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Abstract—This paper explores demand response techniques
for managing mobile, distributed loads with on-board elec-
trochemical energy storage over a plug-level sensing/actuating
wireless mesh network. We target laptops and construct a power
consumption and battery charging model from measurements
obtained across a variety of such devices. We then build sim-
ulations of charging patterns using the most general cases we
observed. Our first simulation study explores a classic demand
response scenario in which a large number of loads participate
in a typical pre-scheduled demand response (DR) event. We
show that we can achieve load curtailments in the range of 30-
90% of aggregate baseline load as a function of the duration
of a DR event by managing the charging schedules of laptops
that randomly enter and leave the control jurisdiction of a DR
event participant. In a second simulation study, we investigate a
continuous demand response scenario in which charging schedules
respond to a fluctuating renewable electricity supply (e.g. wind
or solar) and show that we can reduce grid dependence by 26.8-
33.8% compared to oblivious charging.

I. INTRODUCTION AND BACKGROUND

The motivation for creating demand response (DR) solutions
for buildings at the plug-load level comes at a moment when
growing interest in building energy science research [1], [2]
coincides with increasing maturity in load-monitoring wireless
sensor network deployments [3]. Research in built environ-
ment sciences has been making significant strides in energy
efficiency as well as in DR. In some cases, whole buildings
have been transformed into state-of-the art laboratories for
experimenting DR strategies and for collecting submetered
energy usage data from building-level to plug-level resolution
[4]. Progress in large-scale, long-term wireless sensor/actuator
networks makes it possible to monitor and manage plug loads
in very dynamic building environments [5], [6]. Moreover,
microgrid projects around the world in remote areas present
emerging challenges to fulfilling the energy needs of whole
communities moving towards energy independence or of those
who depend almost entirely on intermittent generation [7], [8]
as their only source of electricity.

Demand response presents opportunities to explore novel
load management strategies as smart grid visionaries position

themselves for new market segments. We investigate laptops
in this paper because of their mobile energy storage features
and because of their ubiquity in daily life. Energy storage
gives them unique load deferment properties; but since laptop
battery charging is random and mobile (it is hard to predict
when and where someone will charge a laptop from an outlet),
managing several of these devices as one aggregate load from
a DR perspective poses unique challenges.

The work we present herein has many parallels with the
electric vehicle (EV) charging problem. As utilities and grid
operators anticipate more EVs hitting markets, the use case
of DR for laptops serves as a proxy for the looming question
of how to manage EV charging schedules in a DR setting.
We build on the existing literature on EV charging [11],
[12], [13] and address some of the burgeoning challenges
facing consumer groups who are becoming empowered and
interconnected through new energy production technologies.

II. LAPTOP CHARGING MODEL

Our models fundamentally rely on understanding the power
consumption profiles of laptops as a function of their capacities
or states of charge (SoC). It is already well known that as
the charge in a lithium-ion battery is depleted, the resistance
within the battery increases and therefore the amount of power
delivered to a battery in a low SoC is higher than the amount
of power delivered to a battery in a high SoC. It is also
well known that the charging dynamics and capacity limits
of rechargeable batteries vary over their lifetimes depending
on the nature of their charge and discharge cycles. Without
even introducing vendor-specific laptop designs, these simple
facts about laptop batteries alone imply that our problem cuts
across a great deal of heterogeneity which makes this problem
particularly interesting from a characterization standpoint.

In general, we can classify laptops as either having or
lacking charge control mechanisms. These built-in charge con-
trollers, or lack thereof, affect the individual power consump-
tion patterns aggregated over each subcomponent of the said
laptop. The power traces in Figure 1 reveal this classification



Fig. 1. On the left we observe one full charging cycle of an Apple MacBook 2006, and on the right we observe a Dell Latitude P1L. The solid blue curve
in each graph represents the total power going into each laptop and their batteries. The dashed red curve represents the power delivered to just the laptops,
and the circle-dashed black curve is the power delivered to their batteries alone; and thus, the sum of the circle-dashed black and dashed red curves equal the
solid blue curve in each figure. The triangle green curves depict the battery capacity of each laptop varying over time as they charge from 0% to 100%.

empirically. The graph on the left (Figure 1(a)) depicts power
and capacity traces over one full charging cycle of a laptop
possessing a charge controller that produces a decreasing stair-
step power trace. In Figure 1(b), we depict a charging cycle
of a laptop that lacks such a controller, and so we observe,
rather, an exponentially decaying power trace profile typical
of lithium-ion batteries.

Modeling the total power consumption of laptops with
all their various interconnected subcomponents is far more
cumbersome than modeling just a battery. The dynamic nature
of operating systems, software, and means that the electronic
subcomponents on which they run also behave dynamically
(as demonstrated by the seemingly stochastic high-frequency
variations of the above power traces), and thus the complexity
of managing the total power consumption of a large number
of these devices is compounded as we include for every laptop
a load management policy for each of their subcomponents in
addition to their batteries.

Fig. 2. Coincident subcomponent power disaggregation of an Apple
MacBook 2006.

In order to understand how each measurable subcomponent
contributes to the electrical power consumption of the laptop

as a whole, we use the same laptop that produced the results
in Figure 1(a) to estimate which subcomponents contribute to
the bulk of this power consumption. Although some software
tools [9], [10] provide insights into how application-level
activity affects power consumption of software programs, we
use empirical methods that reveal how low-level hardware
activity, as opposed to application-level activity, affects power
consumption. We disaggregate the peak power consumption of
the subcomponents in Figure 2 using the same measurement
techniques used to isolate the power delivered to a charging
MacBook lithium-ion battery. For components such as the
network interface card (NIC), LCD screen, and built-in cooling
fan, we throttle parameters – NIC bandwidth caps, screen
brightness, and fan speed, respectively – to get a clear sense of
how much power is delivered to these components from their
minimum to maximum operation thresholds. The subcompo-
nent disaggregation figure shows that power delivered to this
particular laptop battery in low-capacity states accounts for up
to 56.1% of total laptop power consumption during charging.

Given the above considerations and in order to reduce
the complexity of the problem, we tailor our algorithms
around developing load management policies that manage
the charging schedules of only laptop batteries since they
account for the bulk of power delivered to laptops when
drawing power from an outlet. More importantly, knowing the
functional relationship revealed in Figure 1 between the power
consumption of the laptop and its battery capacity state allows
us to project in advance how much power a laptop is likely to
consume given the SoC of its battery even if it is not presently
drawing power from an outlet.

III. PROBLEM FORMULATION

We investigate two model-predictive control problems and
develop algorithms which attempt to solve each of these
distinct but related problems. In each of the problems, we
simulate the scenario of laptops entering and leaving a build-
ing. The first control problem, which we call the classic



demand response problem, involves reducing absolute power
consumption from a baseline during a demand response event.
A demand response event (DR event) is a period of time during
which the available supply is below the reserve margins set
forth by a balancing authority, and so the total load on the grid
could exceed supply if action is not taken to curtail demand.
With respect to our first scenario, we develop a scheduling
algorithm whose objective is to minimize the aggregate load
of laptops randomly entering and leaving a building that has
been issued a DR event in order to reduce the building’s overall
peak load during the event.

The second control problem, which we call the continuous
demand response problem, involves fitting a random load with
a random supply over a continuous rather than discrete period
of time. Just as in the previous scenario, the random load
is the power consumption of laptops entering and leaving a
building. But rather than being issued DR events as in the
first scenario, this building comes locally equipped with a
variable energy resource (e.g. rooftop solar). The solution to
this problem relies on techniques that fit load to supply in a
manner that optimizes the use of this variable resources both
in times of scarcity and excess by minimizing reliance on
external power.

Irrespective of either control problem, we wish to have an
accurate model of the load we are simulating in each demand
response scenario. To achieve this, in addition to building an
accurate battery model, we also construct a weighted Poisson
arrival and departure process to simulate laptops entering
and leaving our control area based on building occupancy
inferences from real load profile data.

In both DR scenarios we begin with the initial set S0
of N laptops at t=0 on the domain [0, T]. For each laptop
`1, .., `i, ..., `N ∈ S0 we seed their capacity traces so they
are randomly chosen to either have one or the other charge
profile observed in Figure 1 to introduce some reasonable
load heterogeneity in our model and parameterize the battery
capacity Xi of the ith laptop as

Xi(t+ 1) = Xi(t) + uiCi(Xi(t))δt+ (1− ui)Diδt (1)

where ui ∈ {1, 0} represents whether the ith laptop battery
is charging (ui = 1) at a rate Ci(Xi(t)) (e.g. the derivative of
either of the capacity traces from Figure 1) or discharging
(ui = 0) at a rate Di as it transitions from t to t + 1
with a step size of δt. Unlike the charge rate which is a
function of the capacity of the battery, we observe (also from
empirical measurements) that the discharge rate of laptop
batteries is mostly constant in both high and idle activity states.
Furthermore, each laptop in S0 has the initial power traces

u1P1(X1), ..., uiPi(Xi), ..., uNPN (XN ).

In our models, we initialize the capacity states, and hence the
power states, of each laptop so that they are uniformly random
on [0, Xi,max].

We then introduce a weighted Poisson arrival and departure
process to simulate laptops entering and leaving the control

area (or zone) with arrival and departure rates defined as

λarrival = wtλ

λdeparture = (1− wt)λ
(2)

for a fixed λ whereby wt ∼ Lbuilding and where Lbuilding is
the inferred occupancy of the building based on its load profile
which roughly provides an estimate of laptops in the zone. In
this way, as building occupancy increases, the rate of laptops
arriving increases, and the rate of laptops leaving decreases.
And conversely, as the occupancy decreases, the rate of laptops
arriving decreases, and the rate of laptops leaving increases.
So then the set of laptops in subsequent time steps increases
or decreases according

St+1 = St + arrivalst+1 − departurest+1, (3)

and thus over each time step on the domain, the total number of
laptops in each set St varies across the chain of step transitions

S0 → · · · → St → · · · → ST

as laptops enter and leave the zone in this aleatoric fashion.

A. Classic DR Model

In the classic DR problem, the goal is to reduce peak
demand by some percentage of baseline power consumption
during a scheduled DR event that lasts for some known dura-
tion. We call this percent reduction the curtailment coefficient
of the DR event which occurs on the interval [t + k, T −m]
for t + k < T −m. In real world grid operations, the event
typically lasts between 3-6 hours.

For this scenario, our model tries to find a combination of
laptops `1′ , ..., `k′ ∈ St at each time step t that minimizes
the aggregate peak power consumption over the entire event
duration. We construct a time-varying bounded knapsack algo-
rithm to accomplish this whereby for each t ∈ [t+ k, T −m]
we try to find a subset st ⊆ St that optimizes the curtailment
coefficient ct thereby minimizing the peak power consumption
in the interval.

Since laptop arrivals and departures are random, we can,
at best, only try to predict the curtailed load during the
demand response event. In real implementations, we would
take historical power data of a building with densely deployed
networks of laptops paired with outlet sensor-actuators and
then perform machine learning operations on the data to
extract the patterns needed to make baseline and curtailment
load projections. For our purposes, it is sufficient to simulate
arrival and departure rates described in (2) to produce load
projections. We make a curtailed load projection

∑st
`i∈st

uiPi

on [t + k, T −m] with ui ∈ ~ut where ~ut is a vector whose
elements correspond to whether the ith laptop is charging or
not. The elements of ~ut are assigned either 0 or 1 (in real
deployments, entries of ~ut correspond to the actuation state
of sensor/actuator nodes) by choosing the optimal ct ∈ (0, 1]
as t : t+ k → T −m by carrying out the following knapsack



Fig. 3. Simulation run of initially 50 laptops in 5-minute time steps over a total of 5 hours interrupted by a 3-hour DR event (green shade) that begins at
t = 60min and ends at t = 240min. The dashed red line in the slack figure represents the sum of acceptance thresholds of the initial 50 laptops. As the total
slack of the load approaches this aggregate acceptance threshold, the deferrability of the entire system approaches zero.

formulation:

objective : maximize ct ∈ (0, 1]

minimize max

{
st∑

`i∈st

uiPi

}
such that

st∑
`i∈st

uiPi ≤ (1− ct)
St∑

`i∈St

Pi (4)

Unfortunately, the search space for assigning elements in ~ut

with this algorithm is very large. To reduce this space, we
introduce a method of prioritizing laptops weighted against
their power and capacity states which we call a z-score defined
as

zi(Xi(t), Pi(t)) = α

(
1− Pi(t)

Pi,max

)

+ βexp

(
− κ Xi(t)

Xi,max

)
,

(5)

where α, β, and κ are chosen so that the Xi term dominates
zi for small values of Xi(t) (i.e. low battery capacity states).
In this equation, Pi,max and Xi,max are the largest observed
values of laptop `i. The z-score represents a function that
increases as the SoC of a laptop battery diminishes or as the
total power draw of the laptop decreases. The higher the z-
score, the higher the laptop’s charging priority in the scheduler.
But since laptops in low capacity states will also likely draw
more power than laptops in higher capacity states, we pick α
and β so that α < β in order to weight their their capacities
over their power consumption levels (κ must also be positive to
ensure that z is monotonically decreasing on [0, 1]). Therefore,
the laptop in the lowest capacity state and lowest consumption
level has the highest charging priority, and the laptop with the
highest capacity and highest consumption level has the lowest
priority.

To shrink the search space, we sort laptops in St according
to their z-scores in descending order. We then iterate over this
ordered set and pick the `i’s that satisfy the above constraint.
We summarize the sort-and-assign procedure as follows:

1) Sort (`1, ..., `N ) ∈ St from zmax → zmin which yields
an ordered set (`1′ , ..., `N ′ ) ∈ S ′t

2) Pick (`1′ , ..., `k′ ) = st ⊆ S ′t that solves the time-
varying bounded knapsack problem in (4) by assigning
the corresponding elements of ~ut to their appropriate
boolean values so that each laptop with ui = 1 is
allowed to charge (and each with ui = 0 is disallowed
from charging) in St+1

Last, we may prefer a policy that does not allow any laptop
battery to die. If this is the case, as in our model, we introduce
a capacity acceptance margin Xi,accept whereby any laptop
`i that satisfies Xi(t) ≤ Xi,accept is allowed to charge. By
introducing an acceptance threshold, we would not want to
have laptops marginally break above Xi,accept immediately
after time δt of charging only to fall below Xi,accept again
after discharging for δt in the next time step. To mitigate
this, we also introduce a rejection threshold Xi,reject that will
only disallow laptops from charging once they have reached
Xi(t) ≥ Xi,reject. This will prevent oscillations across capac-
ity thresholds. Alternatively, we might have z-score acceptance
and rejection thresholds derived from Xi,accept and Xi,reject

so that we can use the same sort-and-assign procedure as
above. We implement the latter policy in both the classic and
continuous DR control problems in simulations we run.

We show an example of a simulation run of this model in
Figure 3 that achieves a more than 60% average reduction of
load from the baseline during a 3-hour DR event. We quantify
the deferrability of the whole cluster of laptops as a single
load during the event by tracking the energy slack [6] of the
system under control in the bottom-right chart of the figure.



B. Continuous DR Model

In the continuous DR scenario we try to fit a time-varying
random load to a random renewable supply. Unlike the classic
DR problem where the goal is to reduce peak power con-
sumption over the duration of a DR event, the continuous
scenario involves matching load with supply in times of excess
and scarcity over the entire domain [0, T ] during which some
intermittent resource is generating electricity albeit variably.
The classic DR model assumes that all power delivered to
each load originates from the grid. However, in the continuous
model we assume that the intermittent supply is at the site of
consumption with the grid available as an external resource.
The goal, then, is to minimize dependence on any external or
supplemental power supply.

Fig. 4. Simulation run of continuous DR over two days in 15 minute time
steps.

We construct the continuous model using the same tech-
niques as the classic model with a nearly identical problem
formulation. In this time-varying bounded knapsack algorithm,
there exists only one objective function, namely, the absolute
error of aggregate load and total supply over each time step
t ∈ [0, T ] under the constraint that load does not exceed
supply. The formal problem statement is

objective : minimize
∣∣∣ st∑
`i∈st

uiPi − P̂supply(t)
∣∣∣

such that

st∑
`i∈st

uiPi ≤ P̂supply(t) (6)

where ui ∈ ~ut and P̂supply(t) is the predicted supply of power
at time t. In this way, part of the performance of this supply-
following algorithm depends on the accuracy of the predictor.
We quantify the error between load and supply as the grid
dependence which is defined on a real-valued scale of [0,1]
with 0 being no dependence on external power whatsoever and
1 being total dependence.

The continuous scenario employs the same sort-and-assign
procedure to populate the entries of ~ut by using the z-score
of each laptop to prioritize them for charge scheduling in each
time step but with only a single objective function to fulfill as

opposed to two objective functions in the first scenario. When
no renewable power supply is available (e.g. night time in the
case of solar), the z-score acceptance and rejection thresholds
are put into effect to ensure that no laptop dies at the expense
of grid independence.

IV. RESULTS FROM SIMULATION STUDIES

We use the same z-score function (with α = 0.25, β = 0.75,
and κ = 3.0) to prioritize laptop charging schedules for both
the classic and continuous DR simulations. A key metric we
test in the classic DR scenario is how well our curtailment
algorithm performs over varying DR event durations since the
available aggregate energy slack of our loads towards the end
of every DR event approaches zero as the battery capacity
of each laptop depletes (recall Figure 3). Less slack implies
less deferrability and therefore less curtailment feasibility. We
summarize our trials in Figure 5 in order to demonstrate this
relationship.

Fig. 5. Depth of curtailment as percent of baseline load with respect to DR
event duration.

To produce the results above, we executed a total of 330
simulation runs of the classic DR model in three separate trials.
We adjusted the length of the DR event from 1 to 6 hours in
half-hour increments and did this 10 times in each trial for
a total of 110 runs per trial. In each trial we picked large
values for N0 (N0 = 30, 40, and 50 for trials 1, 2, and 3,
respectively) since DR events typically occur in times of high
demand. And so each curve in Figure 5 is the mean curtailment
ratio over 110 runs in each of these trials. We see that the
depth of curtailment over varying DR event durations provides
a proxy for quantifying the deferrability of the loads we are
modeling without directly knowing the energy slack of these
loads. Therefore, the deferrability of the system in this scenario
varies indirectly with the length of a DR event.

We then assess the performance of our algorithm tailored
to the continuous DR scenario using public solar PV data
from rooftops across 12 locations around the United States
for 5 days of summer (7/8/2010-7/12/2010) and 5 days of
winter (12/19/2010-12/23/2010) for a total of 120 day-location
pairs of solar power traces [14]. Each day-location corresponds
to a unique simulation run, all of which are then used to



build performance trials based on different supply prediction
techniques.

In these trials we wish to determine how much reliance
on external power supply (perhaps either in the form of
utility-provided electricity, on-site energy storage, or backup
generation) is needed to buffer demand as the renewable
supply fluctuates. To quantify this fluctuation, we invoke the
notion of scaled incremental mean volatility (scaled IMV) [15]
which is simply the absolute difference between the moving
average of the supply signal and the actual observed supply,
averaged over the time domain of interest and scaled according
the ratio of total energy demanded over total energy supplied
in that domain. The scaled IMV gives us insights into the
high-frequency fluctuations of our supply signal which could
be the result of sporadic cloud cover (in the case of solar)
or microbursts (in the case of wind) without bias to energy
imbalances in supply and demand.

Fig. 6. Semilogarithmic scatter plot of grid dependence as a function of the
scaled IMV of the supply signal for a specific day (i.e. simulation run) of
all three supply prediction trials compared to the unmanaged base case trial
without any charge scheduling algorithms applied.

In Figure 6 we present the results of four distinct trials
corresponding to one unmanaged base case scenario in which
our algorithm is not applied, and three applied scenarios
employing three distinct supply prediction models for per-
formance comparison. The base case (solid black) assumes
loads obliviously consume power regardless of the renewable
supply, in which case we do not apply any load control. In
one algorithm-applied trial we use a persistence model (dotted
red) in which we assume that the power supply in the current
time step will be the same in the next time step; in the next
trial we use a 1-hour moving window average (dashed green)
of historical data to predict supply in the next time step; and
in the final trial we use an oracle (dash-dot blue) in which
we know exactly how much solar will be available in every
time step. The average base case grid dependence of oblivious
charging is 0.561. The average grid dependencies over each
algorithm trial of 0.411, 0.380, and 0.371, respectively, reflect
a 26.8-33.8% improvement to the base case when our sort-
and-assign knapsack algorithms are applied to laptop charging
schedules.

V. CONCLUSION

These results demonstrate that it is possible to leverage sen-
sor/actuator networks to manage in real-time a large number
of distributed battery-powered mobile devices for a classic DR
scenario in a way that could meet the curtailment objectives
of a demand response program participant, or for a continuous
DR scenario that optimizes available variable energy resources
like wind or solar by reducing dependence on an external
power grid. By examining a single category of devices ubiq-
uitous and dispersed within modern buildings and elsewhere,
we develop strategies that treat all of these devices as one
load in the context of an energy management system (EMS)
and anticipate similar DR approaches to the plug-in electric
and hybrid vehicle problem. In a real-world EMS, our on-
line algorithm could work in conjunction with a whole suite
of load management controls and algorithms for buildings or
microgrids.
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