$20+15+15=50$ points total.
All subsets of \mathbb{R}, for example \mathbb{Z}, \mathbb{Q}, are understood to have the induced topology and the induced metric. \mathbb{R}^{2} is equipped with Euclidean metric.

1. (20 points, 2 points each) True or False? No explanation required.

F (1) Let X be a topological space. If $E \subset X$ is open and $F \subset X$ is closed, then $E \cap F$ is neither open or closed.
$(0,1) \cap[-1,2]$
$[0,1] \cap(-1,2)$
$\because f^{-1}((-\infty, 0))$ is $f(p)<0$, there exists a $\epsilon>0$, such that $f\left(B_{\epsilon}(p)\right) \subset(-\infty, 0)$.
open

```
in}\mp@subsup{\mathbb{R}}{}{n
compatt = closed
+ bounded
```

(3) Give an example of a bounded continuous real valued function on $(0,1)$ that is not uniformly continuous.
$\left.\begin{array}{l}f(x)=0 \\ E=(0,1)\end{array}\right\} \begin{aligned} & \text { (4) Give an example of continuous map } f: \mathbb{R} \rightarrow \mathbb{R} \text { and a open subset } E \subset \mathbb{R}, \\ & \text { such that } f(E) \text { is not open. } \\ & \text { (5) Give an example of continuous map } f: \mathbb{R} \rightarrow \mathbb{R} \text { and a compact subset } E \subset \mathbb{R},\end{aligned}$ $f(x)=0]$ such that $f^{-1}(E)$ is not compact.
3. (15 points, 5 each)
(1) Let $X=(-1,1)$, and let $E=(0,1)$ be a subset of X. What is the closure of E in X ? Please justify your answer. $[0,1$)
(2) Let $X=(0,1)$, and let $E=\{1 / n \mid n=2,3, \cdots\}$ be a subset of X. Is E closed in X ? Please justify your answer. Yes, closed.
(3) Prove that the only connected subsets of \mathbb{Q} are singleton sets, ie., subset with only one element. (You may find the characterization of connected subset in \mathbb{R} useful: $E \subset \mathbb{R}$ is connected if and only if the following condition is true: for any $x, y \in E$ with $x<y$, we have $[x, y] \subset E$.)

