/ du \d*u d(a

)Hence -
/
-

dp.
=

\{( p.
--- u

} y-a
-

p.t>> -j
-- w V dp..

J<Ti<r J i\ <*/* /4F dP

But
u./du* , /du

du C/du\'
and

and IJMadm = i*.^
-
\ Jw

2

dp.

We observe, further, that the term under the integral contains a

term

which may be written

hence -

- l

the expressions [
... ] denoting terms outside the symbol of integration.

We have next to find the variation of
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du
-y- + 2u
dp.

/I 1\
, 2.d*u du

- a
(

+
}
=

(1
-

ft

2

) -y-,
V<r, cr

a/ 'd/*
2

d - du
=

Hence,

On substituting these expressions for the variation of STF in equa-
tion (2), we may evidently write the equation of vibrating motion

where

We may satisfy this equation by putting

u =Pi (/A)
sin nt,

for APi
= -(

s + i

and hence

ix. Define the potential function
<j>

and the current function

ijr
of electricity moving in a uniform conducting plate ;

and prove
that, if the specific resistance of the plate be taken as unity, they
are conjugate functions and satisfy the same differential equation
of the second order.

Verify that, if the electrodes of a current be placed at

opposite corners of a uniform conducting rectangle,
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(A'?, t)dn(jT2, *)
m

(*'jf. I')'

7T
sn

where j^
= r- a,b being the sides of the rectangle, R the specific

resistance of the plate, and the axes of co-ordinates being two

adjacent sides of the rectangle meeting in an electrode.

To verify the theorem we must prove that

dx dy
'

dy dx*

and that the value of
\j/ along the edges x = and y = b must be constant

and exceed the value of
i/c along the edges y and x = a by c, the

strength of the current.

Now, since
-j-

sn x = en x dn x,

x ni

putting snK- =
a,

EC, a2 + /

and therefore

J i Z?/"Y i7 / O ~ O/52 o 7.2-. \
a<p J\\j A / AOL Jap ZiK a, \ .... z . .,, ,3 2 ,

_ 2) /a _ .

a)^(l
'

_
dy TT b

,.
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y \

and therefore -^ = /t -y- .

ax ay

Similarly it may be found that

dt _ <fy
3

~
-ft ~j~

ay ax

20
Also when y = Q or x = a, fy

tan" 1

0;
7T

2C
and when x= or y = b, i[r

= tan"
1

co :

7T

and within the rectangle the numerator or denominator in the expression
for

if/
do not vanish

; therefore, when y = or x = a, we may put if/
= 0,

and when x = or y = b, we may put i/r
=

6', and therefore G is the

strength of the current crossing any line joining the sides y = or x = a
with the sides x = or y b

; and, since on the boundary \f/
has a constant

value, therefore
if/

satisfies all the required conditions.

The values of < and- ^ can be found synthetically by supposing the

plate to be infinite, and positive electrodes placed at the points 2wi,
2m b; and negative electrodes at the points (2m + 1) a, (2m' + 1) b>',

when
in and m are any integers, taken between the values oo and oo .

Then at any point of the plate

. D ,
2RO . .'** (x-2ma)+i(y-2m'b)

*"' 10g - -

2RC,
log,

where
-^>

= T (^ayley, Elliptic Functions, 39); and therefore, omitting

constant terms,

2BC.
Sn
l*a

log

dn

sn
, V a
log

-

-
\ a bj \ a
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dirK- + dnYff' |
- 1 + JfatK?. sn2

iK' V.
a o a, b

^ TT v
log U, where U=

J'*)^

and therefore

sn2^- dn2#- en8 A" f + sn3 JT f dn' K' \ en2 A^-a a 6 6 a

.

log
-
a,

= tan

[If the sides of the rectangle y = and a; = a be maintained at the

temperature zero, and if the other sides aj = Q and y b be maintained

at the temperature unity, then it is obvious that
\(/

denotes the per-
manent temperature at any point of the rectangle].

i. Obtain the general equations of electromotive force in the

electromagnetic field.

What modifications do they undergo when the axes of reference

are moving in any manner ?

If a circular plate oscillate normally in front of a magnetic

pole A very near its centre C, prove that, if the mutual induction

of the currents be neglected, these currents will be given by the

equation
1 fx
PA -t

where a is the radius of the disc, /the projection of CA upon it, x
the abscissa of any point P of the disc measured along /.
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If the pole of the magnet be in the centre of an induction coil,

shew how to find the currents which will be induced in the coil,

and shew that they are approximately of the same period as the

vibrations of the plate.

The general equations of electromotive force are (see Maxwell,
Electricity and Magnetism, Vol. IL, Art. 598),

dy ,dz dF dty

dt dt dt dx '

dz dx dG
d\l/'

,dx dy dH d$
Jti = o r- tt -=- 3 -j- .

dt dt dt dz

The first two terms on the right-hand side express the inductive

effect due to the motion of the conductor across the lines of force,

the third terms that are due to variation of the currents, and the last

give the force due to the variation of electric potential. In our case,

when we neglect the mutual induction of the currents, we may neglect
the third terms and put for a, b, c the components

_ _ _
dx' dy' dz

of force due to the external magnetism.

Let us choose the axis of z in the direction of the normal to the disc,

and the axes of x and y as indicated in the question, and let the normal

velocity of the disc at any time be

dt

dx , dy
also -7-

=
0, and -^ = 0.

at at

It is manifest that the currents are entirely in the plane of the disc,
and we may therefore put

JR-0, * = 0.
dz

If
<f>

be the current function,

d<j>P=(ru = <r -r^-,
dy
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and the equations of the currents become

<P 17 d\l d\\i d .
,

_ . d\b~ (TT V ~j r- or -7- (a-dt
- FO) = +ux ax dy dx^ dy.

We must also remember that, since there is no flow of electricity
across the boundary,

where #

If we put x

the conditions to be satisfied are

But, if A be a pole of unit strength, at a distance h from the plate,

n =
pZ

=
~7^rzw

for points not near the centre ; and when r = a,

dQ, -/sin ^

^=-^, very nearly.

The general value of x from equation (3) is

X = 2^ (A cos i + B sin t^).

The solution to be chosen is, therefore,

X = Ar cos 0,

f
where -Aa = -

.

a

The value of < is, therefore,
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If the magnetic pole be surrounded by a coil, the variation of strength

of the currents in the plate will induce currents in the coil
;
but these

currents, being of the first order of small quantities, will not induce

sensible changes in the currents of the plate.

Let R be the resistance of the coil, L its coefficient of self-induction,

M the coefficient of mutual induction between the coil and unit current

established in the plate according to the geometrical law (4). Let the

current in the coil be ylt
and that in the plate y^ the equation of in-

duction will be

But M may be treated as sensibly constant, and therefore this

equation may be written

And 2/3
is of the form A sin nt,

hence y l

= -
. Mn A cos nt

MnA . .

cos w + w// sin w).
.#* + ZV '

If we neglect Zj the currents in the coil are a quarter of a phase in

advance of those in the disc.

FRIDAY, January 18, 1878. 1| to 4.

Mr PRIOR, Arabic Numbers.
Mr NIVEN, Roman Numbers.

1. IF the orbit in which a body moves revolves round the centre

of force with an angular velocity which always bears a fixed ratio

to that of the body ; prove, by Newton's method, that the body
may be made to move in the revolving orbit in the same manner
as in the orbit at rest by the action of a force tending to the same
centre.

If the orbit at rest be an equiangular spiral, shew that the
orbit in space of the body moving in the revolving orbit is also an

equiangular spiral, such that if p, /jf be the absolute forces of the

centres, a, a' the angles of the spiral in the two cases,

fju
cos

2
OL =fj, cos

2
a.

If in the case of the orbit at rest the particle be moving from
rest at infinity in a smooth spiral tube, and if, when it is at dis-
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tance a from the centre, the tube begin to revolve with a uniform

velocity a>, shew that the orbit in space of the particle will be

+ v/<oV + 2&)cV + J* 008ec

where 2c
2 = sn a a>a cos a.

(1) At any time let r be the distance of the particle from the

centre, v its velocity in the orbit at rest, \v the angular velocity of the

orbit; also let v' be the actual velocity of the particle, and
</>'

the angle
between the radius vector and its actual direction of motion in its orbit

in space.

Then we have
. . v sin a + \v sin a + X

tan <i = =- = const. ;
v cos a cos a

hence we learn that the orbit in space is an equiangular spiral, and

sin a 4- X

cos a
= tan a'.

Now, since each orbit is an equiangular spiral, the forces tending to the

centres vary inversely as the cubes of the distances; hence, if p, p' be the

radii of curvature in the two spirals, we have,

va
. v* u? . .

=
q sin a, f

= -* sm a ;

p r
3

p r
3

while p = r cosec a, p = r cosec a'.

Therefore -*=-,v p,

But the radial velocity = v cos a and also = v' cos a' ;

v cos a'
therefore

therefore
cos a p.

or p-'
cos

8a -
p.

cos* a.

(2) Since, as the particle moves from rest at infinity to the

distance a from the centre, the pressure on the tube is zero, we have

if v.= ^ sin a, and p = r cosec a,

P r

therefore v
3 =

-, ;

therefore at distance a v* = .

Cv

v cos a

COS
2
a' p.
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At any subsequent time, let u be the inward velocity of the particle

relatively to the tube, and r its distance from the centre
;
then the velo-

cities of the particle in space are, along the tube outward

tor sin a u = w, say,

and perpendicular to the tube in the direction of revolution,

tor cos a.

Also, to find the motion relative to the tube, we may reduce the tube

to rest by giving to every particle an acceleration to
2r along the radius,

and a velocity cor perpendicular to the radius in the direction opposite
to that of revolution.

Accordingly we have for the moving particle,

du
fjiu -r- = -4 cos a + to r cos a,

ds r
3

du \L
or u -r- = -.-. + to r,

dr r
3

therefore us

-^ + <oV + 2toc
2
,
where c is a constant.

Therefore w= tor sina - -
,/(toV + 2tocV +

/x,).

But when r = a, w = - ^-
,
for the impulse upon the particle due to

Cff

the starting of the tube is normal to the tube, and therefore makes no

change in the velocity in space along the tangent to the tube :

therefore Jp + toa
2
sin a = ^/(fo

2^4 + 2<oc
8a2 +

/A),

or 2c
2 =

2,/ft, sin a a)a
2
cos

2
a.

Now, if be the angular co-ordinate of the particle, we have

dd _ w sin a + tor cos
2 a _vyr u sin a

_

dr w cos a tor cos a sin a u cos a '

., f dd wr
therefore tan a r -r- =

dr u cos a '

1 dd to tor cosec a
cota-r- =

r dr wsina ^(eoV-t- 2toc
2
r2

+p-)'

Therefore integrating

r
__ jW + c' + ^toV + 2tocV + ft))^~

the constants being inserted in this form for consistency of dimensions.



JAN. 18, 1| to 4] PROBLEMS AND RIDERS. 223

2. Explain the nature of the superficial tension between fluid

surfaces in contact; and find the height to which liquid rises in

a capillary tube.

Shew that the potential energy of the liquid produced by the

capillary action is (to a first approximation) independent of the
size of the tube.

A drop of oil is at rest in the midst of a liquid of the same

density ; assuming the form of its surface to be a surface of revo-

lution, prove that it will assume the form of a sphere if either end
of the axis be free in the surrounding liquid ;

but that, if both
ends be held, it may assume a tubular form: and reduce to inte-

gration the equation of the surface.

(1) Let Z be the vertical capillary force, exerted on an unit

length of the edge of the liquid in contact with the interior of the tube

supposed vertical : let r be the radius of the tube, h the height to which
the liquid rises in it, and p the density of the liquid.

Then 2irrZ = ir^h . gp,

1Z 1
or n = .

-
.

gp r

The potential energy thus produced is measured by irr'h . gp . \h, for

the mass, as a whole, has been raised to the height of its centre of

gravity ;
hence the potential energy

which is independent of r.

(2)
Let P be the pressure in the oil at a given level, P that

in the surrounding liquid at same level; then the pressures at a depth

% below this level are respectively P + gpz and P' + gpz, where p is the

density of the oil and liquid. Hence the resultan-t pressure outwards on

the surface, per unit area, =P-P' everywhere. Also if T be the surface

tension of the oil in the liquid, the component of the surface tension

inwards, per unit area,

p, p being the principal radii of curvature. The form of the surface is

therefore given by

1 1 P P'
- + = = a constant = K (say).
P P f

Now let the axis of revolution of the surface be that of z\ let x be the

perpendicular distance from this axis of a point on the surface, </>
the
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angle between the normal at the point and the horizon, and s the length
of the meridian-arc measured from the highest point of the surface : then

p = x sec <,

, _ ds _ ds dx _ 1 dx

d<j> dx
'

d<f> sin <

Hence the above equation of equilibrium becomes

c dc ._- + -
7-=A, where c = cos <6;x dx

therefore the equation of the surface is

ex = \Kx* + constant.

Now, if it be possible to have x = 0, that is if the axis of revolution

cut the surface, the constant = ; then

TT dZ
Hence -r-

where k =
-^.
ML

therefore z - a = -
,J(Jt?

-
x*), or {z - a)

2 + x9 = k* ;

therefore the surface is a sphere.

In general we may write the equation of the surface in the form

2 constant
ex = -

, where b =-j=
-

,

k K
which may be really negative.

m, dz x* + b
3

Then
-j-

=
,

ds xk

dz

<fa
{x*tf

-
(x

3 + b
a

)*}l

This may be written

dz x3 + c

a,a8
= b

3

, a,
2 +a' = Kl - 2ft*.

This shews that the generating curve lies between the lines
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Further <*'*_(".+)'(..-')^
{(s'-OK'-^ji'

which shews that there are points of inflexion on the line x = Jw~=b.Hence the generating curve is undulatoiy, and the surface generated
by it may be called tubular, since it may be described by a horizontal
circle whose centre moves vertically, and whose radius alternately
expands and contracts between the values a and a

1 3

The integral of the above equation is

-OK2 -

which reduces to

where F and E are the elliptic integrals of the first and second kind,22a-a
and a;

3 = a' sin
2 + a cos

2

[It is clear that the pressures at a given level in the oil and the sur-

rounding liquid must be different, otherwise no curved surface of equili-
brium could be possible except one belonging to the series of surfaces

P P

which are essentially anticlastic everywhere.

For a full discussion of this question, see Beer's Elasticitat und

CapUlaritat (1869), pp. 161
ff.]

3. The potential due to any attracting masses cannot have a

maximum or minimum value at any point of space unoccupied
by matter.

If in the midst of any attracting masses a closed surface be

drawn, in some parts cutting the masses, and in some parts free,

and be covered with a surface density p: and if V be the potential
due to the attracting masses and this surface density, and U a

function having arbitrary values at all points of the surface : then
in order that V U may have a constant value for occupied parts
of the surface and not have a less value at any other part of the

surface, shew that if the whole quantity of matter on the surface

be constant, its distribution must be such as to give

ff(V2U) pSa- a minimum value.

S.-H. P. 15
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Hence, or otherwise, shew that Green's imaginary distribution (p)

may be defined as a solution of the equation

= a maximum,

subject to the condition that //poV +1=0.

(1) This is virtually a proposition due to Gauss, Werke, Band v.

pp. 232 234. See also Thomson and Tait's Natural Philosophy, pp.

410, 411. Gauss' method of proof may be thus applied to the ques-
tion as stated.

Let W V U, and let A be the constant value which W is to have

at occupied parts of the surface, the value of W at unoccupied parts

being not <A. Also let Q = J/(F 2Z7)pc&r, so that

80 = J/S Vpda- + fJ(V-2U) Sp d<r,

where 8 refers to any arbitrary variation of p. Suppose the distribution

such that O is a minimum, and if possible let there then be two points
on the occupied parts of the surface at which W is not = A : viz. at one

point P let W < A, and at the other point Q let W > A : then at P, W A
is negative, and at Q, W A is positive. This supposition may be justi-
fied by observing that, unless W = A at ah

1

points of the occupied

parts of the surface, W must have a minimum value at some point
which may be taken as P and a maximum value at some other point
which maybe taken as Q; A being then some value between these maxi-
mum and minimum values, or, it may be, coinciding with one or other of

them. In this latter case W A may be at P or at Q, but the following

proof will remain valid.

Now let the operation 8 mean, alter the distribution arbitrarily by
taking a quantity of matter 8p from round Q and place it round P:
then fJ(W-A)8pd(r is negative, for Sp = at all points except P
and Q.

Also ffA 8pd(r = A J/Sp da- =
;

therefore adding we learn that

fJW&pda- is negative.

Further, we have

.

where rp,
r
q
denote the distances of P and Q from the element do:

Also, remembering that Sp = except at P and Q, we have

Therefore, // Vp da- = // V8p d<r.
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Hence SO = 2 //( V- U) Bp da- = 2 // JFSp do-
= a negative quantity.

By this arbitrary change therefore we can diminish ft, i.e. the sup-
posed distribution is not such that ft is a minimum unless WA at all

occupied parts of the surface.

A similar proof will apply, if P be a point on the unoccupied parts.

(2) Let us now take the particular case in which TJ
,

(r being measured from a point E not on the surface,) and V is due only
to the mass distributed on the surface.

Then W = V- U is the potential due to the mass on the surface and
an unit mass at E. If then the distribution over the surface is to be

such as to make it an equipotential surface for the potential TF, W is to

be constant, and therefore by the proposition, ft is to be a minimum, i. e.

1 1

(
V + -}pd(r = & minimum.

Now Green's (p) (Mathematical Papers of the late George Green,

p. 32) refers to the distribution over a surface joined to earth

produced by an unit mass at E: therefore in his case TF=0 over

the surface, i.e. V= over the surface. This gives II =a mini-

mum, or - 1 1 = a maximum, (p) being a negative quantity restricted

by
ff(

P)dc7<r + 1 = 0.

iv. Investigate the expression for a tesseral surface harmonic
;

also find the integral of the square of a tesseral harmonic over the

surface of the unit sphere.

If the general expression for a tesseral harmonic be of the form

where the coefficient ofthe highest power of
yu,

in S-
(m)

B is unity, prove

that

In Todhunter's treatise on the functions of Laplace, Lame and

Bessel, Art. 150, we find the following expression for the part- of the

tesseral harmonic depending on p,

(u*
- if * = ^- + Jtf _

1) cosW cos m
'

TT (Jin)
! .'o

15-2



228 SOLUTIONS OF SENATE-HOUSE [FRIDAY,

rir

Let us write u
n

I
(/A

4- ,/(/**
-

1) cos
\j/)

n
cos mif/cty,

Jo

and put Jf = ft + ,/(/A
2 -

1) cos
i^,

and let us find the relation between ua+l ,
u

n,
u
a_ l

. It is clear that this

relation will lead to the corresponding one for
(5"),

since m is the same
for all three.

fir

t = I At
n+1

cosm\j/d[j/,
Jo

and, integrating by parts,

n+ I r*
M'

Jom

and, integrating again by parts,

^+1
[cWl J
cos m i - cos

NOW

(p*
-

1) sin
2

^ =

Substituting these values, we obtain

2n +In+

whence

(n + 1 + m) (n + 1 - m) w j+1 + (2n + 1) (w + 1) /AWB
- n (n + 1) WB-I = 0.

Replacing WB+I ... by the corresponding expressions in (S), and

rejecting the common factor
(/x

2

-l)
2
7r and other common factors, we

obtain the relation in the problem

For the purpose of obtaining the relations of this sort, the

expressions in terms of definite integrals are extremely convenient.

[The result may also be obtained by starting from the known
equations
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Differentiating both of these m times and eliminating
**" l]P

d/x.

m~ l '

the result follows at once by means of the general relation

u 2.4.6...2>i
cos m

v. Obtain the equations of motion of a vibrating string, and
explain the reflection of a wave at a fixed end.

A string is stretched between two points, and, being displaced
from equilibrium, is allowed to vibrate; prove that it will subse-

quently consist of three straight parts, of which the middle part
preserves a constant direction, and the two end parts are constantly
parallel to one or other of the initial directions of the string.

Find also how the points of intersection will run along the

string.

The method of determining the vibrations of a plucked string
AB is explained in Lord Rayleigh's Treatise on Sound, Art. 146. Two
infinite trains of waves start to move along AB in opposite directions

with velocities which are each equal to c, the velocity of transmission

of sound along the string. The waves are initially coincident, and the

displacement at right angles to AB in any point of either is initially
half that in. the string ;

and the lengths of the wares are each double

AB. The initial position of either train is shewn in
fig. (66). At any

subsequent time, the form of the string will be found by adding the

displacements in AB due to these two waves. The one which moves in

the direction AB may be called the positive wave, the other the negative
wave.

"We shall consider the changes which take place in half a period,

these being simply reflected in the other half; and shall divide this

time into three intervals corresponding to the times when CD in the

positive wave crosses B, and when CD in the negative wave crosses A .

Let AD = a, BD =
b, CD = h, and suppose a > b.

(1) In the first interval, the string will consist of three pieces, of

which the first is formed by the superposition of two lines parallel to AC,
2/i,

and whose equation is therefore y = x; and similarly the last piece
ct

will be given by y= ^- (a + b - x). The middle piece will be the result

of superposing a line parallel to AC and a line parallel to EC: its

equation will therefore be of the form y = h (- -
^J

x + function of t.

(2) In the second interval, that is from t = - to t = -, both the end
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pieces are evidently parallel to y x
; and the middle piece, being

still compounded of two waves one of which is parallel to AC and the

other to BC, will still have an equation of the form

y = h( T I # + function of t.

(3) From t - to t ~
,
the part c^ of the positive wave is

c c

passing over A, and the part cc' of the negative wave is also passing
over it

; hence through this interval the form of the string at A is

y= ^ x. The form of another portion through B, being derived from

two waves parallel to AC, will have, for its equation, y= 2 -
{x (a + &)}.

Cb

The intermediate portion will be compounded of a line parallel to AC
and a line parallel to BCt and its equation will therefore be still of the

form i/ = h( T ) x + function of t.
if 1 l \y = h[ T )

a bj

These results coincide with the statements in the first part of the

question.

To solve the latter part, let
(fig. 67) AEB be the initial position of

the string, and let the parallelogram AEBE' be completed.

Consider any position of the string APQB in the first interval; in

this interval r the middle portion of the string is made up of the lines

T{a + b- (x + ct)}.

Its equation is, therefore,

and the intersections of this line with AE, EB are given, respectively, by

x
l

= b-ct, x
a
= b + ct.

The velocities of P and Q are therefore uniform, and their compo-
nents along AB are each = c.

The same result obviously holds during the second and third

intervals.

P and Q therefore run round the parallelogram AEBE', in opposite

directions, with velocities whose components along AB are constantly

equal, numerically, to c.
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6. In the case of sound waves travelling along in a straight
tube of finite length without change of type, prove that nodes and

loops occur at equal intervals.

If the tube be of infinite length and adiathermanous and no
conduction of heat take place through the air, prove that the

equations of motion may be accurately satisfied by supposing a

wave of condensation to travel along the tube with a velocity of

transmission which at each point depends only on the condensation

at that point, and which for a density p is

where p , p are the pressure and density at each end of the wave,
and 7 is the ratio of the specific heat of air at constant pressure to

its specific heat at constant volume.

Explain the consequent tendency to a bore in the fore part of

such a wave, and the gradual prolongation of its front.

This result and its explanation were given by the Rev. S.

Earnshaw in the Philosophical Transactions for 1860, Vol. 150, pp. 137,

144 ff. See also Lord Eayleigh's Sound, Vol. n. Arts. 250252.

The result may also be obtained as follows. Let the axis of the

tube be taken as the axis of x and let u be the particle-velocity at

time t at a point whose abscissa is x. Then by the equation of con-

tinuity,

Also if <' (p)
be the velocity of transmission of the wave of con-

densation for a density p, which is the density of the wave of condensa-

tion which we are following, and which is occupying the place x at time

t, we have, because this p remains unaltered,

therefore S + *'W = ........................... <2) '

From (1) and (2) we obtain

therefore pu = </> (p),
= ~
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Now the equation of variation of pressure is

1 dp du du
__

* ^
p dx dt dx '

1 dp dp du dp du dp
therefore -. -p- . -f-

= ~r in
~ W ^T *~T~

p dp dx dp dt dp ax

du d (pu) dp du dp, .,.= -r- v -7-
-

t*> ~r ' ~r ky (1)>
dp dp dx dp dx '

1 dp du du ., . 1 dp fdu\"
therefore -.-/- = -=-. p-j- ,

therefore-2 -f-
= -r-

) (3).
p dp dp

r
dp p dp \dp/

Now =
( J ,

or p = Apv where A = .

Po W ?<?

Hence (3) gives

^A/rtY-3 /

\dp,

2JUy) TZI IZ.1

therefore M =
t {p

2
p /,

therefore

,, .
, ,

,
v 2 V(^y) (v + 1

v
-^theretore ^> (p)

'
< ^ p

z -
p

I
. ..

f
i i / \?"* 2

7. Define the tortuosity of a curve, and flexual rigidities of a

wire. Prove that if one end of a wire originally straight and of

equal flexibility in all directions be held fixed, and a couple G be

applied at the other end round an axis inclined at an angle 6 to

its length, the wire assumes the form of a helix on a cylinder of

radius ~ , where B is the rigidity of flexure of the wire.

If A be the rigidity of torsion of a wire originally straight,
which is twisted and strained and then has its ends fastened to-

gether so that it assumes the form of an endless spiral round a
tubular core: shew that the stress at every point of the spiral is

T
always perpendicular to some one plane, and = A ^-~ , where T is

(j

the integral twist of the wire, and Q the area enclosed by its pro-

jection on this plane.
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It appears from symmetry that the axis of the tubular core or
ring round which the wire appears to be spirally coiled, lies more or
less in one plane and is of a more or less circular form round a centre
Take this plane as that of xj and this centre, 0, as the origin.

Then at any point x, y, z, the direction-cosines of the tangent are

dx
(/// dz

d^ '

ds
'

da
'

and if p, r be the radii of curvature and of torsion at this point, the
direction-cosines of the normal to the osculating plane there will be'

i fa}
'

ds3
}

'

which we shall denote by A, ^ v.

Let the components of the stress at the point be T, Y, Z.

Then, since no external forces act on the wire, the components of the

couples round the axes due to the curvature, the twist and the stress at

any point must be constant throughout the wire. Call these components
L, J/, JV"; and we have

B . dx
L=--X + AT r + yZ- z Y,

p as

, r -B
. di/M =~ u.+ AT - + zA - xZ.

f>
as

X = v + AT -- + xY - yX.
p as

Let F, II be two points in which the wire cuts successively the

plane xy, F being further from than //, so that a point moving along
F/f would at first rise to the positive side of this plane, then for a
moment move parallel to the plane at a point G, and afterwards drop
towards the plane again till // : and throughout FGII the point will

approach 0.

Let the axis of x pass through F, and let OF =
a, OH l>.

Then, at F, by symmetry,
'- =0,

' - cos a (say), therefore

dz
-y-

Sill a, A=v, //,
sin a, v COS a.

Cv&

Hence the above equations become at F, if* suffixes be used to

restrict the qiiantities to their values at F,

ir P> 7M sin a + Arf
- cos a aZFt

n

^V - - cos u + Ar f sin a 4 a Yf .

1^-
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Now let F' be the point in which the wire after //next cuts the plane

ocii. Its co-ordinates are a cos
,
a sin

, 0, if n be the total number
n n

of turns of the wire.

The direction-cosines of its tangent are

27T '2-rr
- cos a sin

,
cos a cos

,
sin a :

n n

and those of the normal to its osculating plane are

27T 27T
Sill a sin

,
sin a cos

, cos a.
n n

Also the stress at F' is, by symmetry, the same as that at F\
hence at F'

Y - 27T . 27TA = ApCos -- YpSin ,n n

7-rr- . 2-n- ,r 2irXF sin--h .r-cos
,n n

Thus the general equations become at F',

n E . . 2r
'

. 2;r 27r _
= sin a sin -- AT- cos a sin ----h a sin ZF .

pf n n n

B . 27T ITT 2irM =-- sin a cos --h ATP cos a cos -- a cos ZF,
pf n n n

7>

JV= cos a 4- ^TpSin a + a.YF :

PF

i /

and it is plain that similar equations hold when or &c. are written
n n

f 2*-
lor .

n

The two first equations shew that

TO

-- sin a
PF

But, considering the equilibrium of a length FP of the wire, and

resolving along the axes, we obtain

"V V V - V 7 7slp^f, J. p J. f) S-Sjt fj,,
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and, if we take P at F', and combine with these equations the values ofXf , and Yf, in terms of Xf and Yr written above, we find that Xr = 0,YF= ; and therefore

Xp
=

0, YP = Q, Zp = - ~ sin a - ATP cos a I = constant,
\PF

which proves that the stress at every point of the spiral is always
perpendicular to the plane xy.

Further, our original equations now become

p as

'_B dz

p ds
'

Multiplying by
~

, -^
, ~, and adding, we have

as as as

'AT
dz

__ 4 p( dx dy\
ds \ ds dsj

'

Integrating round the spiral, we obtain

therefore

AT=Z(2Q);

viii. If a number of sets of elastic spheres be moving in any
space under the action of a system of conservative forces, determine
the conditions to be satisfied when the distribution has become

permanent, and state any conclusions which can be drawn from
the result.

If the containing vessel move uniformly along a screw, prove
that a permanent distribution will also take place, and that the

pressure in the fluid will be the same as if it were acted on by a

centrifugal force from the axis of the screw in addition to the other

forces of the system.

See review of "Watson's Kinetic Theory of Gases, by Prof.

Maxwell, in Nature, Vol. xvi., p. 244, (July 26, 1877.)
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ix. Define the thermometric parameters (a, /3, 7) of a confocal

system, and prove that, if a be the parameter corresponding to an

ellipsoid which lies in an electric field, the surface integral of

electric induction over any portion of it is of the form

where V is the potential at any point due to the electricity : and

deduce from this result the transformation of Laplace's equation
to ellipsoidal co-ordinates.

If 8v be the conical volame which an element of the ellipsoid
round any point P subtends at its centre, v the whole volume of

r ydv
the ellipsoid, prove that is the same for all confocal ellipsoids

which enclose no electricity; and that the value of this expression
for any ellipsoid (a, b, c) which encloses all the electricity is

'/;

d\

(a* + X) (V + \j (c?+ X)

where E is the total quantity of electricity in the field.

The result in the first part of the question is the same as that

given in Maxwell's Electricity and Magnetism, Vol. I. Art. 148, wherein

it is shewn that

(1),

the meaning of the symbols being there explained. We observe that

the surface induction = 1 1 R
l
ds

2
ds

3 ,
and that D* = X

2

2 - X
3

2
,
of which

X
2
is a function of (3 only and X

3
of y only.

To prove the second part of the question, we may also express the

above result in the form

where dS is an element of the surface of the ellipsoid, and Z>
2 ,
D

3
are

the semiaxes of the central section parallel to dS, c is defined by th,e

condition that the confocal system is

f_ z* _*' + **~~ '

and c> b.
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It is obvious, from these two forms of the surface induction, that it

may be also written in the third form

If p be the perpendicular on the tangent plane to the ellipsoid,

pD2
D

3
-

a'b'c', ^pdS = dv and v = |ira'b'c',

where a'b'c are the semiaxes of the ellipsoid (a).

We may therefore transform (3) into

If the ellipsoid enclose no attracting matter, 11 Jfyfe/fo,
=

0,

therefore - = const............................ (A).
v

If the ellipsoid enclose all the attracting matter E,

tn\
hence Ea = c.^-- ................................. (5),

v

where a is supposed to vanish when X = oo
,
and where therefore V= 0.

and b'
2 = a'*-b*, c'

2 = a'
2 - c

2
.

If, therefore, we put

X2 = X
1
+ a'

2

,
X2 -62

-X, + 6'
2

,
X^-

and the above integral becomes
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and therefore

f
vdv - 1 F r <m

I
> * A VIK +W' +W3 + *)}''

a'b'c' being the semiaxes of the ellipsoid.

By supposing the ellipsoid a sphere, we obtain Gauss' Theorem.

[The integral in the question may be reduced to the standard form

2 ( _, c //a*-6*\)

J(<* -<?)*{"* a' V W-cVj'

as on p. 111.]
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