1. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. Prove that $f^{\prime}(x)$ cannot have any simple discontinuities.

Pf: We prove by contradiction. Suppose there is a simple discontinuity at $x_{0} \in[a, b]$, then $f^{\prime}\left(x_{0}\right)$ is not equal to either the left or right limit of $f^{\prime}(x)$ at $x=x_{0}$. WLOG, suppose $f^{\prime}\left(x_{0}\right) \neq \lim _{x \rightarrow x_{0}^{+}} f^{\prime}\left(x_{0}\right)$
Let $a=f^{\prime}\left(x_{0}\right), b=\lim _{x \rightarrow x_{0}^{+}} f^{\prime}(x)$, and let $\varepsilon=|a-b| / 2$. By definition of limit, there exists $\delta>0$, such that if $x \in\left(x_{0}, x_{0}+\delta\right)$, then $\left|f^{\prime}(x)-b\right|<\varepsilon$. However, this contradict with IUT for derivative, applied to interval $\left[x_{0}, x_{0}+\delta / 2\right]$,
Since $f^{\prime}\left(x_{0}\right)=a, \quad\left|f^{\prime}\left(x_{0}+\delta / 2\right)-a\right| \geqslant|a-b|-\left|f^{\prime}\left(x_{0}+\delta / 2\right)-b\right| \geqslant \frac{|a-b|}{2}$.
hence for $\mu=\frac{2}{3} a+\frac{1}{3} b$ between a and b, there exists $f^{\prime}(\gamma)=\mu$ $\gamma \in\left(x_{0}, x_{0}+\delta / 2\right)$. This means

$$
\left|f^{\prime}(\gamma)-b\right|=|\mu-b|=\frac{2}{3}|a-b|>\frac{1}{2}|a-b|=\varepsilon .
$$

contradict with the choice of δ.
2. If a sequence of differentiable function converges uniformly, does it mean $f(x)$ is differentiable?
Ans: No. (1) For example, consider $f(x)=\max \{0, x\}, \quad x \in \mathbb{R}$. and $f_{n}(x)=\frac{1}{n} \log \left(1+e^{n x}\right)$. Then each $f_{n}(x)$ is smooth and $f_{n}(x)$ converge uniformly to f. (adjust this example a bit to make the kink at $x=0$ for $f(x)$ lie in $[0,1]$).
(2) Another example is. Let $f(x)=\left\{\begin{array}{cl}x \sin \left(\frac{1}{x}\right) & x>0 \\ 0 & x \leqslant 0\end{array}\right.$

Let $\varphi(x)$ be the smooth step function on \mathbb{R}, such that

$$
\varphi(x)=\left\{\begin{array}{cc}
0 & x \leqslant 0 \\
\epsilon(0,1) & x \in(0,1) \\
1 & x \geqslant 1
\end{array}\right.
$$

then we define

$$
f_{n}(x)=f(x) \cdot \varphi(n x)
$$

Then

$$
\begin{aligned}
& \quad \sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right|=\sup _{x \in \mathbb{R}}|f(x)| \cdot|\varphi(n x)-1| \\
& \leqslant \sup _{x \leqslant \frac{1}{n}}|f(x)|=\frac{1}{n} .
\end{aligned}
$$

Hence $f_{n}(x) \rightarrow f(x)$ uniformly.

One can also check that $f_{n}(x)$ is smooth, especially.

$$
f_{n}^{(m)}(0)=0, \quad \forall m, n .
$$

3. Let $f(x)=x^{4} \cdot\left(2+\sin \left(\frac{1}{x}\right)\right)$. Compute its derivative. and show that there is a sequeme of local minima approaching $x=0$.
if $x \neq 0$.

$$
\begin{aligned}
\text { 价: } f^{\prime}(x) & =4 x^{3}\left(2+\sin \frac{1}{x}\right)+x^{4} \cdot\left(-\frac{1}{x^{2}} \cos \frac{1}{x}\right) \\
& =x^{2}\left[-\cos \frac{1}{x}+4 x \cdot\left(2+\sin \frac{1}{x}\right)\right] .
\end{aligned}
$$

- for $x=0, \quad f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{4} \cdot\left[\sin \left(\frac{1}{x}\right)+2\right]}{x}=0$.
- Hence $f^{\prime}(x)$ exists and is continuous. for all $x \in \mathbb{R}$.
- For $u>0$, let $g(u)=f\left(\frac{1}{u}\right)=u^{-4}(2+\sin u)$. Then $\left\{u>0: g^{\prime}(u)=0\right\}$ is in bijection with $\left\{x>0: f^{\prime}(x)=0\right\}$ under the map $u=\frac{1}{x}$. Moreover, local max $/ \mathrm{min}$ of g and f are matched. Hence, suffice to prove that there is a sequeme of local minimum of $g(u)$. cos $u \rightarrow \infty$.

$$
g^{\prime}(u)=u^{-4}\left[-4 \frac{(2+\sin u)}{u}+\cos u\right]
$$

for $u>0$,

- Recall that, $\sin (u)$ has local \min at $\left\{u:(\sin u)^{\prime}=0\right\}$. $(\sin u)^{\prime \prime}>0$

$$
=\{u>0: \cos u=0, \quad-\sin u>0\}=\left\{2 \pi n+\frac{3}{2} \pi: n=0,1,2, \ldots\right\} .
$$

- Let $C_{n}=2 \pi n+\frac{3}{2} \pi$. We will show that
there exists $N>0$, sit. $\forall n>N$, there exist a local minimum of $g(u)$ in $\left(C_{n}-\frac{\pi}{4}, c_{n}+\frac{\pi}{4}\right)$.

Lemma : If $h(u)$ is a smooth function on $u \in(0, \infty)$. and $h(u)$ and $h^{\prime}(u)$ are bounded. Then for any $\varepsilon>0$, there is a $M>0$. sit. $\forall u>M . \quad|h(u) / u|<\varepsilon$, and

$$
\left|\left(\frac{h(u)}{u}\right)^{\prime}\right|<\varepsilon
$$

Pf as exercise.

- Apply the Lemma to $h(u)-4(2+\sin u)$, and $\varepsilon=\frac{1}{2} \cos \left(\frac{\pi}{4}\right)$., then. we get an $M>0$. Let N be the smallest integer. such that $C_{N}>M$.
- For any $n \geq N$, consider the interval $\left[C_{n}-\frac{\pi}{4}, C_{n}+\frac{\pi}{4}\right]$,

Let $G(u)=\cos (u)-\frac{4}{u}(2+\sin u), \quad H(u)=-\frac{4}{u}(2+\sin u)$.

$$
\begin{aligned}
& G\left(c_{n}-\frac{\pi}{4}\right)=-\cos \left(\frac{\pi}{4}\right)+H\left(c_{n}-\frac{\pi}{4}\right) \leqslant-\cos \left(\frac{\pi}{4}\right)+\frac{1}{2} \cos \left(\frac{\pi}{4}\right)<0 \\
& G\left(c_{n}+\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)+H\left(c_{n}+\frac{\pi}{4}\right) \geqslant \cos \left(\frac{\pi}{4}\right)-\frac{1}{2} \cos \left(\frac{\pi}{4}\right)>0 .
\end{aligned}
$$

Hence there is a $\gamma_{n} \in\left(C_{n}-\frac{\pi}{4}, C_{n}+\frac{\pi}{4}\right)$, such that $G\left(\gamma_{n}\right)=0$.

- We next prove that $g^{\prime \prime}(u)>0$ at $u=\gamma_{n}$.

$$
g^{\prime \prime}(u)=\left(u^{-4} \cdot G(u)\right)^{\prime}=-4 \cdot u^{-5} \cdot G(u)+u^{-4} \cdot G^{\prime}(u)
$$

Since at $u=r_{n}, \quad G(u)=0$, thus.

$$
\begin{aligned}
& g^{\prime \prime}\left(\gamma_{n}\right)=\gamma_{n}^{-4} \cdot G^{\prime}\left(\gamma_{n}\right) . \\
& G^{\prime}(u)=-\sin (u)+H^{\prime}(u) . \text { For } u \in\left[C_{n}-\frac{\pi}{4}, C_{n}+\frac{\pi}{4}\right] \\
&=\left[2 \pi n+\frac{5}{4} \pi, 2 \pi n+\frac{7}{4} \pi\right] . \\
& \sin (u) \leqslant-\frac{\sqrt{2}}{2}, \quad\left|H^{\prime}(u)\right| \leqslant \frac{1}{2} \cdot \frac{\sqrt{2}}{2}
\end{aligned}
$$

Hence $G^{\prime}(u) \geqslant \frac{\sqrt{2}}{2}-\frac{1}{2} \frac{\sqrt{2}}{2}>0$, thus $G^{\prime}\left(\gamma_{n}\right)>0$.

This proves $g(u)$ has a sequeme $\left\{\gamma_{n}: n \geq N\right\}$ of local minum such that $\quad \gamma_{n} \in\left(2 \pi n+\frac{5}{4} \pi, 2 \pi n+\frac{7}{4} \pi\right)$, in particular $r_{n} \rightarrow \infty$.
\#4: Prove that $f(x)=\sum_{n=0}^{\infty} 4^{-n} \varphi\left(4^{n} x\right)$ is a a continuous function that is nowhere differentiable, where.

$$
\varphi(x)=\min \{|x-n|: n \in \mathbb{Z}\}
$$

Pf: Let $h_{0}(x)=\left\{\begin{aligned} \frac{1}{4} & x \in\left[n, n+\frac{1}{4}\right) \cup\left[n+\frac{1}{2}, n+\frac{3}{4}\right) \text { for some } n \in \mathbb{Z} \\ -\frac{1}{4} & x \in\left[n+\frac{1}{4}, n+\frac{1}{2}\right) \cup\left[n+\frac{3}{4}, n+1\right] \text {, for some } n \in \mathbb{Z} \text {. }\end{aligned}\right.$
Then we can see that $\varphi_{0}(x)$ is monotonous on the interval between $X, X+h_{0}(x) \quad \forall x \in \mathbb{R}$.

Similarly, let $h_{n}(x)=4^{-n} h_{0}\left(4^{n} x\right)$. Thew we have, If $m \leq n$, then

$$
\frac{\left|\varphi_{n}\left(x+h_{n}(x)\right)-\varphi_{n}(x)\right|}{\left|h_{n}(x)\right|}=1
$$

and if $m>n$, then

$$
\varphi_{m}\left(x+h_{n}(x)\right)-\varphi_{m}(x)=0
$$

Hence $Q_{n}[x)=\frac{f\left(x+h_{n}(x)\right)-f(x)}{h_{n}(x)}=\sum_{m=0}^{n} \frac{\varphi_{m}\left(x+h_{n}(x)\right)-\varphi_{m}(x)}{h_{n}(x)}$
is a sum of ± 1 with $n+1$ entries. In particular, if n is even, then $Q_{n}(x)$ is odd; and if n is odd, then $Q_{n}(x)$ is even.
for each $x \in \mathbb{R}$,
Thus, consider the sequence $\left(x+h_{n}(x)\right)_{n \in \mathbb{N}}$ approaching x, we see $\lim _{n \rightarrow \infty} Q_{n}\left(x+h_{n}(x)\right)$ does not converge, since it is a sequeme of integers with alternating oddity.

