
1 The Mathematica Script: Documentation

The formalism presented in the paper, with its factorization cross sections into products of WIMP and
nuclear responses, is the basis for the Mathematica script presented here. The script was constructed so
that experimental groups would be able to conduct model independent analyses of their experiments using
the EFT framework.

1.1 Initialization

Our Mathematica package, along with all of the associated documentation, can be found at
http://www.ocf.berkeley.edu/~nanand/software/dmformfactor/. To initialize the package, either put
dmformfactor.m in your directory for Mathematica packages and run

<<‘dmformfactor

or initialize the package file itself from its source directory. For example

<<"/Users/me/myfiles/dmformfactor.m"

1.2 Summary of Functions

In order to compute the WIMP response functions Rττ
′

i (~v⊥2
T , ~q

2

m2
N

), the user must first call functions setting

the dark matter mass and spin as well as the coefficients of the effective Lagrangian. In order to compute
the nuclear response functions Wi((qb/2)2), the user must specify the Z and A of the isotope. The density
matrices and the oscillator parameter b needed in the calculation of the Wi are set internally in the script,
though there are options to override the internal values. The nuclear ground state spin and isospin (the
script assumes exact isospin, consistent with an input density matrix that is doubly reduced - see text) are
also set internally, once Z and A are input.

• SetJChi and SetMChi: These set the dark matter spin and mass, respectively. Simply call:

SetJChi[j]

and

SetMChi[m]

to set the dark matter spin to j and the dark matter mass to m. The unit GeV is recognized by the
script; for example, calling SetMChi[10 GeV] sets the dark matter mass to 10 GeV.

• SetIsotope[Z,A,bFM, filename]

This sets the nuclear physics input, including the charge Z and atomic number A of the isotope,
the file for the density matrices that the user wants to use, and the oscillator parameter b[fm] (that
is, b in femtometers). If the users elects to use the default density matrices (which are available
for 19F, 23Na, 70Ge, 72Ge, 73Ge, 74Ge, 76Ge, 127I, 128Xe, 129Xe, 130Xe, 131Xe, 132Xe, 134Xe, and
136Xe), then simple take filename to be “default” (note that one must still specify the correct Z

and A for the isotope of interest. Otherwise, users must provide their own density matrix file, to
be read in by the program. Similarly, entering “default” for b will employ the approximate formula
b[fm] =

√
41.467/(45A−1/3 − 25A−2/3). To use another value of b[fm], enter a numerical value. The

nuclear mass is set to AmN .
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• SetCoeffsNonrel[i,value,isospin]

This sets the coefficients ci of the EFT operators Oi. The script allows the user to set values for
{c1, c3, c4, ..., c15}; note that c2 is excluded, for reasons discussed in the text. We have chosen a
normalization such that the coefficients ci all have dimensions (Energy)−2;1 to compensate for this,
the dimensionless user input for value is multiplied by m−2

V , with mV ≡ 246.2 GeV.

The coefficients carry an isospin index α that can be specified in one of two ways, as a coupling to
protons and neutrons, {cpi , cni }, in which case the associated operator is[

cpi
1 + τ3

2
+ cni

1− τ3
2

]
Oi (1)

or as a coupling to isospin, {c0i , c1i }, where the associated operator is[
c0i + c1i τ3

]
Oi. (2)

For the former, the input should be “n” for neutrons and “p” for protons. For example:

SetCoeffsNonrel[4,12.3, "p"]

whereas for the latter it should be 0 for isoscalar and 1 for isovector. All coefficients are set to 0 by
default when the package is initialized. SetCoeffsNonrel will change only the coefficient specified,
and will leave all other coefficients unchanged. So, for example, if one initializes the package and calls
SetCoeffsNonrel[4,12.3, 0], then cp4 and cn4 will both be 6.15, with all other coefficients vanishing.
If one then calls SetCoeffsNonrel[4,3.3,‘‘p’’], then cp4 will be set to 3.3, but cn4 will not change
and will still be 6.15. Thus by making two calls, an arbitrary combination of {cp4, cn4} or equivalently
{c04, c14} can be set.

• SetCoeffsRel[i,value,isospin]

These functions are similar to SetCoeffsNonrel, except that they set the coefficients dj of the 20

covariant interactions Ljint defined in Table 1. The coefficients dj are dimensionless, by inserting
appropriate powers of the user-defined scale mM , set by the user function SetMM. This scale is set by
default to be mM = mV ≡ 246.2 GeV. We adopt a convention where the spinors in Ljint are defined as

normalized to unity: with this convention a nonrelativistic reduction of the Ljint in the second column
of Table 1 would give the results in the fourth column. [As noted in the paper, we use a spinor
normalization of 2m in our derivations, but extract the factor of 4mχmN in order to maintain the
definition above.]

SetCoeffsNonrel and SetCoeffsRel cannot be used together. By default, the package assumes you
will use SetCoeffsNonrel. The first time the user calls SetCoeffsRel, the package will first reset
all coefficients back to zero before calling SetCoeffsRel, after which point it will act normally. A
subsequent call to SetCoeffsNonrel will similarly first reset all coefficients back to zero and then
revert to non-relativistic mode.

Since the relativistic operators implicitly assume spin-1/2 WIMPs, any call to SetCoeffsRel automat-
ically sets jχ = 1/2.

• SetMM[mM]

Set the fiducial scale mM for the relativistic coefficients di.

• ZeroCoeffs[]

Calling ZeroCoeffs[] simply resets all operators coefficients to zero.

1Note that this convention for the ci’s differs from that in [1].
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j Ljint Nonrelativistic Reduction
∑
i

ciOi P/T

1 χ̄χN̄N 1χ1N O1 E/E

2 iχ̄χN̄γ5N i
~q

mN
· ~SN O10 O/O

3 iχ̄γ5χN̄N −i ~q
mχ
· ~Sχ −mN

mχ
O11 O/O

4 χ̄γ5χN̄γ5N − ~q

mχ
· ~Sχ

~q

mN
· ~SN −mN

mχ
O6 E/E

5 χ̄γµχN̄γµN 1χ1N O1 E/E

6 χ̄γµχN̄iσµα
qα

mM
N

~q 2

2mNmM
1χ1N + 2

(
~q

mχ
× ~Sχ + i~v⊥

)
·
(

~q

mM
× ~SN

) ~q 2

2mNmM
O1 − 2

mN

mM
O3

+2
m2
N

mMmχ

(
q2

m2
N

O4−O6

) E/E

7 χ̄γµχN̄γµγ
5N −2~SN · ~v⊥ + 2

mχ
i~Sχ · (~SN × ~q) −2O7 + 2mNmχ O9 O/E

8 iχ̄γµχN̄iσµα
qα

mM
γ5N 2i ~q

mM
· ~SN 2mNmM

O10 O/O

9 χ̄iσµν
qν
mM

χN̄γµN − ~q 2

2mχmM
1χ1N − 2

(
~q
mN
× ~SN + i~v⊥

)
·
(

~q
mM
× ~Sχ

) − ~q 2

2mχmM
O1+

2mN
mM
O5

−2
mN
mM

(
~q 2

m2
N

O4−O6

) E/E

10 χ̄iσµν
qν
mM

χN̄iσµα
qα

mM
N 4

(
~q

mM
× ~Sχ

)
·
(

~q

mM
× ~SN

)
4

(
~q 2

m2
M

O4 −
m2
N

m2
M

O6

)
E/E

11 χ̄iσµν
qν
mM

χN̄γµγ5N 4i

(
~q

mM
× ~Sχ

)
· ~SN 4

mN

mM
O9 O/E

12 iχ̄iσµν
qν
mM

χN̄iσµα
qα

mM
γ5N −

[
i

~q 2

mχmM
− 4~v⊥ ·

(
~q

mM
× ~Sχ

)]
~q

mM
· ~SN −mN

mχ

~q 2

m2
M

O10 − 4
~q 2

m2
M

O12 − 4
m2
N

m2
M

O15 O/O

13 χ̄γµγ5χN̄γµN 2~v⊥ · ~Sχ + 2i~Sχ ·
(
~SN × ~q

mN

)
2O8 + 2O9 O/E

14 χ̄γµγ5χN̄iσµα
qα

mM
N 4i~Sχ ·

(
~q

mM
× ~SN

)
−4

mN

mM
O9 O/E

15 χ̄γµγ5χN̄γµγ5N −4~Sχ · ~SN −4O4 E/E

16 iχ̄γµγ5χN̄iσµα
qα

mM
γ5N 4i~v⊥ · ~Sχ

~q

mM
· ~SN 4

mN

mM
O13 E/O

17 iχ̄iσµν qν
mM

γ5χN̄γµN 2i
~q

mM
· ~Sχ 2

mN

mM
O11 O/O

18 iχ̄iσµν qν
mM

γ5χN̄iσµα
qα

mM
N

~q

mM
· ~Sχ

[
i

~q 2

mNmM
− 4~v⊥ ·

(
~q

mM
× ~SN

)]
~q 2

m2
M

O11 + 4
m2
N

m2
M

O15 O/O

19 iχ̄iσµν qν
mM

γ5χN̄γµγ
5N −4i

~q

mM
· ~Sχ~v⊥ · ~SN −4

mN

mM
O14 E/O

20 iχ̄iσµν qν
mM

γ5χN̄iσµα
qα

mM
γ5N 4

~q

mM
· ~Sχ

~q

mM
· ~SN 4

m2
N

m2
M

O6 E/E

Table 1: The Lagrangian densities Ljint, the operators obtained after nonrelativistic reduction that would be
used between Pauli spinors to generate the invariant amplitude, the corresponding effective interactions in
terms of the EFT operators, and the transformation properties of the interactions (even E or odd O) under
parity and time reversal. Bjorken and Drell spinor and gamma matrix conventions are used. The scale mM,
which usually would be known from the context of the theory, can be put into the Mathematica script, or
set to its default value, mV (see text for further discussion).
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• ResponseNuclear[y,i,tau,tau2]

This function prints out any of the eight nuclear response functions W ττ2
i (y):

W ττ ′

M (y) =

∞∑
J=0,2,...

〈jN || MJ;τ (q) ||jN 〉〈jN || MJ;τ ′(q) ||jN 〉

W ττ ′

Σ′′ (y) =

∞∑
J=1,3,...

〈jN || Σ′′J;τ (q) ||jN 〉〈jN || Σ′′J;τ ′(q) ||jN 〉

W ττ ′

Σ′ (y) =

∞∑
J=1,3,...

〈jN || Σ′J;τ (q) ||jN 〉〈jN || Σ′J;τ ′(q) ||jN 〉

W ττ ′

Φ′′ (y) =

∞∑
J=0,2,...

〈jN || Φ′′J;τ (q) ||jN 〉〈jN || Φ′′J;τ ′(q) ||jN 〉

W ττ ′

Φ′′M (y) =

∞∑
J=0,2,...

〈jN || Φ′′J;τ (q) ||jN 〉〈jN || MJ;τ ′(q) ||jN 〉

W ττ ′

Φ̃′ (y) =

∞∑
J=2,4,...

〈jN || Φ̃′J;τ (q) ||jN 〉〈jN || Φ̃′J;τ ′(q) ||jN 〉

W ττ ′

∆ (y) =

∞∑
J=1,3,...

〈jN || ∆J;τ (q) ||jN 〉〈jN || ∆J;τ ′(q) ||jN 〉

W ττ ′

∆Σ′(y) =

∞∑
J=1,3,...

〈jN || ∆J;τ (q) ||jN 〉〈jN || Σ′J;τ ′(q) ||jN 〉. (3)

This involves a folding of the single-particle matrix elements with the density matrices. The results
are printed as analytic functions in the dimensionless variable y = (qb/2)2. The i run from 1 to 8,
according to 1) WM , 2) WΣ′′ , 3) WΣ′ , 4) WΦ′′ , 5) WΦ̃′ , 6) W∆, 7) WMΦ′′ , and 8) WΣ′∆.

• TransitionProbability[v,q(,IfRel)]

This is the main user function. It first prints out the Lagrangian that is being used.

Second, it folds the W ττ ′

i (y) and Rττ
′

i (~v⊥2
T , ~q

2

m2
N

) to form

Ptot =
1

2jχ + 1

1

2jN + 1

∑
spins

|M|2nucleus−HO/EFT, (4)

given by

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2nucleus−HO/EFT =
4π

2jN + 1

∑
τ=0,1

∑
τ ′=0,1{ [

Rττ
′

M (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

M (y) +Rττ
′

Σ′′ (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

Σ′′ (y) +Rττ
′

Σ′ (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

Σ′ (y)

]
+
~q 2

m2
N

[
Rττ

′

Φ′′ (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

Φ′′ (y) +Rττ
′

Φ′′M (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

Φ′′M (y) +Rττ
′

Φ̃′ (~v⊥2
T ,

~q 2

m2
N

)W ττ ′

Φ̃′ (y)

+ Rττ
′

∆ (~v⊥2
T ,

~q 2

m2
N

) W ττ ′

∆ (y) +Rττ
′

∆Σ′(~v⊥2
T ,

~q 2

m2
N

) W ττ ′

∆Σ′(y)

]}
. (5)

It then evaluates the transition probability for the numerical values of b and mN . As b is in fm, the
substitution is y = (qb/(2~c))2 ∼ (qb/2(0.197Gev fm))2. As mN is input in GeV, this evaluates Eq.
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(5) as a function TransitionProbability[vsq,q] where q is in GeV. This function can be printed
out or plotted numerically.

The conventional relativistic normalization of the amplitude differs from the non-relativistic normal-
ization by a factor of 1/(4mχmT ). Since the conventional relativistic normalization is commonly used
and produces a dimensionless value for |M|2, we also provide an optional argument IfRel, which if
set to True will output (4) with the relativistic normalization convention (that is, it will multiply by
(4mχmT )2 to produce a dimensionless transition probability). By default, it is set to False.

• DiffCrossSection[ERkeV,v]

From the transition probability Ptot, one can immediately obtain the differential cross section per recoil
energy:

dσ

dER
=

mT

2πv2
Ptot. (6)

The function DiffCrossSection[ERkeV,v] takes as arguments the recoil energy in units of keV and
the velocity of the incoming DM particle in the lab frame. It first prints out the Lagrangian being
used, and then outputs the differential cross-section dσ

dER
.

• ApproxTotalCrossSection[v]

From the differential cross-section dσ
dER

, one can also obtain the total cross-section as a function of v
by integrating over recoil energies. In general, this depends on energy thresholds and, written in closed
form, is a complicated analytic function due to the exponential damping factor e−2y in the response
functions, so for precise values it is simplest to do the energy integration numerically. However, for
approximate results we can consider the limit of small nuclear harmonic oscillator parameter b, in
which case the exponential factor e−2y can be neglected. For fixed v, the integration over ER from

zero up to the kinematic threshold ER,max = 2
µ2
T v

2

mT
can be performed analytically. The function

ApproxTotalCrossSection[v] takes as argument the velocity v of the incoming DM particle in the
lab frame and, after printing out the Lagrangian being used, outputs this approximate total cross-
section σ(v).

• EventRate[NT ,ρχ,q,ve,v0(,vesc)]

One can determine the total detector event rate (per unit time per unit detector mass per unit recoil
energy) in terms of the transition probability Ptot. One simply multiplies Ptot by the appropriate
prefactor and integrates over the halo velocity distribution, as follows:

dRD
dER

= NT
ρχmT

2πmχ

〈
1

v
Ptot(v

2, q2)

〉
(7)

Here, 〈. . .〉 indicates averaging over the halo velocity distribution. NT is the number of target nuclei
per detector mass, ρχ is the local dark matter density, mχ is the dark matter mass, and mN is the
nucleon mass. In general, the halo average integral should include a lower-bound on the magnitude of
the velocity at vmin, which is vmin = q

2µT
for elastic scattering:

〈h(q,~v)〉 ≡
∫ ∞
vmin(q)

v2dv

∫
d2Ωfv(~v + ~ve)h(q,~v). (8)

The vector ~ve is the Earth’s velocity in the galactic rest frame. While there has been much work
recently on understanding theoretical constraints on the halo distribution from N-body simulations
and from general considerations of dynamics, little is known by direct observation and there are still
large uncertainties. A very simple approximation that suffices for general considerations is to take a
Maxwell-Boltzmann distribution:

fv(~v) =
1

π3/2v3
0

e−v
2/v20 , (9)
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where v0 is roughly 220 km/s, about the rms velocity of the visible matter distribution (though N-body
simulations suggest that the dark matter distribution may be shallower, and a larger v0 may be more
appropriate). The function EventRate[q,b,ve,v0] evaluates the event rate dRD

dER
assuming this Maxwell-

Boltzmann distribution as default. A cut-off Maxwell-Boltzmann distribution is also implemented as
an option, in which case

fv(~v) ∝
(
e−v

2/v20 − ev
2
esc/v

2
0

)
Θ(v2

esc − ~v2) (10)

where vesc is the escape velocity, and the subtraction above is included to make the distribution shut
down smoothly. In this case, vesc should be included as an optional argument to EventRate; if it is not
included, it is set to a default value of 12v0 (which is essentially vesc =∞).

• SetHALO[halo]

This sets the halo distribution used. The variable halo can be set either to “MB”, in which case the
Maxwell-Boltzmann distribution is used, or “MBcutoff”, in which case the cut-off Maxwell-Boltzmann
distribution is used. It is set to “MB” by default.

• SetHelm[UseHelm]

Calling SetHelm[True] sets the structure function for the density operator MJ to be given by the Helm
form factor, rather than by the structure function obtained from the density matrix. SetHelm[False]
implements the structure function based on the density matrix, which is the default setting.

1.3 Examples

A full example for the transition probability would look like the following:

<< "/Users/me/mypackages/dmformfactor.m";

SetJChi[1/2]

SetMChi[50 GeV]

F19filename="default";

bFM="default";

SetIsotope[9, 19, bFM, F19filename]

SetCoeffsNonrel[3, 3.1, "p"]

TransitionProbability[v,qGeV]

TransitionProbability[v,qGeV,True]

To additionally calculate the event rate dRD
dER

in a Maxwell-Boltzmann halo velocity distribution, one can
call

mNucleon=0.938 GeV;

NT=1/(19 mNucleon);

Centimeter=(10^13 Femtometer);

rhoDM=0.3 GeV/Centimeter^3;

ve=232 KilometerPerSecond;

v0=220 KilometerPerSecond;

EventRate[NT,rhoDM,qGeV,ve,v0]

For a cut-off Maxwell-Boltzmann halo, an escape velocity must also be specified:

mNucleon=0.938 GeV;

NT=1/(19 mNucleon);

Centimeter=(10^13 Femtometer);
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rhoDM=0.3 GeV/Centimeter^3;

ve=232 KilometerPerSecond;

v0=220 KilometerPerSecond;

vesc=550 KilometerPerSecond;

SetHalo["MBcutoff"];

EventRate[NT,rhoDM,qGeV,ve,v0,vesc]

Finally, to get a quick estimate of the experimental bound from the 225 live day run of XENON100, one
can use the standard spin-independent isoscalar interaction for a generic isotope of xenon, taking xenon-131
for instance. Taking into account efficiencies, the total effective exposure is approximately 2500 kg days.
A relativistic operator coefficient of 2fp/GeV2 with fp = 4 · 10−9 predicts only a couple of events, and so
should be close to the upper limit of their allowed cross-section:

mNucleon=0.938 GeV;

NT=1/(131 mNucleon);

Centimeter=(10^13 Femtometer);

rhoDM=0.3 GeV/Centimeter^3;

SetMChi[150 GeV]

ve=232 KilometerPerSecond;

v0=220 KilometerPerSecond;

vesc=550 KilometerPerSecond;

SetHALO["MBcutoff"];

Xe131filename="default";

bFM="default";

SetIsotope[54, 131, bFM, Xe131filename]

SetCoeffsRel[1,2fp,0]

myrate[qGeV_]=(2500 KilogramDay) EventRate[NT,rhoDM,qGeV,ve,v0,vesc];

fp=2.4*10^(-4);

NIntegrate[myrate[qGeV] GeV*(qGeV GeV/(131 mNucleon)),{qGeV,0,10}]

The final line of output should be 2.06 for the value of the integral, which gives the predicted number of
events. The factor q

131mN
= q

mT
inside the integral is from the change of variables from dER to dq, since

ER = q2/2mT . In this example, the WIMP is sufficiently heavy that the exact low-energy threshold changes
the prediction by less than a factor of two, so to get a rough estimate we have just integrated down to zero
energy. Finally, we can look what nucleon scattering cross-section corresponds to fp = 2.4 · 10−4:

σp =
(4mNmT fp/m

2
V )2

16π(mN +mT )2
= 1.7 · 10−45cm2 (11)

which agrees to within a factor of a few with the published upper bound on σp from the XENON100
collaboration [2]. A more accurate calculation of the bound would include, among other corrections, the
exact energy thresholds in the integral over momentum transfer, an average over the year as the earth’s
velocity changes, a sum over different isotopes according to their natural abundance, and a more precise
treatment of energy-dependent efficiencies.

1.4 Density Matrix Syntax

If one calls SetIsotope[Z,A, filename] with a custom density matrix, the input density matrix file must
contain the reduced density matrix elements ΨJ,T (|α|, |β|) to be used. The in and out states |α| and |β|
should be specified by their principle quantum number N and their total angular momentum j. See [3] for
more details. The format of the file for each projection onto operators of spin J and isospin J should be as
follows:
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ONE-BODY DENSITY MATRIX · · · 2J0= 2J , · · · 2T
· · · N1

in 2j1
in N1

out 2j1
out ΨJ,T

(
{N1

in, j
1
in}; {N1

out, j
1
out}

)
...

...
...

· · · Nn
in 2jnin Nn

out 2jnout ΨJ,T ({Nn
in, j

n
in}; {Nn

out, j
n
out})

Dots “· · · ” indicate places where the code will simply ignore what appears there - the routines reading in
the input are searching for regular expressions that match the above syntax. Consequently, additional lines
in the file that are not of the above form will also be ignored. This is probably clearest to follow by seeing
an explicit example. For instance, the density matrix for 19F is:

INITIAL STATE CHARGE CONJ SYM = 0 TIME REVERSAL SYM = 0

FINAL STATE CHARGE CONJ SYM = 0 TIME REVERSAL SYM = 0

-23.88003 -23.88003

ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF = 1 2JI = 1 2TI = 1 2JO = 0 TO = , 0

NBRA 2*JBRA NKET 2*JKET VALUE

0 1 0 1 4.00000000

1 1 1 1 4.00000000

1 3 1 3 5.65685425

2 1 2 1 1.22525930

2 3 2 3 0.20366116

2 5 2 5 0.85835832

ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF = 1 2JI = 1 2TI = 1 2JO = 0 TO = , 2

NBRA 2*JBRA NKET 2*JKET VALUE

2 1 2 1 0.36984837

2 3 2 3 0.04794379

2 5 2 5 0.32467225

ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF = 1 2JI = 1 2TI = 1 2JO = 2 TO = , 0

NBRA 2*JBRA NKET 2*JKET VALUE

2 1 2 1 0.44514263

2 3 2 1 -0.01197751

2 1 2 3 0.01197751

2 3 2 3 -0.05428837

2 5 2 3 -0.12172578

2 3 2 5 0.12172578

2 5 2 5 0.12280637

ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF = 1 2JI = 1 2TI = 1 2JO = 2 TO = , 2

NBRA 2*JBRA NKET 2*JKET VALUE

2 1 2 1 -0.40780345

2 3 2 1 -0.01278520

2 1 2 3 0.01278520

2 3 2 3 0.01209672

2 5 2 3 0.10547489

2 3 2 5 -0.10547489

2 5 2 5 -0.24110544

Example density matrix file shown for 19F. The density matrices for 19F, 23Na, 70Ge, 72Ge,73Ge,74Ge,76Ge,
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127I, 128Xe,129Xe,130Xe,131Xe,132Xe,134Xe, and 136Xe are already built into the program and no external file
is needed.
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