1. Iterative learning control

Respect the repetitive.

Time domain

- ILC signal
- Error signal

Iteration domain

Iteration 0
- \(u^0 \)
- \(e_0 \)

Iteration 1
- \(u^1 \)
- \(e_1 \)
- \(Q_1 \)
- \(L_1 \)

Iteration j
- \(u^j \)
- \(e_j \)
- \(Q_j \)
- \(L_j \)

Iteration j + 1
- \(u^{j+1} \)
- \(e_{j+1} \)
- \(Q_{j+1} \)
- \(L_{j+1} \)

Optimization in frequency domain (convex optimization)

Contributions:
1. A **systematic design framework** for arbitrary-order ILC (a theorem).
2. Optimal learning filters in the sense of \(\mathcal{H}_\infty \) norm (convex optimization).
3. Design approach in iteration-frequency domain.
4. High-order ILC design with explicitly considering system variations - promising in robotic systems, etc.
5. Include high-order ILC and ILC with current feedback into one framework for optimization

2. Main contribution: a systematic design methodology and a theorem

Theorem:
With certain assumptions, the above \(N \)-th order ILC design problem is equivalent to the following problem: design a ‘feedback controller’ \(L_\infty \) for the ‘plant’ \(M \) such that the \(\mathcal{H}_\infty \) norm of the following ‘closed-loop’ system from \(z \) to \(w \) \((T_{zw})\) is minimized.

\[
\begin{bmatrix}
0_{N-1,1} & I_{N-1,N-1} \\
0_{N-1,1} & 0_{N-1,1}
\end{bmatrix}
\]

From high-order ILC to \(\mathcal{H}_\infty \) optimal control problem

\[
W = \text{diag}(W_1, W_2, \ldots, W_N)
\]

3. Application to high-precision wafer scanning system

- Counter-mass
- Reticle stage
- Wafer stage
- Laser interferometer

Figure Wafer scanning system

- Learning filters in time domain
- Tracking error in iteration domain
- Tracking error in time domain

Figure Experimental validation of wafer scanning systems

4. Application to industrial manipulator (explicitly considering system variations)

- **H-infinity based ILC:** failed
- **\(\mu \)-based ILC:** succeeded

Convergence rate: much slower

Position error consistently decreases!

Collaborated with Dr. Cong Wang (now Professor at NJIT)