
Math 104 Final Dec 13, 2021
10 problems, 10 points each.

(1) Let an = [(0.3)n + (0.7)n]/[1 + (0.8)n]. Compute limn a
1/n
n .

(2) Suppose an > 0 and
∑

n an converges. Prove that∑
n

((−1)nan + a2n)/2

converges.

(3) Fix a positive number a, and choose x1 >
√
a. Define x2, x3, · · ·

iteratively by

xn+1 = (xn + a/xn)/2.

Prove that xn converges to a. Hint: for any x, y > 0, we have
(x+ y)/2 ≥ √xy.

(4) Let K = [0, 1], and C(K) be the set of all real valued continuous
functions on K. Recall that the distance function

d(f, g) = sup
x∈K
|f(x)− g(x)|, ∀f, g ∈ C(K)

makes C(K) a metric space. Show that C(K) is a complete metric
space, and show that C(K) is not sequentially compact (i.e. give
an example of a sequence in C(K) where there is no convergent
subsequence.)

(5) Is it true that, if f : (0, 1) → R is uniformly continuous then f is
bounded. If false, give a counter-example; if true, give a proof.

(6) Let f be a periodic continuous function on R with period T = 1, i.e.
f(x + 1) = f(x) for all x ∈ R. Show that for any c ∈ (0, 1), there
exists an x ∈ R, such that f(x) = f(x + c). (If you wish, you can
take c = 1/2)

(7) Suppose f is differentiable on R, and 1 ≤ f ′(x) ≤ 2 for all x ∈ R
and f(0) = 0. Show that x ≤ f(x) ≤ 2x for all x > 0.

(8) Let X be a metric space, and A,B be two compact subsets of X.
Is it true that A ∩ B is compact? If so, give a proof; if not, give a
counter-example.

(9) Let h(x) = 1/(ex − 1)− 1/x. Compute limx→0 h(x)

(10) Let fn = n+sin(x)

2n+sin2 x
for all x ∈ R. Show that fn converges uniformly

on R. And compute limn→∞
∫ 2
1 fn(x)dx. Hint: you may use the

following ’squeezing lemma’: if there exists sequences of functions
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gn(x), hn(x), such that gn(x) ≤ fn(x) ≤ hn(x) and gn and hn con-
verges to f uniformly, then fn → f uniformly.

1. Answer Key

1. In the numerator, the term (0.7)n is more important than (0.3)n, in the
term 1 is more important than (0.8)n, so intuitively, one can approximate
the expression for an as (0.7)n. More precisely, we can write

an = (0.7)n
1 + (0.3/0.7)n

1 + (0.8)n
= 0.7nbn

We can show bn → 1 as n → ∞, and for any x > 0, we have x1/n → 1 as

n→∞, hence limn b
1/n
n = 1. Hence

lim a1/nn = lim
n

[(0.7)n]1/n = 0.7.

2. Because
∑

n(−1)nan absolute converges, and
∑

n a2n <
∑

n an < ∞
hence also converges, hence the sum converges.

3. We first prove that xn ≥
√
a. By induction, assume xk ≥

√
a for

k = 1, · · · , n− 1, then

xn = (xn−1 + a/xn−1)/2 ≥
√
xn−1a/xn−1 =

√
a.

We then prove that xn+1 ≤ xn, indeed

xn − xn+1 = (xn − a/xn)/2 = (x2n − a)/(2xn) ≥ 0.

Since (xn) is a monotone decreasing sequence, and is bounded from below,
hence xn converges. Let x denote the limit, since xn ≥

√
a, the limit x ≥

√
a.

Consider the relation xn+1 = (xn + a/xn)/2, and let n→∞, then we have
x = (x + a/x)/2, solve for it, one gets x = ±

√
a, and use the constraint

x ≥
√
a, we get x =

√
a.

4. (See Rudin Thm 7.8) To show that C(K) is complete, one need to
show that every Cauchy sequence in C(K) is converngent. Suppose (fn) is
a Cauchy sequence in C(K), then for each x ∈ K, (fn(x)) is Cauchy in R.
Since R is complete, hence Cauchy sequence in R has limit, let for each x ∈
[0, 1], let f(x) = limn fn(x), i.e. we construct f so that fn → f pointwise.
Now we need to show that fn → f uniformly. By Cauchy property of fn,
we know for any ε > 0,there exists N > 0, such that for all n,m > N and
any x ∈ K, we have

|fn(x)− fm(x)| ≤ ε.
Fix n and let m→∞ in the above relation, we get

|fn(x)− f(x)| ≤ ε,∀x ∈ K,∀n > N

This shows fn → f uniformly, thus f is the limit of fn in the metric space
C(K).

To see that C(K) is not sequentially compact, we can just take the se-
quence of functions fn(x) = n, then this sequence has no convergent subse-
quence.
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5. It is true. If f is uniformly continuous, then for any ε > 0, there is
a δ > 0, such that for any |x − y| < δ, we have |f(x) − f(y)| < ε. Fix
ε = 1 and obtain the corresponding δ > 0. Let integer N > 0 be large
enough, such that 1/δ < N . Then for any x, y ∈ (0, 1), say x < y, we can
let x0 = x, xN = y, and xk = (y− x)(k/N) + x0 for k = 1, · · · , N − 1. Then
|xk−xk−1| = (y−x)/N < 1/N < δ, hence |f(xk)− f(xk−1)| ≤ ε = 1. Thus,
we have

|f(y)− f(x)| = |
N∑
k=1

f(xk)− f(xk−1)| ≤
N∑
k=1

|f(xk)− f(xk−1)| ≤
N∑
k=1

1 = N.

Thus, the image f(0, 1) is a bounded subset in R.
6. Define function g(x) = f(x+ c)− f(x), we just need to show that g(x)

equal to 0 for some x. Since f(x) is periodic with period 1, then g(x) is also
periodic with period 1. Furthermore, for any a ∈ R, we have∫ a+1

a
g(x)dx =

∫ a+c+1

a+c
f(x)dx−

∫ a+1

a
f(x)dx = 0.

Hence, either g(x) = 0 for all x, in which case we have nothing to prove; or
g(x) > 0 for some x, then by the above integral condition, we have g(x) < 0
for some other x. Thus, by intermediate value theorem, g(x) = 0 for some
x.

In the case c = 1/2, we can avoid using integral. We note that g(x) =
f(x+ 1/2)− f(x) = f(x− 1/2)− f(x) = −g(x+ 1/2). Assume g(x) 6= 0 for
some x. Then, if g(x) > 0 for some x, then g(x + 1/2) < 0, thus there is a
x′ ∈ (x, x+ 1/2), such that g(x′) = 0.

7. We can consider mean value theorem. For x > 0, consider the interval
(0, x), then we have

f(x)− f(0) = f ′(c)(x− 0)

for some c ∈ (0, x). Using f(0) = 0, we have

f(x)/x = f ′(c) ∈ [1, 2].

Thus x ≤ f(x) ≤ 2x for all x > 0.
8. True. Since B is compact, hence B is closed. We know closed set

intersect compact set is compact, hence A ∩B is compact.
9. We may clear denominator and apply L’hopital rule twice. Answer is

−1/2.
10. We can show fn → 1/2 uniformly, and use integral commute with

uniform convergence, to compute
∫ 2
1 (1/2)dx = 1/2.


