Math 104, HW6. Rudin 2.11, 2.14, 2.15, Ross14.14, 11. For $x \in \mathbb{R}^1$ and $y \in \mathbb{R}^1$, define #1 $d_1(x, y) = (x - y)^2,$ $d_2(x, y) = \sqrt{|x - y|},$ $d_3(x, y) = |x^2 - y^2|,$ $d_4(x, y) = |x - 2y|,$ $d_{5}(x, y) = \frac{|x - y|}{1 + |x - y|}$ Determine, for each of these, whether it is a metric or not. (1) $d_1(x,y) = (x-y)^2$ is not a metric, because it fails triangle inequality. Say X=0, y=1, Z=2, then. d(x,y) = 1, d(y,z) = 1, $d(x,z) = (o-z)^2 = 4$ d(x,y) + d(y,z) < d(x,z)and dz (x-y) = ~ 1x-y1 is a metric. The conditions are (2)obvious except triangle inequality, we need to check that JIX-yI + JIY-ZI > JIX-ZI + X, Y, ZER (+)(JIX-YI + JH-zI) > IX-z| (\star) \Leftrightarrow |x-y| + 1y-21 + 2 J1x-y1 - J1y-21 3 1x-2 2 JIX-y1 · J14-21 ŧ 70 |x-y| + (y-z) > (x-z). satisfied. (*) Hence ĬŠ (c). $d_3(x,y) = |x^2 - y^2|$ is not a metriz, can have $\chi \neq y$, but $d_3(\chi, y) = 0$. e.g. $\chi = 1, y = 1$. since ve $d_{\psi}(x,y) = |x-2y|$ is (d) not symmetric in x.y.

i.e.] X-y ER, st. d4(X,y) = d4(Y,x) For example,

$$d_{4}(1,0) = 1$$
, $d_{4}(0,1) = 2$.

(e)
$$d_{k}(x,y) = \frac{|x-y|}{|t+|x-y|}$$
 is a metric. We only need to
check the triangle inequality, since the often is obvious.
Let $f(x) = \frac{x}{|t+r|}$, where $y \ge 0$. Then we claim that if
 $0 \le a \le b$, then $f(a) < f(b)$. Indeed, we have.
 $\frac{a}{|t+a|} < \frac{b}{|t+b|} \Leftrightarrow a(t+b) < b(t+a) \iff a+ab \le btab$
 $\Leftrightarrow a < b$.
Next, we claim that if $a \ge 0$, $b \ge 0$, then.
 $f(a) + f(b) \geqslant f(a+b)$.
 $\frac{a}{|t+a|} + \frac{b}{|t+b|} \geqslant f(a+b)$.
 $\frac{a}{|t+a|} + \frac{b}{|t+b|} \geqslant f(a+b)$.
 $\frac{a}{|t+a|} + \frac{b}{|t+b|} \geqslant \frac{a+b}{|t+a+b|}$.
 $\Leftrightarrow \frac{a(t+b) + b(t+a)}{(t+a) + t+a+b} \geqslant \frac{a+b}{|t+a+b|}$.
 $\Leftrightarrow \frac{a+b + 2ab}{|t+a+b+ab|} \geqslant \frac{a+b}{|t+a+b|}$.
Given any 4 positive real number AB.C.D., if $\frac{A}{B} \le \frac{C}{D}$, then
 $\frac{A}{B} \le \frac{A+C}{B+D} \le \frac{C}{D}$.
Indeed, $A(B+D) \le B(A+C)$, and $(A+C)D \le C (B+D)$.
Let $A = a+b$, $B = Harb$, $C = 2ab$, $D = ab$., we have.
 $\frac{A}{B} \le 1 \le 2 = \frac{C}{D}$, hence
 $\frac{a+b + 2ab}{|t+a+b|} = \frac{a+b}{|t+a+b|}$.

an example of an open cover of segment (0,1) 14. Give which has no finite sub cover.

let (an) n=1 be a sequence of real number. such that Soli an E (0,1), an > an+1, and lim an = 0. Then define Un = (an, 1), We then have U, CU2CU3C. (0,1). Indeed, for any U Un = and there $\chi \in (o, i),$ large enough, sit. In > N, an < x. Huus, exist N $\chi \in (a_n, 1)$ for all n > N, hence $x \in \bigcup U_n$.

we show Ulu does not have a finite subcover Now for any (0,1). Indeed, finite subset for ICN, let U Un = U_{n} $(a_{h'}, 1)$ max (I), then $\neq (o_1|)$ n' こ Ξ

e.g. (set as=1), and let Many possible other (overs, Un = (an+1, an-1)

2.15 Show that the 2.36 and its corrollary become false, if e "compact" by "bounded" or 2.36 Theorem If $\{K_s\}$ is a collection of compact subsets of a metric space X such by " closed" WC replace that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty, then $\bigcap K_{\alpha}$ is nonempty. **Proof** Fix a member K_1 of $\{K_a\}$ and put $G_a = K_a^c$. Assume that no point of K_1 belongs to every K_a . Then the sets G_a form an open cover of K_1 ; and since K_1 is compact, there are finitely many indices $\alpha_1, \ldots, \alpha_n$ such that $K_1 \subset G_{a_1} \cup \cdots \cup G_{a_n}$. But this means that $K_1 \cap K_{a_1} \cap \cdots \cap K_{a_n}$ is empty, in contradiction to our hypothesis. **Corollary** If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$

 $(n = 1, 2, 3, \ldots)$, then $\bigcap_{1}^{\infty} K_n$ is not empty.

Take
$$\chi = \mathbb{R}^{1}$$
.
Sul $n = 0$ if we replace compact by closed, then we may
let $K_{n} = \mathbb{E}^{n_{1}+000}$, then $\bigcap K_{n} = \phi$.
(2) if we replace compact by bounded, we may let
 $K_{n} = (0, \frac{1}{n})$.
Topkional: if we replace compact by closed and bounded,
then, if we let $X = Q$, and let $K_{n} = [J^{2-\frac{1}{n}}, J^{2}] \bigcap Q$
 K_{n} is closed in χ (not closed in \mathbb{R}), and is bounded.
but K_{n} is not compact. $\bigcap K_{n} = \phi$.

Row that $\sum_{n=1}^{D} \frac{1}{n} \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac$

m And $\lim_{m \to \infty} S_{2^m} = +\infty$ On the other hand, $b_n = \frac{1}{n}$, if $n \in I_m$, then $n \in 2^m$, thus $\frac{1}{n} \ge \frac{1}{2^m} = a_n$. Hence $b_n \ge a_n$. By Comparison test. Z bn = +10. #5 If an > 0 and Ean diverges, then Z Han diverges. $Pf: If \sum \frac{a_n}{Ha_n}$ converges, then $b_n = \frac{a_n}{Ha_n} \rightarrow 0$, hence $a_n = \frac{b_n}{1-b_n} \rightarrow 0$. Let N be large enough, sit. $\forall n \ge N$, $a_n < l,$ then, $\sum_{n=N}^{\infty} \frac{a_n}{Ha_n} > \sum_{n=N}^{\infty} \frac{a_n}{2} = \frac{1}{2} \sum_{n=N}^{\infty} a_n$. Hence Zan converges. Contradict with the hypothesis. the If an >0 and I an converges, show that ∑ Jan/n converges. \underline{P}_{j} : let $A_n = \sum_{j=1}^n a_j$, $B_n = \sum_{j=1}^n Ja_j/j$, be partial sums. Then $B_{n}^{2} = \left(\sum_{j=1}^{n} Ja_{j} \cdot \frac{1}{j}\right)^{2} \leq \left(\sum_{j=1}^{n} (Ja_{j})^{2}\right) \cdot \left(\sum_{j=1}^{n} \frac{1}{j^{2}}\right)$ $= \left(\sum_{j=1}^{n} a_{j} \right) \cdot \left(\sum_{j=1}^{n} \frac{1}{j^{2}} \right)$ Since Z an converges and Z hz converges. say to limit

S and T respectively, hence, $\forall n$. $\sum_{j=1}^{n} a_j \in S$ and $\sum_{j=1}^{n} \frac{1}{j^2} \in T$. Thus $B_n^2 \leq T \cdot S$. Since B_n is a monotone increasing sequence and is bounded, hence B_n converges.