Math 104

Nov 10, 2021

20+15 + 15 = 50 points total.

All subsets of \mathbb{R} , for example \mathbb{Z} , \mathbb{Q} , are understood to have the induced topology and the induced metric. \mathbb{R}^2 is equipped with Euclidean metric.

- 1. (20 points, 2 points each) True or False? No explanation required.
- (1) Let X be a topological space. If E ⊂ X is open and F ⊂ X is closed, then [0,1] ∩ [-1,2] E ∩ F is neither open or closed.
 (2) Let f : ℝ² → ℝ be a continuous function. Then for any p ∈ ℝ² with f(p) < 0, there exists a ε > 0, such that f(B_ε(p)) ⊂ (-∞, 0). f(p) < 0, there exists a $\epsilon > 0$, such that $f(B_{\epsilon}(p)) \subset (-\infty, 0)$.
- (3) Let $E \subset \mathbb{R}^2$ be a closed set. Then, for any $p \in E$, there exists a r > 0, such F E= イレッのろ that the closed ball $\overline{B_r(p)} \subset E$.
 - (4) Let $X = \{(x,0) \mid x \in [0,2]\} \subset \mathbb{R}^2$, then X is a compact set. Here-Borel. In \mathbb{R}^{2}
- $\not=$ (5) Let E be a bounded and closed subset of a metric space X, then E is compact = closed compact.
 - (6) Let X = [0, 1], and let $Y = \mathbb{R}$, then we can find a continuous surjective map X is compact, f is continuous, then f(x) is compact. $f: X \to Y.$
 - (7) Let $X = \mathbb{Z}$ and let $Y = \mathbb{Q}$, then we can find a continuous surjective map $f: X \to Y.$
 - (8) Let X be a metric space, $E \subset X$ be a closed set, $x \in X$ be a point not in E. Then, $\inf\{d(y,x) \mid y \in E\} > 0$. Yes. \therefore MEE', E'open :
- (9) Let $\sum_{n=1}^{\infty} a_n$ be a series of with positive terms. Let $r = \limsup a_n^{1/n}$. If the series is divergent, then r > 1.
- $f(x) = \begin{cases} 0 & x < \frac{\pi}{2} \\ 1 & x > \frac{\pi}{2} \end{cases}$ F (10) If $f: [0,1] \cap \mathbb{Q} \to \mathbb{R}$ is continuous, then f is uniformly continuous. 1 -
- 2. (15 points, 3 each) Construct examples that satisfies the following properties. No proof is required that they satisfy the given property.
 - (1) Give an example of a series $\sum_{n} a_n$, that converges but does not absolutely シ(いかん converge.
 - (2) Give an example of bounded monotone increasing function $f: (0,\infty) \to \infty$ $(0,\infty)$ such that f is discontinuous at all positive integers.
 - (3) Give an example of a bounded continuous real valued function on (0, 1) that

 $f(x) = 0 \quad (4) \quad \text{Give an example of continuous map } f: \mathbb{R} \to \mathbb{R} \text{ and a open subset } E \subset \mathbb{R},$ $E = (0,1) \quad (5) \quad (6) \quad ($

(5) Give an example of continuous map $f : \mathbb{R} \to \mathbb{R}$ and a compact subset $E \subset \mathbb{R}$, such that $f^{-1}(E)$ is not compact.

- f(x)=0 E = {0}} 3. (15 points, 5 each)
 - (1) Let X = (-1, 1), and let E = (0, 1) be a subset of X. What is the closure of E in X? Please justify your answer. $[\circ, i)$
 - (2) Let X = (0, 1), and let $E = \{1/n \mid n = 2, 3, \dots\}$ be a subset of X. Is E closed in X? Please justify your answer. yes, closed.
 - (3) Prove that the only connected subsets of \mathbb{Q} are singleton sets, i.e., subset with only one element. (You may find the characterization of connected subset in \mathbb{R} useful: $E \subset \mathbb{R}$ is connected if and only if the following condition is true: for any $x, y \in E$ with x < y, we have $[x, y] \subset E$.

 $f(x) = 2 - \frac{1}{f_{XY}}$

sin(+x)

- + bounded