====== Michael Xiao ====== ===== Lecture Notes ===== {{math105-s22:s:mchlxo:lecture_1_lebesgue_measure_and_integration.pdf | 1. Lebesgue Measure and Integration}}\\ {{math105-s22:s:mchlxo:lecture_2_properties_of_outer_measure_measurable_set.pdf | 2. Properties of Outer Measure and Measurable Sets}}\\ {{math105-s22:s:mchlxo:lecture_3_lemma_7.4.2_4.pdf | 3. Lemmas 7.4.2 and 7.4.4}}\\ {{ :math105-s22:s:mchlxo:lecture_4_lemma_7.4.6-7.4.11.pdf |4. Lemmas 7.4.6 - 7.4.11}}\\ {{ :math105-s22:s:mchlxo:lecture_5_measurable_function_regularity.pdf |5. Measurable Function, Regularity}}\\ {{ :math105-s22:s:mchlxo:lecture_6_product_and_slices.pdf |6. Product and Slices}}\\ {{ :math105-s22:s:mchlxo:lecture_7_pugh_lebesgue_integral.pdf |7. Pugh Lebesgue Integral 1}}\\ {{ :math105-s22:s:mchlxo:lecture_8_pugh_lebesgue_integral.pdf |8. Pugh Lebesgue Integral 2}}\\ {{ :math105-s22:s:mchlxo:lecture_9_tao_lebesgue_integral.pdf |9. Tao Lebesgue Integral 1}}\\ {{ :math105-s22:s:mchlxo:lecture_10_tao_lebesgue_integral.pdf |10. Tao Lebesgue Integral 2}} ===== Homework ===== {{math105-s22:s:mchlxo:hw_1.pdf|HW1}} (Updated 1/26)\\ {{ :math105-s22:s:mchlxo:hw2.pdf |HW2}} (Updated 2/3)\\ {{ :math105-s22:s:mchlxo:hw3.pdf |HW3}} (Updated 2/11)\\ {{ :math105-s22:s:mchlxo:hw4.pdf |HW4}} (Updated 2/17)\\ {{ :math105-s22:s:mchlxo:hw5.pdf |HW5}} (Updated 2/25)\\ {{ :math105-s22:s:mchlxo:hw6.pdf |HW6}} (Updated 3/2)\\ {{ :math105-s22:s:mchlxo:hw7.pdf |HW7}} (Updated 3/11)\\ {{ :math105-s22:s:mchlxo:hw8.pdf |HW8}} (Updated 3/18)\\ {{ :math105-s22:s:mchlxo:hw9.pdf |HW9}} (Updated 3/25)\\ {{ :math105-s22:s:mchlxo:hw10.pdf |HW10}} (Updated 4/6)\\ {{ :math105-s22:s:mchlxo:hw11.pdf |HW11}} (Updated 4/16)\\ {{ :math105-s22:s:mchlxo:hw12.pdf |HW12}} (Updated 4/23) ===== Additional Notes ===== === Lebesgue vs. Riemann Integral === The Lebesgue integral is defined in terms of the undergraph. For a function $f: \mathbb{R}\rightarrow [0,\infty)$, the undergraph of $f$ is defined as $$u(f)=\{(x,y):0\leq y