1. Let $\left(S_{n}\right)$ be a bounded seq. Show that
(a) $\liminf s_{n} \leqslant \limsup s_{n}$
(b) $\limsup s_{n}=\inf \left\{\sup _{n \rightarrow N} \sin _{n} \mid N \in \mathbb{N}\right\}$.
$P f:(a)$ Let $A_{N}=\sup \left\{s_{n} \mid n \geqslant N\right\} . \quad B_{N}=\inf \left\{s_{n} \mid n \geq N\right\}$.
Then $\quad A_{N} \geqslant B_{N}$. Since (S_{n}) is bounded, hence $\lim A_{N}$, and $\lim B_{N}$ exist. Hence $\lim A_{N} \geqslant \lim B_{N}$ (by Exercise $9.9(0)$.). Thus. limsup $s_{n} \geqslant \liminf s_{n}$.
(b) Since $A_{N} \geqslant A_{N+1}$, and A_{N} is a bounded sequeme, heme $\lim A_{N}=\inf \left\{A_{N} \mid N \in \mathbb{N}\right\}$. by Thu 10.2. We can also parve it directly, let $u=\inf \left\{A_{N} \mid N \in N\right\}$. Then $A_{N} \geqslant U, \forall N$. And for any $\varepsilon>0, \exists N_{1}$ sit. $u+\varepsilon>A_{N}$, otherwise of $\left\{A_{N}\right\}$. $u+\varepsilon$ would be a bigger lower bound, contradiction with definition of inf. By monotonicity, $\forall n>N$, we have

$$
u+\varepsilon>A_{N} \geqslant A_{n} \geqslant u \Rightarrow\left|A_{n}-u\right|<\varepsilon .
$$

Hence, An converges to u.
2. If $\left(a_{n}\right),\left(b_{n}\right)$ are 2 bounded sequame, show that

$$
\limsup \left(a_{n}+b_{n}\right) \leqslant \limsup a_{n}+\limsup b_{n} .
$$

Then give example to illustrate strict inequality.

If: We first give example:

$$
a_{n}=\left\{\begin{array}{ll}
1 & n \text { even } \\
0 & n \text { odd }
\end{array} \quad b_{n}= \begin{cases}0 & n \text { even } \\
1 & n \text {. odd }\end{cases}\right.
$$

then $a_{n}+b_{n}=1$. Heme

$$
\limsup \left(a_{n}+b_{n}\right)=1 . \quad \limsup \left(a_{n}\right)=\limsup \left(b_{n}\right)=1 .
$$

Let $A_{N}=\sup \left\{a_{n} \mid n \geqslant N\right\} . \quad B_{N}=\sup \left\{b_{n} \mid n \geqslant N\right\}$
$C_{N}=\sup \left\{a_{n}+b_{n} \mid n \geqslant N\right\}$. By boundedness of a_{n}, b_{n},
we have A_{N}, B_{N}, C_{N} are all finite, and have limits in \mathbb{R}.
We claim. that $C_{N} \leqslant A_{N}+B_{N}$. Given the claim,
we may take limits and get the desired results

$$
\lim C_{N} \leqslant \lim \left(A_{N}+B_{N}\right)=\lim A_{N}+\lim B_{N}:
$$

$\Leftrightarrow \quad \limsup \left(a_{n}+b_{n}\right) \leqslant \limsup a_{n}+\limsup b_{n}$.

Now, to prove the claim, we have $a_{u} \leqslant A_{N}, b_{n} \leqslant B N$ $\forall u>N$, thus. $a_{n}+b_{n} \leqslant A_{N}+B_{N}$. Heme
$C_{N}=\sup \left\{a_{n}+b_{n} \mid n 3 N\right\} \leqslant A_{N}+B_{N}$. This gives the claim.
3. (a). Let $\left(s_{n}\right)$ be a seq. sit.

$$
\left|S_{n+1}-S_{n}\right| \leqslant 2^{-n} \quad \forall n \in \mathbb{N}
$$

Prove that $\left(S_{n}\right)$ is Candy.
(b). If $\left|s_{n+1}-s_{n}\right| \leq \frac{1}{n}$, is the result still true?

Pf: (a) $\forall n<m$ integers, we have

$$
\begin{aligned}
& \left|S_{n}-S_{m}\right|=\left|\sum_{k=n}^{m-1} \cdot S_{k}-S_{K+1}\right| \\
& \leqslant \quad \sum_{k=n}^{m-1}\left|S_{k}-S_{k+1}\right| \\
& \leqslant \quad \sum_{k=n}^{m-1} \cdot 2^{-k} \\
& \leq \sum_{k=n}^{\infty} 2^{-k}=2^{-n+1} \text {. }
\end{aligned}
$$

$\forall \varepsilon>0, \exists N>0$, sit. $\quad 2^{-N}<\varepsilon$. then, $\forall n, m \geqslant N+1$, we have $\left|S_{n}-S_{m}\right| \leqslant 2^{-\min (n, m)+1} \leqslant 2^{-(N+1)+1}=2^{-N}<\varepsilon$.
Thus $\left(S_{n}\right)$ is Cauchy
(b) False if we only have $\left|s_{n+1}-s_{n}\right|<\frac{1}{n}$. For example:

$$
S_{n}=1+\cdots+\frac{1}{n+1} \text {. }
$$

then. S_{n} is monotone increasing and is umbouncel.

4
10.7 Let S be a bounded nonempty subset in \mathbb{R}. s.t. $\sup (s) \in S$. Show that there is a seq of points $\left(S_{n}\right)$ in S. sit. $l i m S_{n}=\sup S$.
Let $u=\sup S$.
Pf: For each $\varepsilon>0, \exists s \in S$, rt. $u-\varepsilon<s \leq u$ Hence, $\forall n \in \mathbb{N}$, let $\varepsilon=\frac{1}{n}$, we can choose $S_{n} \in S$, st. $u-\frac{1}{n}<s_{n} \leqslant u$. Thus.
$\left(S_{n}\right)$ forms. a sequence. in S convergent to u.
10.8 Let S_{n} be an increasing seq of positive number. deforce $\sigma_{n}=\frac{1}{a}\left(s_{1}+\cdots+s_{n}\right)$. Then, $\left(\sigma_{n}\right)$ is an increasing seq.

$$
\begin{aligned}
& \text { Pf: } \quad \sigma_{n+1}-\sigma_{n}=\frac{1}{n+1}\left(S_{1}+\cdots+S_{n+1}\right)-\frac{1}{n}\left(S_{1}+\cdots+S_{n}\right) \\
& =\frac{1}{n(n+1)}\left(n\left(S_{1}+\cdots+S_{n}\right)+n \cdot S_{n+1}-(n+1)\left(S_{1}+\cdots+S_{n}\right)\right) \\
& =\frac{1}{n(n+1)}\left(\left(S_{n+1}-S_{1}\right)+\cdots+\left(S_{n+1}-S_{n}\right)\right)
\end{aligned}
$$

Since S_{n} is monotone increasing, then $S_{n+1}-S_{k} \geqslant 0$ for all $1 \leqslant k \leqslant n$. Hence $\delta_{n+1}-\sigma_{n} \geqslant 0$. \#.
6.10: Let $t_{1}=1, \quad t_{n+1}=\left(1-\frac{1}{4 n^{2}}\right) \cdot t_{n}$.
(a) show that limen exists.
(b). guess what is $\lim t_{n}$?

If: (1) $\because \quad t_{n+1}<t_{n}$, and $0<t_{n}<1$
\therefore we have a monotone bounded sequemes thus $\lim _{n} t_{n}$ exists,
(2). try computing $\prod_{n=1}^{\infty}\left(1-\frac{1}{4 n^{2}}\right)=e^{\sum \log \left(1-\frac{1}{4 n^{2}}\right)}$

$$
\sum_{n=1}^{\infty} \log \left(1-\frac{1}{4 n^{2}}\right) \approx \sum\left(-\frac{1}{4 n^{2}}\right)<\infty
$$

Heme. the limit is non-zero.

7 Let $S=\left\{x \in(0,1) \mid x=0, a_{1} \cdots a_{n}\right.$, for some $\left.n, a_{n}=3\right\}$. Show that for any $t \in(0,1), \exists\left(S_{n}\right)$ in S. such that $\lim S_{n}=t$.

Pf: if $t \in S$, then the constant sequeme $\delta_{n}=t$ would work. If $t \notin S$, then let

$$
t=0, b_{1} b_{2} \cdots
$$

be a decimal expansion of t. (if the expansion is finite we add trailing zeros). Then define

$$
S_{n}=0 \cdot b_{1} \cdots b_{n} 3
$$

Hence,

$$
\begin{aligned}
\left|S_{n}-t\right| & =|0 \cdot \underbrace{0 \ldots 0}_{n \text { many }} 3-\underbrace{0.0 \cdots 0}_{n \text { many }} b_{n+1} \cdots| \\
& \leqslant|0 \cdot 0 \cdots 03|+|0 \cdot \underbrace{0 \cdots \omega_{n}}_{n \text { many }} b_{n+1} b_{n+2}| \\
& \leqslant 10^{-n}+10^{-n} \\
& =2 \cdot 10^{-n} .
\end{aligned}
$$

Since $2 \cdot 10^{-n} \rightarrow 0$ as $n \rightarrow \infty$, we have $S_{n} \rightarrow t$.

If you feel uneasy using decimal expansion of a real number, here is an equivalent version:

Let $S_{n}=\left\{0, a_{1} \cdots a_{n} \mid a_{n}=3\right\}$. Then $S=\bigsqcup_{n=1}^{\infty} S_{n}$. and each S_{n} is a finite set. Let

$$
t_{n}=\max \left\{a \in S_{n}, a \leqslant t\right\}
$$

then.

$$
t_{n} \leq t \leq t_{n}+10^{-(n-1)}
$$

Hence

$$
\left|t-t_{n}\right| \leqslant 10^{-(n-1)}
$$

Thus.

$$
t_{h} \rightarrow t
$$

