Math 104. HW \#4.
Ross. §11: $5,10,11 \quad \$ 12: 10,11,12,13,14$
11.5. Let $\left(q_{n}\right)$ be an enumeration of all rationals in $(0,1]$.
(a) Give the set of subseg limits of $\left(q_{n}\right)$
(b) Give the values of $\limsup q_{n}$ and $\liminf \left(q_{n}\right)$.

Solution: (a) The set of the subseq limit S is $[0,1]$.
Indeed, for any $t \in[0,1]$. and any $\varepsilon>0$, The set $\{q \mid q \in \mathbb{Q} \cap(0,1] \cap(t-\varepsilon, t+\varepsilon)\}$ is infinite.
Since $\left(q_{n}\right)$ is an enumeration of $\mathbb{Q} \cap(0,11$, hence the set $\left\{n \in \mathbb{N} \mid q_{n} \in(t-\varepsilon, t+\varepsilon)\right\}$ is infinite. By Thu II. 2 , t is a subseq limit of $\left(q_{n}\right)$.
(b)

$$
\begin{aligned}
& \limsup \left(q_{n}\right)=\sup S=1 \\
& \liminf \left(q_{n}\right)=\inf S=0
\end{aligned}
$$

11.10. Let $\left(S_{n}\right)$ be the seq of numbers as following
\qquad
(a) find all the subsen limits
(b) find limsup and liming of $\left(S_{n}\right)$.

We claim that
Solution: (a) $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}$ is the set of subseq limits. For each $n \in \mathbb{N}$, there is a subseg of (S_{n}) with constant value $\frac{1}{n}$., hence $\frac{1}{n}$ is a subseq limit. And $\forall \varepsilon>0$, $\exists n_{0} \in \mathbb{N}$, sit. $\frac{1}{n_{0}}<\varepsilon$., hence the subset $\left\{n\left|\left|s_{n}-0\right|<\varepsilon\right\}\right.$ contains the indexing subset for the subseq with value $\frac{1}{n_{0}}$, hence is infinite. By Thm 11.2, there exists a subseq Converge to 0. If $t \in \mathbb{R} \backslash S$., then, we can find an $\varepsilon>0$, sit. $(t-\varepsilon, t+\varepsilon) \cap S=\phi$, in particular, $\quad S_{n} \notin(t-\varepsilon, t+\varepsilon)$ for any $n \in \mathbb{N}$. Thus S is indeed the set of subsep limits.
(b) $\quad \limsup S_{n}=\sup S=1, \quad \liminf g_{n}=\inf S=0$.
11.11 Let S be a bounded set. Prove there is an increasing $\operatorname{seq}\left(S_{n}\right)$ of points in S, such that $\lim s_{n}=\sup S$.

Pf: Since S is bounded, hence $\alpha=\sup S$ exists in \mathbb{R}. If $\alpha \in S$, then we may take the constant sequeme (S_{n}) with $S_{n}=\alpha \quad \forall n \in \mathbb{N}$. If $\alpha \notin S$, then by minimality. of α among upper bounds of S, for any $\varepsilon>0$, there exists $x \in S$, such that $\alpha>x>\alpha-\varepsilon$. Hence, the set $A_{\varepsilon}=\{x \in S \mid \alpha>x>\alpha-\varepsilon\}$ is non empty. Heme, for each $n \in \mathbb{N}$, we may let S_{n} be any
element in $A 1 / n$. This sequence $\left(S_{n}\right)$ converges to α. We may then take a monotone subseg of $\left(S_{n}\right)$, to achieve the desired requirement.
12.10 Prove $\left(S_{n}\right)$ is bounded, if and only if $\operatorname{limsep}\left|S_{n}\right|<+\infty$.

Pf: \Rightarrow If $\left(S_{n}\right)$ is bounded, then $A=\sup \left\{\left|s_{n}\right| \mid n \in \mathbb{N}\right\}$ exists, and is greater or equal than $\sup \left\{\left|S_{n}\right| \mid n>N\right\}$ for any N. Hence. $A \geqslant \limsup \left|S_{n}\right| \geqslant 0$, thus. $\lim \sup \left|s_{n}\right|$ exits in \mathbb{R}.
F If $\limsup \left|s_{n}\right|$ exists in \mathbb{R}, say $\quad \limsup \left|s_{n}\right|=\alpha$.
By definition, $\lim \sup \left|s_{n}\right|=\lim A_{n}$, where

$$
A_{n}=\sup \left\{\left|s_{m}\right| \mid m \geqslant n\right\} \text {. Hence, for any } \varepsilon>0 \text {, }
$$

$\exists N>0$, sit. $\forall n>N . \alpha-\varepsilon<A_{n}<\alpha+\varepsilon$. In particular.

$$
\left|S_{m}\right|<\alpha+\varepsilon \quad \forall m>N
$$

Thus,

$$
\begin{aligned}
\sup \left\{\left|S_{m}\right| \mid m \in \mathbb{N}\right\} & =\sup \left\{\left|S_{1}\right|,\left|S_{2}\right|, \cdots,\left|S_{N}\right|,\left|A_{N+1}\right|\right\} \\
& \leqslant \max \left\{\left|S_{1}\right|, \cdots,\left|S_{N}\right|, \alpha+\varepsilon\right\} .
\end{aligned}
$$

which exists in \mathbb{R}.
first
12.11 Prove the inequality in $T_{m} 12.2$. i.e.

Let $\left(S_{n}\right)$ be any seq of nonzero real numbers, then

$$
\liminf \left|\frac{S_{n+1}}{S_{n}}\right| \leqslant \liminf \left|S_{n}\right|^{1 / n}
$$

Pf: Consider the possible values of $\alpha=\liminf \left|\frac{s_{n+1}}{s_{n}}\right|$: case $\alpha=0$: there is nothing to prove, since $\left|s_{n}\right|^{\frac{1}{n}}$ is a seq of positive numbers, hence $\inf \left\{\left.\left|S_{n}\right|^{\frac{1}{n}}\right|_{n>N}\right\} \geqslant 0$, and $\liminf \left|S_{u}\right|^{\frac{1}{n}} \geqslant 0$.
case $\alpha=+\infty$: we need to show that $\liminf \left|s_{n}\right|^{\frac{1}{n}}=+\infty$. which is equivalent to show $\lim \left|s_{n}\right|^{\frac{1}{n}}=+\infty$. For any $M>0$, we need to show that there exits an N. sit.
$\left|s_{n}\right|^{\frac{1}{n}} \geqslant M$ for any $n \geq N$. Now, since
$\liminf \left|S_{n+1} / S_{n}\right|=+\infty$, hence for any $M_{1}, \exists N_{1}>0$, s.t. $\left|S_{n+1}\right| S_{n} \mid \geqslant M_{1} \quad \forall n>N_{1}$. Thus., $\forall k \geqslant 0$.

$$
\begin{aligned}
\left|S_{N_{+}+k}\right| & =\left|S_{N_{N}}\right| \cdot\left|\frac{S_{N_{N+1}}}{S_{N}}\right| \cdot\left|\frac{S_{N_{N}+2}}{S_{N+1}}\right| \cdot \cdots\left|\frac{S_{N+k}}{S_{N+k-1}}\right| \\
& \geqslant\left|S_{N_{1} \mid}\right| \cdot\left(M_{1}\right)^{k}=S_{N}\left(M_{1}\right)^{-N} \cdot\left(M_{1}\right)^{N+k}
\end{aligned}
$$

Heme, $\quad\left|S_{n}\right|^{\frac{1}{n}} \geqslant C^{\frac{1}{n}} \cdot M_{1} . \quad \forall n>N_{1}$
where $C=\left|S_{N}\right| \cdot\left(M_{1}\right)^{-N}>0$.
Since $\lim _{n \rightarrow \infty} C^{\frac{1}{n}}=1$. Hence, $\exists N_{2}>0$. s.t. $\forall n>N_{2}, C^{\frac{1}{n}}>\frac{1}{2}$.
Thus, if we let $M_{1}=2 M$, and choose N_{1} accordingly, then setting $N=\max \left(N_{1}, N_{2}\right)$ is enough. Indeed,

$$
\forall n>N, \quad\left|S_{n}\right|^{\frac{1}{n}} \geqslant C^{\frac{1}{n}} \cdot M_{1} \geqslant \frac{1}{2} \cdot 2 M=M \text {. }
$$

This shows $\left|S_{n}\right|^{\frac{1}{n}}$ diverges. to $+\infty$
case $\alpha \in \mathbb{R}, \alpha>0$: the proof is similar to the second case. To show $\liminf \left|S_{n}\right|^{\frac{1}{n}} \geqslant \alpha$, suffices to show that, for any $1>\varepsilon>0$, we have $\lim \operatorname{in} f\left|S_{n}\right|^{\frac{1}{n}} \geqslant \alpha(1-\varepsilon)$

Since $\liminf \left|s_{n+1} / s_{n}\right|=\alpha$, hence for any $1>\varepsilon_{1}>0$, there exists N_{1}, such that

$$
\begin{array}{rrrr}
& \left|S_{n+1}\right| S_{n} \mid \geqslant \alpha\left(1-\varepsilon_{1}\right)_{k} & \forall n>N_{1} \\
\Rightarrow & \left|S_{N_{1}+k}\right| \geqslant\left|S_{N_{1}}\right| \cdot\left(\alpha\left(1-\varepsilon_{1}\right)\right)^{\frac{1}{n}}\left(\alpha\left(1-\varepsilon_{1}\right)\right) & \forall k>0 \\
\Rightarrow & \left|S_{n}\right|^{\frac{1}{n}} \geqslant \quad C^{\cdot}\left(\alpha>N_{1}\right.
\end{array}
$$

where C is some positive constant, depending on ε_{1}, N_{1}.

$$
C=\left|S_{N_{1}}\right| \cdot\left(\alpha\left(1-\varepsilon_{1}\right)\right)^{-N_{1}}
$$

Since $\lim C^{\frac{1}{n}}=1$, hence $\forall 1>\varepsilon_{2}>0, \quad \exists N_{2}>0$, st.

$$
1+\varepsilon_{2}>C^{\frac{1}{n}}>1-\varepsilon_{2}
$$

Thus. for $n>\max \left(N_{1}, N_{2}\right)$, we have

$$
\left|S_{n}\right|^{\frac{1}{n}} \geqslant\left(1-\varepsilon_{2}\right)\left(1-\varepsilon_{1}\right) \cdot \alpha .
$$

for any given $1>\varepsilon>0$,
Thus, if we choose $\varepsilon_{1}=\varepsilon_{2}$, such that $\left(1-\varepsilon_{1}\right)\left(1-\varepsilon_{2}\right)=(1-\varepsilon)$, and if we set $N=\max \left(N_{1}, N_{2}\right)$, where N_{1}, N_{2} are obtained as above, then

$$
\forall n>N, \quad\left|s_{n}\right|^{\frac{1}{n}} \geqslant \alpha(1-\varepsilon) .
$$

This shows. $\liminf \left|s_{n}\right|^{\frac{1}{n}} \geqslant \alpha$.
12.12 Let $\left(S_{n}\right)$ be a sequeme of non-negative numbers, and for each n, define

$$
\sigma_{n}=\frac{1}{n}\left(s_{1}+\cdots+s_{n}\right) .
$$

(a). Show that

$$
\liminf s_{n} \leq \liminf \sigma_{n} \leq \limsup \sigma_{n} \leq \limsup S_{n}
$$

(b) Show that, if $\lim S_{n}$ exists, them $\lim \sigma_{n}$ exists. and equals $\lim S_{n}$.
(c) Given an example where $\lim \sigma_{n}$ exists, but $\lim s_{n}$ doesn't.
\downarrow a short but incomplete proof.
Solution: (a) We may prove this directly, or we may cheat by considering sequence

$$
a_{n}=e^{s_{1}+\cdots+s_{n}}
$$

Then $a_{n+1}\left(a_{n}=e^{\delta_{n+1}}, \quad\left(a_{n}\right)^{\frac{1}{n}}=e^{\sigma_{n}}\right.$.
from the (2.2)
(*) $\liminf \left(e^{s_{n}}\right) \leq \liminf \left(e^{\sigma_{n}}\right) \leqslant \limsup \left(e^{\sigma_{n}}\right) \leq \lim \sup \left(e^{s_{n}}\right)$

Lemma: if $\left(b_{n}\right)$ is a sequence of non-negative real number.
then

$$
\begin{aligned}
& \liminf \left(e^{b_{n}}\right)=e^{\liminf b_{n}} \\
& \lim \sup \left(e^{b_{n}}\right)=e^{\limsup b_{n}}
\end{aligned}
$$

where we set $e^{+\infty}=+\infty$.

However, to prove this lemma weeds some effort. Hence if you take this for granted, then

$$
\begin{aligned}
(*) & \Rightarrow \quad e^{\liminf \left(s_{n}\right)} \leqslant e^{\liminf \sigma_{n}} \leq e^{\limsup \sigma_{n}} \leq e^{\limsup s_{n}} \\
& \Rightarrow \quad \liminf \left(s_{n}\right)
\end{aligned}
$$

(a) Now we prove this in the style of $T h m 12.2$.

We first prove that
(1) $\quad \lim \sup \sigma_{n} \leqslant \limsup S_{n}$.

If $\lim \sup \delta_{n}=+\infty$, then there is nothing to prove.
Now, cessume $\alpha=\limsup S_{n} \in \mathbb{R}$. Hence we only wed to show that, $\forall \varepsilon>0$.

$$
\lim \sup \sigma_{n} \leqslant \alpha+\varepsilon .
$$

Since $\alpha=\limsup S_{n}$, thus for any $\varepsilon_{1}>0, \exists N_{1}>0$, s.t.

$$
\alpha+\varepsilon_{1}>S_{n} \quad \forall n>N_{1}
$$

Hence $\quad\left(N_{1}+k\right) \sigma_{N_{1}+k}-N_{1} \sigma_{N_{1}}=S_{N_{1}+1}+\cdots+S_{N_{1}+k}$

$$
\leqslant\left(\alpha+\varepsilon_{1}\right) \cdot k
$$

$$
\therefore \quad \sigma_{N_{1}+k} \leqslant \frac{N_{1}}{N_{1}+k} \sigma_{N_{1}}+\frac{k}{N_{1}+k}\left(\alpha+\varepsilon_{1}\right) .
$$

taking limsup over k on both sides, we get

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \sigma_{n}=\limsup _{k \rightarrow \infty} \sigma_{N_{1}+k} & \leqslant \limsup \left(\frac{N_{1}}{N_{1}+k} \sigma_{N_{1}}+\frac{k}{N_{1}+k}\left(\alpha+\varepsilon_{1}\right)\right) \\
& =\alpha+\varepsilon_{1} .
\end{aligned}
$$

If we choose $\varepsilon_{1}=\varepsilon_{\text {, we get the desired result, }}^{\text {, }}$

The claim about $\quad \liminf S_{n} \leqslant \operatorname{limin} f \sigma_{n}$ is similar.
(b) $\quad \lim s_{n}$ exists $\Rightarrow \quad \liminf \sigma_{n}=\limsup \sigma_{n}=\lim s_{n}$

$$
\Rightarrow \quad \lim \sigma_{n}=\lim s_{n} .
$$

(c). Let $S_{n}=\left\{\begin{array}{ll}0 & n \text { even } \\ 1 & n \text { odd, }\end{array} \quad\right.$ then $\quad \sigma_{n} \rightarrow \frac{1}{2}$ but $\left(S_{n}\right)$ doem't. converge.
\#12.13. Let $\left(S_{n}\right)$ be a bounded seq in \mathbb{R}. If
$A=\left\{a \in \mathbb{R} \mid\right.$ only finitely many $\left.S_{n}<a\right\}$.
$B=\left\{b \in \mathbb{R} \mid\right.$ only finitely many $\left.S_{n}>b\right\}$.
then $\quad \sup A=\liminf s_{n}$. \quad inf $B=\limsup a_{n}$.

Pf: we prove only one side, $\sup (A)=\liminf S_{n}$.
For each $n>0$ integer, let

$$
\alpha_{n}=\inf \left\{s_{m} \mid m>n\right\} .
$$

then by definition, $S_{m} \geqslant \alpha_{n} \quad \forall m>n$, hence $\left\{m \mid S_{n}<\alpha_{n}\right\} \subset\{1,2, \cdots, n\}$ is finite. hence $\alpha_{n} \in A$.
Let's denote $A^{\prime}=\left\{d_{n} \mid n \in \mathbb{N}\right\}$. then $A^{\prime} \subset A_{0}$.
Next, we show that $\forall a \in A, \exists \alpha_{n} \geqslant a$. Indeed, if $a \in A$, then $\left\{n \mid S_{n}<a\right\}$ is finite, and let N $=\max \left\{_{n} \mid s_{n}<a\right\}$. We then have $s_{n} \geqslant a \forall n>N$, hence $a \leqslant \inf \left\{S_{m} \mid m \geq N\right\}=\alpha_{N}$. This shows

$$
\sup (A)=\sup \left(A^{\prime}\right)=\liminf \delta_{n} .
$$

12.14 (a) $\lim (n!)^{\frac{1}{n}}$

Let $S_{n}=n!$, then $S_{n+1} / S_{n}=n+1$,
hence $\lim \left(S_{n+1} / S_{n}\right)=+\infty$

$$
\lim (n!)^{\frac{1}{n}}=\lim \left(S_{n}\right)^{\frac{1}{n}}=
$$

(b) $\lim \frac{1}{n}(n!)^{\frac{1}{n}}=\lim \left(\frac{n!}{n^{n}}\right)^{\frac{1}{n}}$
let $s_{n}=n!/ n^{n}$, then

$$
S_{n+1} / S_{n}=\frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}=(n+1) \cdot\left(\frac{n}{n+1}\right)^{n} \cdot \frac{1}{n+1}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}}
$$

we have $\lim \left(1+\frac{1}{n}\right)^{n}=e$, hence.
$\lim \left(s_{n+1} / s_{n}\right)=\frac{1}{e}$. thus
$\lim \frac{1}{n}(n!)^{\frac{1}{n}}=\frac{1}{e}$.

