
Tripartite Quantum Key Distribution From
Three-Player Nonlocal Games

Motivation and Background
Quantum Cryptography is the only approach to privacy ever proposed that has 

fulfilled the dream of two parties without a pre-shared key to communicate with provably 
perfect secrecy under the nose of an eavesdropper equipped with unlimited 
computational power whose technology is only limited by the fundamental laws of 
nature.

Although the no-cloning and no-signaling theorems of quantum mechanics rule out 
the trivial applications of entanglement, what makes entangled states particularly 
interesting for cryptographers and theoretical physicist alike are “games” in which 
having a quantum advantage gives us an edge over classical players.

● [Clauser et al. '69] provide a test to local hidden-variable theories using CHSH game.
● [Ekert '91]     constructed a QKD protocol using entanglemed Bell states.
● [Berrett et al. '05]   proved security against an eavesdropper with post-quantum

 physics and only limited by no-signaling theorem.
● [Acin et al. '07]     prove device-independent security, meaning that it holds true

 regardless of the way QKD devices work,
 provided that quantum physics is correct and parties are isolated.

The primary objective of this research is to compose a protocol that enables three 
parties who only share a number of entangled qubits to produce a secret key known 
only to them, even if one party decides to lie in the process. We aim to use quantum 
games to prove that even if the source of these qubits is untrusted, as long as they can 
be used in a game such as the one above, the protocol will function correctly. 

Nonlocal Games and Bell Inequalities

Best classical strategy for
this  game  wins  in  75% of all 
games ,  however ,  it  can  be
proven that no classic strategy
can guarantee winning.

A  quantum strategy gives 
slightly more power to each  of
the players by allowing them to 
share entangled particles while 
still keeping them isolated,  we 
can  find  a  strategy  using  an 
entangled GHZ-state, that gua-
rantees winning in every game. This seemingly paradoxical result is due to the non-local nature of 
the correlations.

A nonlocal game consists of three parts; for instance in GHZ game we have:
1) A Bell inequality:

2) An entangled state:
Here we use the maximally entangled GHZ state:

3) A measurement strategy:
● If received X, measure in the basis:
● If received Y, measure in the basis:

Concurrent Nonlocality
Old concept:

Non-local state:
● An entangled state that can violate a Bell inequality.
● I.e., we need a nonlocal game. 

New concept:
● Concurrently Nonlocal state:

● An entangled state that can violate two inequivalent Bell inequalities.
● E.g., a tripartite inequality and a bipartite inequality.

1. The inequality:

Here,                            for                      denotes outcome of parties A, B, and C measuring their qubits in i-th, j-th,
 and k-th measurement setting respectively.

This inequality is created by adding some two-party correlation terms to the Svetlichny's inequality.
It can be proven that this inequality cannot be violated by the GHZ-state

2. The state:

Note that this state is different from        state only by a minus sign.
3. Measurement strategies:

Brunner et al. gave the optimal measurements to be of  the form:

where X and Z are Pauli matrices.
For this state, optimal measurement is given by angles:

And maximal violation is: 

Next, the reduced density matrix of this state is:

Now to show that         is concurrently nonlocal, we show that reduced density matrix is :
a) Entangled:

We can show using the PPT criterion that this density matrix is entangled.
b) Nonlocal:

i. We need bipartite inequality:

Here,                       for                  denotes outcome of parties A and B measuring their qubits in i-th and j-th
measurement setting respectively. Note that here each party has three different measurement choices.

This inequality can be violated by states that do not violate the CHSH inequality.

By numerical approximation we know that maximum value of this inequality using a pair of qubits (two 
dimensional system) is:

achieved using the state:

Also note that the spectral decomposition of our reduced density matrix gives:

which is similar to having the maximally entangled state with probability 66% and a classical bit otherwise.
ii.  We need a measurement strategy:

By similar numerical approximations the maximum values of this inequality using our reduced state is:

Which is a violation, thus the reduced density matrix is nonlocal.

Thus the state          is concurrently nonlocal in three- and two-party correlations.

Quantum Key Distribution using Nonlocal Games
Although the security definitions seem impossible to satisfy, using nonlocal games can help 

significantly in achieving them.

The powers of adversary are limited to what he can do when manufacturing this 
black box and all other communications are assumed to be authentic (i.e., Eve cannot 
modify the contents of public announcements).

Although a device-independent tripartite protocol satisfying all of our requirements 
could not be found, here we describe a protocol based on the GHZ game in the honest 
majority:

Conclusion:
We showed existence of a tripartite quantum state that, given the right set of 

measurement strategies, can maximally violate a tripartite Bell inequality and the 

reduced bipartite correlations violate a bipartite Bell inequality.

Future work:
● Finding an optimal key extraction strategy for the         state.

● Proving the device-independence limits for the protocol.

● Generalizing concurrent nonlocality and more examples; in particular:

● Is there a non-local state such that any 

nontrivial reduction would lead to another,

● perhaps weaker, non-local state?

● Is a multipartite quantum key distribution 

protocol that allows any subset to

generate a separate key possible?
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What is considered secure?
The first step in designing a security protocol is to identify the adversarial 
scenarios that we want to consider and make an explicit security definition.

In general we assume that:
Any untrusted component may have been altered or even manufactured by Eve.
After protocol starts she cannot modify the components or gain any information.
Eve can represent the effects of environment on the system (such as inexact qubits or 
measurements).

• Untrusted States:
The source of entangled qubits is untrusted.

=> Creating entangled qubits in a pure state is difficult in experimental.
• Untrusted Measurements:

The devices are sealed once the protocol starts.
=> We are unaware of the measurements bases.
=> Eve cannot modify the devices or steal any information.

• Untrusted Participants:
Want to ensure that:
(a) The protocol will finish if some participants are dishonest.
(b) The untrusted parties learn nothing more than what they would learn normally or what 

they can compute locally.

We consider the situation where:
(a) only one participant (out of three) may lie in 

public announcements 
(e.g., when announcing the measurement 
    that they performed or the outcome of it)

(b)They do not reveal any information to Eve.
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