Math 104. HW6. Rudin 2.11, 2.14, 2.15, Ross 14.14,
\#1
11. For $x \in R^{1}$ and $y \in R^{1}$, define

$$
\begin{aligned}
& d_{1}(x, y)=(x-y)^{2} \\
& d_{2}(x, y)=\sqrt{|x-y|} \\
& d_{3}(x, y)=\left|x^{2}-y^{2}\right| \\
& d_{4}(x, y)=|x-2 y| \\
& d_{5}(x, y)=\frac{|x-y|}{1+|x-y|}
\end{aligned}
$$

Determine, for each of these, whether it is a metric or not.
(1) $d_{1}(x, y)=(x-y)^{2}$ is not a metric. because it fails
triangle inequality. Say $x=0, y=1, z=2$, then.

$$
d(x, y)=1, \quad d(y, z)=1, \quad d(x, z)=(0-2)^{2}=4
$$

and $d(x, y)+d(y, z)<d(x, z)$.
(2) $d_{2}(x-y)=\sqrt{|x-y|}$ is a metric. The conditions are obvious except triangle inequality, we need to check that
(*) $\quad \sqrt{|x-y|}+\sqrt{|y-z|} \geqslant \sqrt{|x-z|} \quad \forall x, y, z \in \mathbb{R}$
(*) $\Leftrightarrow(\sqrt{|x-y|}+\sqrt{y-z \mid})^{2} \geqslant|x-z|$

$$
\Leftrightarrow \quad|x-y|+|y-z|+2 \sqrt{|x-y|} \cdot \sqrt{|y-z|} \geqslant|x-z|
$$

$$
\Leftarrow \quad\left\{\begin{array}{l}
2 \sqrt{|x-y|} \cdot \sqrt{|y-z|} \geqslant 0 \\
|x-y|+|y-z| \geqslant|x-z| .
\end{array}\right.
$$

Hence (*) is satisfied.
(c). $d_{3}(x, y)=\left|x^{2}-y^{2}\right|$ is not a metre, since we can have $x \neq y$, but $d_{3}(x, y)=0$, e. $\quad x=1, y=-1$.
(d) $\quad d_{4}(x, y)=|x-2 y|$ is not symmetric in x, y.
i.e. $\exists x, y \in \mathbb{R}$, st. $d_{4}(x, y) \neq d_{4}(y, x)$ For example,

$$
d_{k}(1,0)=1, \quad d_{4}(0,1)=2
$$

(e) $\quad d_{5}(x, y)=\frac{|x-y|}{1+|x-y|}$ is a metric. We only need to check the triangle inequality, since the otter is obvious.
Let $f(r)=\frac{r}{1+r}$, where $r \geqslant 0$. Then we claim that if $0 \leqslant a<b$, then $f(a)<f(b)$. Indeed, we have.

$$
\begin{aligned}
\frac{a}{1+a}<\frac{b}{1+b} & \Leftrightarrow a(1+b)<b(1+a) \Leftrightarrow a+a b<b+a b \\
& \Leftrightarrow a<b
\end{aligned}
$$

Next, we claim that if $a>0, b>0$, then.

$$
\begin{array}{ll}
& f(a)+f(b) \geqslant f(a+b) . \\
& \frac{a}{1+a}+\frac{b}{1+b} \geqslant \frac{a+b}{1+a+b} \\
\Leftrightarrow & \frac{a(1+b)+b(1+a)}{(1+a)(1+b)} \geqslant \frac{a+b}{1+a+b} \\
\Leftrightarrow & \frac{a+b+2 a b}{1+a+b+a b} \geqslant \frac{a+b}{1+a+b}
\end{array}
$$

Given any 4 positive real number A, B, C, D, if $\frac{A}{B} \leqslant \frac{C}{D}$, then

$$
\frac{A}{B} \leqslant \frac{A+C}{B+D} \leqslant \frac{C}{D} .
$$

Indeed. $A(B+D) \leqslant B(A+C)$, and. $(A+C) D \leqslant C \cdot(B+D)$.

Let $A=a+b, B=1+a+b, C=2 a b, D=a b$. , we have. $\frac{A}{B}<1<2=\frac{C}{D}$, hence

$$
\frac{a+b+2 a b}{1+a+b+a b} \geqslant \frac{a+b}{1+a+b}
$$

14. Give an example of an open cover of segment $(0,1)$ which has no finite sub cover.

Sol: Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequeme of real number, such that $a_{n} \in(0,1), \quad a_{n}>a_{n+1}$, and $\lim a_{n}=0$. Then define $U_{n}=\left(a_{n}, 1\right)$, We then have $U_{1} \subset U_{2} \subset U_{3} \subset \cdots$, and $\bigcup_{n} U_{n}=(0,1)$. Indeed, for any $x \in(0,1)$, there exist N large enough, sit. $\forall n>N, a_{n}<x$. Hus, $x \in\left(a_{n}, 1\right)$ for all $n>N$, heme $x \in \bigcup_{n} U_{n}$.

Now, we show $\bigcup_{n \in \mathbb{N}} U_{n}$ does not have a finite subcover for $(0,1)$. Indeed, for any finite subset $I \subset \mathbb{N}$, let $n^{\prime}=\max (I)$, then $\bigcup_{n \in I} U_{n}=U_{n^{\prime}}=\left(a_{n^{\prime}}, 1\right) \neq(0,1)$.

Many other possible covers, e.g. $\left(\right.$ set $\left.a_{0}=1\right)$, and at

$$
u_{n}=\left(a_{n+1}, a_{n-1}\right)
$$

2.15 Show that thy 2.36 and its corrollam become false, if we replace "Compact" by "bounded", or by" closed" 2.36 Theorem If $\left\{K_{\alpha}\right\}$ is a collection of compact subsets of a metric space X such
that the intersection of every finite subcollection of $\left\{K_{\alpha}\right\}$ is nonempty, then $\cap K_{\alpha}$ is nonempty.

Proof Fix a member K_{1} of $\left\{K_{a}\right\}$ and put $G_{a}=K_{\alpha}^{c}$. Assume that no point of K_{1} belongs to every K_{a}. Then the sets G_{a} form an open cover of K_{1};
that $K_{1} \subset G_{a_{1}} \cup \cdots \cup G_{a_{n}}$. But this means that

$$
K_{1} \cap K_{a_{1}} \cap \cdots \cap K_{\alpha_{n}}
$$

is empty, in contradiction to our hypothesis.
Corollary If $\left\{K_{n}\right\}$ is a sequence of nonempty compact sets such that $K_{n} \supset K_{n+1}$
$(n=1,2,3, \ldots)$, then $\bigcap_{1}^{\infty} K_{n}$ is not empty.

Take $\quad X=\mathbb{R}^{\prime}$.
Soln: (1) if we replace compact by closed, then, we may let $K_{n}=\left[n_{1}+\infty\right)$, then $\cap K_{n}=\phi$.
(2) if we replace "compact" by "bounded", we may let

$$
K_{n}=\left(0, \frac{1}{n}\right) .
$$

optional: if we replace compact by closed and bounded, then, if we let $X=\mathbb{Q}$, and let $K_{n}=\left[\sqrt{2}-\frac{1}{n}, \sqrt{2}\right] \cap \mathbb{Q}$ K_{n} is closed in X (not closed in \mathbb{R})., and is bounded, but K_{n} is not compact. $\cap K_{n}=\phi$.

Ross 14.14:
Show that $\sum_{n=1}^{\infty} \frac{1}{n} \geqslant 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\cdots$ Hence $\sum \frac{1}{n}$ diverges to $+\infty$.

Pf: We decompose \mathbb{N} into disjoint intervals,

$$
I_{0}=\{1\}, I_{m}=\left[2^{m-1}+1,2^{m}\right] \cap \mathbb{N} \text { for } m \geqslant 1
$$

then for $n \in I_{m}$, we let $a_{n}=2^{-m}$.

$$
\sum_{n \in I_{m}} \cdot a_{n}=\left(2^{m}-2^{m-1}\right) \cdot 2^{-m}=\frac{1}{2} . \quad \forall m \geqslant 1 .
$$

Hence, the partial sum of a_{n} is.

$$
\begin{aligned}
S_{2^{m}} & =\sum_{n=1}^{2^{m}}=\sum_{n \in I_{0}} a_{n}+\sum_{n \in I_{1}} a_{n}+\cdots+\sum_{n \in I_{m}} a_{n} \\
& =1+\frac{1}{2}+\cdots+\frac{1}{2}=1+\frac{m}{2}
\end{aligned}
$$

And $\lim _{m \rightarrow \infty} S_{2^{m}}=+\infty$.

On the otherhand, $b_{n}=\frac{1}{n}$, if $n \in I_{m}$, then $n \leqslant 2^{m}$, thus $\frac{1}{n} \geqslant \frac{1}{2^{m}}=a_{n}$. Heme $b_{n} \geqslant a_{n}$. By comparison tart. $\sum b_{n}=+\infty$.
\#S If $a_{n}>0$ and $\sum a_{n}$ diverges, then $\sum \frac{a_{n}}{1+a_{n}}$ diverges.
Pf: If $\sum \frac{a_{n}}{1+a_{n}}$ converges, then $b_{n}=\frac{a_{n}}{1+a_{n}} \rightarrow 0$, hence. $a_{n}=\frac{b_{n}}{1-b_{n}} \rightarrow 0$. Let N be large enough, sit. $\forall n \geqslant N$, $a_{n}<1$, then. $\sum_{n=N}^{\infty} \frac{a_{n}}{1+a_{n}}>\sum_{n=N}^{\infty} \frac{a_{n}}{2}=\frac{1}{2} \sum_{n=N}^{\infty} a_{n}$. Hence $\sum a_{n}$ converges. Contradict with the hypothesis.
\#6 If $a_{n}>0$ and $\sum a_{n}$ converges. shour that $\sum \sqrt{a_{n}} / n$ converges.

Pf: let $A_{n}=\sum_{j=1}^{n} a_{j}, \quad B_{n}=\sum_{j=1}^{n} \sqrt{a_{j}} / j$, be partial sums.
Then

$$
\begin{aligned}
B_{n}^{2}=\left(\sum_{j=1}^{n} \sqrt{a_{j}} \cdot \frac{1}{j}\right)^{2} & \leqslant\left(\sum_{j=1}^{n}\left(\sqrt{a_{j}}\right)^{2}\right) \cdot\left(\sum_{j=1}^{n} \frac{1}{j^{2}}\right) \\
& =\left(\sum_{j=1}^{n} a_{j}\right) \cdot\left(\sum_{j=1}^{n} \frac{1}{j^{2}}\right)
\end{aligned}
$$

Since $\sum a_{n}$ converges and $\sum \frac{1}{n^{2}}$ converges, say to limit
S and T respectively, hence., $\forall n$.

$$
\sum_{j=1}^{n} a_{j} \leqslant S \quad \text { and } \quad \sum_{j=1}^{n} \frac{1}{j^{2}} \leqslant T
$$

Thus $B_{n}^{2} \leqslant T \cdot S$. Since B_{n} is a monotone increasing sequeme and is bounded, heme B_{n} converges.

