Section 3.1

<u>Derivative of a Constant Function</u>: $\frac{d}{dx}(c) = 0$.

Exercise 1. Find f'(x) for f(x) = 4.

Power Rule: Let n be an integer.

If
$$f(x) = x^n$$
, then $f'(x) = nx^{n-1}$,

provided $x \neq 0$ when $n \leq 0$.

Exercise 2. Find f'(x) for $f(x) = x^5$.

Power Rule (General Version): If n is any real number, then

$$\frac{d}{dx}(x^n) = nx^{n-1}.$$

Exercise 3. Find f'(x) for $f(x) = x^{2/3}$.

Theorem

- (i) $D_x c = 0$
- (ii) $D_x(mx+b) = m$
- (iii) $D_x(x^n) = nx^{n-1}$
- (iv) $D_x[cf(x)] = cD_xf(x)$
- (v) $D_x[f(x) + g(x)] = D_x f(x) + D_x g(x)$
- (vi) $D_x[f(x) g(x)] = D_x f(x) D_x g(x)$

Exercise 4. If $f(x) = 2x^4 - 5x^3 + x^2 - 4x + 1$, find f'(x). (Swok Sec 3.3 Ex 1)

Class Exercise 1. Differentiate the function. (#8-14 even)

- (a) $f(t) = 1.4t^5 2.5t^2 + 6.7$ (b) h(x) = (x 2)(2x + 3) (c) $B(y) = cy^{-6}$ (d) $y = x^{5/3} x^{2/3}$

Exercise 5. Find an equation of the tangent line to the graph of $f(x) = 6\sqrt[3]{x^2} - \frac{4}{\sqrt{x}}$ at P(1,2). (Swok Sec 3.3 Ex 2)

Class Exercise 2. Find the equation of the tangent line to the graph of $f(x) = 2x^3 - x^2 + 2$ at the point (1,3).

Definition of the number e: e is the number such that $\lim_{h\to 0} \frac{e^h-1}{h} = 1$.

Definition of the Natural Exponential Function: $\frac{d}{dx}(e^x) = e^x$.

Exercise 6. If $f(x) = 2e^x$, find f'(x).

Class Exercise 3. Differentiate the function. (#16-28 even, 32)

(a)
$$h(t) = \sqrt[4]{t} - 4e^t$$
 (b) $y = \sqrt{x}(x-1)$ (c) $S(R) = 4\pi R^2$ (d) $y = \frac{\sqrt{x} + x}{x^2}$

(a)
$$h(t) = \sqrt[4]{t} - 4e^t$$
 (b) $y = \sqrt{x}(x-1)$ (c) $S(R) = 4\pi R^2$ (d) $y = \frac{\sqrt{x} + x}{x^2}$ (e) $g(u) = \sqrt{2}u + \sqrt{3}u$ (f) $k(r) = e^r + r^e$ (g) $y = ae^v + \frac{b}{v} + \frac{c}{v^2}$ (h) $y = e^{x+1} + 1$

1

Homework: 3-19 (every 4th), 21-33 (every 4th), 37, 39