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A model independent formulation of WIMP-nucleon scattering was recently developed in Galilean-
invariant effective field theory. Here we complete the embedding of this effective interaction in the
nucleus, constructing the most general elastic nuclear cross section as a factorized product of WIMP
and nuclear response functions. This form explicitly defines what can and cannot be learned about
the low-energy constants of the effective theory – and consequently about candidate ultraviolet theo-
ries of dark matter – from elastic scattering experiments. We identify those interactions that cannot
be reliably treated in a spin-independent/spin-dependent (SI/SD) formulation: for derivative- or
velocity-dependent couplings, the SI/SD formulation generally mischaracterizes the relevant nuclear
operator and its multipolarity (e.g., scalar or vector), and greatly underestimates experimental
sensitivities. This can lead to apparent conflicts between experiments, when in fact none may exist.

The new nuclear responses appearing in the factorized cross section are related to familiar elec-

troweak nuclear operators such as angular momentum ~l(i) and the spin-orbit coupling ~σ(i) ·~l(i). To
unambiguously interpret experiments, and to extract all of the available information on the particle
physics of dark matter, experimentalists will need to 1) do a sufficient number of experiments with
nuclear targets having the requisite sensitivities to the various operators and 2) analyze the results
in a formalism that does not arbitrarily limit the candidate operators. In the Appendix we describe
a code that is available to help interested readers implement such an analysis.

I. INTRODUCTION

Despite the many successes of the ΛCDM cosmo-
logical model in predicting the macroscopic behavior
of dark matter, attempts at an experimentally sig-
nificant direct detection of the dark matter particle
have been unsuccessful and its fundamental nature
remains uncertain [1] [2]. A promising candidate is
a weakly interacting massive particle (‘WIMP’) that
interacts with standard-model particles through a
cross section that is suppressed compared to stan-
dard electromagnetic interactions. The challenges
associated with observing such a particle notwith-
standing, experimental techniques are advancing at
a rapid pace, and expectations are high that a defini-
tive measurement of dark matter interactions is im-
minent.

In “direct detection” experiments, an important
class of dark matter searches, the signals are recoil
events following WIMP elastic scattering off target
nuclei [3] [4] [5]. Many models predict rates for such
events consistent with the sensitivities some exper-
iments are now reaching. Most models of WIMPs
invoke new physics, such as SUSY or extra dimen-
sions, associated with electroweak symmetry break-
ing, where new phenomena can appear at scales that,
from a particle physics perspective, are quite low,
e.g., & 100 GeV. However, the momentum transfer
in direct detections is still far lower, typically a few
hundred MeV or less. Consequently, effective field
theory (EFT) provides a general and very efficient

way to characterize experiment results: regardless
of the complexity or variety of candidate ultravio-
let theories of dark matter, their low-energy conse-
quences can be encoded in a small set of parameters,
such as the mass of the WIMP and the effective cou-
pling constants describing the strength of the con-
tact coupling of the WIMP to the nucleon or nucleus.
The information that can be extracted from low-
energy experiments can be expressed as constraints
on the low-energy constants of the EFT.

It has also been conventionally assumed that this
momentum transfer is small on the nuclear scale,
which it is not. The scattering off the nucleus is
treated by modeling the nucleus as a point parti-
cle, characterized by a charge and spin, with the
charge and spin couplings sometimes allowed to be
isospin dependent. This greatly restricts the possi-
ble nuclear interactions – but without justification.
Recognizing that the point-nucleus approximation is
invalid because momentum transfers are generally at
least comparable to the inverse nuclear size, practi-
tioners “repair” the theory by introducing form fac-
tors to account for the finite spatial extent of the
nuclear charge and spin densities. But this step is
inadequate: Once momentum transfers reach that
point that ~q · ~x(i), where ~x(i) is the nucleon coordi-
nate within the nucleus, is no longer small, not only
form factors, but new operators arise. These new
operators turn out to be parametrically enhanced
for a large class of EFT interactions.

The Galilean-invariant EFT we describe below
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provides a particularly attractive framework for
properly treating dark-matter particle scattering.
The procedure yields two effective theories, the first
at the level of the WIMP-nucleon scattering ampli-
tude, and the second at the nuclear level, as the
embedding of the WIMP-nucleon effective interac-
tion in the nucleus generates the most general form
of the elastic nuclear response. Six response func-
tions – not the two conventionally assumed – are
produced:

• The new responses typically dominate the elas-
tic cross section for candidate interactions in-
volving velocity couplings. The standard spin
independent/spin dependent (SI/SD) treat-
ment yields amplitudes for such couplings on
the order of the WIMP velocity, ∼ 10−3. In
fact the amplitude is determined by the veloc-
ities of bound nucleons, typically ∼ 10−1.

• In such cases the standard analysis also incor-
rectly predicts the dependence of the cross sec-
tion on WIMP and nuclear target masses, and
even mischaracterizes the multipolarity of the
scattering. That is, an interaction that in the
point nucleus limit appears to be vector, with
amplitude proportional to matrix elements of
~σ(i), may instead produce a much larger scalar
response associated with the composite opera-

tor ~σ(i) ·~l(i). Thus a J = 0 nuclear target may
be highly sensitive to a given interaction, not
blind to it.

None of this physics is exotic: the nuclear physics
treatment presented here is the standard one for
semi-leptonic electroweak interactions. The new op-
erators that arise in a more careful treatment of
the WIMP-nucleus response are familiar because
they are also essential to the correct description of
standard-model weak and electromagnetic interac-
tions.

The enlarged set of nuclear responses that emerges
from a model-independent analysis has important
experimental consequences. The EFT analysis
shows that elastic scattering can place several new
constraints on dark matter properties, in addition to
the two apparent from the conventional SI/SD treat-
ment, provided enough experiments are done. One
can successfully turn the nuclear physics “knobs”
– the nuclear responses – to determine these con-
straints by utilizing target nuclei with the requi-
site ground-state properties. The EFT analysis also
shows other ways candidate interactions can be dis-
tinguished, e.g., through the nuclear recoil spectrum
(which may depend on the v0, v2, and v4 moments
of the WIMP velocity distribution) or through the
dependence on the mass of the nucleus used in the
target.

The basis for our formulation is the description of
the WIMP-nucleon interaction in [6] which, build-
ing on the work of [7], used non-relativistic EFT to
find the most general low-energy form of that inter-
action. While nuclear calculations were performed
in [6], they were based on a form of the cross section
that entangled the unknown particle physics (the
WIMP-nucleon couplings) with the nuclear physics.
In contrast, here we present a compact and rather
elegant form for the WIMP-nucleus elastic cross sec-
tion as a product of WIMP and nuclear responses.
The particle physics is isolated in the former. This
expression defines precisely what can and cannot be
learned about the EFT’s low-energy constants, and
consequently the ultraviolet theories that generate
those constants, from WIMP-nucleus elastic scatter-
ing. It also defines what experimentalists will need
to do, in terms of the number of experiments per-
formed and the properties of the nuclear targets they
employ, to extract all possible information on the
WIMP-matter interaction from elastic scattering.

This paper is organized as follows. In Sec. II we
describe the EFT construction of the general WIMP-
nucleon Galilean-invariant interaction, including the
parametric enhancement of velocity-dependent op-
erators. Relativistic matching to EFT operators is
illustrated, using the most general four-fermion in-
teraction. In Sec. III we describe the embedding
of this interaction in nuclei. The EFT scattering
probability is governed by six nuclear response func-
tions, assuming the nuclear ground state has good
parity and CP. We point out the differences between
our results, the corresponding EFT cross section in
which the finite size of the nucleus is ignored, and
the simple SI/SD limit, where only two of the EFT
operators are retained. In Sec. IV we present differ-
ential and total cross sections, and discuss for each
of the EFT operators the consequences of taking the
allowed limit (thereby reducing the nuclear opera-
tors to the SI and SD ones). The concluding Sec. V
discusses the implications of our work for experimen-
tal searches. We discuss problems that could arise
if future search strategies are predicated on treat-
ments of the cross section that exclude plausible op-
erators. Given our ignorance of the WIMP-nucleon
interaction, we emphasize the need for a variety ex-
periments using nuclei with the requisite sensitivi-
ties. In Appendix A we provide more details on the
treatment of velocity-dependent interactions and on
the multipole analysis that leads to the general cross
section. In Appendix B we describe a Mathematica
script that we developed to help experimentalists im-
plement the formalism presented here. In addition
to its use as an experimental analysis tool, particle
and nuclear theorists can use the script to explore
the consequences of a specific ultraviolet theory or
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the implications of a new nuclear structure calcula-
tions.

II. EFFECTIVE FIELD THEORY
CONSTRUCTION OF THE INTERACTION

The idea behind EFT in dark matter scattering
is to follow the usual EFT “recipe”, but in a non-
relativistic context, by writing down the relevant op-
erators that obey all of the non-relativistic symme-
tries. In the case of elastic scattering of a heavy
WIMP off a nucleon, the Lagrangian density will
have the contact form

Lint(~x) = c Ψ∗χ(~x)OχΨχ(~x) Ψ∗N (~x)ONΨN (~x), (1)

where the Ψ(~x) are nonrelativistic fields and where
the WIMP and nucleon operators Oχ and ON may
have vector indices. The properties of Oχ and ON
are then constrained by imposing relevant symme-
tries. We envision the case where there are a num-
ber of candidate interactions Oi formed from the Oχ
and ON . Working to second order in the momenta,
one can construct the relevant operators appropri-
ate for use with Pauli spinors, when constructing
the Galilean-invariant amplitude

N∑
i=1

(
c
(n)
i O

(n)
i + c

(p)
i O

(p)
i

)
, (2)

where the coupling coefficients ci may be different
for proton and neutrons. The number N of such
operators depends on the generality of the particle
physics description. We find that 10 operators arise
if we limit our consideration to exchanges involving
up to spin-1 exchanges and to operators that are
the leading-order nonrelativistic analogs of relativis-
tic operators. Four additional operators arise if more
general mediators are allowed.

This interaction can then be embedded in the nu-
cleus. The procedure we follow here – though we dis-
cuss generalizations in Appendix B – assumes that
the nuclear interaction is the sum of the WIMP in-
teractions with the individual nucleons in the nu-
cleus. The nuclear operators then involve a convolu-
tion of the Oi, whose momenta must now be treated
as local operators appropriate for bound nucleons,
with the plane wave associated with the WIMP scat-
tering, which is an angular and radial operator that
can be decomposed with standard spherical har-
monic methods. Because momentum transfers are
typically comparable to the inverse nuclear size, it
is crucial to carry through such a multipole decom-
position in order to identify the nuclear responses
associated with the various cis. The scattering prob-
ability is given by the square of the (Galilean) invari-
ant amplitude M, a product of WIMP and nuclear
matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN ,
and summed over final magnetic quantum numbers.

The result can be organized in a way that factorizes the particle and nuclear physics

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2 ≡
∑
k

∑
τ=0,1

∑
τ ′=0,1

Rk

(
~v⊥2
T ,

~q 2

m2
N

,
{
cτi c

τ ′

j

})
W ττ ′

k (~q 2b2) (3)

where the sum extends over products of WIMP re-
sponse functions Rk and nuclear response functions
Wk. The Rk isolate the particle physics: they de-
pend on specific combinations of bilinears in the low-
energy constants of the EFT – the 2N coefficients of
Eq. (2) – here labeled by isospin τ (isoscalar, isovec-
tor) rather than the n, p of Eq. (2) (see below). The
WIMP response functions also depend on the rela-
tive WIMP-target velocity ~v⊥T and three-momentum

transfer ~q = ~p ′−~p = ~k−~k′, where ~p (~p ′) is the incom-

ing (outgoing) WIMP three-momentum and ~k (~k′)
the incoming (outgoing) nucleon three-momentum.
The nuclear response functions Wk can be varied
by experimentalists, if they explore a variety of nu-
clear targets. The Wk are functions of y ≡ (qb/2)2,
where b is the nuclear size (explicitly the harmonic
oscillator parameter if the nuclear wave functions are

expanded in that single-particle basis).
EFT provides an attractive framework for analyz-

ing and comparing direct detection experiments. It
simplifies the analysis of WIMP-matter interactions
by exploiting an important small parameter: typical
velocities of the particles comprising the dark mat-
ter halo are v/c ∼ 10−3, and thus non-relativistic.
Consequently, while there may be a semi-infinite
number of candidate ultraviolet theories of WIMP-
matter interactions, many of these theories are op-
erationally indistinguishable at low energies. By or-
ganizing the effective field theory in terms of non-
relativistic interactions and degrees of freedom, one
can significantly simplify the classification of pos-
sible operators [6, 7], while not sacrificing general-
ity. In constructing the needed set of independent
operators, the equations of motion are employed to
remove redundant operators. The operators them-
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selves are expressed in terms of quantities that are
more directly related to scattering observables at
the relevant energy scale, which makes the relation-
ship between operators and the underlying physics
more transparent. Furthermore, it becomes trivial
to write operators for arbitrary dark matter spin, a
task that can be rather involved in the relativistic
case.

EFT also prevents oversimplification: because it
produces a complete set of effective interactions at
low energy, one is guaranteed that the description is
general. Provided this interaction is then embedded
in the nucleus faithfully, it will then produce the
most general nuclear response consistent with the
assumed symmetries. Consequently some very ba-
sic questions that do not appear to be answered in
the literature can be immediately addressed. How
many constraints on dark matter particle interac-
tions can be obtained from elastic scattering? Con-
versely, what redundancies exist among the EFT’s
low-energy constants that cannot be resolved, re-
gardless of the number of elastic-scattering exper-
iments that are done?

A. Constructing the Nonrelativistic Operators

Because dark matter-ordinary matter interactions
are more commonly described in relativistic no-
tation, we will begin by considering the nonrela-
tivistic reduction of two familiar relativistic interac-
tions. The SI contact interaction between a spin-1/2
WIMP and nucleon

LSI
int(~x) = c1 Ψ̄χ(~x)Ψχ(~x) Ψ̄N (~x)ΨN (~x) (4)

can be reduced by replacing the spinors within the
fields by their low-momentum forms

U(p) =

√
E +m

2m

 ξ

~σ · ~p
E +mχ

ξ

 ∼
 ξ

~σ · ~p
2m

ξ

 ,

(5)

where we have used Bjorken and Drell gamma ma-
trix conventions and spinor normalization (1 instead
of the 2m used in [6]). [Consequently, the cs defined
here, which carry dimensions of 1/mass2, differ from
those of Ref. [6]. ] To leading order in p/mχ and
p/mN , we obtain the nonrelativistic operator

c1 1χ1N ≡ c1 O1. (6)

The nonrelativistic analog of the invariant ampli-
tude is obtained by taking the matrix element of
this operator between Pauli spinors ξχ and ξN . In
the nonrelativistic reduction of the SD interaction

LSD
int = c4 χ̄γ

µγ5χN̄γµγ
5N. (7)

the leading term comes from the spatial components,
with χ̄γiγ5χ ∼ ξ†χσ

iξχ. As σi = 2Si, we obtain the
nonrelativistic operator

− 4c4 ~Sχ · ~SN ≡ − 4c4 O4. (8)

Equations (6) and (8) correspond to the SI and SD
operators frequently used in experimental analyses.

One could continue in this manner, constructing
all possible relativistic interactions, and considering
their nonrelativistic reductions. But this is unneces-
sary, as the non-relativistic EFT can be constructed
directly from the available operators and momenta,
as a systematic expansion. These include 1χ and

1N , the three-vectors ~Sχ and ~SN , and the momenta
of the WIMP and nucleon. Of the four momenta
involved in the scattering (two incoming and two
outgoing), only two combinations are physically rele-
vant due to inertial frame-independence and momen-
tum conservation. It is convenient to work with the
frame-invariant quantities, the momentum transfer
~q and the WIMP-nucleon relative velocity,

~v ≡ ~vχ,in − ~vN,in. (9)

It is also useful to construct the related quantity

~v⊥ = ~v +
~q

2µN
=

1

2
(~vχ,in + ~vχ,out − ~vN,in − ~vN,out) =

1

2

(
~p

mχ
+

~p ′

mχ
−

~k

mN
−

~k ′

mN

)
(10)

which satisfies ~v⊥ · ~q = 0 as a consequence of en- ergy conservation. Here µN is the WIMP-nucleon
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reduced mass. It was shown in [6] that operators
are guaranteed to be Hermitian if they are built out
of the following four three-vectors,

i
~q

mN
, ~v⊥, ~Sχ, ~SN . (11)

Here (in another departure from [6]) we have intro-
duced mN as an convenient scale to render ~q/mN

and the constructed Oi dimensionless: the choice
of this scale is not arbitrary, as it leads to an EFT
power counting in nuclei that is particularly simple,
as we discuss in Sec. II B and Sec. IV B. The rele-
vant interactions that we can construct from these
three-vectors and that can be associated with inter-
actions involving only spin-0 or spin-1 mediators are

O1 = 1χ1N

O2 = (v⊥)2

O3 = i~SN · (
~q

mN
× ~v⊥)

O4 = ~Sχ · ~SN

O5 = i~Sχ · (
~q

mN
× ~v⊥)

O6 = (~Sχ ·
~q

mN
)(~SN ·

~q

mN
)

O7 = ~SN · ~v⊥

O8 = ~Sχ · ~v⊥

O9 = i~Sχ · (~SN ×
~q

mN
)

O10 = i~SN ·
~q

mN

O11 = i~Sχ ·
~q

mN
(12)

These 11 operators were discussed in [6]. We re-
tain 10 of these here, discarding O2, as this opera-
tor cannot be obtained from the leading-order non-
relativistic reduction of a manifestly relativistic op-
erator (see, e.g., Table I of Sec. II C).

We classify these operators as LO, NLO, and
N2LO, depending on the total number of momenta
and velocities they contain. We will see in Sec. IV B
that these designations correspond to total cross sec-
tions that scale as v0

T , v2
T , or v4

T , where vT is the
WIMP velocity in the laboratory frame.

In addition, one can construct the following opera-
tors that do not arise for traditional spin-0 or spin-1
mediators

O12 = ~Sχ · (~SN × ~v⊥)

O13 = i(~Sχ · ~v⊥)(~SN ·
~q

mN
)

O14 = i(~Sχ ·
~q

mN
)(~SN · ~v⊥)

O15 = −(~Sχ ·
~q

mN
)((~SN × ~v⊥) · ~q

mN
)

O16 = −((~Sχ × ~v⊥) · ~q

mN
)(~SN ·

~q

mN
). (13)

It is easy to see that O16 is linearly dependent on
O12 and O15,

O16 = O15 +
~q 2

m2
N

O12, (14)

and so should be eliminated. Operator O15 is cubic
in velocities and momenta, generating a total cross
section of order v6 (N3LO). It is retained because
it arises as the leading-order nonrelativistic limit of
certain covariant interactions (see Sec. II C).

Each operator can have distinct couplings to pro-
tons and neutrons. Thus the EFT interaction we
employ in this paper takes the form

∑
α=n,p

15∑
i=1

cαi Oαi , cα2 ≡ 0. (15)

One can factorize the space-spin and proton/neu-
tron components of Eq. (15) by introducing isospin,
which is also useful as an approximate symmetry of
the nuclear wave functions. Thus an equivalent form
for our interaction is

15∑
i=1

(c0i 1 + c1i τ3)Oi =
∑
τ=0,1

15∑
i=1

cτiOitτ , cτ2 ≡ 0,

(16)

where c0i = 1
2 (cpi + cni ) and c1i = 1

2 (cpi − cni ). The
isospin states are

|p〉 =

(
1
0

)
|n〉 =

(
0
1

)
, (17)

while the isospin operators are

t0 ≡ 1 =

(
1 0
0 1

)
t1 ≡ τ3 =

(
1 0
0 −1

)
. (18)

The EFT has a total of 28 parameters, associated
with 14 space/spin operators each of which can have
distinct couplings to protons and neutrons. If we
exclude operators that are not associated with spin-
0 or spin-1 mediators, 10 space/spin operators and
20 couplings remain.

As WIMP searches are motivated in part by the
“WIMP miracle” – weakly interacting massive par-
ticles will naturally freeze out in the early universe,
when their annihilation rate falls behind the expan-
sion rate, to produce a relic density today consistent
with the dark matter density – it is convenient to
express the coefficients ci in weak-scale units. O4 is
related by an isospin rotation to the charge-changing
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weak axial or Gamow-Teller operator of the standard
model,

c4O4t
1 ≡ c4O4τ3 →

GF√
2
O4τ± (19)

where GF ∼ 1.166 × 10−5 GeV−2 is the Fermi con-
stant and τ± is the isospin raising or lowering oper-
ator. GF defines a standard-model weak interaction
mass scale

mv ≡ 〈v〉 = (2GF )−1/2 = 246.2 GeV (20)

where 〈v〉 is the Higgs vacuum expectation value.
Consequently it is natural to characterize experi-
mental constraints on a given ci in terms of this
normalization, that is in terms of the dimensionless
quantity c̃i, where ci = c̃i/m

2
v. This normalization

is employed in the Mathematica script discussed in
Appendix B.

B. EFT Power Counting and ~q/mN :
Parametric Enhancement

The EFT formulation leads to a attractive power
counting that is helpful in understanding the depen-
dence of laboratory total cross sections on the phys-
ically relevant parameters - the WIMP velocity ~v⊥T ,
the ratio of the WIMP-nuclear target reduced mass
µT to mN , and the ratio of µT to the inverse nu-
clear size. The scaling behavior we will discuss in
Sec. IV B take on a simple form if mN is used to
construct the dimensionless quantity ~q/mN , a pa-
rameter related to the relative velocities of nucleons
bound in the nucleus, as explained below. The fact
that internucleon velocities are much greater than
the WIMP velocity leads to a parametric enhance-
ment of the certain “composite operator” contribu-
tions to cross sections.

The introduction of the scale mN would be arbi-
trary if we limit ourselves to WIMP-nucleon scat-
tering. Any other choice would simply lead to the
same scaling of the total cross section on µT /mN ,
but with the mN in the denominator replaced by
that new scale. There is a single relative velocity ~v⊥T
in the WIMP-nucleon system, associated with the
Jacobi coordinate, the distance between the WIMP
and the nucleon.

But in a system consisting of a WIMP and a
nucleus containing A nucleons, there are A inde-
pendent Jacobi coordinates, and A associated in-
dependent velocities. Any WIMP-nucleon velocity-
dependent interaction summed over the nucleons in
a nucleus must of course involve all of these veloci-
ties. One of these can be chosen to be the WIMP-
target relative velocity, measured with respect to the
center-of-mass of the nucleus, or ~v⊥T , the analog of

the single WIMP-nucleon velocity. But in addition
to this velocity, there are A − 1 others associated
with the A− 1 independent Jacobi inter-nucleon co-
ordinates. These velocities are Galilean invariant in-
trinsic nuclear operators.

An internal velocity carries negative parity, and
thus its nuclear matrix element vanishes due to
the nearly exact parity of the nuclear ground state.
However, because the nucleus is composite, the nu-
clear operators built from Oi are accompanied by
an additional spatial operator e−i~q·~x(i). A thresh-
old operator carrying the requisite positive parity
can thus be formed by combining i~q · ~x(i) with
~v(i) = ~p(i)/mN . But ~p(i) and ~x(i) are conjugate op-
erators: the larger the nuclear size, the smaller the
nucleon momentum scale. Thus when ~p(i) and ~x(i)
are combined to form interactions, one obtains op-

erators such as ~l(i), the orbital angular momentum,
that have no associated scale: the single-particle
eigenvalues of lz(i) are integers. (Operators built
from such internal nuclear coordinates will be called
composite operators.) Thus scattering associated
with internal velocities is governed by the param-
eters multiplying ~p(i) and ~x(i), which form the di-
mensionless ratio ~q/mN . This dimensionless param-
eter emerges directly from the physics – it is not put
in by hand.

Thus we see that ~q/mN is associated with the typ-
ical velocity of bound nucleons, ∼ 1/10. The com-
posite operators constructed from nucleon velocities
are enhanced relative to those associated with ~v⊥T by
the ratio of ~q/mN to ~v⊥T , or ∼ 100. The standard
point-nucleus treatment of WIMP scattering retains
only the effects of ~v⊥T . We will find in Sec. IV B
that the enhancement associated with ~q/mN leads
to an increased sensitive to derivative couplings of
∼ 10(µT /mN )2 in the total cross section, relative to
point nucleus treatments.

C. Relativistic Matching

The operators Oi can be viewed as the low-energy
equivalents of the relativistic operators governing ul-
traviolet WIMP-matter interactions. By matching
to a specific relativistic theory, one can relate the
two sets of operators: this procedure would allow a
theorist to convert experimental constraints on the
ci into corresponding constraints on the coefficients
di of a set of interactions appearing in a given ultra-
violet model. In Sec. II A we discussed two simple
examples, the SI and SD interactions LSI

int and LSD
int .

Here we repeat the process for the set of relativistic
amplitudes listed in Table I. Unlike the two simple
cases discussed in Sec. II, the relativistic amplitudes
do not always map onto single operators Oi. Instead
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TABLE I. Relativistic amplitudes, their nonrelativistic analogs appropriate for evaluation between Paul spinors, the
corresponding results as linear combinations of the Oi, and the transformation properties of the interactions (even
E or odd O) under parity and time reversal. Bjorken and Drell spinor and gamma matrix conventions are used. The
scale mM, which appears as an arbitrary normalization below to ensure that kinematic factors are dimensionlees,
would usually would be known from the context of the theory.

j Ljint Nonrelativistic Reduction
∑
i

ciOi P/T

1 χ̄χN̄N 1χ1N O1 E/E

2 iχ̄χN̄γ5N i
~q

mN
· ~SN O10 O/O

3 iχ̄γ5χN̄N −i
~q

mχ
· ~Sχ −

mN

mχ
O11 O/O

4 χ̄γ5χN̄γ5N −
~q

mχ
· ~Sχ

~q

mN
· ~SN −

mN

mχ
O6 E/E

5 χ̄γµχN̄γµN 1χ1N O1 E/E

6 χ̄γµχN̄iσµα
qα

mM

N
~q 2

2mNmM

1χ1N + 2

(
~q

mχ
× ~Sχ + i~v

⊥
)
·
(

~q

mM

× ~SN

) ~q 2

2mNmM

O1 − 2
mN

mM

O3

+2
m2
N

mMmχ

(
q2

m2
N

O4−O6

) E/E

7 χ̄γµχN̄γµγ
5N −2~SN · ~v⊥ + 2

mχ
i~Sχ · (~SN × ~q) −2O7 + 2

mN
mχ
O9 O/E

8 iχ̄γµχN̄iσµα
qα

mM
γ5N 2i ~q

mM
· ~SN 2

mN
mM
O10 O/O

9 χ̄iσµν
qν

mM

χN̄γµN − ~q 2

2mχmM
1χ1N − 2

(
~q
mN
× ~SN + i~v⊥

)
·
(

~q
mM
× ~Sχ

) − ~q 2

2mχmM
O1+

2mN
mM

O5

−2
mN
mM

(
~q 2

m2
N

O4−O6

) E/E

10 χ̄iσµν
qν

mM

χN̄iσµα
qα

mM

N 4

(
~q

mM

× ~Sχ

)
·
(

~q

mM

× ~SN

)
4

(
~q 2

m2
M

O4 −
m2
N

m2
M

O6

)
E/E

11 χ̄iσµν
qν

mM

χN̄γ
µ
γ
5
N 4i

(
~q

mM

× ~Sχ

)
· ~SN 4

mN

mM

O9 O/E

12 iχ̄iσµν
qν

mM

χN̄iσµα
qα

mM
γ
5
N −

[
i

~q 2

mχmM

− 4~v
⊥ ·
(

~q

mM

× ~Sχ

)]
~q

mM

· ~SN −
mN

mχ

~q 2

m2
M

O10 − 4
~q 2

m2
M

O12 − 4
m2
N

m2
M

O15 O/O

13 χ̄γµγ5χN̄γµN 2~v⊥ · ~Sχ + 2i~Sχ ·
(
~SN × ~q

mN

)
2O8 + 2O9 O/E

14 χ̄γµγ5χN̄iσµα
qα

mM

N 4i~Sχ ·
(

~q

mM

× ~SN

)
−4

mN

mM

O9 O/E

15 χ̄γµγ5χN̄γµγ5N −4~Sχ · ~SN −4O4 E/E

16 iχ̄γµγ5χN̄iσµα
qα

mM
γ5N 4i~v⊥ · ~Sχ

~q

mM

· ~SN 4
mN

mM

O13 E/O

17 iχ̄iσµν qν
mM

γ5χN̄γµN 2i
~q

mM

· ~Sχ 2
mN

mM

O11 O/O

18 iχ̄iσµν qν
mM

γ5χN̄iσµα
qα

mM

N
~q

mM

· ~Sχ

[
i

~q 2

mNmM

− 4~v
⊥ ·
(

~q

mM

× ~SN

)]
~q 2

m2
M

O11 + 4
m2
N

m2
M

O15 O/O

19 iχ̄iσµν qν
mM

γ5χN̄γµγ
5N −4i

~q

mM

· ~Sχ~v⊥ · ~SN −4
mN

mM

O14 E/O

20 iχ̄iσµν qν
mM

γ5χN̄iσµα
qα

mM
γ5N 4

~q

mM

· ~Sχ
~q

mM

· ~SN 4
m2
N

m2
M

O6 E/E

the result is frequently of the form
∑
i αiOi where

several of the coefficients αi are nonzero.

The interactions of Table I describe the in-
teractions of spin-1/2 WIMPS with nucleons.
(More general interactions could be considered, of
course.) Four-momentum definitions follow our
three-momentum conventions: the incoming (outgo-

ing) four-momentum of the dark matter particle χ is
pµ (p′µ); the incoming (outgoing) four-momentum
of the nucleon N is kµ (k′µ); and the momentum
transfer qµ = p′µ − pµ = kµ − k′µ. We also define
Pµ = pµ + p′µ and Kµ = kµ + k′µ. The relative
velocity operator of Eq. (10) can be written in term
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of these variables as

~v⊥ ≡ 1

2
(~vχ,in + ~vχ,out − ~vN,in − ~vN,out)

=
1

2

(
~P

mχ
−

~K

mN

)
. (21)

The relativistic WIMP-nucleon interactions are con-
structed as bilinear WIMP-nucleon products of the
available scalar (χ̄χ, χ̄γ5χ) and four-vector (χ̄Pµχ,
χ̄Pµγ5χ, χ̄iσµνqνχ, and χ̄γµγ5χ) amplitudes. Thus
there are 22 + 42 = 20 combinations [6]. The non-
relativistic operators obtained after nonrelativistic
reduction are listed in Table I, along with the cor-
responding expansions in terms of our EFT oper-
ators, the Oi. The Table also gives transformation
properties of the interactions under parity and time-
reversal. Note that all interactions reduce in leading
order to combinations of our fifteen Oi, and all of the
Oi appear in the Table. Thus they are the minimal
set of nonrelativistic interactions needed to represent
the listed set of 20 Ljint.

III. THE NUCLEAR RESPONSE IN EFT

Cross sections or rates for WIMP-nucleon/nucleus
scattering can be expressed as simple kinematic in-
tegrals over a fundamental particle-nuclear function,
the square of the invariant amplitude averaged over

initial WIMP and nuclear spins and summed over
final spins. The key result of this subsection is the
calculation of this quantity for the EFT interaction.

Because much of the literature employs analyses
based on the SI/SD formulation, we begin by consid-
ering two limits in which such a result is obtained.
One way to obtain a SI/SD result while still using
a very general interaction, such as the EFT form
developed here, is to treat the nucleus as a point
particle. Effectively one replaces e−i~q·~x(i)Oi by Oi,
despite the fact that ~q ·~x(i) is typically ∼ 1. Alterna-
tively, one can simply restrict the operators initially
to O1 and O4, the two LO operators in our EFT
list. Then one can proceed to do a full nuclear cal-
culation, including form factors. However it is not
known whether the WIMP interaction has the sim-
ple O1/O4 form. We present these two limits so that
a comparison with the general cross section result of
Sec. III D can be made.

A. The EFT Nucleon Calculation

One could in principle detect WIMPs through
their elastic scattering off free protons and (hypo-
thetically) neutrons. Such a target can be treated
as a point because the inverse nucleon size is large
compared to typical momentum transfers in WIMP
scattering. In this case the EFT Galilean-invariant
amplitude corresponding to Eq. (16) for a proton
target becomes

M = 〈~p ′Sχmχ; ~k′SN =
1

2
mN TN =

1

2
mT =

1

2
| H |~pSχmχ; ~kSN =

1

2
mN TN =

1

2
mT =

1

2
〉 (22)

where we have introduced the proton’s isospin quantum numbers for consistency with the isospin form of
our Hamiltonian, Eq. (16). An elementary calculation then yields the square of the invariant amplitude,
averaged over initial spins and summed over final spins, for WIMP scattering off a proton

1

2jχ + 1

1

2

∑
spins

|M|2proton =

[
cp 2
1 +

jχ(jχ + 1)

3

(
~q 2

m2
N

~v⊥2
T cp 2

5 + ~v⊥2
T cp 2

8 +
~q 2

m2
N

cp 2
11

)]
|MF ;p|2

+
1

12

[(
~q 2

m2
N

~v⊥2
T cp 2

3 + ~v⊥2
T cp 2

7 +
~q 2

m2
N

cp 2
10

)
+
jχ(jχ + 1)

3

(
3cp 2

4 + 2
~q 2

m2
N

(cp4c
p
6 + cp 2

9 ) +
~q 4

m4
N

cp 2
6 +

+ 2~v⊥2
T cp 2

12 +
~q 2

m2
N

~v⊥ 2
T (cp 2

13 + cp 2
14 − 2cp12c

p
15) +

~q 4

m4
N

~v⊥2
T cp 2

15

)]
|MGT ;p|2 (23)

The SI (or Fermi) and SD (or Gamow-Teller) opera-
tors evaluated between nonrelativistic Pauli spinors
are

|MF ;p|2 ≡
1

2
|〈1/2||1||1/2〉|2 = 1

|MGT ;p|2 ≡
1

2
|〈1/2||σ||1/2〉|2 = 3 (24)

where || denotes a matrix element reduced in spin
and the subscript p is an explicit reminder that this
is a proton matrix element.
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B. The EFT Point Nucleus Limit

The corresponding result for a point nucleus of
spin jN

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2pt nucleus (25)

is obtained by making two substitutions in Eq. (23).
First, the proton Fermi and Gamow-Teller matrix
elements are replaced by their nuclear analogs

|MF ;p|2 → |MN
F ;p(0)|2 ≡ Z2 =[

1

2jN + 1
|〈jN ||

A∑
i=1

1 + τ3(i)

2
||jN 〉|2

]
|MGT ;p|2 → |MN

GT ;p(0)|2 ≡[
1

2jN + 1
|〈jN ||

A∑
i=1

1 + τ3(i)

2
σ(i)||jN 〉|2

]
(26)

where we have assumed that the WIMP coupling is
only to protons – enforced by the introduction of
the isospin operators – to produce a result analo-
gous to Eq. (23). Second, the velocity ~v⊥T that in
the nucleon case represented the WIMP-nucleon rel-
ative velocity now becomes the analogous parameter
measured with respect to the nuclear center of mass.
There are no intrinsic nuclear velocities because the
nucleus is a point.

On integrating over phase space, one obtains a
cross section that depends on the two particle-
physics quantities within the square brackets of Eq.
(23), with the associated kinematic factors evaluated
by averaging over the WIMP velocity distribution.
Thus this limit yields a SI/SD cross section – the
nuclear operators are just the charge and the spin
– though the WIMP response functions multiplying
the squares of the two operators are considerably
more complicated than in the standard SI/SD analy-
sis, containing the coefficients of all of the EFT oper-
ators. In the point nucleus limit, one can thus place

two constraints on the EFT coefficients by doing an
SI experiment (J = 0 nuclear target) to isolate the
Fermi response, and an SD experiment (J > 0) to
probe the Gamow-Teller response. If one extends
the analysis to include isospin, two additional ex-
periments would be needed – on a J = 0 target with
a distinct N/Z ratio and on an J > 0 odd-neutron
target.

C. The SI/SD Nuclear Cross Section

The SI/SD result most often seen in the litera-
ture properly accounts for the momentum transfer
in the scattering, but simplifies the WIMP-nucleon
operator by assuming it is formed from a linear com-
bination of O1 and O4. Other possible operators are
neglected.

The WIMP-nucleus interaction is then written as
the sum over these WIMP interactions with the
bound nucleons, taking into account the finite spa-
tial extent of the nuclear charge and spin-current
densities

1χρN (~x) = 1χ

A∑
i=1

(c01 + c11τ3(i))e−i~q·~xi

→ cp1 1χ

A∑
i=1

1 + τ3(i)

2
e−i~q·~xi

~Sχ ·~jN (~x) = ~Sχ ·
A∑
i=1

(c04 + c14τ3(i))
~σ(i)

2
e−i~q·~xi

→ cp4
~Sχ ·

A∑
i=1

1 + τ3(i)

2

~σ(i)

2
e−i~q·~xi (27)

where on the right we have again simplified the re-
sult by restricting the couplings to protons, to allow
comparisons with Eqs. (23) and (26).

The spin averaged/summed transition probability
can be easily evaluated by the spherical harmonic
methods outlined in Appendix A, yielding

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2 = cp 2
1

 4π

2jN + 1

∞∑
J=0,2,...

|〈jN ||
A∑
i=1

MJ(qxi)
1 + τ3(i)

2
||jN 〉|2


+cp 2

4

jχ(jχ + 1)

12

 4π

2jN + 1

∞∑
J=1,3,...

(
|〈jN ||

A∑
i=1

Σ′′J(qxi)
1 + τ3(i)

2
||jN 〉|2 + |〈jN ||

A∑
i=1

Σ′J(qxi)
1 + τ3(i)

2
||jN 〉|2

)
≡ cp 2

1 |MN
F ;p(0)|2F p 2

F (q2) + cp 2
4

jχ(jχ + 1)

12
|MN

GT ;p(0)|2F p 2
GT (q2) (28)

Here MJ(qxi) is the charge multipole operator and Σ′′J(qxi) and Σ′J(qxi) are the longitudinal and transverse
spin multipole operators of rank J , which are standard in treatments of electroweak nuclear interactions,
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and will be defined below. The assumption of nuclear wave functions of good parity and CP restricts the
sums to even and odd J , respectively.

The form factors F pF (q2) and F pGT (q2) are defined so that F pF (0) = F pGT (0) = 1, and can be computed from
a nuclear model

F p 2
F (q2) =

∞∑
J=0,2,...

|〈jN ||
A∑
i=1

MJ(qxi)
1+τ3(i)

2 ||jN 〉|2

1
4π |〈jN ||

A∑
i=1

1+τ3(i)
2 ||jN 〉|2

F p 2
GT (q2) =

∞∑
J=1,3,...

(
|〈jN ||

A∑
i=1

Σ′′J(qxi)
1+τ3(i)

2 ||jN 〉|2 + |〈jN ||
A∑
i=1

Σ′J(qxi)
1+τ3(i)

2 ||jN 〉|2
)

1
4π |〈jN ||

A∑
i=1

1+τ3(i)
2 σ(i)||jN 〉|2

.

(29)

The spin form factor has the above form because of
the identity

~Sχ · ~SN ≡ (~Sχ · q̂)(~SN · q̂) + (~Sχ × q̂) · (~SN × q̂)
(30)

where q̂ is the unit vector along the momentum
transfer to the nucleus. Thus the use of O4 implies
equal couplings to the longitudinal and transverse
spin operators Σ′′J and Σ′J , which cannot interfere if
one sums over spins. In a more general treatment
of the WIMP-nucleon interaction, these operators
would be independent. For example, in the EFT ex-

pansion O4 = ~Sχ · ~SN and O6 = (~Sχ ·~q)(~SN ·~q) have

distinct coefficients.
Often in the literature F pF (q2) and F pGT (q2) are

not calculated microscopically, but are represented
by simple phenomenological forms.

The operators MJ , Σ′′J , and Σ′J are the vector
charge, axial longitudinal, and axial transverse elec-
tric multipole operators familiar from electroweak
nuclear physics. The latter two operators are also
frequently designated as L5

J and T el 5
J in the litera-

ture, to emphasize their multipole and axial charac-
ter.

While we have simplified the above expressions
by assuming all couplings are to protons, to allow a
comparison with our free-proton result, the expres-
sions for arbitrary isospin are also simple

1

2jχ + 1

1

2j + 1

∑
spins

|M|2 =
4π

2jN + 1

 ∞∑
J=0,2,...

|〈jN ||
A∑
i=1

MJ(qxi)
(
c01 + c11τ3(i)

)
||jN 〉|2

+
jχ(jχ + 1)

12

∞∑
J=1,3,...

(
|〈jN ||

A∑
i=1

Σ′′J(qxi)
(
c04 + c14τ3(i)

)
||jN 〉|2 + |〈jN ||

A∑
i=1

Σ′′J(qxi)
(
c04 + c14τ3(i)

)
||jN 〉|2

)
(31)

D. General EFT Form of the WIMP-nucleus
Response

The general form of the WIMP-nucleus inter-
action consistent with the assumption of nuclear
ground states with good P and CP can be derived by
building an EFT at the nuclear level, or by embed-
ding the EFT WIMP-nucleon interaction into the
nucleus, without making assumptions of the sort just

discussed. We follow the second strategy here, as it
allows us to connect the nuclear responses back to
the single-nucleon interaction and consequently to
the ultraviolet theories which map onto that single-
nucleon interaction, on nonrelativistic reduction.

We relegate most of the details to Appendix A,
giving just the essentials here. First, the basic model
assumption is that the nuclear interaction is the sum
of the interactions of the WIMP with the individual
nucleons in the nucleus. Thus the mapping from the
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nucleon-level effective operators to nuclear operators
is made by the following generalization of Eq. (16),

∑
τ=0,1

15∑
i=1

cτiOitτ →
∑
τ=0,1

15∑
i=1

cτi

A∑
j=1

Oi(j)tτ (j).

(32)

Now the nuclear operators appearing in this expres-

sion are built from i~q/mN , a c-number, ~SN , which
acts on intrinsic nuclear coordinates, and the rela-
tive velocity operator ~v⊥, which now represents a
set of A internal WIMP-nucleus system velocities,
A − 1 of which involve the relative coordinates of
bound nucleons (the Jacobi velocities), and one of
which is the velocity of the DM particle relative to
the nuclear center of mass,

~v⊥ →
{

1

2
(~vχ,in + ~vχ,out − ~vN,in(i)− ~vN,out(i)) , i = 1, ...., A

}
≡ ~v⊥T −

{
~̇vN,in(i) + ~̇vN,out(i), i = 1, ..., A− 1

}
.

(33)

The DM particle/nuclear center of mass relative velocity is a c-number,

~v⊥T =
1

2
(~vχ,in + ~vχ,out − ~vT,in(i)− ~vT,out(i)) (34)

while the internal nuclear Jacobi velocities ~̇vN are operators acting on intrinsic nuclear coordinates. (That is,
for a single-nucleon (A=1) target, ~v⊥T ≡ ~v⊥, while for all nuclear targets, there are A− 1 additional velocity
degrees of freedom associated with the Jacobi internucleon velocities.) This separation is discussed in more
detail in Appendix A.

In analogy with Eq. (27) one then obtains the WIMP-nucleus interaction

∑
τ=0,1

[
lτ0

A∑
i=1

e−i~q·~xi + lAτ0

A∑
i=1

1

2M

(
−1

i

←−
∇i · ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i) · 1

i

−→
∇i

)

+ ~lτ5 ·
A∑
i=1

~σ(i)e−i~q·~xi + ~lτM ·
A∑
i=1

1

2M

(
−1

i

←−
∇ie

−i~q·~xi + e−i~q·~xi
1

i

−→
∇i

)

+ ~lτE ·
A∑
i=1

1

2M

(←−
∇i × ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i)×

−→
∇i

)]
int

tτ (i) (35)

where the subscript int instructs one to take the intrinsic part of the nuclear operators (that is, the part
dependent on the internal Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-
dependent densities appear – the nuclear axial charge operator, familiar as the β decay operator that mediates
0+ ↔ 0− decays; the convection current, familiar from electromagnetism; and a spin-velocity current that
is less commonly discussed, but does arise as a higher-order correction in weak interactions. The associated
WIMP tensors contain the EFT input

lτ0 = cτ1 + i(
~q

mN
× ~v⊥T ) · ~Sχ cτ5 + ~v⊥T · ~Sχ cτ8 + i

~q

mN
· ~Sχ cτ11

lAτ0 = −1

2

[
cτ7 + i

~q

mN
· ~Sχ cτ14

]
~l5 =

1

2

[
i
~q

mN
× ~v⊥T cτ3 + ~Sχ c

τ
4 +

~q

mN

~q

mN
· ~Sχ cτ6 + ~v⊥T cτ7 + i

~q

mN
× ~Sχ c

τ
9 + i

~q

mN
cτ10

+~v⊥T × ~Sχ c
τ
12 + i

~q

mN
~v⊥T · ~Sχ cτ13 + i~v⊥T

~q

mN
· ~Sχ cτ14 +

~q

mN
× ~v⊥T

~q

mN
· ~Sχ cτ15

]
~lM = i

~q

mN
× ~Sχ c

τ
5 − ~Sχ c

τ
8

~lE =
1

2

[
~q

mN
cτ3 + i~Sχ c

τ
12 −

~q

mN
× ~Sχ c

τ
13 − i

~q

mN

~q

mN
· ~Sχ cτ15

]
(36)
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In Appendix A the products of plane waves and scalar/vector operators appearing in Eq. (35) are expanded
in spherical and vector spherical harmonics, and the resulting amplitude is squared, averaged over initial
spins and summed over final spins. One obtains

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2nucleus/EFT =
4π

2jN + 1

∑
τ=0,1

∑
τ ′=0,1

∞∑
J=0,2,...

[
Rττ

′

M (~v⊥2
T ,

~q 2

m2
N

)〈jN || MJ;τ (q) ||jN 〉〈jN || MJ;τ ′(q) ||jN 〉

+
~q 2

m2
N

Rττ
′

Φ′′ (~v
⊥2
T ,

~q 2

m2
N

) 〈jN || Φ′′J;τ (q) ||jN 〉〈jN || Φ′′J;τ ′(q) ||jN 〉

+
~q 2

m2
N

Rττ
′

Φ′′M (~v⊥2
T ,

~q 2

m2
N

) 〈jN || Φ′′J;τ (q) ||jN 〉〈jN || MJ;τ ′(q) ||jN 〉
]

+

∞∑
J=2,4,...

[
~q 2

m2
N

Rττ
′

Φ̃′
(~v⊥2
T ,

~q 2

m2
N

) 〈jN || Φ̃′J;τ (q) ||jN 〉〈jN || Φ̃′J;τ ′(q) ||jN 〉
]

+

∞∑
J=1,3,...

[
Rττ

′

Σ′′ (~v
⊥2
T ,

~q 2

m2
N

) 〈jN || Σ′′J;τ (q) ||jN 〉〈jN || Σ′′J;τ ′(q) ||jN 〉

+Rττ
′

Σ′ (~v⊥2
T ,

~q 2

m2
N

) 〈jN || Σ′J;τ (q) ||jN 〉〈jN || Σ′J;τ ′(q) ||jN 〉

+
~q 2

m2
N

Rττ
′

∆ (~v⊥2
T ,

~q 2

m2
N

) 〈jN || ∆J;τ (q) ||jN 〉〈jN || ∆J;τ ′(q) ||jN 〉

+
~q 2

m2
N

Rττ
′

∆Σ′(~v
⊥2
T ,

~q 2

m2
N

) 〈jN || ∆J;τ (q) ||jN 〉〈jN || Σ′J;τ ′(q) ||jN 〉
]}

. (37)

Note that five of the eight terms above are accompanied by a factor of ~q 2/m2
N . This is the parameter identified

in Sec. II B that governs the enhancement of the composite operators with respect to the point operators
for those Oi where composite operators contribute. Thus one can read off those response functions that are
generated by composite operators from this factor. The DM particle response functions are determined by
the cτi s,

Rττ
′

M (~v⊥2
T ,

~q 2

m2
N

) = cτ1c
τ ′

1 +
jχ(jχ + 1)

3

[
~q 2

m2
N

~v⊥2
T cτ5c

τ ′

5 + ~v⊥2
T cτ8c

τ ′

8 +
~q 2

m2
N

cτ11c
τ ′

11

]
Rττ

′

Φ′′ (~v
⊥2
T ,

~q 2

m2
N

) =
~q 2

4m2
N

cτ3c
τ ′

3 +
jχ(jχ + 1)

12

(
cτ12 −

~q 2

m2
N

cτ15

)(
cτ
′

12 −
~q 2

m2
N

cτ
′

15

)
Rττ

′

Φ′′M (~v⊥2
T ,

~q 2

m2
N

) = cτ3c
τ ′

1 +
jχ(jχ + 1)

3

(
cτ12 −

~q 2

m2
N

cτ15

)
cτ
′

11

Rττ
′

Φ̃′
(~v⊥2
T ,

~q 2

m2
N

) =
jχ(jχ + 1)

12

[
cτ12c

τ ′

12 +
~q 2

m2
N

cτ13c
τ ′

13

]
Rττ

′

Σ′′ (~v
⊥2
T ,

~q 2

m2
N

) =
~q 2

4m2
N

cτ10c
τ ′

10 +
jχ(jχ + 1)

12

[
cτ4c

τ ′

4 +

~q 2

m2
N

(cτ4c
τ ′

6 + cτ6c
τ ′

4 ) +
~q 4

m4
N

cτ6c
τ ′

6 + ~v⊥2
T cτ12c

τ ′

12 +
~q 2

m2
N

~v⊥2
T cτ13c

τ ′

13

]
Rττ

′

Σ′ (~v⊥2
T ,

~q 2

m2
N

) =
1

8

[
~q 2

m2
N

~v⊥2
T cτ3c

τ ′

3 + ~v⊥2
T cτ7c

τ ′

7

]
+
jχ(jχ + 1)

12

[
cτ4c

τ ′

4 +

~q 2

m2
N

cτ9c
τ ′

9 +
~v⊥2
T

2

(
cτ12 −

~q 2

m2
N

cτ15

)(
cτ
′

12 −
~q 2

m2
N

cτ ′15

)
+

~q 2

2m2
N

~v⊥2
T cτ14c

τ ′

14

]
Rττ

′

∆ (~v⊥2
T ,

~q 2

m2
N

) =
jχ(jχ + 1)

3

[
~q 2

m2
N

cτ5c
τ ′

5 + cτ8c
τ ′

8

]
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Rττ
′

∆Σ′(~v
⊥2
T ,

~q 2

m2
N

) =
jχ(jχ + 1)

3

[
cτ5c

τ ′

4 − cτ8cτ
′

9

]
. (38)

The six nuclear operators appearing in Eq. (37), familiar from standard-model electroweak interaction
theory, are constructed from the Bessel spherical harmonics and vector spherical harmonics, MJM (q~x) ≡
jJ(qx)YJM (Ωx) and ~MM

JL ≡ jL(qx)~YJLM (Ωx),

MJM ;τ (q) ≡
A∑
i=1

MJM (q~xi) t
τ (i)

∆JM ;τ (q) ≡
A∑
i=1

~MM
JJ(q~xi) ·

1

q
~∇i tτ (i)

Σ′JM ;τ (q) ≡ −i
A∑
i=1

{
1

q
~∇i × ~MM

JJ(q~xi)

}
· ~σ(i) tτ (i)

=

A∑
i=1

{
−
√

J

2J + 1
~MM
JJ+1(q~xi) +

√
J + 1

2J + 1
~MM
JJ−1(q~xi)

}
· ~σ(i) tτ (i)

Σ′′JM ;τ (q) ≡
A∑
i=1

{
1

q
~∇i MJM (q~xi)

}
· ~σ(i) tτ (i)

=

A∑
i=1

{√
J + 1

2J + 1
~MM
JJ+1(q~xi) +

√
J

2J + 1
~MM
JJ−1(q~xi)

}
· ~σ(i) tτ (i)

Φ̃′JM ;τ (q) ≡
A∑
i=1

[(
1

q
~∇i × ~MM

JJ(q~xi)

)
·
(
~σ(i)× 1

q
~∇i
)

+
1

2
~MM
JJ(q~xi) · ~σ(i)

]
tτ (i)

Φ′′JM ;τ (q) ≡ i
A∑
i=1

(
1

q
~∇iMJM (q~xi)

)
·
(
~σ(i)× 1

q
~∇i
)
tτ (i) (39)

Equations (37), (38), and (39) comprise the general expression for the WIMP-nucleon spin-averaged tran-

sition probability. M, ∆, Σ′, Σ′′, Φ̃′, and Φ′′ transform as vector charge, vector transverse magnetic, axial
transverse electric, axial longitudinal, vector transverse electric, and vector longitudinal operators, respec-
tively. These are the allowed responses under the assumption that the nuclear ground state is an approximate
eigenstate of P and CP, and thus we have derived the most general form of the cross section.

Slater determinants are often constructed in a harmonic oscillator basis because they allow projection of
spurious center-of-mass motion. In that case Eq. (37) gives the cross section as a sum of products of WIMP

Rττ
′

k (~v⊥2
T , ~q

2

m2
N

) and nuclear W ττ ′

k (y) response functions, where y = (qb/2)2 with b the harmonic oscillator size

parameter. That is, the evolution of the nuclear responses with q is determined by the single dimensionless
parameter y. Eq. (37) can then be written compactly as

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2nucleus−HO/EFT =

4π

2jN + 1

∑
τ=0,1

∑
τ ′=0,1

{ [
Rττ

′

M (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

M (y) +Rττ
′

Σ′′ (~v
⊥2
T ,

~q 2

m2
N

) W ττ ′

Σ′′ (y) +Rττ
′

Σ′ (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

Σ′ (y)

]

+
~q 2

m2
N

[
Rττ

′

Φ′′ (~v
⊥2
T ,

~q 2

m2
N

) W ττ ′

Φ′′ (y) +Rττ
′

Φ′′M (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

Φ′′M (y) +Rττ
′

Φ̃′
(~v⊥2
T ,

~q 2

m2
N

)W ττ ′

Φ̃′
(y)

+ Rττ
′

∆ (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

∆ (y) +Rττ
′

∆Σ′(~v
⊥2
T ,

~q 2

m2
N

) W ττ ′

∆Σ′(y)

]}
(40)

where

W ττ ′

O (y) ≡
∞∑

J=0,2,...

〈jN || OJ;τ (q) ||jN 〉〈jN || OJ;τ ′(q) ||jN 〉 for O = M,Φ′′
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W ττ ′

O (y) ≡
∞∑

J=1,3,...

〈jN || OJ;τ (q) ||jN 〉〈jN || OJ;τ ′(q) ||jN 〉 for O = Σ′′,Σ′,∆

W ττ ′

Φ̃′
(y) =

∞∑
J=2,4,...

〈jN || Φ̃′J;τ (q) ||jN 〉〈jN || Φ̃′J;τ ′(q) ||jN 〉

W ττ ′

Φ′′M (y) =

∞∑
J=0,2,...

〈jN || Φ′′J;τ (q) ||jN 〉〈jN || MJ;τ ′(q) ||jN 〉

W ττ ′

∆Σ′(y) =

∞∑
J=1,3,...

〈jN || ∆J;τ (q) ||jN 〉〈jN || Σ′J;τ ′(q) ||jN 〉. (41)

Equations (40), (38), and (41) are the key formulas evaluated by the Mathematica script described in
Appendix B. Parity and CP restrict the sums over multipolarities J to only even or only odd terms, depending
on the transformation properties of the operators, as described in Appendix A.

The physics of these six nuclear response functions is more easily seen by examining the long-wavelength
forms of the corresponding operators. The operators that are nonvanishing as q → 0 are

√
4πM00;τ (0) =

A∑
i=1

tτ (i)
√

4π∆1M ;τ (0) = − 1√
6

A∑
i=1

l1M (i) tτ (i)

√
4πΣ′1M ;τ (0) =

√
2

3

A∑
i=1

σ1M (i) tτ (i)
√

4πΣ′′1M ;τ (0) =
1√
3

A∑
i=1

σ1M (i) tτ (i)

√
4πΦ̃′2M ;τ (0) = − 1√

5

A∑
i=1

[
x(i)⊗

(
~σ(i)× 1

i
~∇(i)

)
1

]
2

tτ (i)

√
4πΦ′′JM ;τ (0) =


1
3

A∑
i=1

~σ(i) ·~l(i) tτ (i) J = 0

− 1√
5

A∑
i=1

[
x(i)⊗

(
~σ(i)× 1

i
~∇(i)

)
1

]
2
tτ (i) J = 2

(42)

where the operator Φ′′ has scalar and tensor components that survive. Two combinations of operators are,
of course, related to the SI/SD forms

|MN
F ;τ (0)|2 ≡ 4π

2jN + 1
|〈jN ||M0;τ (0)||jN 〉|2

|MN
GT ;τ (0)|2 ≡ 4π

2jN + 1

(
|〈jN ||Σ′′1;τ (0)||jN 〉|2 + |〈jN ||Σ′1;τ (q)||jN 〉|2

)
(43)

In the next section we will describe in more detail
some of the differences between this form and the
point-nucleus and allow forms, where the only the
simple Fermi and Gamow-Teller operators arise. But
one can make some initial observations here:

• The most general form of the WIMP-nucleus
elastic scattering probability has six, not two,
response functions. They are associated the
squares of the matrix elements of the six op-
erators given in Eqs. (39). There are also two
interference terms (Φ′′ ↔ M and ∆ ↔ Σ′).
Total cross sections thus depend on eight bilin-
ear combinations of WIMP couplings Rττ

′
, not

just the two combinations found in the point-
nucleus limit.

• The spin response familiar from the stan-
dard allowed treatment of WIMP-nucleus in-
teractions splits into separate longitudinal and
transverse components, as various candidate
effective interactions do not couple to all spin
projections symmetrically. The associated op-
erators, Σ′′ and Σ′, are proportional in the
long-wavelength limit, but are distinct at fi-
nite ~q 2 because their associated form factors
differ.
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• Three new response functions are generated
from couplings to the intrinsic velocities of nu-
cleons, and consequently reflect the composite
nature of the nucleus. Reflecting their finite-
nuclear-size origin, the three responses appear
in Eq. (37) with an explicit factor of ~q 2/m2

N .

• Two scalar responses appear in Eq. (37), gen-
erated by the standard Fermi operator 1(i) and

by the new spin-orbit operator ~σ · ~l(i). Thus
both are “spin-independent” responses - re-
sponses associated with operators that trans-
form as scalars under rotations.

• There are three vector responses, two associ-
ated with the (in general, independent) longi-
tudinal and transverse projections of spin and
the third with the orbital angular momentum

operator ~l(i). These three operators transform

under rotations as ~jN , and all thus require a
nuclear ground state spin of jN ≥ 1/2. It was
shown in [6] that among the various nuclear
targets now in use for dark matter studies, the
relative strength of spin and orbital transition
probabilities can differ by two orders magni-
tude or more.

• One response function, generated by Φ̃′, is ten-
sor, and thus only contributes if jN ≥ 1. This
response function is somewhat exotic, coming
from interactions O12, O13, and O15 that we
have noted do not arise for traditional spin-0
or spin-1 exchanges.

• The EFT result of Eq. (37) and the SI/SD re-
sult of Eq. (28) coincide if one takes ~q 2 → 0
and also ~v⊥2

T → 0, a limit that zeros out all
contributions from low-energy constants other
that c1 and c4. But away from this limit they
differ. This illustrates the inconsistency of the
standard SI/SD formulation with form factors:

one selectively includes powers of ~q · ~x(i) to
modified the Fermi 1(i) and ~σ(i) operators
through form factors, while not using those
same factors to create new operators.

E. Nuclear Response Function Evaluation:
The One-Body Density Matrix

We have expressed the dark matter particle scat-
tering cross sections in terms of the singly-reduced
(in angular momentum) nuclear matrix elements of
one-body operators of definite angular momentum.
These nuclear matrix elements can be conveniently
expressed in terms of the one-body density matrix:
the density matrix extracts from complicated many-
body nuclear wave functions containing all possible
correlations, just that information necessary to eval-
uate one-body operators. Once the density matrix is
obtained from a nuclear many-body calculation, all
many-body matrix elements then reduce to simple
sums over single-particle matrix elements.

In the treatment so far we have labeled the nu-
clear ground state by its angular momentum jN , an
exact quantum number. Here we add to that label
the isospin quantum numbers T,MT : isospin T is an
approximate but not exact quantum label, as isospin
is broken by the electromagnetic interactions among
nucleons. However, we employ that label here be-
cause most shell-model calculations are isospin con-
serving, and thus most density matrices derived from
such calculations employ T as a quantum label. We
stress, however, that everything discussed below can
be trivially repeated without the assumption of T as
a nuclear state label: the density matrix would then
be defined without this assumption.

With the inclusion of the isospin labels, the singly-
reduced many-body matrix elements can be written

〈jN ;TMT ||
A∑
i=1

ÔJ;τ (q~xi)||jN ;TMT 〉 = (−1)T−MT

(
T τ T
−MT 0 MT

)
〈jN ;T

...
...

A∑
i=1

ÔJ;τ (q~xi)
...
... jN ;T 〉

〈jN ;T
...
...

A∑
i=1

ÔJ;τ (q~xi)
...
... jN ;T 〉 =

∑
|α|,|β|

ΨJ;τ
|α|,|β| 〈|α|

...
...OJ;τ (q~x)

...
... |β|〉. (44)

Here ΨJ;τ
|α|,|β| is the one-body density matrix for the

diagonal ground-state-to-ground-state transition;
|α| represents the nonmagnetic quantum numbers
in the chosen single-particle basis (e.g., for a single-

particle harmonic oscillator state |α〉 = |nα(lαsα =
1/2)jαmjα ; tα = 1/2mtα〉 ≡ ||α|;mjαmtα〉, with nα

the nodal quantum number);
...
... denotes a doubly re-

duced matrix element (in spin and isospin); and the
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sums over |α| and |β| extend over complete sets of
single-particle quantum numbers. The density ma-
trix can be written in second quantization as

ΨJ;τ
|α|,|β| ≡

1

[J ][τ ]
〈jN ;T

...
...
[
c†|α| ⊗ c̃|β|

]
J;τ

...
... jN ;T 〉

(45)

where c†α is the single-particle creation operator,

c̃β = (−1)jβ−mjβ+1/2−mtβ c|β|;−mjβ ,−mtβ , and [J ] ≡
√

2J + 1. The phases yield a destruction operator
c̃β that transforms as a spherical tensor in single-
particle angular momentum and isospin.

Equation (44) is an exact expression for

〈jN ;TMT ||ÔJ ; τ ||jN ;TMT 〉. When one invokes a
nuclear model to calculate a dark-matter response
function, effectively one is employing some physics-
motivated prescription for intelligently truncating
the infinite sums over |α|, |β| in Eq. (44) to some
finite subset, hopefully capturing most of the rele-
vant low-momentum physics.

The isospin matrix element in Eq. (44) is easily
performed, yielding

〈|α|
...
...ÔJ ; τ(q~x)

...
... |β|〉 =

√
2 [τ ] 〈nα(lα1/2)jα ||OJ || nβ(lβ1/2)jβ〉 (46)

where OJ is the space-spin part of the operator. If
the single-particle basis is that of a harmonic oscilla-
tor, the reduced matrix element for OJ = {MJ , Σ′J ,

Σ′′J , ∆J , Φ̃′J , Φ′′J} can be evaluated algebraically,

〈nα(lα1/2)jα||OJ(q~x)||nβ(lβ1/2)jβ〉 =

1√
4π
y(J−K)/2e−yp(y) (47)

where K = 2 for the normal parity (π = (−1)J)

operators MJ , Φ̃′J , and Φ̃′′J and K = 1 for the ab-

normal parity (π = (−1)J+1) operators ∆, Σ′, and
Σ′′. y = (qb/2)2 where b is the oscillator parameter,
and p(y) is a finite polynomial in y. Thus the nu-
clear response functions W of Eq. (41) are simple
functions of y.

The Mathematica script of Appendix B evaluates
nuclear matrix elements from input one-body den-
sity matrices.

IV. CROSS SECTIONS AND
COMPARISONS WITH THE SD/SI FORM

As the new scalar and vector operators related to

~σ · ~̀(i) and ~̀(i) have selection rules and coherence
properties that are quite different from those of the
point-nucleus operators 1(i) and ~σ(i), the retention
of only the point-nucleus operators can lead to
numerical errors in cross section estimates. In this
section we quantify this claim by identifying those
operators where the contributions of the composite
operators are enhanced, isolating the enhancement
factor mentioned in Sec. II B. We will also use the
rate formulas presented below to show that neglect
of the composite operators leads, in these cases,
to cross sections that lack the proper functional
dependence on parameters such as the WIMP and
target masses.

A. Cross Sections and Rates

The cross section for WIMP scattering off a nu-
cleus in the laboratory frame is obtained by fold-
ing the transition probability with the corresponding
Lorentz-invariant phase space,

dσ =
1

v

mχ

Eiχ

 1

2jχ + 1

1

2jN + 1

∑
spins

|M|2
 mχ

Efχ

d3p′

(2π)3

mT

EfT

d3k′

(2π)3
(2π)4δ4(p+ k − p′ − k′) (48)

where p, p′ and k, k′ are the initial and final dark-
matter particle and nuclear momenta. M, in most
other applications the Lorentz invariant amplitude,
is in our construction the Galilean invariant ampli-
tude, due to the nonrelativistic nature of the scat-
tering. As this expression is in the lab frame, v is
the initial WIMP velocity; the target is at rest.

M is a function of v and one other variable. If we
define a scattering angle by the direction of nuclear

recoil relative to the initial WIMP velocity, v̂ · k̂′ =
−v̂ ·q̂ = cos θ, then that second variable can be taken
to be ~q 2, or equivalently the energy of the recoiling
nucleus ER = ~q 2/2mT , or equivalently, using the
lab-frame energy conservation condition

~p 2

2mχ
− (~p− ~k′)2

2mχ
−

~k′ 2

2mT
= 0 ⇒

~k′ 2

2µT
= ~v · ~k′
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⇒ ~q′ 2

4µ2
T v

2
= cos2 θ =

1

2
(1 + cos 2θ), (49)

the angular variable cos 2θ. Note that as ~v · ~k′ ≥ 0,
0 ≤ θ ≤ π/2, and thus 0 ≤ 2θ ≤ π. We can integrate
Eq. (48) to obtain the differential cross sections

dσ(v,ER)

dER
= 2mT

dσ(v, ~q 2)

d~q 2
=

2mT

4πv2

 1

2jχ + 1

1

2jN + 1

∑
spins

|MNuc|2
 (50)

dσ(v, θ)

d cos 2θ
= 2µ2

T v
2 dσ(v, ~q 2)

d~q 2
=

µ2
T

2π

 1

2jχ + 1

1

2jN + 1

∑
spins

|MNuc|2
 (51)

The differential scattering rate per detector and
per target nucleus averaging over the galactic WIMP
velocity distribution can then be calculated

dRD
dER

= NT
dRT
dER

= NT

∫
dσ(v,ER)

dER
vdnχ

= NTnχ

∫
v>vmin

dσ(v,ER)

dER
vfE(~v)d3v

≡ NTnχ
〈
v
dσ(v,ER)

dER

〉
v>vmin

(52)

where NT is the number of target nuclei in the
detector, nχ is the local number density of dark
matter particles, and fE(~v) the normalized veloc-
ity distribution of the dark matter particles. Thus
nχ = ρχ/mχ where ρχ is the dark matter density.
The integral over velocities begins with the mini-
mum velocity required to produce a recoil energy
ER,

vmin = vmin(ER) =
q

2µT
=

1

µT

√
mTER

2
. (53)

Similarly,

dRD
d cos 2θ

= NTnχ

∫
dσ(v,ER)

d cos 2θ
vfE(~v)d3v

≡ NTnχ
〈
v
dσ(v,ER)

d cos 2θ

〉
. (54)

Here there is no restriction on the recoil energy, and
thus no requirement for a minimum velocity.

In the same way, one can calculate the total cross
section

σ(v) =

∫ 4v2µ2
T

0

dσ(v, ~q 2)

d~q 2
d~q 2. (55)

The total scattering rate per detector RD and per
target nucleus RT become

RD = NTRT = NTnχ

∫
σ(v)vfE(~v)d3v

≡ NTnχ
〈
vσ(v)

〉
. (56)

B. Parametric Dependence of Total Cross
Sections

An inspection of Eq. (37) shows that if all
operators are evaluated in the long-wavelength limit
(that is, ignoring form factors), the equation reduces
to the point-nucleus result given in Eq. (26), if in
addition operators other than M , Σ′′, and Σ′ are
eliminated. Thus by working in the long-wavelength
limit, keeping all operators in leading order, one has
a simple test of the relevance of the new operators,
those other than the Fermi and Gamow-Teller
ones. A suitable observable for this comparison
is σ(v), as the integration over ~q 2 in Eq. (37)
is easily done using the laboratory-frame relation
~v⊥2
T = ~v 2 + ~q 2/4µ2

T . One finds for each of the
EFT interactions (and, for simplicity, considering
couplings only to protons, so that the results match
Eq. (26))

σcp1 (v) = cp21

µ2
T

π

[
4π

2Ji + 1
〈M0;p(0)〉2

]
σcp3 (v) = cp23 v4 µ2

T

π

[
4π

2Ji + 1

(
µT
mN

)2
1

12

(
〈Σ′1;p(0)〉2 + 16

(
µT
mN

)2 (
〈Φ′′0;p(0)〉2 + 〈Φ′′2;p(0)〉2

))]

σcp4 (v) = cp24

µ2
T

π

[
4π

2Ji + 1
Sχ(Sχ + 1)

1

12

(
〈Σ′1;p〉2 + 〈Σ′′1;p〉2

)]
σcp5 (v) = cp25 v4 µ2

T

π

[
4π

2Ji + 1

(
µT
mN

)2

Sχ(Sχ + 1)
2

9

(
〈M0;p〉2 + 8

(
µT
mN

)2

〈∆1;p〉2
)]
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σcp6 (v) = cp26 v4 µ2
T

π

[
4π

2Ji + 1

(
µT
mN

)4

Sχ(Sχ + 1)
4

9
〈Σ′′1;p〉2

]

σcp7 (v) = cp27 v2 µ2
T

π

[
4π

2Ji + 1

1

16
〈Σ′1;p〉2

]
σcp8 (v) = cp28 v2 µ2

T

π

[
4π

2Ji + 1
Sχ(Sχ + 1)

1

6

(
〈M0;p〉2 + 4

(
µT
mN

)2

〈∆1;p〉2
)]

σcp9 (v) = cp29 v2 µ2
T

π

[
4π

2Ji + 1

(
µT
mN

)2

Sχ(Sχ + 1)
1

6
〈Σ′1;p〉2

]

σcp10(v) = cp210 v
2 µ2

T

π

[
4π

2Ji + 1

(
µT
mN

)2
1

2
〈Σ′′1;p〉2

]

σcp11(v) = cp211 v
2 µ2

T

π

[
4π

2Ji + 1

(
µT
mN

)2

Sχ(Sχ + 1)
2

3
〈M0;p〉2

]

σcp12(v) = cp212 v
2 µ2

T

π

[
4π

2Ji + 1
Sχ(Sχ + 1)

1

24

(
〈Σ′′1;p〉2 +

1

2
〈Σ′1;p〉2

+ 4

(
µT
mN

)2 (
〈Φ̃′2;p〉2 + 〈Φ′′0;p〉2 + 〈Φ′′2;p〉2

))]

σcp13(v) = cp213 v
4 µ2

T

π

[
4π

2Ji + 1

(
µT
mN

)2

Sχ(Sχ + 1)
1

18

(
〈Σ′′1;p〉2 + 8

(
µT
mN

)2

〈Φ̃′2;p〉2
)]

σcp14(v) = cp214 v
4 µ2

T

π

[
4π

2Ji + 1

(
µT
mN

)2

Sχ(Sχ + 1)
1

36
〈Σ′1;p〉2

]

σcp15(v) = cp215 v
6 µ2

T

π

[
4π

2Ji + 1

(
µT
mN

)4

Sχ(Sχ + 1)
1

18

(
〈Σ′1;p〉2 + 24

(
µT
mN

)2 (
〈Φ′′0;p〉2 + Φ′′2;p〉2

))]
(57)

where we have used 〈ÔJ;p〉 as shorthand for the ma-

trix element 〈jN ||ÔJ;p||jN 〉.
The pattern one sees in the above results reflects

an underlying EFT power counting. Suppose we
designate our WIMP-nucleon operators as Oi(αi, βi)
where αi ∈ {0, 1} and βi denote the number of pow-
ers of ~v⊥ and ~q/mN , respectively, appearing in the
operator,

Oi(αi, βi)↔
[
~v⊥
]αi [ ~q

mN

]βi
. (58)

The total cross section has the form

σi(v) ∼ c2i µ2
T (v2)αi+βi

(
µ2
T

m2
N

)βi
×[

aiT 〈ÔTi 〉2 + aiNδαi1〈ÔNi 〉2
(
µ2
T

m2
N

)αi ]
(59)

where ÔTi and ÔNI represent one of the dimensionless

point (M0,Σ
′
1,Σ

′′
1) or composite (∆1, Φ̃2,Φ

′′
0,2) oper-

ators, respectively, and aiT and aiN represent simple

numerical factors, e.g.,

a15
T =

Sχ(Sχ + 1)

18
a15
N =

2Sχ(Sχ + 1)

3
(60)

where typically aiN/a
i
T ∼ 10.

We see that total cross sections and thus total
rates depend on the dimensionless parameters v and
µT /mN , but that the parametric dependence on
µT /mN depends on the operator type, point or com-
posite. The cross section for the composite operators
have the simple behavior

σi(v)
∣∣∣
N
∼
[
v2 µ

2
T

m2
N

]αi+βi
. (61)

where the value of αi + βi=0,1,2,3 is equivalent to
our EFT designation LO, NLO, NNLO, N3LO. This
reflects the fact that there are αi + βi powers of
~q/mN in the composite operator, with one factor
(αi = 1) coming from i~q · ~x(i) in combination with
~vN (i). The cross section contributions of the point-
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nucleus operator scale as

σi(v)
∣∣∣
T
∼ (v2)αi

[
v2 µ

2
T

m2
N

]βi
. (62)

There are βi powers of ~q/mN , while the accompany
velocity is not an operator, but the c-number v⊥T .

Both terms are generally present (see the excep-
tion below) if there is a velocity coupling. Conse-
quently the neglect of composite operators for inter-
actions with derivative couplings not only leads to
a cross section that is much too small (by a factor
∼ (aiN/a

i
T )(µ2

T /m
2
N )), but produces a cross section

with the wrong parametric dependence on mT and
mχ, potentially distorting comparisons among ex-
periments that are using different nuclear targets,
as well as sensitivity plots as a function of mχ.

If this calculation is extended to the full opera-
tors rather than just there long-wavelength forms,
the two terms comprising Eq. (59) are modified by
factors F 2

T (γ) and F 2
N (γ), where γ = (bµT v)2. Thus

three dimensionless parameters, v, γ, and µT /mN ,
describe the total cross section’s dependence on the
WIMP velocity, the nuclear size, and the WIMP-to-
nucleus mass ratio, respectively.

C. Consequences for Operators: EFT vs.
SI/SD Comparisons

The above results should be helpful to those want-
ing to understand the limitations of standard treat-
ments that retain only the SI/SD responses. The
consequences are operator specific:

1. OperatorsO1 andO4 are the simple-minded SI
and SD operators. Their coupling is to total
spin and total charge (in the general case, some
combination of N and Z, depending on chosen
operator isospin). These operators are point
operators, and thus the standard treatment is
valid in all respects.

2. The coupling of operator O11 to the nucleus is
1i, the vector charge operator. As the nuclear
physics is identical to that of O1, a standard
SI analysis would correctly model the nuclear
physics of this operator. However, the depen-
dence of rates on the WIMP velocity distribu-
tion differ for O1 and O11, and this difference
would normally not be addressed in compar-
isons among experiments if only interaction O1

is retained (see point 7 below).

3. The operators O6 and O10 couple to the nu-
cleus through longitudinal spin, ~q · ~σ(i), while
O9 couples through transverse spin, ~q × ~σ(i).
For these operators, the standard analysis

based on a spin-dependent coupling would
yield the right threshold (~q → 0) coupling to
the nucleus, but misrepresent the form factors
(as Σ′ and Σ′′ are described by distinct form
factors). The predicted dependence of rates on
the galactic WIMP velocity distribution also
differs from the standard O4 interaction (see
point 7 below).

4. The operators O3, O5, O8, O12, O13, and
O15 involve velocity-dependent couplings to
the nucleus. The standard SI/SD analysis
grossly misrepresents the physics of these oper-
ators, leading to errors that can exceed several
orders of magnitude. They couple dominantly
through the new composite operators ∆, Φ̃′,
and Φ′′: the contributions of these operators to
the cross section are parametrically enhanced
relative to those of the standard operators by
the factor (4 − 24) × (µT /mN )2 ∼ 10A2. The
resulting large errors can be partially miti-
gated in the case of O5 and O8 because the
new operators compete with M0, which can be
coherent if isospin couplings are dialed to make
the operator primarily isoscalar. But even in
this favorable case, the error can be an order
of magnitude.

5. In all of the cases above, the standard treat-
ment would distort the multipolarity of the
coupling. Operators O3, O12, O13, and O15

would appear in the standard treatment as
spin-dependent interactions, coupling through
Σ′1 and Σ′′1 , and thus could be probed only if
the target has jN ≥ 1/2. In fact, O3, O12, and
O15 have dominant scalar couplings through
Φ′′0 , which we have noted is proportional to

~σ(i) ·~l(i) – an operator that is not only scalar,
but is quasi-coherent, as discussed in [6]. The
dominant contribution fromO13 is through the
tensor operator Φ̃′2, which requires jN ≥ 1,
a possibility totally outside the standard de-
scription.

6. Two operators remain that at first appear puz-
zling: O7 and O14 have velocity-dependent
couplings to the nucleus, but unlike the op-
erators discussing in point 5, they have stan-
dard spin-dependent couplings, and no con-
tribution from the new composite operators.
This result is a consequence of the good P and
CP of nuclear wave functions. These opera-
tors couple to the nucleus through the axial-

charge, ~SN · ~v⊥. When one combines ~SN · ~v⊥
with e−i~q·~xi to produce multipole operators in
the standard way, the matrix elements of the
even multipoles vanish by parity, while those of
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the odd multipoles vanish by CP (or, equiva-
lently, time-reversal invariance). Consequently
all contributions of intrinsic velocities to O7

and O14 vanish. Thus the only contribution to
the axial charge operator that survives is the
single degree-of-freedom corresponding to the
nuclear center-of-mass velocity. As this veloc-
ity is a c-number, the associated nuclear cou-
pling is a conventional spin operator, Σ′1.

7. By adopting an interaction having the form O1

or O4, one builds in the assumption that de-
tector rates depend on the v0 moment of the
galactic velocity distribution. This assumption
is generally in error for operators other than
O1 and O4, even if the operator is one of those
described in points 2 and 3 above, with nuclear
physics quite similar to O1 and O4. The rates
for LO, NLO, NNLO,..., operators depend on
the v0, v2, v4, ..., moments, respectively, of the
WIMP velocity distribution. Consequently the
distribution of events as a function of recoil en-
ergy ER could be used to discriminate among
classes of candidate interactions.

V. SUMMARY AND DISCUSSION

This paper was written with three goals in mind.
The first was to formulate the nuclear physics of dark
matter scattering in a way that is both fully general,
so that no unjustified assumptions are made about
the nature of the WIMP-nucleon interaction, and
transparent physically, so that one see by inspec-
tion what particle-physics quantities can be tested
in elastic scattering experiments. This was accom-
plished by employing a general WIMP-nucleon in-
teraction developed in EFT and applying standard
techniques of multipole analysis in semi-leptonic
weak interactions to express the cross section in a
factorized form as products of WIMP and nuclear
response functions. In the usual context of electron
or neutrino scattering, this kind of approach allows
one to immediately see how to exploit the lepton
– the electron or neutrino - to probe the less-well-
understood nucleus. For example, in elastic electron
scattering one can study distribution of charge in
the nucleus (SI) or the distribution of the magneti-
zation current (SD), by controlling lepton kinemat-
ics, leading to the standard Rosenbluth separation
of the charge and magnetic elastic form factors. The
reverse is the case in dark matter studies: here the
WIMP properties are the unknowns and the nuclear
target becomes the probe. By exploring nuclear tar-
gets with different ground state properties one can
constrain the character of the low-energy WIMP-
nucleon interaction. In this paper we sought to de-

fine what in principle could be learned about dark
matter by varying the nuclear probe in this way.

The application of such standard techniques to
WIMP-nucleus scattering leads to a factorized cross
section that involves three new operators not found
in standard SI/SD analysis. There are also differ-
ences in the operators treated in common, e.g., dis-
tinct form factors for the the transverse and longi-
tudinal spin components. Large differences between
an analysis that properly treats the nuclear size,
which cannot be neglected since |~q · ~r(i)| ∼ 1, and
the standard SI/SD analysis are found for approxi-
mately half of the EFT operators, the subset with
velocity dependence. The SI/SD analysis requires
such interactions to be accompanied by at least one
factor of ~v⊥ 2

T ∼ 10−6. But any velocity-dependent
interaction necessarily couples to the WIMP veloc-
ity and to the internuclear velocities ~v(i) with equal
strengths. These intrinmsic velocities combine with
~q · ~r(i) to form even-parity operators such as

q

mN

~̀(i)
q

mN
~σ(i) · ~̀(i).

Consequently, any calculation that properly treats
internal nuclear degrees of freedom leads to new op-
erators and to associated rates that are suppressed
only by q2/m2

N ∼ 10−2. The standard SI/SD model
of dark matter particle interactions fails dramati-
cally for interactions with derivative couplings: in
these cases the unjustified assumption of a point nu-
cleus – effectively insisting that ~q · ~r(i) ∼ 0 when in
fact it is ∼ 1 – leads to erroneous results.

The second point we wanted to make is that
our formulation has implications for WIMP search
strategies, specifically for the number and variety
of experimental searches that should be conducted.
The problem the field is facing – identifying the
nature of an unknown interaction – is similar to
that faced in an earlier era, when the nature of
the low-energy weak interaction was uncertain. The
experimentalists who determined the V-A struc-
ture of the weak interaction had more information
than we have – the spins of the interacting par-
ticles and the short range of the interaction were
known. And it had been argued by Gamow and
Teller as early as 1936 that β decay systematics re-
quired the inclusion of an axial-vector interaction
of the same order of magnitude as Fermi’s vector
interaction [8]. Yet despite these hints, the experi-
mentalists of that era took the view that a system-
atic investigation of the most general four-fermion
scalar/vector/tensor/axial-vector/pseuoscalar (SV-
TAP) interaction was necessary. As now, the ex-
periments were difficult. Not all of the initial results
were correct. Two decades of work were required to
establish the interfering V-A nature of the interac-
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tion, as well as the absence of S, T, and P interac-
tions at the level of ∼ 1%.

However in current dark matter studies the rel-
ative sensitivities of experiments are usually evalu-
ated assuming either a simple SI or SD cross section.
The SI/SD description may be reliable as a guide
for assessing relative sensitivities of experiments for
those interactions that are not velocity dependent
– though even in these cases the comparisons may
be only roughly correct if the operators are not ex-
plicitly O1 or O4, but instead ones related to these,
carrying additional kinematic factors (e.g., O6, O9,
O10, O11) or distinct form factors because the spin
coupling is purely longitudinal or purely transverse
(e.g., O6, O9, O10). But there is no argument that
restricts the candidate operators to these forms. The
nucleus is composite and the WIMP could also well
be composite, so that derivative couplings are a pos-
sibility. Such velocity-dependent interactions lead
to new operators that do not behave like the con-
ventional SI/SD ones. An example can be taken
from [6]: otherwise comparable Ge and Xe detectors
differ in their sensitivities to the two interactions,

O4 = ~Sχ · ~SN and O8 = ~Sχ · ~v⊥, by a factor of ∼
40. The corresponding nuclear operators are ~σ(i)

and ~̀(i), respectively. In the standard SI/SD anal-
ysis Xe is found to be the more sensitive detector
per unit detector mass to vector interactions – as by
assumption a vector interaction is defined as ~σ(i) –
so that a strong limit from Xe would exclude the
possibility of seeing events in Ge. Yet if the correct
interaction were O8, not O4, this conclusion would
be wrong. Ge is more sensitive to vector interactions

mediated by ~̀(i).

Another difficulty with the SI/SD analysis is that
it may persuade experimentalists that relatively few
experiments are needed because relatively little can
be learned about WIMP interactions from elastic
scattering experiments. To distinguish SI interac-
tion from a SD one, one simply needs results from
two targets, one with J = 0 and the second with
J > 0. If isospin is included, perhaps four are
need, two scalar targets with distinct isospin and
two spin-sensitive targets, one with an unpaired pro-
ton and the second with an unpaired neutron. But
in fact Eq. (37) states that experimentalists can
derive eight distinct constraints from elastic scat-
tering from the rates they measure, provided they
systematically vary the “nuclear physics knobs” by
exploring targets with the requisite sensitives to the
operators described here. This includes constraints
on the velocity-dependent interactions. The previ-
ous discussion of Ge and Xe sensitivities provides
a nice example of the importance of avoiding the
kinds of assumptions that are implicit in the SI/SD
approach. If comparable experiments in Ge and Xe

were to yield events in the SD channel for Ge but
none in Xe, confusion would ensue: Xe has the larger
SD cross section (barring fine-tuning of the isospin
dependence). But in an analysis that uses the gen-
eral form of the cross section, the conclusion would
be both clear and important: WIMPs must couple
dominantly through ~v⊥ – that is, through the oper-

ator ~̀(i) – rather than ~SN (i). This conclusion could
then be tested in other targets with enhanced sensi-

tivity to ~̀(i). In a similar way, the scalar operators

1N (i) and σ(i) · ~̀(i) can be distinguished, if nuclear
targets with the requisite properties are used.

As the experimental community is about to begin
a process of “downselecting” to fewer experiments
and targets, it would be helpful to have a compre-
hensive survey of operator sensitivity as a function
of target, for all of the targets now under considera-
tion. If downselects are based on the standard SI/SD
analysis, it will be difficult to know whether elimi-
nated experiments are truly redundant, or merely
apparently so in the SI/SD context.

A third goal of this paper was to simplify the inter-
face between the particle physics and nuclear physics
of dark matter. As the theory ranges from the con-
struction of ultraviolet theories of dark matter to the
many-body physics governing ground-state proper-
ties of heavy nuclei, the integration required to inter-
pret experiment can be challenging. Our approach
has been to divide this problems into three com-
ponents, with the center block, the WIMP-nucleon
EFT that leads to the operators Oi, accessible to
both communities. The nonrelativistic EFT frame-
work is sufficiently generally that almost every can-
didate ultraviolet theory will match on to the Oi:
this becomes the particle theorist’s job, one that
can be done without any knowledge of the nuclear
physics. Similarly, the nuclear physics has been
framed in terms of the one-body density matrix,
thereby factoring the nuclear physics from the par-
ticle physics of dark matter. Generating the density
matrices for the targets experimentalists have cho-
sen becomes the nuclear theorist’s job – one that can
be done without any consideration of specific oper-
ators, other than their rank in angular momentum
and isospin.

The division of the problem into ultraviolet the-
ory, nonrelativistic EFT, and one-body density ma-
trices may help the particle and nuclear communi-
ties work together more productively on dark matter
studies. This division was exploited in the construc-
tion of the response function Mathematica script
described in Appendix B. Given the density ma-
trix (density matrices for several of common nuclear
targets are built into the script), many-body ma-
trix elements of the nuclear operators in Eq. (37)
are reduced to simple sums over single-particle ma-
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trix elements, which the script then evaluates ana-
lytically. A nuclear theorist can explore the conse-
quences of a new many-body calculation simply by
inserting a new density matrix into the code. Sim-
ilarly, the script contains the table of matching co-
efficients given in Table I: A particle theorist can
explore the consequences of a new field theory of
dark matter by specifying the relativistic form of
the dark matter particle interaction with nucleons.
One of the attractive features of the nonrelativistic
EFT formulation is as a bridge connecting the par-
ticle physics modeling and nuclear structure aspects
of dark matter.
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Appendix A: Some Details of the Response
Function Derivation

The algebraic techniques that lead to Eq. (37)
are commonly used in treatments of semi-leptonic
weak interactions. We will briefly outline the steps,
after first taking note of certain simplifications that
are made in the many-body theory to obtain the
relatively tractable form of Eq. (37).

1. Treatment of the velocity operator

We take as our WIMP-nucleus interaction the sum
over the one-body interactions of the WIMP with
the individual nucleons in the nucleus. While this
is the usual starting point for treatments of elec-
troweak nuclear reactions, it is an assumption. The
nucleon is a composite object held together by the
exchange of various mesons, which clearly can have
their own interactions with the WIMP. There has
been some work on the possible size of two-body cor-
rections to WIMP-nucleus interactions [9, 10]. Our
feeling at this point is that the uncertainty of the
WIMP interaction with nucleons, as embodied in our
fourteen coefficients ci, is currently so great that the
one-body approximation is appropriate. This sen-

timent would change were dark matter interactions
discovered, making a detailed understanding WIMP-
matter interactions important.

Given the assumption of a one-body interaction,
we noted that the Galilean invariance then leads to
the replacement

~v⊥ → {~vχ − ~vN (i), i = 1, ...., A}

≡ ~v⊥T −
{
~̇vN (i), i = 1, ..., A− 1

}
. (A1)

where ~vχ and ~vN are the symmetrized velocities
(~vχ,in +~vχ,out)/2 and (~vN,in +~vN,out)/2, respectively,

and where {~̇vN (i)} represents the set of A − 1 in-
dependent symmetrized internucleon Jacobi veloci-
ties. The DM particle velocity relative to the nuclear
center-of-mass is a c-number,

~v⊥T = ~vχ − ~vT ~vT ≡
1

2A

A∑
i=1

(~vN,in(i) + ~vN,out(i))

while the internal nuclear Jacobi velocities ~̇vN (i) are
operators acting on intrinsic nuclear coordinates. It
may be helpful to illustrate this division more explic-
itly, using one of our interactions, the axial charge
operator O7. We take the simplest example of two
nucleons in a nucleus. Then

~v⊥ · ~SN →
2∑
i=1

1

2
(~vχ,in + ~vχ,out − ~vN,in(i)− ~vN,out(i)) · ~SN (i)

=
1

2

(
~vχ,in + ~vχ,out −

~vN,in(1) + ~vN,in(2)

2
− ~vN,out(1) + ~vN,out(2)

2

)
·

2∑
i=1

~SN (i)

− 1

2

(
~vN,in(1)− ~vN,in(2)

2
+
~vN,out(1)− ~vN,out(2)

2

)
· (~SN (1)− ~SN (2))

≡ ~v⊥T ·
2∑
i=1

~SN (i)− ~̇vN · (~SN (1)− ~SN (2)). (A2)

yields one term proportional to ~v⊥T ,

~v⊥T ≡
1

2
(~vχ,in + ~vχ,out − ~vT,in − ~vT,out) where ~vT,in ≡

1

2

2∑
i=1

~vN,in(i) ~vT,out ≡
1

2

2∑
i=1

~vN,out(i) (A3)

and a second term that depends only on the relative inter-nucleon velocity,

~̇vN ≡
1

2

(
~vN,in(1)− ~vN,in(2)

2
+
~vN,out(1)− ~vN,out(2)

2

)
, (A4)

and is thus separately Galilean invariant. This decomposition can be repeated for A nucleons

A∑
i=1

1

2
(~vχ,in + ~vχ,out − ~vN,in(i)− ~vN,out(i)) · ~SN (i) = ~v⊥T ·

A∑
i=1

~SN (i)−

[
A∑
i=1

1

2
(~vN,in(i) + ~vN,out(i)) · ~SN (i)

]
int
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where ~vT is now the target velocity obtained by averaging over A nucleon velocities. The intrinsic operator
on the right can be written in a form that makes the dependence on relative nucleon velocities manifest

1

2A

A∑
i>j=1

(
~SN (i)− ~SN (j)

)
· [(~vN,in(i) + ~vN,out(i))− (~vN,in(j) + ~vN,out(j))] (A5)

or, alternatively and trivially, it can be written as the difference of two terms

A∑
i=1

1

2
(~vN,in(i) + ~vN,out(i)) · ~SN (i)− 1

2
[~vT,in + ~vT,out] ·

A∑
i=1

~SN (i). (A6)

We make two technical observations:

• The assumption that the WIMP-nuclear inter-
action is the sum over the individual WIMP-
nucleon interactions leads to two interactions
that are separately Galilean invariant, one con-
structed from ~v⊥T and one constructed from
the internal relative nucleon velocities. How-
ever these two interactions then have a com-
mon coefficient, c7. In contrast, if one were
to construct an effective theory at the nuclear
level, operators that are separately invariant
would be assigned independent strengths. It
would be interesting to explore whether the
work of [9, 10] on more complicated WIMP-
nucleus couplings can be viewed as adding cor-
rections to the one-body formulation that, in
fact, make the two operators independent.

• While the nuclear matrix elements in the for-
mulas we derive in the text are intrinsic ones,
in fact almost all calculations of the struc-
ture of complex nuclei are performed in over-
complete bases in which the coordinates of all
A nucleons appear. If the underlying single-
particle basis is the harmonic oscillator and
if set of included Slater determinants is ap-
propriately chosen, certain separability prop-
erties of the harmonic oscillator allow one to

remove the extra degrees of freedom by nu-
merical means, forcing the center-of-mass into
the 1s state. Yet still the basis is expressed
in terms of nucleon coordinates. Largely for
this reason, the intrinsic operator is evaluated
using Eq. (A6) with the further assumption
that the second, more complicated term in Eq.
(A6) can be ignored. This clearly greatly sim-
plifies the calculation, allowing one to evaluate
the nuclear matrix element from the one-body
density matrix. This kind of approximation –
or more correctly, simplification – is used al-
most universally in nuclear physics, as there is
no practical alternative. In schematic models
it can be shown that the errors induced are
typically o(1/A) and associated with a center-
of-mass form factor.

2. Multipole Decomposition

In the text leading up to Eq. (35), we formed
a WIMP-nucleus interaction by assuming the one-
body form, as discussed above, interpreting nucleon
momenta as operators acting on the wave functions
of the bound nucleon. We stressed that the result-
ing interaction has precisely the same form as that
conventionally used in SI/SD (or O1/O4) analyses,
except that a complete set of EFT operators have
been included. Equation (35), repeated here,

∑
τ=0,1

[
lτ0

A∑
i=1

e−i~q·~xi + lAτ0

A∑
i=1

1

2M

(
−1

i

←−
∇i · ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i) · 1

i

−→
∇i

)

+ ~lτ5 ·
A∑
i=1

~σ(i)e−i~q·~xi + ~lτM ·
A∑
i=1

1

2M

(
−1

i

←−
∇ie

−i~q·~xi + e−i~q·~xi
1

i

−→
∇i

)

+ ~lτE ·
A∑
i=1

1

2M

(←−
∇i × ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i)×

−→
∇i

)]
int

tτ (i)

where the WIMP tensors appearing above are defined in Eq. (36) and contain all of the EFT input in
the form of the cis, is the starting point for our multipole analysis. The invariant amplitude is the matrix
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element of this interaction

Mnucleus/EFT =
∑
τ=0,1

〈jχ,Mχ; jNMN |

[
lτ0

A∑
i=1

e−i~q·~xi

+ lAτ0

A∑
i=1

1

2M

(
−1

i

←−
∇i · ~σ(i) e−i~q·~xi + e−i~q·~xi~σ(i) · 1

i

−→
∇i

)

+ ~lτ5 ·
A∑
i=1

~σ(i) e−i~q·~xi

+ ~lτM ·
A∑
i=1

1

2M

(
−1

i

←−
∇ie

−i~q·~xi + e−i~q·~xi
1

i

−→
∇i

)

+ ~lτE ·
A∑
i=1

1

2M

(←−
∇i × ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i)×

−→
∇i

)]
int

tτ (i) |jχ,Mχ; jNMN 〉 (A7)

where the subscript int instructs one to take the intrinsic part of the operator (that is, the part depending
on the internal Jacobi coordinates).

The Hamiltonian can be expressed in terms of nu-
clear operators carrying good angular momentum
and parity and transforming simply under time re-
versal by carrying out a standard multipole decom-
position. For the scalar nuclear terms in Eq. (A7)
this involves the expansion of the plane wave in
terms of the Bessel spherical harmonics

MJM (q~xi) ≡ jJ(qxi)YJM (Ωxi) (A8)

while for the vector nuclear quantities of the form
~Aei~q·~xi =

∑
λ

(−1)λA−λêλe
−i~q·~xi one uses Bessel vec-

tor spherical harmonics

~MJLM (q~xi) ≡ jL(qxi)~YJLM (Ωxi)

~YJLM (Ωxi) ≡
∑
m λ

YLM (Ωxi) ~eλ 〈Lm1λ|(L1)JM〉,

(A9)

where ~eλ denotes a spherical unit vector and Aλ =

êλ · ~A, to project out longitudinal, transverse electric,
and transverse magnetic components. After some
algebra Mnucleus/EFT can be written

∑
τ=0,1

〈jχ,Mχf ; jNMNf |

[ ∞∑
J=0

√
4π(2J + 1)(−i)J

[
lτ0MJ0;τ (q)− ilAτ0

q

mN
Ω̃J0;τ (q)

]
+

∞∑
J=1

√
2π(2J + 1)(−i)J

∑
λ=±1

(−1)λ
[
lτ5λ
(
λΣJ−λ;τ (q) + iΣ′J−λ;τ (q)

)
− i q

mN
lτMλ

(
λ∆J−λ;τ (q) + i∆′J−λ;τ (q)

)
− i q

mN
lτEλ

(
λΦ̃J−λ;τ (q) + iΦ̃′J−λ;τ (q)

) ]
+

∞∑
J=0

√
4π(2J + 1)(−i)J

[
ilτ50Σ′′J0;τ (q) +

q

mN
lτM0∆̃′′J0;τ (q) +

q

mN
lτE0Φ′′J0;τ (q)

]]
|jχ,Mχi; jNMNi〉(A10)

where we have defined the operators as

OJM ;τ (q) ≡
A∑
i=1

OJM (q~xi) t
τ (i) . (A11)

The eleven operators appearing above correspond to
the charge multipoles of the vector charge (accom-
panying l0) and axial-vector charge (lA0 ) operators,
and the longitudinal, transverse electric, and trans-
verse magnetic projections of the axial-vector spin
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current (accompanying ~l5), vector convection cur-

rent (accompanying ~lM ), and vector spin-velocity

current (accompanying ~lE) operators. As transverse
multipoles must carry at least one unit of angular
momentum, the multipole sums in those cases begin
with J = 1.

In elastic transitions the contributing multipoles
are severely restricted by the known approximate
good parity and CP of nuclear ground states, as de-
tailed in Table II. Five of the operators (those not
defined in the body of this paper) are eliminated
entirely; in other cases only the even or odd mul-
tipoles can satisfy the combined parity and CP re-
quirements. Thus we obtain the simpler expression

Melastic
nucleus/EFT =

∑
τ=0,1

〈jχ,Mχf ; jNMNf |

[ ∞∑
J=0,2,...

√
4π(2J + 1)(−i)J

[
lτ0MJ0;τ (q) +

q

mN
lτE0Φ′′J0;τ (q)

]

+

∞∑
J=1,3,...

√
2π(2J + 1)(−i)J

∑
λ=±1

(−1)λ
[
ilτ5λΣ′J−λ;τ (q)− i q

mN
lτMλλ∆J−λ;τ (q)

]
+

∞∑
J=2,4,...

√
2π(2J + 1)(−i)J

∑
λ=±1

(−1)λ
[ q

mN
lτEλΦ̃′J−λ;τ (q)

]

+

∞∑
J=1,3,...

√
4π(2J + 1)(−i)J

[
ilτ50Σ′′J0;τ (q)

]]
|jχ,Mχi; jNMNi〉. (A12)

This expression involves only the six multipole operators of Eq. (39).
The Wigner-Eckart theorem can be used to reduce the nuclear matrix elements. Then after forming |M|2,

averaging over initial nuclear spins, summing over final nuclear spins, and using the orthogonality condition
imposed by the two three-j symbols obtained in the reduction, one obtains

1

2jN + 1

∑
MNi,MNf

|〈jχMχf ; jNMNf | Melastic
nucleus/EFT |jχMχi; jNMNi〉|2 =

4π

2Ji + 1

∑
τ=0,1

∑
τ ′=0,1

∞∑
J=0,2,...

(
〈lτ0 〉〈lτ

′

0 〉∗〈jN || MJ;τ (q) ||jN 〉〈jN || MJ;τ ′(q) ||jN 〉

+
~q

mN
· 〈~lτE〉

~q

mN
· 〈~lτ

′

E 〉∗ 〈jN || Φ′′J;τ (q) ||jN 〉〈jN || Φ′′J;τ ′(q) ||jN 〉

+
2~q

mN
· Re

[
〈~lτE〉 〈lτ

′

0 〉∗
]
〈jN || Φ′′J;τ (q) ||jN 〉〈jN || MJ;τ ′(q) ||jN 〉

)

+

∞∑
J=2,4,...

1

2

(
q2

m2
N

〈~lτE〉 · 〈~lτ
′

E 〉∗ −
~q

mN
· 〈~lτE〉

~q

mN
· 〈~lτ

′

E 〉∗
)
〈jN || Φ̃′J;τ (q) ||jN 〉〈jN || Φ̃′J;τ ′(q) ||jN 〉

+

∞∑
J=1,3,...

(
q̂ · 〈~lτ5 〉 q̂ · 〈~lτ

′

5 〉∗ 〈jN || Σ′′J;τ (q) ||jN 〉〈jN || Σ′′J;τ ′(q) ||jN 〉

+
1

2

(
〈~lτ5 〉 · 〈~lτ

′

5 〉∗ − q̂ · 〈~lτ5 〉 q̂ · 〈~lτ
′

5 〉∗
)
〈jN || Σ′J;τ (q) ||jN 〉〈jN || Σ′J;τ ′(q) ||jN 〉

+
1

2

(
q2

m2
N

〈~lτM 〉 · 〈~lτ
′

M 〉∗ −
~q

mN
· 〈~lτM 〉

~q

mN
· 〈~lτ

′

M 〉∗
)
〈jN || ∆J;τ (q) ||jN 〉〈jN || ∆J;τ ′(q) ||jN 〉

+
~q

mN
· Re

[
i〈~lτM 〉 × 〈~lτ

′

5 〉∗
]
〈jN || ∆J;τ (q) ||jN 〉〈jN || Σ′J;τ ′(q) ||jN 〉

)}
(A13)

where we have used the shorthand for the WIMP
matrix elements

〈l〉 ≡ 〈jχMχf |l|jχMχi〉 (A14)

Note that while our original multipole decomposi-
tion was done with a z-axis aligned along ~q, this
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TABLE II. The parity-time reversal transformation properties for the eleven operators arising in DM particle scat-
tering off nuclei. The nearly exact parity and CP of nuclear ground states restricts the contributing multipoles in
elastic scattering to those that transform under parity and CP as even-even (E-E): these are the even multipoles
of the vector charge operator MJM and of the longitudinal and transverse electric projections of the spin-velocity
current Φ′′

JM and Φ̃′
JM , and the odd multipoles of the longitudinal and transverse electric projections of the spin

current Σ′′
JM and Σ′

JM and of the transverse magnetic projection of the convection current ∆JM .

Projection Charge/current Operator
P,CP properties

Even J
P,CP properties

Odd J
Charge Vector charge MJM E-E O-O

Charge Axial-vector charge Ω̃JM O-E E-O
Longitudinal Spin current Σ′′JM O-O E-E
Transverse magnetic ” ΣJM E-O O-E
Transverse electric ” Σ′JM O-O E-E

Longitudinal Convection current ∆̃′′JM E-O O-E
Transverse magnetic ” ∆JM O-O E-E
Transverse electric ” ∆′JM E-O O-E
Longitudinal Spin-velocity current Φ′′JM E-E O-O

Transverse magnetic ” Φ̃JM O-E E-O

Transverse electric ” Φ̃′JM E-E O-O

result is now frame independent as it is expressed
entirely in terms of scalar products

Finally, we average over initial WIMP spins and
sum over final spins, as in the nuclear case. The

WIMP tensors involve combinations of 1 and ~Sχ.
As we sum over all magnetic quantum numbers, the

only surviving terms in the bilinear products of the
WIMP tensors must transform as spin scalars, and

thus as 1 or as ~S 2
χ . The constant term yields 1. All

cross terms linear in ~Sχ must vanish. The spin terms
must be proportional to jχ(jχ + 1). The associated
coefficients are easily calculated for the various prod-
ucts

1

2jχ + 1

∑
mχimχf

〈jχmχi |



~Sχ|jχmχf 〉 · 〈jχmχf |~Sχ
~A · ~Sχ|jχmχf 〉 〈jχmχf | ~B · ~Sχ
~A× ~Sχ|jχmχf 〉 · 〈jχmχf | ~B × ~Sχ

~A× ~Sχ|jχmχf 〉 · 〈jχmχf |~Sχ


|jχmχi〉 =


1

~A · ~B/3

2 ~A · ~B/3
0

 jχ(jχ + 1) (A15)

The results are further simplified because the result-

ing scalars ~A· ~B often involve longitudinal and trans-
verse quantities or ~q · ~v⊥T , which vanish.

Executing the associated algebra yields the final
result given in Eqs. (37) and (38). The transition
probability is expressed as a product of WIMP and
nuclear responses functions, where the former iso-
lates the particle physics in functions that are bilin-
ear in the EFT coefficients, the cis.

3. Generalizing the Exchange

Our EFT approach has focused on interactions be-
tween the WIMP and nucleus mediated by a heavy
exchange, so that the interaction is pointlike. How-
ever, nothing in the treatment of the WIMP or nu-
clear vertices depends on this assumption. We be-
lieve the adaptation of this code for cases in which
the exchange is mediated by a photon or other light

particle would be very simple. This would, of course,
require one to add the needed momentum-dependent
propagator to the code. Once that line is added,
however, we see no reason that subsequent integra-
tions over phase space would present any difficulties:
indeed the operator formalism we employ here is the
common formalism for both electron scattering and
semi-leptonic weak interactions. The exchange in
the former is a photon, while the latter is treated as
a four-fermion interaction analogous to the WIMP
case.

Appendix B: The Mathematica Script:
Documentation

The formalism presented in this paper, with its
factorization cross sections into products of WIMP
and nuclear responses, is the basis for the Mathe-
matica script presented here. The script was con-
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structed so that experimental groups would be able
to conduct model independent analyses of their ex-
periments using the EFT framework. We have inte-
grated the particle and nuclear physics in ways that
should make the code useful to nuclear structure and
particle theorists as well, as described in previous
sections.

In this section, which also serves as a readme file
for the program, we discuss the usage of the program
itself.

1. Initialization

Our Mathematica package, along with all of the
associated documentation, can be found at
http://www.ocf.berkeley.edu/~nanand/
software/dmformfactor/. To initialize the
package, either put dmformfactor.m in your
directory for Mathematica packages and run

<<‘dmformfactor

or initialize the package file itself from its source
directory. For example

<<"/Users/me/myfiles/dmformfactor.m"

2. Summary of Functions

In order to compute the WIMP response functions

Rττ
′

i (~v⊥2
T , ~q

2

m2
N

), the user must first call functions set-

ting the dark matter mass and spin as well as the
coefficients of the effective Lagrangian. In order to
compute the nuclear response functions Wi((qb/2)2),
the user must specify the Z and A of the isotope.
The density matrices and the oscillator parameter b
needed in the calculation of the Wi are set internally
in the script, though there are options to override the
internal values. The nuclear ground state spin and
isospin (the script assumes exact isospin, consistent
with an input density matrix that is doubly reduced
- see text) are also set internally, once Z and A are
input.

• SetJChi and SetMChi: These set the dark
matter spin and mass, respectively. Simply
call:

SetJChi[j]

and

SetMChi[m]

to set the dark matter spin to j and the
dark matter mass to m. The unit GeV is rec-
ognized by the script; for example, calling
SetMChi[10 GeV] sets the dark matter mass
to 10 GeV.

• SetIsotope[Z,A,bFM, filename]

This sets the nuclear physics input, including
the charge Z and atomic number A of the iso-
tope, the file for the density matrices that the
user wants to use, and the oscillator param-
eter b[fm] (that is, b in femtometers). If the
users elects to use the default density matrices
(which are available for 19F, 23Na, 70Ge, 72Ge,
73Ge, 74Ge, 76Ge, 127I, 128Xe, 129Xe, 130Xe,
131Xe, 132Xe, 134Xe, and 136Xe), then simple
take filename to be “default” (note that one
must still specify the correct Z and A for the
isotope of interest. Otherwise, users must pro-
vide their own density matrix file, to be read
in by the program. Similarly, entering “de-
fault” for b will employ the approximate for-

mula b[fm] =
√

41.467/(45A−1/3 − 25A−2/3).
To use another value of b[fm], enter a numeri-
cal value. The nuclear mass is set to AmN .

• SetCoeffsNonrel[i,value,isospin]
This sets the coefficients ci of the EFT opera-
torsOi. The script allows the user to set values
for {c1, c3, c4, ..., c15}; note that c2 is excluded,
for reasons discussed in the text. We have
chosen a normalization such that the coeffi-
cients ci all have dimensions (Energy)−2;[11]
to compensate for this, the dimensionless user
input for value is multiplied by m−2

V , with
mV ≡ 246.2 GeV.

The coefficients carry an isospin index α that
can be specified in one of two ways, as a cou-
pling to protons and neutrons, {cpi , cni }, in
which case the associated operator is[

cpi
1 + τ3

2
+ cni

1− τ3
2

]
Oi (B1)

or as a coupling to isospin, {c0i , c1i }, where the
associated operator is[

c0i + c1i τ3
]
Oi. (B2)

For the former, the input should be “n” for
neutrons and “p” for protons. For example:

SetCoeffsNonrel[4,12.3, "p"]

http://www.ocf.berkeley.edu/~nanand/software/dmformfactor/
http://www.ocf.berkeley.edu/~nanand/software/dmformfactor/


29

whereas for the latter it should be 0 for
isoscalar and 1 for isovector. All coefficients
are set to 0 by default when the package
is initialized. SetCoeffsNonrel will change
only the coefficient specified, and will leave
all other coefficients unchanged. So, for
example, if one initializes the package and
calls SetCoeffsNonrel[4,12.3, 0], then cp4
and cn4 will both be 6.15, with all other
coefficients vanishing. If one then calls
SetCoeffsNonrel[4,3.3,‘‘p’’], then cp4 will
be set to 3.3, but cn4 will not change and will
still be 6.15. Thus by making two calls, an ar-
bitrary combination of {cp4, cn4} or equivalently
{c04, c14} can be set.

• SetCoeffsRel[i,value,isospin]
These functions are similar to
SetCoeffsNonrel, except that they set
the coefficients dj of the 20 covariant interac-

tions Ljint defined in Table I. The coefficients
dj are dimensionless, by inserting appropriate
powers of the user-defined scale mM , set by
the user function SetMM. This scale is set by
default to be mM = mV ≡ 246.2 GeV. We
adopt a convention where the spinors in Ljint
are defined as normalized to unity: with this
convention a nonrelativistic reduction of the
Ljint in the second column of Table I would
give the results in the fourth column. [As
noted in the paper, we use a spinor normal-
ization of 2m in our derivations, but extract
the factor of 4mχmN in order to maintain the
definition above.]

SetCoeffsNonrel and SetCoeffsRel cannot
be used together. By default, the package as-
sumes you will use SetCoeffsNonrel. The
first time the user calls SetCoeffsRel, the
package will first reset all coefficients back to
zero before calling SetCoeffsRel, after which
point it will act normally. A subsequent call
to SetCoeffsNonrel will similarly first reset
all coefficients back to zero and then revert to
non-relativistic mode.

Since the relativistic operators implic-
itly assume spin-1/2 WIMPs, any call to
SetCoeffsRel automatically sets jχ = 1/2.

• SetMM[mM]
Set the fiducial scale mM for the relativistic
coefficients di.

• ZeroCoeffs[]
Calling ZeroCoeffs[] simply resets all opera-
tors coefficients to zero.

• ResponseNuclear[y,i,tau,tau2]
This function prints out any of the eight nu-
clear response functions W ττ2

i (y). This in-
volves a folding of the single-particle matrix
elements with the density matrices. The re-
sults are printed as analytic functions in the
dimensionless variable y = (qb/2)2. The i run
from 1 to 8, according to 1) WM , 2) WΣ′′ , 3)
WΣ′ , 4) WΦ′′ , 5) WΦ̃′ , 6) W∆, 7) WMΦ′′ , and
8) WΣ′∆.

• TransitionProbability[v,q(,IfRel)]
This is the main user function. It first prints
out the Lagrangian that is being used.

Second, it folds the W ττ ′

i (y) and

Rττ
′

i (~v⊥2
T , ~q

2

m2
N

) to form

Ptot =
1

2jχ + 1

1

2jN + 1

∑
spins

|M|2nucleus−HO/EFT,(B3)

It then evaluates the transition probability for
the numerical values of b and mN . As b is
in fm, the substitution is y = (qb/(2~c))2 ∼
(qb/2(0.197Gev fm))2. As mN is input in
GeV, this evaluates Eq. (40) as a function
TransitionProbability[vsq,q] where q is
in GeV. This function can be printed out or
plotted numerically.

The conventional relativistic normalization of
the amplitude differs from the non-relativistic
normalization by a factor of 1/(4mχmT ).
Since the conventional relativistic normaliza-
tion is commonly used and produces a dimen-
sionless value for |M|2, we also provide an op-
tional argument IfRel, which if set to True
will output (B3) with the relativistic normal-
ization convention (that is, it will multiply by
(4mχmT )2 to produce a dimensionless transi-
tion probability). By default, it is set to False.

• DiffCrossSection[ERkeV,v]
From the transition probability Ptot, one can
immediately obtain the differential cross sec-
tion per recoil energy:

dσ

dER
=

mT

2πv2
Ptot. (B4)

The function DiffCrossSection[ERkeV,v]
takes as arguments the recoil energy in units
of keV and the velocity of the incoming DM
particle in the lab frame. It first prints out the
Lagrangian being used, and then outputs the
differential cross-section dσ

dER
.
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• ApproxTotalCrossSection[v]
From the differential cross-section dσ

dER
, one

can also obtain the total cross-section as a
function of v by integrating over recoil en-
ergies. In general, this depends on energy
thresholds and, written in closed form, is a
complicated analytic function due to the ex-
ponential damping factor e−2y in the response
functions, so for precise values it is simplest to
do the energy integration numerically. How-
ever, for approximate results we can con-
sider the limit of small nuclear harmonic os-
cillator parameter b, in which case the ex-
ponential factor e−2y can be neglected. For
fixed v, the integration over ER from zero up

to the kinematic threshold ER,max = 2
µ2
T v

2

mT
can be performed analytically. The function
ApproxTotalCrossSection[v] takes as argu-
ment the velocity v of the incoming DM parti-
cle in the lab frame and, after printing out the
Lagrangian being used, outputs this approxi-
mate total cross-section σ(v).

• EventRate[NT ,ρχ,q,ve,v0(,vesc)]

One can determine the total detector event
rate (per unit time per unit detector mass per
unit recoil energy) in terms of the transition
probability Ptot. One simply multiplies Ptot by
the appropriate prefactor and integrates over
the halo velocity distribution, as follows:

dRD
dER

= NT
ρχmT

2πmχ

〈
1

v
Ptot(v

2, q2)

〉
(B5)

Here, 〈. . .〉 indicates averaging over the halo
velocity distribution. NT is the number of tar-
get nuclei per detector mass, ρχ is the local
dark matter density, mχ is the dark matter
mass, and mN is the nucleon mass. In gen-
eral, the halo average integral should include a
lower-bound on the magnitude of the velocity
at vmin, which is vmin = q

2µT
for elastic scat-

tering:

〈h(q,~v)〉 ≡
∫ ∞
vmin(q)

v2dv

∫
d2Ωfv(~v + ~ve)h(q,~v).(B6)

The vector ~ve is the Earth’s velocity in the
galactic rest frame. While there has been
much work recently on understanding theoret-
ical constraints on the halo distribution from
N-body simulations and from general consid-
erations of dynamics, little is known by direct
observation and there are still large uncertain-
ties. A very simple approximation that suffices

for general considerations is to take a Maxwell-
Boltzmann distribution:

fv(~v) =
1

π3/2v3
0

e−v
2/v20 , (B7)

where v0 is roughly 220 km/s, about the
rms velocity of the visible matter distribution
(though N-body simulations suggest that the
dark matter distribution may be shallower,
and a larger v0 may be more appropriate).
The function EventRate[q,b,ve,v0] evaluates
the event rate dRD

dER
assuming this Maxwell-

Boltzmann distribution as default. A cut-off
Maxwell-Boltzmann distribution is also imple-
mented as an option, in which case

fv(~v) ∝
(
e−v

2/v20 − ev
2
esc/v

2
0

)
Θ(v2

esc − ~v2) (B8)

where vesc is the escape velocity, and the sub-
traction above is included to make the distri-
bution shut down smoothly. In this case, vesc

should be included as an optional argument
to EventRate; if it is not included, it is set
to a default value of 12v0 (which is essentially
vesc =∞).

• SetHALO[halo]
This sets the halo distribution used. The vari-
able halo can be set either to “MB”, in which
case the Maxwell-Boltzmann distribution is
used, or “MBcutoff”, in which case the cut-off
Maxwell-Boltzmann distribution is used. It is
set to “MB” by default.

• SetHelm[UseHelm]
Calling SetHelm[True] sets the structure
function for the density operator MJ to be
given by the Helm form factor, rather than by
the structure function obtained from the den-
sity matrix. SetHelm[False] implements the
structure function based on the density matrix,
which is the default setting.

3. Examples

A full example for the transition probability would
look like the following:

<< "/Users/me/mypackages/dmformfactor.m";
SetJChi[1/2]
SetMChi[50 GeV]
F19filename="default";
bFM="default";
SetIsotope[9, 19, bFM, F19filename]
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SetCoeffsNonrel[3, 3.1, "p"]
TransitionProbability[v,qGeV]
TransitionProbability[v,qGeV,True]

To additionally calculate the event rate dRD
dER

in a
Maxwell-Boltzmann halo velocity distribution, one
can call

mNucleon=0.938 GeV;
NT=1/(19 mNucleon);
Centimeter=(10^13 Femtometer);
rhoDM=0.3 GeV/Centimeter^3;
ve=232 KilometerPerSecond;
v0=220 KilometerPerSecond;
EventRate[NT,rhoDM,qGeV,ve,v0]

For a cut-off Maxwell-Boltzmann halo, an escape
velocity must also be specified:

mNucleon=0.938 GeV;
NT=1/(19 mNucleon);

Centimeter=(10^13 Femtometer);
rhoDM=0.3 GeV/Centimeter^3;
ve=232 KilometerPerSecond;
v0=220 KilometerPerSecond;
vesc=550 KilometerPerSecond;
SetHalo["MBcutoff"];
EventRate[NT,rhoDM,qGeV,ve,v0,vesc]

Finally, to get a quick estimate of the experimen-
tal bound from the 225 live day run of XENON100,
one can use the standard SI isoscalar interaction for
a generic isotope of xenon, taking xenon-131 for in-
stance. Taking into account efficiencies, the total
effective exposure is approximately 2500 kg days.
A relativistic operator coefficient of 2fp/GeV2 with
fp = 4 · 10−9 predicts only a couple of events, and
so should be close to the upper limit of their allowed
cross-section:

mNucleon=0.938 GeV;
NT=1/(131 mNucleon);
Centimeter=(10^13 Femtometer);
rhoDM=0.3 GeV/Centimeter^3;
SetMChi[150 GeV]
ve=232 KilometerPerSecond;
v0=220 KilometerPerSecond;
vesc=550 KilometerPerSecond;
SetHALO["MBcutoff"];
Xe131filename="default";
bFM="default";
SetIsotope[54, 131, bFM, Xe131filename]
SetCoeffsRel[1,2fp,0]
myrate[qGeV_]=(2500 KilogramDay) EventRate[NT,rhoDM,qGeV,ve,v0,vesc];
fp=2.4*10^(-4);
NIntegrate[myrate[qGeV] GeV*(qGeV GeV/(131 mNucleon)),{qGeV,0,10}]

The final line of output should be 2.06 for the
value of the integral, which gives the predicted num-
ber of events. The factor q

131mN
= q

mT
inside the in-

tegral is from the change of variables from dER to dq,
since ER = q2/2mT . In this example, the WIMP is
sufficiently heavy that the exact low-energy thresh-
old changes the prediction by less than a factor of
two, so to get a rough estimate we have just in-
tegrated down to zero energy. Finally, we can look
what nucleon scattering cross-section corresponds to

fp = 2.4 · 10−4:

σp =
(4mNmT fp/m

2
V )2

16π(mN +mT )2
= 1.7 · 10−45cm2 (B9)

which agrees to within a factor of a few with the
published upper bound on σp from the XENON100
collaboration [12]. A more accurate calculation of
the bound would include, among other corrections,
the exact energy thresholds in the momentum trans-
fer integral, an average over the year as the earth’s
velocity changes, a sum over different isotopes ac-
cording to their natural abundance, and a more pre-
cise treatment of energy-dependent efficiencies.
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4. Density Matrix Syntax

If one calls SetIsotope[Z,A, filename] with a
custom density matrix, the input density matrix file
must contain the reduced density matrix elements
ΨJ,T (|α|, |β|) to be used. The in and out states |α|

and |β| should be specified by their principle quan-
tum number N and their total angular momentum
j. See [13] for more details. The format of the file for
each projection onto operators of spin J and isospin
J should be as follows:

ONE-BODY DENSITY MATRIX · · · 2J0= 2J , · · · 2T
· · · N1

in 2j1
in N1

out 2j1
out ΨJ,T

(
{N1

in, j
1
in}; {N1

out, j
1
out}

)
...

...
...

· · · Nn
in 2jnin Nn

out 2jnout ΨJ,T ({Nn
in, j

n
in}; {Nn

out, j
n
out})

Dots “· · · ” indicate places where the code will simply ignore what appears there - the routines reading in
the input are searching for regular expressions that match the above syntax. Consequently, additional lines
in the file that are not of the above form will also be ignored. This is probably clearest to follow by seeing
an explicit example. For instance, the density matrix for 19F is



33

INITIAL STATE CHARGE CONJ SYM = 0 TIME REVERSAL SYM = 0

FINAL STATE CHARGE CONJ SYM = 0 TIME REVERSAL SYM = 0
-23.88003 -23.88003

ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF = 1 2JI = 1 2TI = 1 2JO = 0 TO = , 0
NBRA 2*JBRA NKET 2*JKET VALUE
0 1 0 1 4.00000000
1 1 1 1 4.00000000
1 3 1 3 5.65685425
2 1 2 1 1.22525930
2 3 2 3 0.20366116
2 5 2 5 0.85835832

ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF = 1 2JI = 1 2TI = 1 2JO = 0 TO = , 2
NBRA 2*JBRA NKET 2*JKET VALUE
2 1 2 1 0.36984837
2 3 2 3 0.04794379
2 5 2 5 0.32467225

ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF = 1 2JI = 1 2TI = 1 2JO = 2 TO = , 0
NBRA 2*JBRA NKET 2*JKET VALUE
2 1 2 1 0.44514263
2 3 2 1 -0.01197751
2 1 2 3 0.01197751
2 3 2 3 -0.05428837
2 5 2 3 -0.12172578
2 3 2 5 0.12172578
2 5 2 5 0.12280637

ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF = 1 2JI = 1 2TI = 1 2JO = 2 TO = , 2
NBRA 2*JBRA NKET 2*JKET VALUE
2 1 2 1 -0.40780345
2 3 2 1 -0.01278520
2 1 2 3 0.01278520
2 3 2 3 0.01209672
2 5 2 3 0.10547489
2 3 2 5 -0.10547489
2 5 2 5 -0.24110544

Example density matrix file shown for 19F. The density matrices for 19F, 23Na, 70Ge, 72Ge,73Ge,74Ge,76Ge,
127I, 128Xe,129Xe,130Xe,131Xe,132Xe,134Xe, and 136Xe are already built into the program and no external file
is needed.
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