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I. Results To Date

In the first progress report we presented the motivation for this project along with a detailed
security definition and the adversarial scenario that we want to consider. Further, we introduced
an elementary key distribution protocol based on the GHZ-state that satisfied some, but not all,
of our goals. In particular, the GHZ-states are highly entangled but fragile with respect to losses,
so they could not be used for two-party key distribution if one of the particles was lost due to
environmental errors. Since then, we have shifted our focus onto the W-state which is much less
entangled but highly robust against losses.

Here we will primarily discuss our work on the W-state along with the methods that we used to
look for best strategies. This state, which can be represented in the bra-ket notation as:

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉)

is interesting for us because if we trace out one of the qubits, the reduced state will still exhibit
entanglement. We will show the robustness of W-state and fragileness of GHZ-state in section (I.3).

I.1. The Game. The first step in using this state is looking for a Bell-type inequality that can
be maximally violated by the W-state. For now we will focus on Bell polynomials that represent
strategies with two measurements and binary outputs and are symmetric with respect to the parties.
One such inequality found by Brunner et al. in Ref. [4] can be written as:

〈β〉 = 〈A0B0C0〉+ 〈A1B0C0〉+ 〈A0B1C0〉+ 〈A0B0C1〉
−(〈A1B1C1〉+ 〈A0B1C1〉+ 〈A1B0C1〉+ 〈A1B1C0〉)
+〈A0B1IC〉+ 〈A1B0IC〉+ 〈A0IBC1〉+ 〈A1IBC0〉+ 〈IAB0C1〉+ 〈IAB1C0〉 ≤ 6

(1)

where we used the shorthand:

〈A0B0C0〉 = 〈ψ|A0 ⊗B0 ⊗ C0|ψ〉,
〈AiBjCk〉 = ±1 denotes outcome of parties A, B, and C measuring their qubits in i-th, j-th,
and k-th measurement setting respectively, and IA, IB, and IC mean measuring using the identity
operator. The first two lines of this inequality are also referred to as the Svetlichny’s inequality [3].
It can be proven that this inequality cannot be violated by the GHZ-state [4].

I.2. The Strategy. A strategy for a quantum game consists of the quantum state along with the
measurement settings that can violate the inequality. For this game Brunner et al. gave the optimal
measurements to be of the form:

Ai = cos θiZ + sin θiX

where X and Z are Pauli matrices. The optimal violation of the inequality above using the W-
state is 〈β〉 ≈ 7.2593 given by measurements with angles θ0 = 0.2677π and θ1 = π − θ0. However,
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the maximal violation was numerically found to be achieved by a slightly modified state |ψ〉 =
0.9971|W 〉 − 0.07597|111〉 with measurement angles of θ0 = 0.2615π and θ1 = π − θ0

The next step in the 3-party setting is to find measurements such that all parties achieve the
same outcome with at least a high probability. We can then apply key distillation processes such
as information reconciliation to find a secure string that can be used as a key.

I.3. Bipartite Correlations. Before devising a protocol however, we needed to make sure that
the bipartite correlations of W-state can also be used to create a key in case of losing a qubit. The
effects of such an event can be represented by tracing out a qubit out of the density matrix. The
resulting reduced density matrix is:

ρAB = TrC(|W 〉〈W |) =


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

(2)

We can use the Positive Partial Transpose criterion to check that this reduced density matrix
is entangled. To do so, we have to show that the partial transpose of this matrix has negative
eigenvalues. The partial transpose of ρAB is:

ρTB
AB =


1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


which in fact has eigenvalues {1

2 +
√

5
2 , 1, 1,

1
2 −

√
5

2 ≈ −0.62}, thus ρAB is entangled.
As a side note, we can use the same method to show that tracing out one qubit from a GHZ-state

will result in the following reduced density matrix:

TrC(|GHZ〉〈GHZ|) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


which is only classically correlated.

Even though we showed that the reduced density matrix of the W-state is entangled, not all
entangled correlations are nonlocal. In order for this state to be useful in our protocol we need an
inequality that can be violated by it. Note that this state will not maximally violate any inequality.
This statement can be proven by looking at the eigendecomposition of ρAB:

ρAB =
∑

λi|vi〉〈vi|

=
2

3
|Ψ+〉〈Ψ+|+ 1

3
|00〉〈00|

(3)

where λi and vi are the eigenvalues and eigenvectors of ρAB, and |Ψ+〉 = 1√
2
(|01〉 + |10〉). This

is equivalent to having the Bell state |Ψ+〉 with probability 2
3 and the classical state |00〉 with

probability 1
3 . It can be shown that a mixed state ρ maximally violates an inequality if and only if

all of its components (i.e., the states |vi >) violate the inequality maximally, but in this case |00 >
is a classical state and cannot violate an inequality.

I.4. The Guessing Game. The fact that a reduced correlation can never achieve maximal viola-
tion does not mean that it cannot lead to a key. The reason is that even with smaller amounts of
violation we can have a protocol that only has a lower rate of producing key bits. In our security
proof we will use the the fact that the devices are under no-signaling constraints to show that if
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Eve, an adversary, has a way of guessing the key bit with a probability higher than a bound, then
the no-signaling condition is broken, thus Eve’s guessing ability is limited by that bound.

Using linear programming techniques we generated the following table for in which Pw is the
probability of winning the CHSH game [6] and Pe is the probability of Eve’s guessing ability:

Pw Pe

0.75 1.00
0.76 0.98
0.77 0.96
0.78 0.94
0.79 0.92
0.80 0.90
0.81 0.88
0.82 0.86
0.83 0.84
0.84 0.82
0.85 0.80

For instance in the first row there is no violation of classical inequality Pw ≤ 0.75, so Eve has
at least one strategy for guessing Alice’s output. However, as the non-locality increases, Eve’s
guessing ability reduces.

II. Methods

In this section we describe the optimization methods that we used to approximate the best
strategy (state and measurements) for a Bell inequality. We categorize the inequalities based on
three parameters (n,m,∆) where the number of parties is n, number of measurement settings for
each party is m, and number of possible outcomes for each measurement is ∆. As mentioned before,
for now we focus only on the cases where the measurements have two possible outcomes; i.e., ∆ = 2.

Using the fact that the Pauli matrices X, Y , and Z together with the 2 × 2 identity matrix I
form an orthogonal basis for the real Hilbert space of 2 × 2 complex Hermitian matrices, we can
parametrize our measurements operators in the form:

(4) Mj = cII + cXX + cY Y + cZZ

where Mj is the j-th measurement setting and cj are real coefficients with c2
i + c2

x + c2
y + c2

z = 1.
This decomposition is also known as the Hilbert-Schmidt decomposition. Additionally, in Ref. [4]
Brunner et al. claim that the optimal measurement settings for our inequality can always be taken
to be real, so we can simplify the parametrization to:

(5) Mj = cos θjZ + sin θjX

where θj is an angle from 0 to π and is easier to program.

II.1. Strategy for Tripartite Inequality (3,2,2). Given an inequality for three parties we need
to find the state |ψ〉 and measurement settings that maximally violate it. Our task is to maximize
〈ψ|β|ψ〉 where β is the Bell inequality in Eq. 1 if we substitute the measurement operators with
operators in the form of Eq. 5.

If we letM be a measurement operator, we know that it has an eigendecomposition of the form:

(6) M =
∑
i

λi|vi〉〈vi|
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where λi are the eigenvalues and vi are the respective eigenvectors (i.e., Mvi = λivi). We have:

〈ψ|M|ψ〉 =
∑
i

λi〈ψ|vi〉〈vi|ψ〉

=
∑
i

λi‖〈vi|ψ〉‖
(7)

Thus, our problem is to maximize the dot product 〈vi|ψ〉 for the eigenvector that has the largest
eigenvalue. In addition, since the dot product of two vectors is maximum when the angle between
them is zero and |vi|ψ〉 and |ψ〉 are both normalized vectors, the optimal strategy would be to set
our state equal to the eigenvector with the largest eigenvalue.

Note that we need to check this for all possible measurement settings. As mentioned before,
each measurement can be described in the form of Eq. 5, so we need to run a loop for the angle of
each of the six measurements. As a result the computational complexity of this program would be
in the order of O(n6) where n is the number of angles we check for each measurement. However,
in inequalities with n = 2, we know that the measurements are symmetric with respect to unitary
operations that rotate a qubit. Using that fact we can fix A0, B0, and C0 and run the loop only
on the second measurement of each party. This will reduce the complexity to O(n3).

II.2. Strategy for Bipartite Inequality (2,m,2). Once we have a state |ψ〉 that satisfies the
previous condition, we need to find an inequality and strategy that uses the reduced density matrix
ρAB = TrC(|ψ〉〈ψ|).

For simplicity we started by looking at inequalities with m = 2. However, in Ref. [5] Brunner et
al. show that the CHSH inequality [6] is the only tight Bell inequality for the (2,2,2) case, which
means that if there is a strategy that violates a different inequality, then it will also violate the
CHSH inequality. Using the same shorthand used in Eq. 1, we can write the CHSH inequality as:

(8) 〈CHSH〉 = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2

Similar to the previous section we need to use run loops on the measurement angles, however,
knowing the reduced density matrix ρAB from previous section, we can group the measurements in
the following manner:

(9) 〈CHSH〉 = 〈B0(A0 +A1)〉+ 〈B1(A0 −A1)〉 ≤ 2

Now if we run two loops for A0 and A1, our problem would reduce to maximizing:

〈CHSH〉 = TrAB(B0 ⊗ (A0 +A1) · ρAB) + TrAB(B1 ⊗ (A0 −A1) · ρAB) =

=
∑

i={0,1}

TrAB(Bi ⊗Xi · ρAB)(10)

where X0 = A0 + A1 and X1 = A0 − A1 are known. Next, we can use partial trace to trace out
qubit A: ∑

i={0,1}

TrAB(Bi ⊗Xi · ρAB) =
∑

i={0,1}

TrB(Bi · TrA(Xi ⊗ IB · ρAB))

=
∑

i={0,1}

TrB(Bi · Zi)
(11)

where Zi = TrA(Xi⊗ IBρAB) are known. At this point, we can use Hilbert-Schmidt decomposition
to rewrite the 2× 2 matrices Bi and Zi as:

Bi = bII + bXX + bY Y + bZZ

Zi = zII + zXX + zY Y + zZZ
(12)
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where bj and zj are real coefficients with
∑

j b
2
j =

∑
j z

2
j = 1. Using this decomposition, we can

rewrite the traces as:

(13)
∑

i={0,1}

TrB(Bi · Zi) =
∑

i={0,1}

b̄ · z̄

Thus, the problem is again reduced to maximizing a bounded dot product which means the optimal
value is achieved when:

b̄ = z̄

so:

B0 = TrA((A0 +A1)⊗ IBρAB)

B1 = TrA((A0 −A1)⊗ IBρAB)
(14)

Unfortunately, however, we found out that the reduced density matrix that we found in Sec. (1.3)
does not violate the CHSH inequality. Thus, we needed to look into (2,3,2) inequalities. Much of
the progress in this path remains to be done, but we wrote a similar program that given a reduced
density matrix ρAB, runs three loops for measurement angles of A0, A1, and A2, and optimizes B0,
B1, and B2. In the next section we describe our plans for using this program.

III. Plans

Our main plan for the remainder of the program is to first look for suitable (2,3,2) inequalities
such as the ones mentioned in Ref. [8]. If that path didn’t succeed, we have to look for other (3,2,2)
inequalities and other strategies which would likely mean abandoning the W-state. In that case,
we would start by looking for better (3,2,2) inequalities such as the ones listed in Ref. [7].

Further, we will finish testing and optimizing the programs and eventually connecting them
together as modules to create a larger search program that looks for different (3,2,2) inequalities,
calculates the strategy with maximal violation, computes the bipartite reduced density matrix
equivalent to its state, and look for inequalities that can be violated by that.

If that fails as well, we will begin to think about whether we can prove a no-go theorem stating
that non-locality cannot be found in both an entangled tripartite state and its bipartite reduced
density matrix.
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