1. Let $f: [a, b] \rightarrow \mathbb{R}$ be differentiable. Prove that f'(x)cannot have any simple discontinuities.

2. If a sequence of differentiable function converges uniformly, does it mean
$$f(x)$$
 is differentiable?
Also OFor example, consider $f(x) = \max\{0, \pi, 3\}, x \in \mathbb{R}, \cdot$
and $f_n(x) = \frac{1}{n} \log (1 + e^{nx})$, Then each $f_n(x)$ is smooth
and $f_n(x)$ converge uniformly to f . (adjust this example
a bit to make the kink at $x=0$ for $f(x)$ lie in $[0,1]$).
2 Another example is. Let $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x = 0\\ 0 & x \leq 0 \end{cases}$

Let $\varphi(x)$ be the smooth step function on \mathbb{R} , such that $\varphi(x) = \begin{cases} 0 & x \in 0 \\ \varphi(x) = \int_{1}^{\infty} \varepsilon(o_{1}i) & x \in (o_{1}i) \\ 1 & x \geq i \end{cases}$

. then we define

$$f_{n(x)} = f(x) \cdot \varphi(nx)$$

Then

$$\sup_{X \in \mathbb{R}} |f_n(X) - f(X)| = \sup_{X \in \mathbb{R}} |f(X)| \cdot |q(nX) - 1|$$

$$\begin{cases} \sup_{x \in n} |f(x)| = \frac{1}{n}, \\ x \in \frac{1}{n} \end{cases}$$
 Hence $f_n(x) \rightarrow f(x)$ uniformly.

One can also check that
$$f_n(x)$$
 is smooth, especially.
 $f_n^{(m)}(o) = 0$, $\forall m, n$.

3. Let
$$f(x) = \chi^4$$
. (2+sin ($\frac{1}{x}$)). Compute its derivative.
and show that there is a sequence of local minima approaching $\chi=0$.

$$\frac{if_{x \neq 0}}{pf} : \cdot f'(x) = 4x^{3} (a + \sin \frac{1}{x}) + \chi^{4} (-\frac{1}{x^{2}} \cos \frac{1}{x})$$
$$= \chi^{2} [-\cos \frac{1}{x} + 4\chi \cdot (a + \sin \frac{1}{x})].$$

• for
$$x=0$$
, $f'(b) = \lim_{x \to 0} \frac{f(x) - f(b)}{x - b} = \lim_{x \to 0} \frac{x^4 \cdot [\sin(\frac{1}{x}) + 2]}{x} = 0.$

· Hence f'(x) exists and is continuous. for all $x \in \mathbb{R}$.

• For u>0, let $g(w) = f(w) = u^{-4} (a+\sin u)$. Then g(u>0: g'(w) = og is in bijection with $\{x>0: f'(x)=og\}$ under the map $u = \frac{1}{x}$. Moreover, local max / min of g and f are matched. Hence, suffice to prove that there is a sequence of local minimum of g(w)., as $u \to 0^{\circ}$.

$$g'(u) = u^{-4} \left[-4 \frac{(a + \sin u)}{u} + \cos u \right].$$

$$Recall that, \int \sin(u) has local min at $\begin{cases} u : (\sin u)' = 0 \\ (\sin u)' = 0 \end{cases}$

$$= \begin{cases} u > 0 : \cos u = 0, -\sin u > 0 \end{cases} = \begin{cases} 2\pi n + \frac{3}{2}\pi : n = 0, 1 > 2, -- \end{cases}.$$

$$Let C_n = 2\pi n + \frac{3}{2}\pi .$$
 We will show that there exists $N > 0, s + .$ $\forall n = N$, there exist a local minimum of $g(u)$ in $(C_n - \frac{\pi}{4}, C_n + \frac{\pi}{4}).$$$

Pf as exercise.

• Apply the Lemma to $h(\omega) - 4(2 + \sin \omega)$, and $\mathcal{E} = \frac{1}{2}\cos(\frac{\pi}{4})^2$, then. we get an M70. Let N be the smallest integer. such that $C_N > M$.

• For any
$$n = 7N$$
, consider the interval $[C_n - \frac{\pi}{4}, C_n + \frac{\pi}{4}]$,
Let $G(w) = cos(w) - \frac{4}{w}(a + sinw), H(w) = -\frac{4}{w}(a + sinw).$
 $G(c_n - \frac{\pi}{4}) = -cos(\frac{\pi}{4}) + H(c_n - \frac{\pi}{4}) \leq -cos(\frac{\pi}{4}) + \frac{1}{2}cos(\frac{\pi}{4}) < 0$
 $G(c_n + \frac{\pi}{4}) = cos(\frac{\pi}{4}) + H(c_n + \frac{\pi}{4}) = cos(\frac{\pi}{4}) - \frac{1}{2}cos(\frac{\pi}{4}) > 0.$
Hence there is a $Y_n \in (C_n - \frac{\pi}{4}, C_n + \frac{\pi}{4})$, such that $G(Y_n) = 0.$

We vert prove that
$$g''(u) = 0$$
 at $u = r_n$.
 $g''(u) = (u^{-4} \cdot G(u))' = -4 \cdot u^{-5} \cdot G(u) + u^{-4} \cdot G'(u)$.
Since at $u = r_n$, $G(u) = 0$, thus.
 $g''(r_n) = r_n^{-4} \cdot G'(r_n)$.

$$\begin{split} G'(w) &= -\sin(u) + H'(u) \quad \text{For } u \in [C_n - \frac{\pi}{4}, C_n + \frac{\pi}{4}] \\ &= [2\pi n + \frac{5}{4}\pi, 2\pi n + \frac{7}{4}\pi] \\ \text{sin}(u) &\leq -\frac{\sqrt{2}}{2}, \quad |H'(u)| &\leq \frac{1}{2} \cdot \frac{\sqrt{2}}{2} \\ \text{Hence } G'(u) &\gtrsim \frac{\sqrt{2}}{2} - \frac{1}{2} \frac{\sqrt{2}}{2} > 0, \quad \text{thus } G'(\varepsilon_n) > 0. \end{split}$$

This proves g(u) has a sequence $\{\mathcal{F}_n : n \ge N\}$ $\Rightarrow f$ local minum such that $\mathcal{F}_n \in (2\pi n + \frac{5}{4}\pi, 2\pi n + \frac{7}{4}\pi)$, in particular $\mathcal{F}_n \rightarrow \infty$.

#4: Prove that $f(x) = \sum_{n=0}^{\infty} 4^{-n} \varphi(4^n x)$ is a a continuous function that is nowhere differentiable, where. $\varphi(x) = \min \{ [x-n] : n \in \mathbb{Z} \}$

$$\frac{Pf}{4}: \text{ Let } h_0(x) = \begin{cases} \frac{1}{4} & x \in [n, n+\frac{1}{4}) \cup [n+\frac{1}{2}, n+\frac{3}{4}) & \text{for some } n \in \mathbb{Z} \\ -\frac{1}{4} & \chi \in [n+\frac{1}{4}, n+\frac{1}{2}) \cup [n+\frac{3}{4}, n+1), & \text{for some } n \in \mathbb{Z} \end{cases}$$

Then we can see that $Q_0(x)$ is monotonous on the interval between $X, X + h_0(x)$ $\forall X \in \mathbb{R}$.

Similarly, let $h_n(x) = 4^{-n} h_0(4^n x)$. Then we have, If $m \le n$, then $\frac{|q_n(x+h_n(x)) - q_n(x)|}{|h_n(x)|} = 1$

and if
$$m > n$$
, then
 $\varphi_m(\chi + h_n(\chi)) - \varphi_m(\chi) = 0.$

Hence
$$Q_n(x) = \frac{f(x + h_n(x)) - f(x)}{h_n(x)} = \sum_{m=0}^{n} \frac{Q_m(x + h_n(x)) - Q_m(x)}{h_n(x)}$$

is a sum of ± 1 with not entries. In particular,
if n is even, then $Q_n(x)$ is odd; and if n is odd,
then $Q_n(x)$ is even.

for each
$$K \in \mathbb{R}$$
,
Thus, consider the sequence $(\chi + h_n(x))_{n \in \mathbb{N}}$ approaching χ ,
we see fim $Q_n(\chi + h_n(x))$ does not converge, since it is
a sequence of integers with attemating oddity.