$$
7.4,7.5(a), \quad 8.2(e), \quad 8.4 . \quad 9.1(c), \quad 9.2(b), \quad 9.3,9.4,9.9(c)
$$

7.4: (1) $a_{n}=\frac{\sqrt{2}}{n}$. then $a_{n} \rightarrow 0$.
a_{n} is not rectional, since otherwise $n \cdot a_{n}=\sqrt{2}$ is rational, which is a contradiction.
(2). Let $A_{n}=\left\{r \in \mathbb{Q} \left\lvert\, \sqrt{2}-\frac{1}{n}<r<\sqrt{2}\right.\right\}$. for $n \in \mathbb{N}$. Pick any $a_{n} \in A_{n}$, then we get a a sequence (a_{n}) converges to $\sqrt{2}$.
7.5(a). $\quad \lim _{n \rightarrow \infty} S_{n}=0$,

$$
\begin{aligned}
O<S_{n} & =\sqrt{n^{2}+1}-n=\frac{\left(\sqrt{n^{2}+1}-n\right)\left(\sqrt{n^{2}+1}+n\right)}{\sqrt{n^{2}+1}+n} \\
& =\frac{\left(n^{2}+1\right)-n^{2}}{\sqrt{n^{2}+1}+n}<\frac{1}{n}
\end{aligned}
$$

sine $\quad \frac{1}{n} \rightarrow 0$. hence $\lim _{n}=0$.
8.2(e) $\quad \lim _{n \rightarrow \infty} \frac{1}{n} \sin (n)=0$

Pf: note that $|\sin (n)| \leq 1$. Hence, for any $\varepsilon>0$, integer $N>0, S . t . \quad \frac{1}{N}<\varepsilon$, (by Archimedion Thus, for any $n>N$, we have property).

$$
\left|\frac{1}{n} \sin (n)-0\right|=\frac{1}{n}|\sin (n)|<\frac{1}{n}<\frac{1}{N}<\varepsilon .
$$

(8.4) Let $\left(t_{n}\right)$ be bounded, $\quad\left|t_{n}\right|<M$.
and $\left(S_{n}\right)$ converge to 0 . Then., show that lime $s_{n} t_{n}=0$.

Pf: $\forall \varepsilon>0$, we need to show that $\Rightarrow N>0$ sit.

$$
\begin{array}{lll}
& \left|\sin _{n}-0\right|<\varepsilon & \forall n>N \\
\Leftrightarrow & \left|s_{n}\right| \cdot\left|t_{n}\right|<\varepsilon & \forall a>N \\
\Leftrightarrow \quad & \left|s_{n}\right|<\frac{\varepsilon}{M} & \forall n>N .
\end{array}
$$

This can le achieved by choosing N large enough, since $S_{n} \rightarrow 0$.

$$
\begin{aligned}
& \text { 9.1(c). } \\
& \lim _{n \rightarrow \infty} \frac{17 n^{5}+73 n^{4}-18 n^{2}+3}{23 n^{5}+13 n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{17+23 \cdot \frac{1}{n}-18 \frac{1}{n^{3}}+\frac{3}{n^{5}}}{23+13 \cdot \frac{1}{n^{2}}} \\
& =\frac{\lim \left(17+73 \frac{1}{n}-18 \frac{1}{n^{3}}+\frac{3}{n^{5}}\right)}{\lim _{1 m}\left(23+13 \cdot \frac{1}{n^{2}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\lim 17+73 \cdot \lim \frac{1}{n}-18 \lim \frac{1}{h^{3}}+3 \lim \frac{1}{h^{5}}}{1 \lim (23)+13 \cdot \lim \frac{1}{h^{2}}} \\
& =\frac{17}{23} \quad\left(\text { since } \lim \frac{1}{n p}=0 \quad \forall p>0 .\right)
\end{aligned}
$$

$\lim x_{n}=3, \quad \lim y_{n}=7$,
$9.2(b)$

$$
\lim _{n \rightarrow \infty} \frac{3 y_{n}-x_{n}}{y_{n}^{2}}=?
$$

pf: since $\lim y_{n}^{2}=\left(\lim y_{n}\right)^{2}=7^{2} \neq 0$
we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3 y_{n}-x_{n}}{y_{n}^{2}}=\frac{\lim 3 y_{n}-\lim x_{n}}{\lim y_{n}^{2}} \\
=\frac{3.7-3}{7^{2}}=\frac{21-3}{49}=\frac{18}{49}
\end{aligned}
$$

9.3 If $\quad \lim x_{n}=a, \quad \lim b_{n}=b . \quad$ and

$$
S_{n}=\frac{a_{n}^{3}+4 a_{n}}{b_{n}^{2}+1}
$$

Prove that

$$
\lim s_{n}=\frac{a^{3}+4 a}{b^{2}+1}
$$

昂: we first note that $B_{n}=b_{n}^{2}+1 \neq 0$, and $B=\lim B_{n}=\lim \left(b_{n}^{2}+1\right)$

$$
=\left(\lim b_{n}\right)^{2}+1=b^{2}+1 \neq 0 .
$$

Hence, we may apply the division rule for limit, that

$$
\begin{aligned}
\lim s_{n} & =\frac{\lim \left(a_{n}^{3}+4 a_{n}\right)}{\lim \left(\sin ^{2}+1\right)} \\
& =\frac{a^{3}+4 a}{b^{2}+1}
\end{aligned}
$$

(9.4) Let $S_{1}=1, \quad S_{n+1}=\sqrt{1+S_{n}}$
(a) list the first few terms of S_{4}
(b), Assume that sn converges. Show that

$$
\lim S_{n}=\frac{1+\sqrt{5}}{2}
$$

Pf: (a) $\left(S_{n}\right)=(1, \sqrt{2}, \sqrt{1+\sqrt{2}}, \sqrt{1+\sqrt{1+\sqrt{2}}}, \cdots$
(b). If S_{n} converges to $\alpha \in \mathbb{R}$., then

$$
S_{n+1}^{2}=1+S_{n}
$$

taking limit, on both sides, vie get

$$
\begin{gathered}
\alpha^{2}=\alpha+1 \\
\Rightarrow \alpha=\frac{1}{2}(1+\sqrt{5}), \text { or } \frac{1}{2}(1-\sqrt{5})
\end{gathered}
$$

$\sin c e \quad \frac{1}{2}(1-\sqrt{5})<0$, and all $s_{n}>0$, we have α can only be $\frac{1}{2}(1+\sqrt{5})$
9.9(c) If $\lim S_{n}=-\infty$ or $\lim t_{n}=+\infty$, then there is nothing to prove. since $+\infty$ is larger than any element in $\mathbb{R} \cup\{\infty,-\infty\}$, and $-\infty$ is smaller than any element in $\mathbb{R} \cup\{+\infty,-\infty\}$. If $\lim S_{n}=+\infty$ or $\lim t_{n}=-\infty$, then case (a) (b) answers. Hence, we only need to consider the case where $\lim s_{n}=\alpha$ $\lim t_{n}=\beta, \alpha, \beta \in \mathbb{R}$. We prove by contradiction, if $\alpha>\beta$, then let $\varepsilon=\frac{1}{3}(\alpha-\beta)$, hence there exists an $N>0$. s.t. $\forall u>N$,

$$
\left|s_{n}-\alpha\right|<\varepsilon \text {. and } t_{r}-\beta \mid<\varepsilon \text {. This implies }
$$

$$
\alpha-\varepsilon<s_{n}<\alpha+\varepsilon, \quad \beta-\varepsilon<t_{n}<\beta+\varepsilon
$$

since

$$
\alpha+\varepsilon=\alpha+\frac{1}{3}(\alpha-\beta)<\alpha+\frac{2}{3}(\alpha-\beta)=\beta-\frac{1}{3}(\alpha-\beta)=
$$

we have $\operatorname{sn}<t_{n} \quad \forall n>N$.
This contradict with $S_{n}<t_{n} \forall n$. Hence $\alpha \leq \beta$.

