HWS. Ross 313. 3.4, 6.7
133. Let B be the cet of bounded soy.
$$x = (x_1, x_2, ..., 7)$$

define $d(x,y) = \sup \frac{1}{1}\frac{x_1 - \frac{y_1}{2}}{\frac{y_1}{2}}$. $(x_1, x_2, ..., 7)$
(a) Shurs that d is a metric
(b) Does $d = \frac{y_1}{2}$. $\frac{1}{1}\frac{y_1 - \frac{y_1}{2}}{\frac{y_1}{2}}$ define a metric for B?
Sol: (a) Since (x_1) and (y_2) are bounded, thus $(x_1 - \frac{y_2}{2})$
is a bounded soy. hence $\sup \frac{1}{1}\frac{1}{x_1} - \frac{y_1}{3}$ exists in R.
Hence $d(x,y) \in \mathbb{R}$. $\Psi(x_2)$ (y_2) in B. The axium (?) (b)
for metric is easy to verify. We sous check triangle
in equility. $\Psi(x_1), (y_1), (z_1)$ bounded soy, we head
to show that
 $\sup \frac{1}{x_1 - y_1} + \frac{y_1}{y_1} + \frac{1}{y_1} - \frac{z_1}{2}$.
Hence, $\sup \frac{1}{x_1 - y_1} + \frac{y_1}{y_1} + \frac{1}{y_1} - \frac{z_1}{2}$.
(b). No, $\frac{1}{x_1}\frac{y_1}{y_1}$ might be ∞ . i.e. $(x_1)=1$, $(y_1)=0$
#B.4 From the definition of open set, prove that
(i) union of arbitrary open set is open
(2) intersection of finitely many open is open
(2) intersection of finitely many open is open
(b). Let $\frac{y_1}{y_1}\frac{x_2}{y_1}$ be a collection of open redo.
If $P \in \frac{y_1}{y_1}$ when $\exists definition = 1$ due A. sit $P \in U_{d_1}$.

Н	ence, 3870, BS(p) Clldo., since Ugo is open.
	$B_{s}(p) \subset U_{d_{s}} \subset \bigcup U_{d_{s}}$
	if $p \in \bigcap_{i=1}^{N} U_i$, U_i open, then $\exists S_i = 0$ $\forall i \in \{1, \dots, N\}$ $r.t. B_{S_i} (p) \subset U_i$. Let $S = \min \{S_i\}$. Then
	$B_{s}(p) \subset U_{i}$, $\forall i \ni B_{s}(p) \subset \bigcap_{i=1}^{N} U_{i}$
Le	 3.9 Proposition. et E be a subset of a metric space (S, d). (a) The set E is closed if and only if E = E⁻. (b) The set E is closed if and only if it contains the limit of every convergent sequence of points in E. (c) An element is in E⁻ if and only if it is the limit of some sequence of points in E. (d) A point is in the boundary of E if and only if it belongs to the closure of both E and its complement.
<u>Pf</u> : (2)	⇒ E ⊃ E by definition, and E = ∩ F for all closed F ⊃ E., and we can take one of the F= E, hence. E ⊂ E., This shows E = E.
	E E is an intersection of closed sets, hence is
	closed.
	жсь.
then	$\Rightarrow \text{suppose } E \text{is closed} \text{$X_n \to X, $X_n \in E, bot $x \notin E.$} \\ \exists S > 0, \text{s.t.} \underline{B_S(x) \ \cap E = \phi} \\ \Leftrightarrow B_S(x) \subset E^c \underbrace{F}_{x_n} \underbrace{B_S(x)}_{x_n} \underbrace{F}_{x_n} \underbrace{F}_{x_n} \underbrace{B_S(x)}_{x_n} \underbrace{F}_{x_n} F$
_	suffice to prove that, if $\chi \notin E$, then $\exists \$ > 0$, sit. $B_{\$}(x) \subset E^{\circ}$. Suppose it's impossible to find such $\$$, i.e. $\forall \$ > 0$, $B_{\$}(x) \cap E = \oint$, then take $\$$ to run fhrough h . let $\chi_{h} \in B_{\pm}(x) \cap E$. then $\chi_{h} \rightarrow \chi$ as a see in $\$$

By assumption , $\chi \in E$. Hence we have contradiction with $\chi \notin E_{L}$.

井

•

(c)
$$\Leftarrow$$
 if $\exists seq. (P_{0})$, s.t. $\lim p_{n} = p$ and $p_{n} \in E$ UN.
thus, by (b). $\forall F \geq E$ Followed, we have $\lim p_{n} = p$ PreF
have $p \in F$. Thus $p \in E^{-}$.
 \Rightarrow if $p \in E^{-}$, then for any $e \ge 0$, $B \le p$, $\Omega \in \Xi^{+} p$, otherwise.
E is constrained in the chied set $B \le p^{2}$, hence $E^{-} \subset B \le p^{2}$
constrained in the chied set $B \le p^{2}$, hence $E^{-} \subset B \le p^{2}$
constrained in the chied set $B \le p^{2}$, hence, we may pick
prints $p_{n} \in B \le p^{2}$, $\Omega \in P \in B \le p^{2}$.
(d) Recall that $\partial E \coloneqq E^{-} \setminus E^{-}$. Since
 $E^{-} \cup iul \cup CE$, $\cup open_{3}^{2}$.
Hence $(E^{-})^{-} = \cap iu^{2} \cup U \subset E^{-}$, $\cup open_{3}^{2}$
 $= \cap iu^{2} \cup U^{-} \cup CE^{-}$, $U \circ open_{3}^{2}$
 $= \cap iu^{2} \cup U^{-} \cup CE^{-}$, $E \circ cosol_{3}^{2} = (E^{-})^{-}$
Hence $E^{-} \setminus E^{-} = E^{-} \cap (E^{-})^{-} = E^{-} \cap (E^{-})^{-}$.
(d) Show that every open subset of \mathbb{R} is the union of finite
or infinite sets of open internets.
 $p_{1}^{2} \vdash Let \cup C \mathbb{R}$ be open.
(i) We first show that, $U \neq B \cup I$, there is a maximal
open internet $p^{2} (a_{1}p_{1}, b_{2}p_{2}) \subset U$. Indeed, by openeds of
 $U^{-} = U^{-} \cap (P^{-}p_{1}p_{2}) \cup (U^{-} \cap (P^{+}p_{1}, 4p_{2}))$

 $z: \mathcal{U}^{c} \cup \mathcal{U}^{c}_{+}$ Let $a(p) := \sup (u_{-}^{c}), b(p) := \inf (u_{+}^{c}).$ Since U- is closed and bounded above, hence app) EUC. Similarly $bcp \in U_{+}^{c}$, $\forall q$, s.t. a(p) < q < b(q), since $q \notin U_{-}^{e}$ and $q \notin U_{+}^{c}$, thus $q \notin U_{-}^{c} \cup U_{+}^{c} = U_{-}^{c}$. Hence Q ∈ U, And since a(p), b(p) & U, this interval is maximal. (2), U is a disjoint union of such maximal intervals. Indeed, every point of U is contained in such an internal. and these intervals are disjoint from each other. (3). Let A denote the collection of such intervals. Then for each IEA, we may pick a rational point PIEQUI Since {PI: IGAZ CQ is a subset of Q and bijert with A, we have A is countable. Hence. $\mathcal{U} = \bigcup_{\mathbf{I} \in \mathcal{A}} \mathbf{I}.$ is a disjoint union of countably many open. including finite and infinitely countable