The Relaxation Pathways of CdSe Nanoparticles Monitored with Femtosecond Time-Resolution from the Visible to the IR: Assignment of the Transient Features by Carrier Quenching

Clemens Burda,*† Stephan Link, Mona Mohamed, and Mostafa El-Sayed*
Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400

Received: June 27, 2001; In Final Form: October 4, 2001

The relaxation dynamics of photoexcited CdSe nanoparticles (NPs) were studied with femtosecond pump—
probe spectroscopy in the spectral range from 450 nm to 5 μm. Thus, the intraband relaxation of the electron and
the hole were monitored with femtosecond time resolution. The transition from delocalized electronic to
localized defect states and the slower relaxation through the trapping sites (trap hopping mechanism) were
followed by time-resolved emission on time scales from picoseconds to milliseconds in the spectral range
from the visible into the mid-infrared. The spectral dynamics in the visible, near-infrared (NIR), and infrared
(IR) range give a mechanistic picture about the relaxation pathway of the excited charge carriers in CdSe
NPs. In addition, by using electron and hole quenchers to the photoexcited nanoparticles, we could assign the
observed dynamics to the electron or the hole. In the visible range, bleach features (negative signals in the
differential transient absorption measurements) were observed at early delay times with time components of
2 ps, 30 ps, and a long-lived component of ~200 ps. Based on the quenching experiments, the bleach could
be assigned to contributions from the electron and the hole. In the NIR and IR spectral range, the transient
signal for short delay times (<1 ns) were positive (transient absorption). A decay time of 1.2 ps was found
for the transient absorption observed in the NIR. With the carrier removal technique, it could be shown that
the NIR signal is mainly due to hole transitions. The IR signal with lifetimes of 2 ps, 30 ps, and a long
component of ~200 ps compares directly to the decay times observed in the visible spectral range. It therefore
is also composed of contributions from electron and hole. Photoluminescence is observed in the visible range
at 570 nm (near band edge recombination), in the NIR at 1000 nm (deep-trap emission), and in the IR region
at 4.8 μm (deeper-trap emission) with lifetimes of 43 ns, 250 ns, and 1 μs, respectively. The lifetimes of the
emission increased for longer monitoring wavelengths, suggesting that for the investigated sample, the carriers
relax from the band edge into shallow traps and from there continue stepwise relaxation into lower energy
sites (trap hopping mechanism).

Introduction

The investigation of II−VI semiconductor nanoparticles (NPs) is largely focused on their optical properties. This is certainly
due to the fact that the most striking features of quantum confinement are easily observed by their optical properties,
which change as a function of the particle size. Since the electronic wave function experiences quantum confinement for
small particle sizes on the nanometer-size scale, these nanoparticles are often discussed as quantum dots. The absorption
band and the photoluminescence of II−VI semiconductors shift to longer wavelength with increasing particle size in the range
from clusters of tens of atoms with <1 nm diameter up to larger particles of several thousand atoms with tens of nanometers
diameter. The size dependence of the optical properties is of wide interest for many potential applications and much progress
has been achieved in the preparation and investigation of QDs. Nevertheless, the carrier dynamics of the excited states in semiconductor NPs are still being actively investigated.

For bulk II−VI semiconductors, due to the efficient coupling of the dynamics of the charge carriers with the polarity of the
lattice, the relaxation rates are very fast and the conduction band edge is rapidly populated. The high density of electronic and
phonon states leads to the high nonradiative relaxation rates observed for bulk materials. For quantum dots the situation
changes dramatically. First, the electronic energy levels are discretized with an energy spacing, which exceeds by an order of
magnitude the phonon energies. This leads theoretically to a limited relaxation rate, called the “phonon bottleneck”. Second, the portion of the atoms, which are influenced by surface defects, is drastically increased. For the smallest clusters, essentially every atom can be regarded as being a surface atom. Surface imperfections lead to additional competing relaxation pathways by trapping into surface defect sites and can accelerate the depopulation of the band edge. Third, the increased coupling of electron and hole wave functions in quantum dots could further increase the relaxation rate. The overall effect of changing NP properties on the relaxation dynamics is therefore still difficult to predict and experiments are needed to collect facts, which help to describe the complex decay pathway in quantum dots.

Klimov et al. measured the relaxation times in the NIR range up to 2 μm and found that in this spectral range the
dynamics is mainly due to the relaxing hole. On the other hand, the energy spacing of hole states is actually expected to be in
the hundreds of meV and therefore rather in the THz regime.
than in the NIR. Moreover, Guyot-Sionnest reported in the mid-IR range. These findings led us to use the method of selective electron and hole removal in combination with femtosecond time-resolved spectroscopy in order to yield further experimental evidence for the assignments of the NIR and IR transients.

In this paper we describe the femtosecond relaxation dynamics over a wide energy range from 400 nm up to 5 μm. Lifetime components up to milliseconds were recorded in photoluminescence experiments. These measurements were possible due to a new setup, which allows now in parallel the measurement of femtosecond transients over the whole spectral range from UV to IR.

Experimental Section

CdSe nanoparticles were synthesized according to the procedure developed by Murray et al. The chemicals were purchased from Alfa and all procedural steps were conducted under an argon atmosphere. The solutions remain stable for months. The nanoparticles were isolated by adding 100 mL of methanol to the cooled reaction solution followed by centrifugation. Repeated methanol washings followed by centrifugation removed excess TOP and achieved a CdSe nanoparticle powder, which was very soluble in toluene. The size distribution resulting from the above procedure was very narrow with a standard deviation of 10% (300 particles counted) and thus the particles were used without further size selective precipitation. Preparation of the CdSe NP benzocomposite composites were carried out by adding an excess of 1,4-benzoquinone to the CdSe NP toluene solution and sonicating for 10 s. Similarly, the CdSe NP 4-aminothiophenol was prepared by adding the phenol compound into the CdSe colloidal solution and stirring the solution for several hours. During these procedures the samples were always kept under argon.

Our femtosecond setup described earlier was extended to probe parallel to the visible range also in the NIR range up to 2.5 μm and in the IR range up to 10 μm. An amplified Ti:Sapphire laser system (Clark MXR CPA 1000) was pumped by a Diode Pumped Solid State Laser (Coherent Verdi) with 3 W pump power. This system produced laser pulses of 100 fs duration (HWFM) and an energy of 900 μJ at 800 nm. The repetition rate was 1 kHz. A small part (4%) of the fundamental was used to generate a white light continuum in a 2 mm sapphire plate. The remaining laser light was used to pump a second harmonic generator (SHG) to produce 400 nm excitation pulses. An optical parametric amplifier (OPA) was used to generate tunable probe wavelengths outside the continuum range. As probe pulse we used either the idler wave of the OPA in the range of 1700 nm to 2500 nm or the frequency difference for probing at longer wavelengths up to 10 μm. The probe light was then split into a reference and a signal beam. After passing the monochromator (Acton Research) both beams were detected by two IR-sensitive photodiodes (EG&G). The kinetic traces were obtained using a sample-and-hold unit and a lock-in-amplifier (Stanford Research Systems). The lowest measurable optical densities (OD) changes were 1 mOD. For spectral measurements a LN cooled CCD camera (Princeton Instruments) attached to a spectrograph (Acton Research) was used. The group velocity dispersion of the white light continuum was compensated.

Emission spectra were recorded on a PTI QuantaMaster QM1 and emission lifetimes with the PTI TimeMaster attachment, using a gated photomultiplier as detector and a PTI GL-3300 Nitrogen Laser as excitation source. The near-infrared emission was detected with a Nicolet Magna 860 Raman spectrometer after excitation with a Coherent argon ion laser (Innova 300). The NIR emission lifetime was determined using a fast, liquid nitrogen cooled NIR photomultiplier from Hamamatsu (R5509-72). The mid-infrared emission was monitored with the Nicolet Magna 860 IR spectrometer. The IR emission lifetimes were recorded with the step-scan attachment unit by Nicolet.

Results

The colloidal CdSe nanoparticles (NPs) used in these experiments were characterized by UV absorption spectroscopy as shown in Figure 1. The absorption peak of the lowest allowed 1s1s exciton transition was located at 560 nm for these particles. At this wavelength, the bleach dynamics of the lowest allowed excitonic transition was investigated. Probe wavelengths of 2.0 μm and 4.8 μm were typically used to investigate intraband transitions of the NIR and IR regions. The photoluminescence of the CdSe sample shows a maximum at 580 nm. The shoulder at 585 nm indicates that in addition to band gap recombination a large portion of the excited carriers is trapped in various trapping sites. The dynamics of the band edge population and the following trapping processes are the objectives of the current study.

Femtosecond Transient Absorption. In our pump–probe experiment we measure the differential absorption at different delay times after excitation at 400 nm minus the ground state spectrum before excitation. This leads temporally to saturation of the ground-state transitions and therefore to a transient bleach at 560 nm. On the other hand, in the near-infrared (NIR) and in the infrared (IR) ranges, which are transparent in the ground state, the transient signals are positive. The femtosecond time-resolved pump–probe measurements were carried out in all three spectral ranges of the visible, the NIR, and the IR range. In Figure 2 three transient signals are presented which were measured in the different spectral regions after identical excitation conditions after excitation with 400 nm pulses of 0.8 μJ energy. It is shown that the bleaching at 560 nm and the transient absorption at 4800 nm are very similar in the dynamic response. Both traces were fitted with time constants of 2 and 30 ps. In contrast, the NIR signal decays much faster (1.2 ps) and is therefore assigned to a different process. Therefore we inves-
The dynamics extends to bleach due to the excited-state bleach (CT) complex. Since the lifetime of the CT state is 2.7 ps, the excited-state lifetime of the CdSe–BQ conjugate is actually drastically shorter than the one of CdSe NP themselves. BQ removes the excited electron very efficiently, and acts like an additional electron trap. It is important to note, that after depopulating the conduction band edge and formation of the CT state, the spectral bleach at 560 nm is still observed in the time frame of 200 fs to 2.7 ps, until the CT state decays. Therefore, the photoexcitation of an electron and its removal from the band edges cause a bleaching. When lower concentrations of BQ were used, incomplete quenching was observed. This could be due to incomplete conjugation of the NPs with BQ. Work on how the relaxation dynamics of the NP conjugates depends on the NP size and quencher concentration is currently in progress.

The addition of electron donor 4-amino-thiophenol (Figure 3a, diamonds) leads to a rapid neutralization of the photogenerated hole in the valence band. The electron donor 4-amino-thiophenol (TP) can therefore be considered to be a hole quencher or hole trap. Furthermore, the addition of TP removes the electron traps on the NP surface. The excited state lifetime of CdSe NPs is considerably longer when TP was added and the bleach lifetime (>1 ns) exceeds the time window of the femtosecond experiment. This finding was explained by the reduced electron–hole overlap and by the fact that the TP would reduce the amount of electron surface traps. The dynamic response, presented in Figure 3a, indicates that the electron, populating the conduction band edge, contributes to the transient bleach. But also the removal of an electron, which leaves back a p-doped NP, shows that the hole in the valence band also causes a part of the overall bleach in photoexcited samples. A quantitative estimation of each contribution is currently in progress.

Near-Infrared Femtosecond Transient Absorption. Excitation with 400 nm femtosecond pulses and monitoring in the NIR spectral range at 1960 nm results in a short-lived transient absorption with a 1.2 ps lifetime. Klimov et al. reported a 1.5 ps dynamics in this spectral range and assigned it to the relaxation of the hole. On the other hand, Guyot-Sionnest reported intraband electron transitions in the IR range from 2.5 to 5 μm. Therefore it was debated whether the features observed at even shorter wavelength (1900–2000 nm) could be due to the hole transitions. With the technique of selective removal of the excited electrons and holes we found additional experimental evidence that it is indeed the hole which gives
rise to the observed features at 1960 nm and that the previous findings do not contradict each other.

As seen in Figure 4, the transient observed for the CdSe NP solution without added quenchers (squares) at 1960 nm is indeed very short-lived and could be fitted monoexponentially with a 1.2 ps decay time. The addition of electron quencher BQ (circles) did not reduce the lifetime of the NIR transient absorption but the intensity of the transient was diminished to about 60% of the original transient intensity. In contrast, the addition of TP hole quencher (diamonds) reduces the lifetime of the transient absorption from 1.2 ps to 850 fs and the intensity is reduced by 80% of its original value. These results suggest that the NIR transient feature is mainly due to the hole, in accordance with the previous assignment by Klimov.34,35 Furthermore, based on the accelerated transient decay and $k_{\text{relc}} = \Sigma k_i$ (the sum of the individual relaxation processes), it can be estimated that the hole transfer to TP (trapping) is on the order of $k_{\text{tp}} \approx 3 \times 10^{11}$ s$^{-1}$. This requires a lifetime of the hole in the valence band of 3 ps or longer. Indeed, the quenching experiments with BQ already suggested that the hole lifetime is >2.7 ps. Furthermore, the hole trapping rate is reasonable, considered that the electron-transfer rate33 to BQ is $k_{\text{eq}} \approx 5 \times 10^{12}$ s$^{-1}$ and the hole has an effective mass which is several times larger than the effective electron mass for CdSe ($m_e/m_c \approx 6$).

Infrared Femtosecond Transient Absorption. On the basis of theory and NP size dependence of the transitions, the transient absorption in the IR wavelength range was previously assigned to the electronic intraband transition $1S_e \rightarrow 1P_e$.55,56 This transition was calculated by Guyot-Sionnest for different particle sizes including the Coulomb interactions within the particle.

Applying the electron and hole quenching to the observed IR transient adds further experimental evidence for this assignment. Upon 400 nm excitation of the CdSe NP sample without quenchers (squares) a transient absorption was observed when probing in the IR spectral range from 4000 to 5000 nm. The corresponding kinetic trace is shown in Figure 5. This CdSe NP solution shows a transient absorption signal that decays with 2 and 30 ps time constants. The electron quencher BQ (circles) reduces the long lifetime component of the transient from 30 to 12 ps. A clear quenching of the IR transient is observed and the short lifetime component of 2.6 ps appears, which we have previously assigned to the NP$^+\cdot$BQ$^-$ CT complex. On the other hand, the transient absorption does not decay completely. This could be due to trap state absorption, which is possible on the longer time scales. In contrast to BQ, the addition of TP hole quencher (diamonds) leads to an extended lifetime. The effect of the additional quenchers on the monitored IR kinetics is very much like the one observed in the visible range (except that the observed transient at 4.8 μm is absorption and the transient at 570 nm is bleach). These quenching experiments confirm the assignment by Guyot-Sionnest that the IR transient absorption is, like the bleach, due to electronic transition in the conduction band.

Photoluminescence. The PL spectrum in Figure 1 is slightly broadened showing that the investigated sample predominantly relaxes via trap states. The photoluminescence (PL) lifetimes of CdSe NPs were monitored in all three spectral regions, visible (as shown in Figure 1 inset, dots), NIR (Figure 6), and IR (to be published elsewhere). Moreover, the technique of electron and hole quenching was applied to the PL processes and it is found that in all three spectral regions the addition of the BQ electron quencher as well as the addition of the TP quenches the emission quantitatively. Therefore, it needs both charge carriers in order to observe PL and it can be concluded that in all spectral regions under study the emission is due to radiative recombination of the carriers and not due to decoupled intraband transitions or phonon emission due to the relaxation of either one of the carriers. The PL decay monitored at 580 nm, with a time-resolution of 200 ps, showed three lifetime components of 2.8, 12.8, and 43 ns at RT. The PL quantum yield of the sample was 3% relative to Rhodamine 6 G in ethanol. From earlier measurements, it is known that these PL lifetimes of our samples are limited due to surface trapping processes of the excited charge carriers. The longest lifetime observed at 580 nm reflects therefore the transition from the band edge or localized shallow trap states into lower-lying intraband gap states. The recombination of localized carriers occurs at lower energies and can therefore be observed in the NIR and IR range.
Steady-state PL measurements in the NIR range have been performed by exciting the CdSe NP sample with an Ar-ion laser line at 514.5 nm and monitoring the weak PL in a Raman spectrometer. The observed luminescence spectra are shown in Figure 6. The photoluminescence quantum yield in the NIR is estimated to be 0.3% relative to the laser dye Q-Switch 5 from Exciton in 1.2-dichloroethane. Since the bandwidth of the Raman system is spectrally limited, the shape of the PL bands is strongly influenced by the sensitivity of the detector. Nevertheless, it is evident that the CdSe NP sample shows significant radiative recombination in the spectral range of 900–1700 nm. The dips observed at 1140 and 1195 nm are due to vibrational lines of the solvent toluene. By using a liquid nitrogen cooled photomultiplier with a 3 ns response time, we measured a NIR PL lifetime of 130 ns at 1000 nm, as can be observed in the inset of Figure 6. The addition of BQ quenched the PL efficiently and also addition of TP led to PL quenching. The emission spectra in the IR range decay on the μs time scale and are also efficiently quenched with either TP or BQ. The spectra and decay traces will be published elsewhere.50

Discussion

The bleach in Figure 3b originates from the saturation of the lowest energy transitions. The rise and decay of the bleach is commonly discussed in terms of the band filling mechanism, which was proposed by Klimov et al.61 In the band filling picture, the excited charge carriers relax in a finite time through the many excited states and as a result the ground-state bleach experiences a red-shift, which corresponds to the relaxation rate to the band edges. For the electron this relaxation rate can be measured by the rise time of the bleach maximum, which is 200–400 fs. The hole relaxation can be correlated to the observed 1.2 ps decay of the NIR absorption. The observed 2 ps decay component (Figure 3a) could be due to additional Auger processes.62

Figure 7 summarizes the electron-transfer dynamics when BQ or TP are added to the NP. Possible relaxation pathways are carrier recombination, trapping, and population of the spin-forbidden dark state.63,64 The electron donor TP extends the initial bleach decay time to nanoseconds because the hole is efficiently trapped by TP and coupling to the hole is reduced. Moreover, the fast electron surface trapping processes are eliminated. On the other hand, the electron acceptor BQ accelerates the bleach decay since additional electron trapping is induced with the BQ on the NP surface. After removal of the conduction band electron, during the lifetime of the NP–BQ CT complex, (between 200 fs and 2.7 ps) the hole still occupies the valence band and the ground-state absorption is still bleached.53 Therefore, the lifetime of the hole on the valence band edge has to be longer than the 2.7 ps lifetime of the NP–BQ CT complex. Also the removal of the hole by TP does not recover the bleach. Therefore, the quenching experiments with BQ and TP show that it is the electron occupying the conduction band and the hole populating the valence band that cause the excited CdSe NPs to be temporarily bleached and consequently it needs both carriers to be removed from the band edges for the ground-state absorption to be recovered.

The observed bleach lifetimes in the visible range have to be compared with the ones obtained from the transient absorption in the NIR and IR regions. Clearly, the NIR feature (Figure 4) decays with a monoeponential 1.2 ps lifetime much faster than the visible and IR features. The quenching experiments revealed that the 1.2 ps component at 1960 nm is due to an intraband transition of the hole. Since, the electron conduction band relaxation occurs within 400 fs, it seems that it is the hole relaxation which is rate limiting to the intraband relaxation process of the excited CdSe NPs.

In Figure 5, the dynamics in the IR region is shown for 4.8 μm. Changes of the observation wavelength between 4 and 5 μm did not lead to a change in the measured lifetimes of 2 and 30 ps. The fast decay components and the quenching results in the IR range compare well with the dynamics measured at 570 nm. The fastest components (2 ps) can be due to Auger processes, internal conversion, or trapping. On the other hand, the slowest components exceed the time window of our experimental setup. The long lifetime of the remaining transient absorption at 4.8 μm could be due to trap-state absorption, similar to what Zhang et al. have reported in their visible-pump NIR-probe experiments for several different semiconductor NPs.50–52 On the other hand, Guyot-Sionnest26 and Greenham65 report long-lived electronic states, which were observed in the IR range. One difference can be found in the sample characteristics. It seems that the CdSe NP samples prepared in different groups show different surface properties and therefore result in different relaxation dynamics. The CdSe NPs prepared in our groups relax predominantly via trap states.

The transients observed in the femtosecond time-resolved pump–probe measurements occur on a much faster time scale...
(picoseconds) than the PL lifetimes (nanoseconds). Therefore, the earlier
seemed to reflect components of the interband relaxation
of electrons and holes monitored by their intraband transitions,
potentially influenced by some fast trapping or Auger processes.
On the other hand, PL observed at the different observation
wave-lengths suggests a relaxation pathway from delocalized
states to trap states with increasing emission wave-lengths for
longer delay times, as illustrated in Figure 8. At 580 nm
the longest observed PL time constant is 43 ns. At 1000 nm
the recombination occurs on a time scale of 130 ns and at 5 µm
the observed PL decays on a time-scale of ~1 µs.60 This
suggests that recombination at lower energies occurs due to
step-wise trap hopping into lower energy states on the NP
surface. The time-resolution of our experiments was
fortunately not sufficient to resolve the rise times of the
long-wavelength luminescence. A fast rise time in all spectral
ranges would show that not only sequential trap hopping takes place
but also fast and direct population of the deeper trapping sites.
This question could be answered using a fluorescence up-conversion
technique or utilizing a streak camera. It should be
noted that Ekimov et al.66 previously reported on the size-dependent
luminescence of CdS nanoparticles in a glass matrix which
extended from the visible to the NIR. They assigned the
luminescence to band-impurity and inter-impurity transitions
with lifetimes in the microsecond range. Furthermore, they
found that with decreasing particle size the inter-impurity transitions
dominate. Our suggested mechanism involving the luminescence
originating from trap sites is in agreement with these studies
since the electron and hole traps sites can be regarded as
impurities.

In summary, we have measured the transient absorption
and emission over the spectral range from 450 to 5000 nm. This
measurement was made possible through an extensive addition
of our femtosecond pump–probe system, which now allows
measurements in the UV, NIR, and IR range in a short time.
This was essential for this study since the limited lifetime of
the prepared NP conjugates enforces a rapid change from
detection in the visible to NIR or IR. The short lifetimes of the
transients and their quencher dependence strongly suggest that the
fast dynamics is due to band edge population and subsequent
depopulation to surface traps. The conduction band edge
population by the electron occurs within 200–400 fs (bleach
rise time) when CdSe NPs are excited at 400 nm. Under the
same excitation conditions, the hole relaxes within 1.2 ps (NIR
absorption decay) to the valence band edge and remains there
for >3 ps (NP—BQ CT lifetime). At longer times, induced
absorptions are due to trap state transitions, as was observed in

the NIR range by Zhang et al.50–52 The PL occurring on the
nanosecond time scale is therefore assigned to radiative
recombination from trap states. The PL red-shifts drastically
for longer observation times which is strong experimental
evidence for a trap hopping mechanism into subsequently lower
trap states.

Acknowledgment. The continued support of this work by
the Office of Naval Research (ONR Grant No. CHE-9727633)
is greatly appreciated. S.L. gratefully acknowledges the partial
support by the MDI (ONR Grant No. N0001495-1-0306) at
Georgia Tech. The authors thank Dr. J. P. Wang and Prof. P.
Guyot-Sionnest for valuable discussions.

References and Notes

(2) Weller, H.; Koch, U.; Gutierrez, M.; Henglein, A. Ber. Bunsen-
1986, 124, 557.
(5) Bawand, M. G.; Wilson, W. L.; Rothberg, L.; Carroll, P. J.; Iedju,
Soc. 2000, 122, 2673.
(7) Mittelman, D. M.; Schoenlein, R. W.; Jiang, J. J.; Colvin, V. L.;
(8) Norris, D. J.; Nirmal, M.; Murray, C. B.; Sacra, A.; Bawendi, M.
(9) Norris, D. J.; Sacra, A.; Murray, C. B.; Bawendi, M. G. Rev.
(12) Woggon, U.; Gaponenko, S.; Langbein, W.; Uhrig, A.; Klingshirn,
(14) Gaponenko, S. V.; Woggon, U.; Uhrig, A.; Langbein, W.; Kling-
Electron. 1994, 3, 89.
(17) Woggon, U.; Portune, M.; Klingshirn, C.; Giessen, H.; Fluegel,
(18) Woggon, U.; Wind, O.; Gindele, F.; Tissitshvili, E.; Mueller, M.
1993, 115, 8706.
(21) Gao, M.; Kirstein, S.; Moehwald, H.; Rogach, A. L.; Kornowski,
2001, 105, 5548.
105, 436.
(26) Shim, M.; Shilov, S. V.; Braiman, M. S.; Guyot-Sionnest, P. J.
(29) Alivisatos, A. P.; Harris, A. L.; Levinos, N. J.; Steigerwald, M. L.;
(31) Burda, C.; Green, T.; Landes, C.; Link, S.; Little, R.; Perskio, J.;
El-Sayed, M. A. In Characterization of Nanoparticle Materials; Wang, Z.
(32) Tittel, J.; Goehele, W.; Koberling, F.; Basuche, Th.; Kornowski, A.;
(34) Klimov, V. I.; Schwarz, Ch.; Mcbrat, D. W.; Leatherdale, C. A.;
(35) Klimov, V. I.; Mcbrat, D. W.; Leatherdale, C. A.; Bawendi, M.

(54) Guyot-Sionnest, P. Private communications.

(60) Mohammed, M.; Wang, J. P.; El-Sayed, M. A. To be published.

