1. Let
$$(S_n)$$
 be a bounded seq. show that
(a) limiting S_n is lineary S_n
(b) lineary $S_n = arg \int sep S_n | N \in ONS$.
(c) lineary $S_n = arg \int S_n | N \in ONS$.
 $Pf: (a)$ Let $A_{N} = sup \int S_n | N = NS$. By $= \inf \int S_n | N = NS$.
Then $A_N = S_N$. Since (S_n) is bounded, hence
 $\lim A_N$, and $\lim B_N = erist$. Hence $(Im A_N = \lim B_N)$
(by Exercise $P_1(c_n)$.) Thus, $\lim S_N = n = \lim A_N | S_n | N \in OS$.
(b) Since $A_N = A_{N+1}$, and A_N is a bounded
sequence, hence $\lim A_N = inf \int A_N | N \in OS$. By Thus $(n = 2, N)$
 $N = Can also prove it directly, left $u = \inf \int A_N | N \in OS$. Then
 $A_N = U, VN$. And for any $2 > 0$, $3 N = st$. $u + E > A_N$, origensite
 $u + E would be a bigger lower bound, contradiction with definition
 $ef inf. By non-tonicity, $Vn = N$, we have
 $u + x > A_N = A_N = M = M = \frac{1}{2} A_{n-1} | < E$.
Hence, A_N converges to U .
3. If (a_n) , (b_n) are a bounded sequence, show thats
 $Im sup (a_n = b_n) < \limsup a_n + \limsup b_n$.
 $Pf: We first give example :
 $a_n = \begin{cases} 0 & n even \\ 0 & n odd \end{cases}$$$$$

then ant bn = 1. Here (imsup (an) = (imsup (bn) = 1. limsup (antbn) = 1. Let $AN = \sup \{a_n \mid n \ge N\}$ $B_N = \sup \{b_n \mid n \ge N\}$ CN = sup fanton | n = N }. By boundedness of an. br. we have AN, BN, CN are all finite, and have limits in IR. We claim. that CN & AN + BN. Given the claim, we may take limits and get the desired results lim CN ≤ lim (AN+BN) = lim AN + lim BN. ⇐ limsup (an+bn) ≤ limsup an + limsup bn. Now, to prove the claim, we have $au \leq AN$, $b_n \leq BN$ HuzN, Hus. ant bn & AN+ BN. Heme (N = sup fanton | n 3 N 3 E AN + BN. This gives the claim. 3. (a). Let (sn) be a seq. s.t. $|S_{n+1}-S_u| \leq 2^{-N}$. $\forall u \in \mathbb{N}$. Prove that (Sn) is Cauchy. (b). If [Sn+1-Sn] 5 h, is the result still true? Pf: (a) Incm integers, we have

$$|Sn-Sn| = |S_{k=n}^{n-1} \cdot S_{k} - S_{k+1}|$$

$$\leq Z_{k=n}^{n-1} \cdot Q^{k}$$

$$\leq Z_{k=n}^{n-1} \cdot Q^{k}$$

$$\leq Z_{k=n}^{n-1} \cdot Q^{k}$$

$$\leq Z_{k=n}^{n-1} \cdot Q^{k}$$

$$= Q^{-n+1},$$

$$\forall Z = O, \exists N > O, s+1 \cdot Q^{-N} < Z \cdot then, \forall n, m \ge N+1,$$

$$we have |Sn-Sn| \le Q^{-n+(n,m)+1} \le Q^{-(N+1)+1} = Q^{-N} < Z.$$

$$Thus (Sn) is Canady.$$

$$(b) False if we only have |Sn-Sn| < h. For example:$$

$$Sn = 1 + \dots + \frac{1}{n+1}.$$

$$then. Sn is monstone increasing and is unboundel.$$

$$q.$$

$$[0.7 Let S be a brundled non-empty subsct in (R, s+1) - sup (s) & S. Show that there is a seq of points (sn) in S, s+1. [im s_n = sup S.]$$

$$Q.$$

$$Pf: For each Z > O, \exists S \in S, s+1 \cdot u - Z < S < U.]$$

$$Hene, \forall A \in U, thus. (sn) forms, a sequence.]$$

$$in S convergent - b U.]$$

10.8 Let Sn be an increasing seq. of positive number. define $\sigma_n = \frac{1}{n} (S_1 + \cdots + S_n)$. Then, (σ_n) is an increasing Seq. $P_{f}: \quad O_{n+1} - O_n = \frac{1}{h+1} \left(S_1 + \cdots + S_{n+1} \right) - \frac{1}{h} \left(S_1 + \cdots + S_n \right)$ $= \frac{1}{n(n+1)} \left(n \left(S_1 + \dots + S_n \right) + n \cdot S_{n+1} - (n+1) \left(S_1 + \dots + S_n \right) \right)$ $= \frac{1}{n(n+1)} \left(\left(S_{n+1} - S_{1} \right) + \dots + \left(S_{n+1} - S_{n} \right) \right)$ Idi Since Sn is monotone increasing, then Sn+1 - Sx 70 for all 1sken, Hence Snon - Jn 70. #. $b_{10.11}$; Let $t_1 = 1$, $t_{n+1} = (1 - \frac{1}{4n^2}) \cdot t_n$. (a) show that limth exists. (b). guess what is lim to? Pf: (1) " the < th, and O < th < 1 i we have a pronotone bounded sequences thus lim to exists, (2). try computing $\frac{\partial}{\int \int} \left(1 - \frac{1}{4n^2} \right) = e^{\sum \log \left(1 - \frac{1}{4n^2} \right)}$ $\sum_{n=1}^{\infty} \log \left(1 - \frac{1}{4n^2}\right) \approx \sum \left(-\frac{1}{4n^2}\right) < \infty$

Hence. the limit is non-zero.

7 Let $S = \{x \in (0,1) \mid x = 0, \alpha, \dots, \alpha_n, \text{ for some } n, \alpha_n = 3\}$. Show that for any t E (0,1), I (Sn) in S. such that $\lim S_n = t$. Pf: if tES, then the constant sequence sn=t would work. If t & S, then let $f = 0, b_1 b_2 \dots$ be a decimal expansion of t. (if the expansion is finite we add trailing zeros). Then define $S_n = 0.b_1 - b_n 3$ $\leq [0.0--03] + [0.0--0] bn+1 bn+2^{--}]$ n many $\leq [0^{-n} + (0^{-n})]$ $= 2 \cdot lo^{-n}$ Since $2.10^{n} \rightarrow 0$ as $n \rightarrow 10$, we have $Sn \rightarrow t$. # If you feel uneasy using decimal expansion of a real number, here is an equivalent version: 60 Let $S_n = \{0, a_1, \dots, a_n \mid a_n = 3\}$. Then $S = \bigsqcup S_n$. and each Sn is a finite set. Let th= max { a e Sn , a x ts

then. $t_n \leq t \leq t_n + 10^{-(n-1)}$ Hence $|t-t_n| \leq 10^{-(n-1)}$ Thus, $t_n \rightarrow t$.