1. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Assume that f is convex, Show that f'(x) is monotonously increasing. Pf: For any real number x < y, we need to prove that $f(x) \leq f(y)$. Let $h = \frac{f(y) - f(x)}{y - x}$, we will show that $f'(x) \leq h$ and $h \leq f'(y)$. Let $\chi(t) = (1-t)\cdot\chi + t\cdot\chi$, then. X(t) * Since $(1-t)f(x) + t \cdot f(y) \ge f((1-t)x + ty),$ hence subtract both sides by f(x), and divide by x(t) - x = t(x-y), we get $h = \frac{f(xu) - f(x)}{xu - x}$ Let $t \rightarrow 0$, then the RHS $\rightarrow f'(x)$, hence $h = \frac{1}{7} f(x).$ Similarly, $h \leq f'(y)$. Thus $f'(x) \leq h \leq f'(y)$. # 2. Let $f: (0, \infty) \rightarrow \mathbb{R}$ be a twice differentiable function. Suppose $f(x) \rightarrow 0$ as $x \rightarrow \infty$, and f'(x) is bounded. Show that $f'(x) \rightarrow 0$ as $x \rightarrow 0$. For any KZO, hZO, Pf: Using Taylor expansion of f(x) at x, evaluated at x+h, have ve $f(x+h) = f(x) + h \cdot f'(x) + \frac{h^2}{2} \cdot f'(\xi)$ for some $\xi \in (\chi, \chi+h)$.

Hence
$$f'(\pi) = \frac{f(\omega+3) - f(\omega)}{h} - \frac{h}{2} f'(\frac{5}{3})$$
.
Fix on \$270. Then since $f(x) \rightarrow 0$ as $x \rightarrow \infty$, $\exists R > 0$, s.t.
 $i \notin \pi > R$, then $|f(v)| < z$. Also Lt M > 0, s.t. $|f'(t)| < M$
 $\forall t > 0$. Then., $\forall \pi > R$, $h > 0$, we have
 $\left| \frac{f(\pi)}{2} \right| \notin \frac{2z}{h} + \frac{h}{2} M$.
Since this inequality holds for all $h > 0$, we may pick an h
to optimize the upper bound, site, make the RHS smallest.
Since $A + B \neq 2 J A \equiv and equality is achieved when $A = B$,
thus $\frac{2z}{h} + \frac{b}{2} M \neq a J^{\frac{2}{2} + \frac{h}{2} M} = 2 J \sin n$, and is minimized
when $h = 2 n \overline{z/M}$. Hence,
 $|f'(\pi)| \leq 2 J \overline{z} M = 2 J \overline{z} M = 2 J \overline{z} M$.
Thus for any $z_0 > 0$, there exists an $z > 0$, s.t. $\forall x > R$
 $|f'(\pi)| \leq 2 J \overline{z} M < z_0$.
 ψ have $(im f'(\pi) = 0$
 $y = 0$
 3 , If $f: R \rightarrow R$ is a continuous function. such that $f(\infty) = 5$.
Shaw that $f'(\pi) = 5$. here $f'(\pi) = 5$.$

Indeed, using the mean value theorem applied to interval [o, h] (assuming hoo here, the hero case is similar), then I se (0, b) such that $\frac{f(h) - f(b)}{h} = f'(s)$ Since $\lim_{X\to 0} f(x) = 5$, hence $\forall z = 70$, $\exists S = 0$, s,t. if $o \ge t \le 8$, then $x \to 0$ $|f'(x) - 5| < \epsilon$. Thus, if $o \le h < S$, we have $\left|\frac{f(h)-f(w)}{h}-5\right| = \left|\frac{f'(s)-5}{s}\right| < \varepsilon.$ Hence $\lim_{h \to 0^+} \frac{f(h) - f(w)}{h} = 5$. Similarly, $\lim_{h \to 0^-} \frac{f(h) - f(w)}{h} = 5$. Thus, f'(0) = 5. 4. Give an example of bounded real function on Ioil] that is not Riemann integrable. Sol: Let $f(x) = \begin{cases} x \in \mathbb{Q} \\ x \notin \mathbb{Q} \\ x \notin \mathbb{Q} \end{cases}$. Then. $\mathcal{U}(P,f) = 1$, L(P,f) = 0. for all partitions. Hence not integrable.