$20+10+10+10=50$ points total.

1. (20 points, 2 points each) True or False? No explanation required.
(1) The set of irrational numbers in \mathbb{R} forms a field.
(2) Let $S \subset \mathbb{R}$ be a bounded subset. If S consists of only irrational numbers, then $\sup (S)$ is a irrational number.
(3) Let $A, B \subset \mathbb{R}$ be two bounded subsets, then $\sup (A \cup B)=\max (\sup (A), \sup (B))$.
(4) If a convergent sequence $\left(s_{n}\right)$ takes value 0 infinitely many times, then $\left(s_{n}\right)$ converges to 0.
(5) Let $\left(s_{n}\right)$ be a sequence such that $\lim \sup \left(s_{n}\right)=0$, then there exists an $N>0$, such that for all $n>N, s_{n} \leq 0$.
(6) Let $\left(s_{n}\right)$ converge to 1 , then it is still possible that s_{n} can take value $1 / 2$ infinitely many times.
(7) Let $\left(a_{n}\right)$ be a sequence in \mathbb{R}, if for any $\epsilon>0$, there exists an $N>0$, such that $\left|a_{n}-a_{n+1}\right|<\epsilon$ for all $n>N$, then $\left(a_{n}\right)$ is a Cauchy sequence.
(8) Let $\left(s_{n}\right)$ be a sequence of real number. Suppose that for any $\epsilon>0$ and for any integer $N>0$, there exists $n, m>N$, such that $\left|s_{n}\right|<\epsilon$ and $\left|s_{m}-1\right|<\epsilon$. Then the sequence $\left(s_{n}\right)$ is not convergent.
(9) Let $\left(a_{n}\right)$ be a bounded sequence, and $L_{+}=\limsup a_{n}, L_{-}=\liminf a_{n}$, then there are infinitely many $n \in \mathbb{N}$ such that $L_{-} \leq a_{n} \leq L_{+}$.
(10) Let $\left(a_{n}\right)$ be a bounded sequence, and $L_{+}=\limsup a_{n}$, then for any $\epsilon>0$, there are finitely many $n \in \mathbb{N}$, such that $a_{n}>L_{+}+\epsilon$.
2. (10 points, 2.5 each) Construct the following sequences. No proof is required that they satisfy the desired property.
(1) Give an example of a Cauchy sequence $\left(a_{n}\right)$ in \mathbb{Q}, such that $a_{n} \neq 1 / 2$ for any n, but $\lim a_{n}=1 / 2$.
(2) Give an example of a bounded sequence $\left(a_{n}\right)$ in \mathbb{R}, such that $\left|a_{n}-a_{n+1}\right|$ is a monotone strictly increasing.
(3) Give an example of a sequence $\left(a_{n}\right)$ in \mathbb{R}, such that $\left(a_{n}\right)$ is unboudned above and unbounded below.
(4) Give an example of a sequence $\left(a_{n}\right)$ in \mathbb{R}, such that for any $k \in \mathbb{N}, k$ is a limit point of $\left(a_{n}\right)$. (no need to give a formula, just describe how you would construct $\left(a_{n}\right)$.)
3. (10 points) Let s_{n} and t_{n} be Cauchy sequences in \mathbb{R}. Use only the definition of Cauchy sequence to prove that $2 s_{n}+3 t_{n}$ is also a Cauchy sequence.
4. (10 points) Given any $x, y \in \mathbb{R}$ and $t \in(0,1)$. Let $\left(a_{n}\right)$ be given by $a_{1}=$ $x, a_{2}=y$ and $a_{n}=t a_{n-1}+(1-t) a_{n-2}$ for $n \geq 3$. Prove that a_{n} is convergent. If you like, you can set $x=0, y=1, t=1 / 2$. Hint: you may use the homework result that, if there is an $N>0$ and $0<r<1$, such that $\left|a_{n+1}-a_{n}\right| /\left|a_{n}-a_{n-1}\right|<r$ for all $n>N$, then $\left(a_{n}\right)$ is convergent.

0.1 Solution

1. FFTTF FFTFT
$2.11 / 2+1 / n$;
$2.2 a_{n}=(-1)^{n}(1-1 / n)$, then $\left|a_{n+1}-a_{n}\right|=(1-1 /(n+1))+(1-1 / n)$, hence is strictly monotone increasing.
$2.3 a_{n}=(-1)^{n} n$
2.4 Take a_{n} to be the following sequence (the gap is only for illustration of the grouping)

$$
1, \quad 1,2, \quad 1,2,3, \quad 1,2,3,4, \quad 1,2,3,4,5 ; \cdots
$$

3. see lecture note or textbook (Ross)
4. Consider the difference

$$
a_{n+1}-a_{n}=t a_{n}+(1-t) a_{n-1}-a_{n}=(1-t)\left(-a_{n}+a_{n-1}\right)
$$

hence

$$
\frac{\left|a_{n+1}-a_{n}\right|}{\left|-a_{n}+a_{n-1}\right|}=1-t<1
$$

By our homework, this is convergent.

