10 problems, 10 points each.
(1) Let $a_{n}=\left[(0.3)^{n}+(0.7)^{n}\right] /\left[1+(0.8)^{n}\right]$. Compute $\lim _{n} a_{n}^{1 / n}$.
(2) Suppose $a_{n}>0$ and $\sum_{n} a_{n}$ converges. Prove that

$$
\sum_{n}\left((-1)^{n} a_{n}+a_{2 n}\right) / 2
$$

converges.
(3) Fix a positive number a, and choose $x_{1}>\sqrt{a}$. Define x_{2}, x_{3}, \cdots iteratively by

$$
x_{n+1}=\left(x_{n}+a / x_{n}\right) / 2
$$

Prove that x_{n} converges to a. Hint: for any $x, y>0$, we have $(x+y) / 2 \geq \sqrt{x y}$.
(4) Let $K=[0,1]$, and $C(K)$ be the set of all real valued continuous functions on K. Recall that the distance function

$$
d(f, g)=\sup _{x \in K}|f(x)-g(x)|, \quad \forall f, g \in C(K)
$$

makes $C(K)$ a metric space. Show that $C(K)$ is a complete metric space, and show that $C(K)$ is not sequentially compact (i.e. give an example of a sequence in $C(K)$ where there is no convergent subsequence.)
(5) Is it true that, if $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous then f is bounded. If false, give a counter-example; if true, give a proof.
(6) Let f be a periodic continuous function on \mathbb{R} with period $T=1$, i.e. $f(x+1)=f(x)$ for all $x \in \mathbb{R}$. Show that for any $c \in(0,1)$, there exists an $x \in \mathbb{R}$, such that $f(x)=f(x+c)$. (If you wish, you can take $c=1 / 2$)
(7) Suppose f is differentiable on \mathbb{R}, and $1 \leq f^{\prime}(x) \leq 2$ for all $x \in \mathbb{R}$ and $f(0)=0$. Show that $x \leq f(x) \leq 2 x$ for all $x>0$.
(8) Let X be a metric space, and A, B be two compact subsets of X. Is it true that $A \cap B$ is compact? If so, give a proof; if not, give a counter-example.
(9) Let $h(x)=1 /\left(e^{x}-1\right)-1 / x$. Compute $\lim _{x \rightarrow 0} h(x)$
(10) Let $f_{n}=\frac{n+\sin (x)}{2 n+\sin ^{2} x}$ for all $x \in \mathbb{R}$. Show that f_{n} converges uniformly on \mathbb{R}. And compute $\lim _{n \rightarrow \infty} \int_{1}^{2} f_{n}(x) d x$. Hint: you may use the following 'squeezing lemma': if there exists sequences of functions
$g_{n}(x), h_{n}(x)$, such that $g_{n}(x) \leq f_{n}(x) \leq h_{n}(x)$ and g_{n} and h_{n} converges to f uniformly, then $f_{n} \rightarrow f$ uniformly.

1. Answer Key

1. In the numerator, the term $(0.7)^{n}$ is more important than $(0.3)^{n}$, in the term 1 is more important than $(0.8)^{n}$, so intuitively, one can approximate the expression for a_{n} as $(0.7)^{n}$. More precisely, we can write

$$
a_{n}=(0.7)^{n} \frac{1+(0.3 / 0.7)^{n}}{1+(0.8)^{n}}=0.7^{n} b_{n}
$$

We can show $b_{n} \rightarrow 1$ as $n \rightarrow \infty$, and for any $x>0$, we have $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$, hence $\lim _{n} b_{n}^{1 / n}=1$. Hence

$$
\lim a_{n}^{1 / n}=\lim _{n}\left[(0.7)^{n}\right]^{1 / n}=0.7
$$

2. Because $\sum_{n}(-1)^{n} a_{n}$ absolute converges, and $\sum_{n} a_{2 n}<\sum_{n} a_{n}<\infty$ hence also converges, hence the sum converges.
3. We first prove that $x_{n} \geq \sqrt{a}$. By induction, assume $x_{k} \geq \sqrt{a}$ for $k=1, \cdots, n-1$, then

$$
x_{n}=\left(x_{n-1}+a / x_{n-1}\right) / 2 \geq \sqrt{x_{n-1} a / x_{n-1}}=\sqrt{a} .
$$

We then prove that $x_{n+1} \leq x_{n}$, indeed

$$
x_{n}-x_{n+1}=\left(x_{n}-a / x_{n}\right) / 2=\left(x_{n}^{2}-a\right) /\left(2 x_{n}\right) \geq 0
$$

Since $\left(x_{n}\right)$ is a monotone decreasing sequence, and is bounded from below, hence x_{n} converges. Let x denote the limit, since $x_{n} \geq \sqrt{a}$, the limit $x \geq \sqrt{a}$. Consider the relation $x_{n+1}=\left(x_{n}+a / x_{n}\right) / 2$, and let $n \rightarrow \infty$, then we have $x=(x+a / x) / 2$, solve for it, one gets $x= \pm \sqrt{a}$, and use the constraint $x \geq \sqrt{a}$, we get $x=\sqrt{a}$.
4. (See Rudin Thm 7.8) To show that $C(K)$ is complete, one need to show that every Cauchy sequence in $C(K)$ is converngent. Suppose $\left(f_{n}\right)$ is a Cauchy sequence in $C(K)$, then for each $x \in K,\left(f_{n}(x)\right)$ is Cauchy in \mathbb{R}. Since \mathbb{R} is complete, hence Cauchy sequence in \mathbb{R} has limit, let for each $x \in$ $[0,1]$, let $f(x)=\lim _{n} f_{n}(x)$, i.e. we construct f so that $f_{n} \rightarrow f$ pointwise. Now we need to show that $f_{n} \rightarrow f$ uniformly. By Cauchy property of f_{n}, we know for any $\epsilon>0$, there exists $N>0$, such that for all $n, m>N$ and any $x \in K$, we have

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon
$$

Fix n and let $m \rightarrow \infty$ in the above relation, we get

$$
\left|f_{n}(x)-f(x)\right| \leq \epsilon, \forall x \in K, \forall n>N
$$

This shows $f_{n} \rightarrow f$ uniformly, thus f is the limit of f_{n} in the metric space $C(K)$.

To see that $C(K)$ is not sequentially compact, we can just take the sequence of functions $f_{n}(x)=n$, then this sequence has no convergent subsequence.
5. It is true. If f is uniformly continuous, then for any $\epsilon>0$, there is a $\delta>0$, such that for any $|x-y|<\delta$, we have $|f(x)-f(y)|<\epsilon$. Fix $\epsilon=1$ and obtain the corresponding $\delta>0$. Let integer $N>0$ be large enough, such that $1 / \delta<N$. Then for any $x, y \in(0,1)$, say $x<y$, we can let $x_{0}=x, x_{N}=y$, and $x_{k}=(y-x)(k / N)+x_{0}$ for $k=1, \cdots, N-1$. Then $\left|x_{k}-x_{k-1}\right|=(y-x) / N<1 / N<\delta$, hence $\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \leq \epsilon=1$. Thus, we have
$|f(y)-f(x)|=\left|\sum_{k=1}^{N} f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \leq \sum_{k=1}^{N}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \leq \sum_{k=1}^{N} 1=N$.
Thus, the image $f(0,1)$ is a bounded subset in \mathbb{R}.
6. Define function $g(x)=f(x+c)-f(x)$, we just need to show that $g(x)$ equal to 0 for some x. Since $f(x)$ is periodic with period 1 , then $g(x)$ is also periodic with period 1 . Furthermore, for any $a \in \mathbb{R}$, we have

$$
\int_{a}^{a+1} g(x) d x=\int_{a+c}^{a+c+1} f(x) d x-\int_{a}^{a+1} f(x) d x=0
$$

Hence, either $g(x)=0$ for all x, in which case we have nothing to prove; or $g(x)>0$ for some x, then by the above integral condition, we have $g(x)<0$ for some other x. Thus, by intermediate value theorem, $g(x)=0$ for some x.

In the case $c=1 / 2$, we can avoid using integral. We note that $g(x)=$ $f(x+1 / 2)-f(x)=f(x-1 / 2)-f(x)=-g(x+1 / 2)$. Assume $g(x) \neq 0$ for some x. Then, if $g(x)>0$ for some x, then $g(x+1 / 2)<0$, thus there is a $x^{\prime} \in(x, x+1 / 2)$, such that $g\left(x^{\prime}\right)=0$.
7. We can consider mean value theorem. For $x>0$, consider the interval $(0, x)$, then we have

$$
f(x)-f(0)=f^{\prime}(c)(x-0)
$$

for some $c \in(0, x)$. Using $f(0)=0$, we have

$$
f(x) / x=f^{\prime}(c) \in[1,2] .
$$

Thus $x \leq f(x) \leq 2 x$ for all $x>0$.
8. True. Since B is compact, hence B is closed. We know closed set intersect compact set is compact, hence $A \cap B$ is compact.
9. We may clear denominator and apply L'hopital rule twice. Answer is $-1 / 2$.
10. We can show $f_{n} \rightarrow 1 / 2$ uniformly, and use integral commute with uniform convergence, to compute $\int_{1}^{2}(1 / 2) d x=1 / 2$.

